2404.09748v1 [cs.CV] 15 Apr 2024

arxXiv

LetsGo: Large-Scale Garage Modeling and Rendering via LiDAR-Assisted
Gaussian Primitives

Jiadi Cui®** ", Junming Cao* ", Yuhui Zhong? *, Liao Wang' #, Fugiang Zhao'-*, Penghao Wang! 4,
Yifan Chen'#, Zhipeng He!: 4, Lan Xu!, Yujiao Shi', Yingliang Zhang? ¥, and Jingyi Yu':

'ShanghaiTech University, 2DGene, >Stereye, *NeuDim

Incremental Gaussian

Localization & Rendering

Figure 1: We present LetsGo - an explicit and efficient end-to-end framework for high-fidelity rendering of large-scale
garages. We design a handheld Polar scanner to capture RGBD data of expansive parking environments and have scanned
a garage dataset, named GarageWorld, comprising five garages with different structures. Our LiDAR-assisted Gaussian
primitives approach along with GarageWorld dataset enables various applications, such as autonomous vehicle localization,

navigation and parking, as well as VFX production.

Abstract

Large garages are ubiquitous yet intricate scenes in our
daily lives, posing challenges characterized by monotonous
colors, repetitive patterns, reflective surfaces, and trans-
parent vehicle glass. Conventional Structure from Motion
(SfM) methods for camera pose estimation and 3D recon-
struction fail in these environments due to poor correspon-
dence construction. To address these challenges, this pa-
per introduces LetsGo, a LiDAR-assisted Gaussian splat-
ting approach for large-scale garage modeling and render-
ing. We develop a handheld scanner, Polar, equipped with
IMU, LiDAR, and a fisheye camera, to facilitate accurate
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LiDAR and image data scanning. With this Polar device, we
present a GarageWorld dataset consisting of five expansive
garage scenes with diverse geometric structures and will
release the dataset to the community for further research.
We demonstrate that the collected LiDAR point cloud by
the Polar device enhances a suite of 3D Gaussian splat-
ting algorithms for garage scene modeling and rendering.
We also propose a novel depth regularizer for 3D Gaussian
splatting algorithm training, effectively eliminating float-
ing artifacts in rendered images, and a lightweight Level
of Detail (LOD) Gaussian renderer for real-time viewing
on web-based devices. Additionally, we explore a hybrid
representation that combines the advantages of traditional
mesh in depicting simple geometry and colors (e.g., walls
and the ground) with modern 3D Gaussian representations
capturing complex details and high-frequency textures. This



strategy achieves an optimal balance between memory per-
formance and rendering quality. Experimental results on
our dataset, along with ScanNet++ and KITTI-360, demon-
strate the superiority of our method in rendering quality and
resource efficiency.

1. Introduction

For many of us, our daily life begins with a safe depar-
ture from a garage and ends with a safe arrival. The garage
serves as the origin of our journey to innovation. For visual
artists, garages represent a frontier in visual simulation that
merges the aesthetic with the technical, offering a canvas
where the intricacies of light, shadow, texture, and space co-
alesce. The complex interplay of artificial and natural light-
ing within the confines of a garage, with its reflective sur-
faces, varying materials, and intricate geometries, provides
a rigorous testbed for modeling and rendering, pushing the
boundaries of what is achievable in virtual environments.

A number of cutting-edge fields can also readily benefit
from real-world garage modeling and rendering. For au-
tonomous driving, high-fidelity 3D models of garages are
crucial for simulating and testing the complex navigation
and parking algorithms that self-driving vehicles must mas-
ter. By rendering real-world garages with photorealistic de-
tails, developers can create varied scenarios, including dif-
ferent obstacles, ensuring that autonomous systems can op-
erate safely and efficiently in real environments. In game
design, 3D garages serve as interactive backdrops that can
be rich in narrative and aesthetic detail. Digital replications
of real-world garages provide a sense of immersion, crucial
for players to explore and interact with. For the movie in-
dustry, the ability to render photorealistic garages allows for
visually stunning special effects that can be seamlessly inte-
grated into live-action footage. This capability is invaluable
for creating believable scenes in a controlled environment
without the logistical challenges and costs associated with
on-location shooting.

Large-scale garages in the real world, however, are in-
herently difficult to model. They are generally poorly lit
and are mainly composed of texture-less walls, sloped sur-
faces with distorted lines, cluttered and often reflective en-
vironments, and complex occlusions between walls, cars,
and pillars (Fig. [[T). Garages with internal circular or spi-
ral paths further necessitate sophisticated handling of the
continuous curvature and potential occlusions caused by the
spiral design, which can lead to incomplete data and ambi-
guities in spatial relationships. Furthermore, the extensive
spatial domain of these garages underscores the necessity
for efficient 3D representations and lightweight rendering
techniques to facilitate real-time interaction and visualiza-
tion, particularly for scenarios demanding rapid situational
assessment, e.g., in navigation and path adjustment.

Traditional computer vision techniques have long strug-
gled to reconstruct accurate 3D models of garages. Pas-
sive perception schemes primarily employ color cameras to
capture images, utilizing Structure from Motion (SfM) [56|
62, 160, 61] and Multi-view Stereo (MVS) [12, 22, [77,
75\ [74]] for reconstructing 3D geometry. However, due to
the prevalence of texture-less regions and repetitive struc-
tural designs within garages, SfM and MVS methods of-
ten fail to extract sufficient feature points and establish
accurate feature correspondences necessary for estimating
camera poses. Active sensing technologies based on Li-
DAR can calculate camera poses and scene geometry using
SLAM [29} 15132} 6] algorithms, but the reflective materi-
als and transparent car windows common in garages lead to
geometric inaccuracies. More importantly, the LiDAR data
tend to be sparse, where the results contain many holes that
corrupt high-frequency textures essential for rendering the
color appearance of the scene.

Recent advances in neural representation, particularly
the Neural Radiance Fields (NeRF) [40] approach, have
shown promise in producing high-quality renderings given
camera parameters, but they come with high computational
costs and lengthy training times. A succession of NeRF-
based [44] 19, [79] 26| 50, I82] enhancements have emerged
to optimize training duration and visual rendering quality.
However, integrating such implicit representations into con-
ventional graphics rendering pipelines and tools for rapid
3D content applications remains challenging. The emerg-
ing 3D Gaussian Splatting [25] (3DGS) method has revis-
ited explicit representations, utilizing 3D Gaussians to artic-
ulate the geometry and appearance of scenes. This explicit
modality not only achieves high-quality scene modeling and
rendering but also integrates seamlessly into existing 3D
content production workflows. Nonetheless, 3DGS requires
a relatively accurate point cloud from SfM for Gaussian ini-
tialization, while SfM often fails in the large-garage envi-
ronment with large texture-less regions and high similarity
between different parts of the garages. Furthermore, 3DGS
requires a substantial number of 3D Gaussians to depict
even the simplest geometries like walls and floors, lead-
ing to considerable memory and storage resource consump-
tion that significantly hinders its application in large-scale
scenes.

This paper introduces LetsGo - an explicit and efficient
end-to-end modeling scheme for high-fidelity rendering of
large-scale garages. Our critical insight is to aid the 3D
Gaussian splatting variants with calibrated LiDAR points.
We design a handheld Polar scanner for expansive garage
data collection, which combines IMU, LiDAR and a fish-
eye camera for robust relative pose estimation. We have
scanned five large-scale garages, named GarageWorld, with
different geometric structures with this Polar scanner. To
our knowledge, this dataset is the first aimed at large-scale



garages and will be released to the community. We demon-
strate that the LiDAR points collected by this Polar device
successfully assist a suite of Gaussian splatting algorithms
for garage scene representation. To improve the quality of
the 3D Gaussian rendering, we also introduce a depth regu-
larizer that uses depth priors as supervisory signals, signifi-
cantly reducing floating artifacts and enabling high render-
ing quality.

Additionally, we develop a lightweight web renderer that
supports Level of Detail (LOD) rendering for 3D Gaus-
sians based on the camera’s position, orientation, and frus-
tum, enabling real-time high-quality rendering of large-
scale scenes on various consumer-level devices. Our results,
gathered from our dataset as well as from ScanNet++ [[11]
and the KITTI-360 [33]] datasets, indicate that our approach
not only exceeds other methods in rendering quality but
also maintains a smaller memory footprint. Our Garage-
World dataset and the LiDAR-assisted Gaussian primitives
for large-scale garage modeling and rendering enables var-
ious applications (Fig. [I), including autonomous driving,
localization, navigation, and visual effects, efc.

Our primary contributions are as follows:

* We design a handheld Polar scanner with calibrated
IMU, LiDAR, and a fisheye camera, allowing scanning
and reconstruction of large-scale garage scenes with
large texture-less regions and repetitive patterns where
conventional SfM fails.

* We present the first garage dataset, GarageWorld, con-
sisting of five large-scale parking scenes with diverse
structures, which will be released to the community to
tackle modeling and rendering challenges in expansive
environments.

* We demonstrate our LiDAR points assist a suite of
Gaussian splatting algorithms, making them feasible
for expansive and challenging garage scene modeling.
We also introduce a depth prior for Gaussian primitive
representation training, and a lightweight renderer to
enable real-time rendering on consumer-level devices.

2. Related Work

Conventional Explicit Visual Reconstruction. Conven-
tional algorithms for reconstructing large-scale scenes in-
clude Structure from Motion (SfM) [63} 110,71} 165} 42], Si-
multaneous Localization and Mapping (SLAM) [29, 14} 15, [7]]
and Multi-View Stereo (MVS) [58| [18]. They are ded-
icated to discerning the three-dimensional structure of a
scene through the sequential or multi-view analysis of
two-dimensional image frames. All these methods lever-
age feature tracking and multi-view consistency to recover
the 3D scene structures. SfM- and SLAM-based meth-
ods 63,110,156k 1,13} 21167, 155131 estimate poses of input
images and recover the scene structure jointly. However,

their main purpose is pose estimation, and the recovered
scene point clouds are always sparse, making it difficult for
high-quality free-view synthesis. While MVS-based meth-
ods [58, 118,130} 112} 22 [77), [75| [74] require posed images as
input. It computes a dense depth map for each input image,
and thus, the constructed point clouds for 3D scene rep-
resentation are dense. Despite successes, the constructed
scenes often lack accuracy and robustness in texture-less
and complex scenes.

Implicit Neural Scene Representations. In recent years,
neural scene representation [44, |9, 79, 26, 50] has emerged
as a promising avenue for addressing the complexities of
novel view synthesis. Unlike traditional explicit represen-
tation methods, neural approaches leverage the power of
deep learning to learn implicit representations directly from
data. These methods have shown significant advancements
in capturing complex 3D scenes and generating novel views
with remarkable realism.

Neural Radiance Fields (NeRF), initially introduced by
Mildenhall et al. [40], has revolutionized the field of
3D reconstruction and provided an innovative framework
for capturing complex scene details. Since then, a multi-
tude of research has flourished. Considering the original
NeRF can only handle bounded and forward-facing scenes,
NeRF++ [82] firstly extends NeRF to unbounded scenes
by introducing an inverted sphere parameterization. MipN-
eRF [2] reduces objectionable aliasing artifacts when train-
ing and testing images are at different scene resolutions by
introducing a new conical frustum rendering scheme in-
stead of rendering along a camera ray. Based on MipN-
eRF, MipNeRF360 [3]] further leverages a non-linear scene
representation, online distillation, and a novel distortion-
based regularizer to improve the rendering quality in un-
bounded scenes. NeRF has also been extended to address
deformable scenes [46) 38| [37] and scenes with dynamic
objects 811149, 47].

The original NeRF requires long training and evaluation
time, prohibiting its practical use. To achieve real-time 3D
modeling and rendering, kiloNeRF [52]] proposes to lever-
age many tiny MLPs to replace the original big MLP, as
tiny MLPs require a significantly shorter time for evaluation
than the original large MLP. Instant-NGP [43] introduces
a new hash encoding approach, which guarantees render-
ing quality with a smaller neural network and thus reduces
the rendering speed. To handle large-scale scenes, Block-
NeRF [66] decomposes the scene into individually trained
NeRFs, which decouples the rendering time from scene size
and enables per-block updates of the environment. Turki et
al. [68]] introduce Mega-NeRF, which handles varying light-
ing conditions of images spanning different buildings or city
blocks and explores temporal consistency. Considering that
previous NeRFs are mainly designed for forward-facing or
the 360° object-centric trajectory, F2-NeRF [70] presents



a novel space-warping method to handle arbitrary camera
trajectories. To handle the pose drift issue of SLAM and
StM for large-scale scene reconstruction and rendering, Wu
et al. [72] introduce bundle adjusting neural radiance field,
which jointly optimizes camera pose & scene representa-
tion, achieving promising results in both indoor and outdoor
scenes.

Hybrid Scene Representations. Based on the observation
that a sparse point cloud of a scene is often easily obtained
by multi-view stereo, PointNeRF [[76]], PointNeRF++ [64],
and TetraNeRF [28]] are proposed to combine the merits be-
tween explicit scene geometry and implicit neural represen-
tations. They have demonstrated impressive visual qual-
ity and high rendering speed compared to previous pure
implicit neural representations. To handle asynchronously
captured LiDAR data and exposure variation between cap-
tured images in large urban outdoor environments, Rematas
et al. [53]] present Urban Radiance Field (URF), which also
leverages segmentation maps to supervise densities on rays
pointing at the sky.

Utilizing neural networks for scene rendering often
comes with a significant trade-off in rendering speed and
quality. To address this, the Plenoxels [14] achieves a re-
markable two orders of magnitude acceleration in photore-
alistic view synthesis speed compared to Neural Radiance
Fields, maintaining visual quality through optimization of
a sparse 3D grid with spherical harmonics from calibrated
images. Extending this concept, Wang et al. [69] com-
bine Fourier and hyperspherical harmonics, achieving dy-
namic reconstruction. Chen et al. introduce TensoRF [8]],
a groundbreaking approach to radiance field modeling that
represents scenes as 4D tensors, leveraging CP and VM de-
compositions for improved rendering quality and reduced
memory footprint compared to NeRF. Building upon this
innovation, Jin et al. [23]] propose TensolR, an inverse ren-
dering method that combines tensor factorization and neural
fields for efficient estimation of scene geometry, surface re-
flectance, and environment illumination.

Back to Explicit. Recently, 3D Gaussian splitting
(3DGS) [25] revolutionizes the view synthesis quality for
unbounded and complete scenes with 1080p resolution ren-
dering. It represents sparse points from STM/SLAM/LiDAR
sensors with 3D Gaussians and directly optimizes the po-
sition, anisotropic covariance, opacity, and spherical har-
monic (SH) coefficients of each Gaussian. Benefitting from
a tile-based rasterizer solution, 3DGS achieves super-fast
and ultra-fine rendering quality. Our method is built upon
the 3DGS technique and combines the merits of conven-
tional explicit point cloud/mesh and Gaussian representa-
tion for large-scale scene reconstruction and rendering.

3. Garage Data Capture
3.1. Raw Data Acquisition

Scanning and modeling a large garage is a non-trivial
task. Underground and indoor garages often face challenges
in receiving GPS signals due to the physical barriers pre-
sented by the structures and materials surrounding them,
making camera pose estimation for scanning and modeling
difficult. Furthermore, there are always large-scale texture-
less regions inside a garage, e.g., floors and walls. The
parked vehicles often contain transparent glasses, and their
surfaces are sometimes reflective. This complicated feature
matching between images for camera pose estimation and
3D geometry reconstruction. Using a LiDAR sensor for
scanning and modeling can provide detailed geometric in-
formation. However, the RGB color for each scanned point
is not associated.

Capturing Device. To address these problems, we de-
sign a lightweight handheld scanning device named “Polar”
to jointly collect color and geometric information about the
garage. The data collection unit of the Polar device com-
prises a color fisheye camera, a LiDAR sensor, and an IMU
sensor, as visualized in Fig. [2] The fisheye camera captures
RGB color information. It has a resolution of 6K and a field
of view (FOV) of 270 x 360 degrees, allowing for quick
and comprehensive recording of vivid color data. The Li-
DAR sensor collects 3D point clouds, recording geometric
information at a rate of 2.6 million points per second. With
a measurement accuracy of 1 to 1.5 cm and a maximum de-
tection distance of 50 m, it is ideal for 3D scanning of large
garage scenes. The IMU sensor provides acceleration in-
formation on the device’s motion, enabling more accurate
pose estimation. In addition to the data acquisition unit, we
also equip the Polar device with a data processing unit con-
sisting of a mini PC for real-time SLAM calculations. The
data processing unit is powered by two removable batteries
that provide more than 30 minutes of single scan endurance.
With this unit, one can use a smartphone to connect with the
Polar device and preview 3D point cloud reconstruction re-
sults in real-time. The entire Polar device weighs no more
than 1kg, making it suitable for handheld scanning applica-
tions.

Scanning Scheme. We use the Polar device to scan var-
ious garages for modeling and free-viewpoint rendering.
For each garage, our scanning trajectory aligns with the
common vehicle trajectory when driving through garages.
We collect data along each trajectory four times: one for
forward-facing data collection, one for backward-facing,
one for side-left, and one for side-right, resulting in compre-
hensive capturing of the garage. We set the camera to auto
exposure and auto ISO to accommodate complex lighting
changes in the garage. For garages that are partially open-
air and partially covered, the data is collected when the sun-
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Figure 2: Our compact Polar scanner (b) is engineered for capturing expansive garage environments (a). It is optimized for
handheld operation or vehicular mounting, enabling versatile data capture in extensive spaces. At the core of Polar’s data
acquisition unit lies a high-fidelity LiDAR sensor, capturing precise 3D point clouds (c), complemented by a fisheye camera
that procures wide-angle 2D RGB images (d) for a complete scene modeling.

Table 1: Detailed illustrations of our GarageWorld dataset.

Dataset Category Geometry Aera(m?) Image Num Point Num Face Num Lighting Condition
Campus 1 Underground Flat & Sloped Surfaces 38447.86 8479 1.9B 121.9M Great
Campus 2 Underground Flat & Sloped Surfaces 28046.37 7772 1.4B 95.8M Great
Shopping Mall 1  Indoor (Multi-level)  Spiral & Circular Paths 32646.68 5792 1.14B 40.78M Fair
Shopping Mall 2 Outdoor Spiral & Sloped paths 13495.92 2280 0.6B 77.1M Good
Office Building  Indoor With Mechanical Parking System ~ 22159.25 9308 1.15B 72.3M Good

light is weak, i.e., during the early morning or evening. This
ensures the images captured at the transition between open-
air and covered areas share similar illumination. We also
apply a short pause for data capturing at the transition area,
allowing the sensor to adapt to different lighting conditions
and thus ensuring the images are neither overexposed nor
underexposed. For garages with motion-activated lights, we
ensure the data is collected after the light turns on, maintain-
ing consistent lighting conditions across all images. The
travel speed for data collection is at around 1.0+0.2 m/s,
with a turning speed of 15°43 °/s. In areas with insufficient
light, these parameters are reduced to 0.5 m/s and 10 °/s,
respectively, to avoid motion blur. Some garages are very
large, for example, over 30,000 square meters. Thus, we di-
vide the large garage into small subsections and collect data
for each subsection. The data is fused later after collection.

3.2. GarageWorld Dataset

We collect data for five garages, including two under-
ground garages on Campus, one indoor garage with multi-
levels at Shopping Mall One, one outdoor surface parking at
Shopping Mall Two, and one indoor garage with a mechan-
ical parking system in an Office Building. These garages
comprise various challenging structures, such as sloped sur-
faces with distorted lines, internal circular or spiral paths,
vehicle elevators, efc., as shown in Fig. @ Almost all
our scanned garages contain electric vehicle charging sta-
tions, making them eco-friendly. Tab. [T] provides an overall
description of the garages.

Underground Garages.  We first collect data for two
underground garages on campus. This design for construct-
ing garages beneath the ground is often employed in areas
with limited above-ground space, providing a solution that
preserves surface area for other uses. The coverage of the
two garages is around 38.4k and 28k square meters, respec-
tively, and they only have one floor for vehicle parking with
flat and sloped surfaces. The two garages are illuminated
by constant light conditions, with regular fluorescent light
tubes on the ceiling. We collect 8,479 and 7,772 images for
the two garages, respectively, with 1.9 and 1.4 billion point
clouds.

Indoor Garage with Multi-floors.  Staking garages to
multi-floors is a common design in dense urban environ-
ments. We collect data for this type of parking garage in
Shopping Mall One. The different floors of this garage are
connected by spiral and circular paths, which have a semi-
open structure and are partially illuminated by Sunlight and
partially by indoor lights. Given that the lights in the shop-
ping mall are not turned on in the early morning, we collect
data for this garage during the early evening to maintain
consistent illumination between different images. The to-
tal coverage for this garage data is over 32k square meters,
with 5,792 images and a point cloud containing 1.14 billion
points.

Outdoor Parking. The outdoor surface parking facility
is often in areas with large spaces or on the top of a com-
mercial building. We collect data for a garage with this
type located on the top of Shopping Mall Two. The en-



trance to this parking space is from indoor to outdoor, con-
taining spiral and sloped paths. During daylight time, the
outdoor illumination is stronger than indoor. At night, the
limited dim streetlights are insufficient for photography re-
quirements. Therefore, we conduct our data capture during
the early morning and evening when the sunlight is soft,
and the illumination between indoors and outdoors is sim-
ilar. We scanned an area surpassing 13,000 square meters
for this garage, resulting in 2,280 images and a point cloud
containing 0.6 billion points.

Indoor Garage with a Mechanical Parking System. We
also scan several indoor garages with a mechanical parking
system in an office building. These garages are typically
small in size and contain colored surfaces. The total cover-
age of these garages is around 22k square meters, contain-
ing 9,308 images and 1.15 billion points in point clouds.

3.3. Relative Pose Estimation and Mesh Recon-
struction

We start processing the collected garage data by Polar
device calibration and dynamic object removal, followed by
relative pose estimation for the images captured at different
time steps and mesh reconstruction of the entire garage. The
detailed descriptions for each step are presented below.

For the intrinsic parameter calibration of the fisheye
camera and the IMU sensor, we leverage the program
provided by OpenCV and the Allan Variance ROS tool-
box [511 [17} 16} [39] 45]], respectively. The extrinsic cali-
bration between the fisheye camera and the IMU is done
using the Kalibr calibration program [51]]. Due to the spar-
sity, noisiness, and uncolored nature of the point cloud data
collected by our LiDAR sensor, it is hard to establish cor-
respondences between the LiIDAR data and the images cap-
tured by the fisheye camera, making relative pose estima-
tion between the sensors difficult. To address this issue,
we introduce an additional sensor, a FARO laser scanner,
which provides dense, accurate, and colored point clouds
and thus functions as a bridge for the relative pose estima-
tion between the LiDAR sensor and the fisheye camera. The
detailed calibration steps between the sensors are presented
in the supplementary material.

To remove the dynamic objects in the collected data, we
apply Segment Anything [27] to the images. For the point
cloud data, we estimate whether the points scanned at one
LiDAR frame are also observed at other frames, similar to
Schauer and Niichter [54].

After this preprocessing step, we employ the LiDAR-
Inertial-Visual(LIV) SLAM [59] to estimate the relative
poses of the sensor between different time steps. The LIV-
SLAM system integrates a tightly coupled LiDAR-Inertial
Odometry and Visual-Inertial Odometry, along with a joint
optimization approach between LiDAR and camera data,
for relative pose estimation. Specifically, we employ LIO

to fuse IMU data with point clouds collected at different
time steps by the LiDAR sensor. This process yields accu-
rate distance measurements and effectively mitigates drift
in the IMU data. Subsequently, using the IMU data updated
by LIO, we implement VIO among captured fisheye images
to estimate their relative poses. Following this, we utilize
joint factor graph optimization [35] to refine the estimated
poses of the LIDAR and camera. The initial pose graph is
constructed by incorporating the updated LiDAR, IMU, and
camera poses. Then, bundle adjustment is applied to further
optimize the graph. This pose estimation system capitalizes
on the strengths of each sensor: IMU data offers short-term
motion estimation, LiDAR provides accurate distance mea-
surements, and visual sensors enhance pose estimation in
feature-rich environments. Thus, it ensures robust and ac-
curate pose estimation. After merging the point cloud data
collected at different time steps using the estimated relative
pose, we apply Poisson Reconstruction [24]] to convert the
point cloud data into an uncolored mesh. To ensure the ac-
curacy and integrity of the resulting mesh, we also compare
the reconstructed meth to the original point cloud data to
remove incorrect faces.

This geometry-based mesh reconstruction method per-
forms well for Lambertian surface reconstruction. How-
ever, it faces challenges for reflective and transparent sur-
faces, e.g., vehicle glass windows, which is especially com-
mon in garage environments. Furthermore, the granularity
and preciseness of the reconstructed meshes depend on the
density of the 3D points.

4. LiDAR-Assisted Gaussian Primitives

3D Gaussian representation excels at modeling transpar-
ent and reflective surfaces compared to mesh. However, it
requires a sparse 3D point cloud of the scene and accurate
camera parameters obtained from SfM. As discussed pre-
viously, the large-scale garage scenes are challenging for
SfM algorithms, with low lighting conditions, large texture-
less regions, repetitive patterns, efc., making sufficient fea-
ture correspondences between different images hard to es-
tablish. As a result, the capacity of the original 3DGS for
high-quality modeling and rendering is limited.

Our Polar scanner with calibrated IMU, LiDAR, and
fisheye camera sensors addresses this challenge. The
strengths of the different sensors are combined to achieve
accurate camera poses and 3D point cloud representations.
In the following sections, we describe technical details of
our LiDAR-assisted Gaussian splatting with a depth regu-
larizer and a hybrid representation that combines the merits
of mesh and 3D Gaussians, followed by training details and
experimental evaluation. Fig[3|provides an overview of our
LiDAR-assisted Gaussian splatting framework.
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and depth data collected by our self-designed Polar device. Then, the data is partitioned into blocks for parallel and rapid
processing. Next, we utilize high-quality scanned point clouds as the input for our LIDAR-GS (Sec.T)) algorithm. Besides
photometric supervision, we also apply our novel unbiased Gaussian depth regularizer for geometric supervision. Finally,

our system produces photorealistic rendering results.

4.1. LiDAR-Assisted Gaussian Splatting

3DGS [23]] represents 3D points with 3D Guassians, pa-
rameterized by position p, opacity «, anisotropic covari-
ance X, and spherical harmonic (SH) coefficients represent-
ing view-dependent color c. The projection from 3D Gaus-
sians to 2D images [84] is given by

Y =JgwewtjT, (1)

where J represents the Jacobian of the affine approximation
of the projective transformation, and W corresponds to the
viewing transformation.

The purpose is to optimize the Gaussian parameters so
that the rendered images from the 3D Gaussians are as close
to their ground truth (GT) images as possible. Normally,
the optimization is achieved by stochastic gradient descent
(SGD). Since it cannot constrain the covariance matrix to be
semi-definite, only in which scenario the covariance matrix
has its physical meaning, Kerbl et al. proposes to optimize
a scaling matrix S and rotation matrix R, and compute the
covariance matrix as:

Y = RSSTRT, )

where S is parameterized as a 3D vector and R is parame-
terized as quaternion, a 4D vector with an unit norm.

In this paper, we use our Polar device with a LIiDAR sen-
sor to scan point clouds of the garages. Considering the
originally scanned point clouds contain noises, we resam-
ple a set of new points from the reconstructed mesh with a

uniform sampling strategy. These resampled points, in con-
junction with the camera parameters, are used to train the
3DGS representations.

In addition to the original Gaussian splatting, we further
introduce a depth-regularizer for the 3DGS training, which
leverages the high-fidelity LiDAR data to incorporate depth
priors during training. We denote this method as LiDAR-
GS, and the original 3DGS method with LiDAR-assisted
point cloud for Gaussian initialization as 3DGS*.

Depth Regularizer. Inspired by the depth calculation
from NeRF [40], we utilize the rasterization pipeline of
Gaussians to compute the depth of each Gaussian primitive:

i—1
Dg=Y daT,, Ti=][0-a), O
iEN j=1

where Dg is the rendered depth of the 3D Gaussian prim-
itive and d; is the depth of each Gaussian splat in camera
perspective.

It should be noted that the center of the Gaussian is not
directly employed for depth computation. Due to variations
in the shape and orientation of the Gaussian, the depth at the
precise point where the ray intersects the Gaussian deviates
from the depth at its center. Our approach computes the
expected depth at the specific point of intersection with the
Gaussian as follows:
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“)
where p = [po, p1, p2] represents the position of the Gaus-
sian center in the ray space, and X is the 3 x 3 covariance
matrix. ()mn represents the corresponding element in the
matrix. For detailed derivation and understanding of this
process, please refer to the supplementary materials pro-
vided with the paper.

Given the K captured views, we compute the depth loss
using the following equation:

ﬁdCPth:ZHDg_DkHN )
k

where D* represents the inherent depth prior from LIDAR
data.
The total loss function is as follows:

‘Ctotal = Ergb + )\depthﬁdepthv (6)

where L., is the RGB image reconstruction loss, fol-
lowing the original 3DGS, and Ageptn is the weight for
our depth term. By incorporating the depth constraint, our
LiDAR-GS effectively minimizes the occurrence of floating
artifacts and aligns the Gaussian kernel more closely with
the depth information inherent in the LiDAR data.

Furthermore, our method also supports residual Gaus-
sian, a hybrid representation composed of meshes and
Gaussian. In scenarios of large-scale underground garages,
most parts consist of continuous planes like the ground,
which can be effectively utilized by a rough mesh. Mean-
while, details such as texture and glasses on the car can be
effectively represented by the Gaussian. As shown in Fig.
[l by applying this hybrid representation, the memory con-
sumption for training and model storage can be significantly
reduced.
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Figure 5: TIllustration of our partition scheme. The left
image shows the margin expansion method employed to
guarantee overlap amongst the partitioned blocks. The top
right image demonstrates the extension of partition bound-
aries to incorporate irregular areas. The bottom right im-
age details the approach for multi-level parking structures,
wherein each level is segregated into different partitions.

4.2, Training Details

We train our model using the PyTorch Framework on
NVIDIA RTX A6000 GPUs. Considering the large scale
of our scene and the use of LiDAR point clouds for initial-
ization, we adjust the scaling learning rate to 0.0015 and
set the initial position learning rate for residual Gaussians
primitives to 0.000016. Additionally, we increase the opac-
ity reset interval to 2,000,000 and delay the Gaussian den-
sification step start to 75,000. The total iteration count is
empirically set to twenty times the number of captured im-
ages. We set the spherical harmonics (SH) degree to 2 and
the weights for regularization terms Ageptnh and )\(’gepth to
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Figure 6: Qualitative comparison between our LiDAR-GS, 3DGS*, SuGaR*, Mip-Splatting®, NGP and F2-NeRF on the
various datasets. Here, we use a superscription * to denote their Gaussian primitives are initialized according to our LiDAR-

assisted 3D point cloud.

Table 2: Quantitative comparison between our LIDAR-GS, 3DGS*, SuGaR*, Mip-Splatting®, NGP and F2-NeRF on the

various datasets.

Method GarageWorld ScanNet++ KITTI-360
PSNR? SSIM? LPIPS] PSNR?T SSIM? LPIPS| PSNR? SSIM? LPIPS|

3DGS* 23.52 0.822 0.412 27.41 0.902 0.149 20.39 0.698 0.289
Mip-Splatting* 22.08 0.791 0.448 25.74 0.898 0.179 20.19 0.682 0.318
SuGaR* 24.14 0.828 0.400 27.28 0.897 0.167 21.18 0.706 0.313
F2-NeRF 18.88 0.739 0.552 23.59 0.888 0.237 18.60 0.653 0.414
NGP 20.68 0.734 0.507 28.72 0.896 0.230 21.21 0.655 0.406
Ours(LiDAR-GS) 24.63 0.835 0.400 27.54 0.903 0.149 21.26 0.722 0.269

0.8, respectively. We also apply partition-based training to
train our data in parallel for acceleration.

Block Partitioning. As illustrated in Fig. [3} we parti-
tion each level of garages into sub-blocks with overlapped
quadrilateral, typically a rectangle or a trapezoid with small
internal angles. Each block covers approximately 100
square meters. This enables scene representation training
at a small scale.

Edge Expansion and Point Cloud Partitioning. Due to
poor reconstruction quality at edges by Gaussian splatting
based methods, we expand each quadrilateral outward by
30% to enhance the reconstruction quality. Since the col-
lected garage point clouds are vertically aligned with the Z-
axis, we only need the quadrilateral vertices for point cloud
segmentation and downsample the point cloud at 4cm inter-
vals.
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Figure 7: Illumination of different Gaussian splatting octree
levels. The root level contains the lowest density subsam-
ple of the original Gaussian splats, and with each level, the
resolution is doubled.

Image Selection. After processing the original fisheye
images, we retain camera views with origins inside the par-
tition. For cameras outside the partition, we project the
complete and quadrilateral-partitioned meshes to the views,
comparing the number of triangles visible from each view.
Views with a ratio greater than a certain threshold, deter-
mined as 0.8 from experiments, are retained.

Results Merging. After partition training, we use the
original quadrilateral coordinates to segment and merge the
results, achieving a complete scene reconstruction.

4.3. Experimental Results

Datasets.  In this section, we compare our approach with
the recent state-of-the-art on various challenging large-scale
datasets, including our GarageWorld, KITTI-360 [33],
a large outdoor street scene, and ScanNet++ [78], an in-
door scene characterized by complex geometry and variable
lighting. We adopt 10% images of each scene for test sets,
others are training sets.

Competing Methods We compare our method against a
suite of 3DGS approaches, including 3DGS*[25], Mip-
Splatting*[80], and SuGaR*[20]. They all utilized our
LiDAR-derived point clouds as initialization, enabling their
application to the challenging garage scenes. Additionally,
our approach is benchmarked against recent implicit rep-
resentation methods, namely F2-NeRF[70] and Instant-
NGP[43]],

Evaluation Metrics.  For quantitative comparisons, we
adopt Peak Signal-to-Noise Ratio (PSNR), Structural Simi-
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larity (SSIM), and Learned Perceptual Image Patch Similar-
ity (LPIPS)[83]] as metrics to evaluate the rendering quality.

Results.  As shown in Fig. [6 3DGS* and SuGaR* tend
to generate floating Gaussian points around scene surfaces,
leading to blurriness and poor rendering quality. F2-NeRF
performs well on the relatively small-scale scene of Scan-
Net++ but suffers from artifacts in the large-scale KITTI-
360 dataset and blurry in our GarageWorld dataset. As for
Instant-NGP, which utilizes hash encoding, its rendering re-
sults in large-scale scenes appear notably blurry. In contrast,
our method shows the highest rendering quality in various
scenarios. The comparison between Ours (LiDAR-GS) and
3DGS* demonstrates that our depth regularizer successfully
suppresses the float Gaussian primitives, resulting in im-
proved rendering quality. The quantitative comparisons be-
tween the state-of-the-art methods on the three datasets are
presented in Tab. 2] Our method consistently achieves the
best result.

5. Web-based Lightweight Renderer

Lightweight rendering is crucial for enabling real-time
visualization on commonly used devices like laptops and
mobile phones. It reduces the dependency on high-
performance computing devices and ensures a positive user
experience across various application scenarios. In the con-
text of large-scale scenes, exemplified by the garages dis-
cussed in this paper, the 3D Gaussian splatting necessi-
tates a substantial number of Gaussians to depict the entire
scene comprehensively. However, mainstream lightweight
devices currently grapple with the challenge of simultane-
ously loading all Gaussian splats into VRAM for render-
ing. To mitigate this, this paper partitioned the large garage
scene into small sub-blocks. Despite this optimization, the
required number of Gaussians is still significant, making
real-time rendering on lightweight devices challenging.

In response to the complexities posed by large-scale
scenes, recent approaches [57,136] have turned to a Level of
Detail (LOD) structure for storing and loading point clouds
or textured mesh data into memory. Drawing inspiration
from this LOD structure, this paper introduces a new ren-
derer tailored to our LiDAR-assisted Gaussian primitives.
We present a LOD structure for 3D Gaussian storage and
rendering at different resolutions. This innovation enables
real-time, high-quality rendering on lightweight devices,
addressing the unique demands of large-scale scenes.

5.1. Level of Detail Structure for 3D Gaussians

Similar to Potree [57], we store the unstructured 3D
Gaussians of our representation in the partitioned sub-block
of the large-scale garage in a layered manner in an octree,
as shown in Fig. Each level of the Octree contains a



Figure 8: Autonomous vehicle parking. Our diverse garage
scenes facilitate training algorithms for generating park-
ing trajectories under different scenarios. When guiding
the vehicle to the parking space, our garage model allows
real-time and wide-FOV rendering of the environment, cap-
turing drivable area and obstables, thereby enhancing safe
parking capabilities.

subsample of the whole data at a specific resolution, with
the density/resolution of the subsample decreasing with the
level number. The max level of the Octree contains the orig-
inal residual 3D Gaussian data at a maximum level of de-
tail, while the lowest level denotes the root node and stores
the coarsest subsample of the whole data at the lowest level
of detail. Following previous works, we apply chunking,
merging, and downsampling operations to create the octrees
at each level.

The chunking step splits the original 3D Gaussians into
cubic chunks with an appropriate chunk size, which is small
enough that parallel processing for multiple chunks can be
guaranteed while being large enough to contain adequate
numbers of 3D Gassians to avoid massive tiny chunks. In
our scenario, we divide the space of the partitioned sub-
block into a chunk grid of 1283 and count at most 10k 3D
Gaussians within each grid. Unlike previous works for point
cloud LOD rendering that only need to consider the position
of the 3D point, we take into account both the position and
radius of the 3D Gaussians during the chunking step. A
3D Gaussian is assigned to a chunk when its center posi-
tion is within this chunk and also at least 50% of its radius
extends within the boundaries of the chunk, ensuring that
most of the Gaussian volume is contained within the desig-
nated spatial segment. We merge adjacent chunks contain-
ing fewer than 10k 3D Gaussians to avoid sparsity within
any chunk. To create the LOD structure, we downsample
the leaf nodes of a higher-level octree to generate the sub-
sample of 3D Gaussians at the lower level. This process is
repeated recursively until the coarsest level.

We store the chunking information at each level, includ-
ing the whole region of the garage scene, the number of
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3D Gaussians, and the starting and ending address of each
chunk in binary files. During the following rendering pro-
cesses, these metadata are loaded into memory, assisting in
deciding which parts of the 3D Gaussians to access.

5.2. Coarse-to-Fine Rendering

We implement a coarse-to-fine loading and rendering
scheme for the residual 3D Gaussians to enable real-time
rendering on lightweight devices. We divide the LOD struc-
ture for 3D Gaussians into two parts. Levels under four are
preloaded at the beginning and kept in memory. These are
primarily used for rendering the overall scene at a lower res-
olution. Since they store a relatively smaller number of 3D
Gaussians and are frequently accessed data, keeping them
continuously in memory does not significantly impact re-
source usage while helping avoid I/O issues associated with
frequent loading. Levels higher than four are dynamically
loaded into memory to compensate for scene details of the
coarse levels based on the given camera parameters. To en-
sure the rapid rendering of the dynamically loaded data, we
employ a multi-threaded asynchronous reading approach,
loading each level of 3D Gaussians in parallel. Addition-
ally, to guarantee the loading time of the new 3D Gaussian
nodes at the updated viewing positions, we set an upper
limit on the size of data loaded at once. This limit is set
to 2 million 3D Gaussians per load in our implementation.

The above-illustrated loading and rendering parameters
could be adjusted according to the memory size and com-
putational power of different devices, thereby accommodat-
ing the rendering tasks of garage scenes on various devices.
We test the performance of our renderer on different de-
vices. On a high-performance desktop equipped with an
19-10900X CPU and a Samsung SSD T5 Disk, it takes 1.36
seconds to load approximately 2 million 3D Gaussians. On
a MacBook laptop equipped with an Apple M2 CPU and
APPLE SSD AP0512Z Disk, it takes 1.29 seconds to load
the same 2 million 3D Gaussians. Combining these extra
3D Gaussians with the preloaded 3 million Gaussians of the
scene, both devices maintain a rendering frame rate of 60
FPS.

For our hybrid mesh and residual Gaussian representa-
tion, we leverage an open-source library, Nexus [48]], to
store and render mesh from different resolutions, and the
residual Gaussian primitives are rendered using the above
illustrated LOD renderer.

6. GarageWorld and Applications

Fig. [IT] visualizes the GarageWorld dataset, consist-
ing of five large-scale garages that exhibit a diverse array
of types: underground garages, outdoor parking, an indoor
garage with multi-floors, and an indoor garage featured with
mechanical parking systems. These environments are char-
acterized by intricate geometric structures, such as sloped
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Figure 9: Real-time localization & navigation in challeng-
ing garage environments. Our colored 3D model facilitates
precise vehicle camera localization and optimal path navi-
gation, particularly in low-light garage conditions, ensuring
safe driving. The lightweight web-based rendering ensures
deployability in vehicles with limited computing resources.

surfaces with distorted lines, internal circular paths, spiral
ramps, and parked vehicles. The point clouds illustrated
in Fig. [I]capture the comprehensive architectures of the
garages. Our neural rendering pipeline is employed to pro-
duce images from multiple perspectives, exemplifying the
photorealistic quality of our rendering technique. Our neu-
ral rendering pipeline and the GarageWorld dataset are de-
signed to support an extensive range of applications, details
of which are delineated in the forthcoming sections.

6.1. Data Generation and Testbed for Autonomous
Driving

Our reconstructed 3D structure for large-scale garage
scenes and high-quality real-time rendering assists various
autonomous driving algorithms. For example, autonomous
vehicles are equipped with multiple sensors, including Li-
DAR, IMU and cameras, to perceive the environment. The
reconstructed 3D structure aids in sensor fusion algorithms
by providing a diverse and accurate dataset for training. Our
GarageWorld dataset includes a wide range of driving sce-
narios, such as tight parking spaces, multi-level structures,
complex spiral and circular paths, diverse geometric lay-
outs. This provides various solution generation for different
autonomous driving applications, such as the trajectory gen-
eration for autonomous parking, path planning for naviga-
tion, etc. With the generated data, autonomous driving algo-
rithms can be trained to handle these complex scenarios, im-
proving their ability to operate effectively in various garage
environments. Furthermore, benefiting from our recon-
structed garage world by LiDAR-assisted Gaussian primi-
tives, algorithms can be rigorously tested and validated in
a controlled virtual environment before being deployed in
real-world scenarios. This accelerates the development and
deployment process while ensuring a higher level of safety.
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Additionally, the challenging garage environments, as dis-
cussed previously, with large textureless regions, repetitive
patterns, transparent and reflective surfaces, etc., offer a re-
alistic testbed for SfM and visual SLAM techniques.

6.2. Real-time Localization and Navigation

Apart from generating various training data in complex
scenarios, our LiDAR-assisted garage modeling and render-
ing also benefit autonomous vehicle localization and nav-
igation by providing accurate 3D references and comple-
menting real-time sensor readings.

In the challenging indoor or underground garage envi-
ronment, there is often limited or no access to GPS sig-
nals, making traditional GPS-based localization challeng-
ing. The confined spaces and structured obstacles can lead
to interference for LiDAR and radar sensors, and multi-
path reflections in the confined spaces can distort sensor
readings, making localization by LiDAR and radar less re-
liable. Furthermore, the low lighting in underground and
indoor garages reduces camera visibility, posing challenges
for purely vision-based localization. Benefiting from our
Polar scanner and LiDAR-assisted Gaussian primitives, we
provide accurate 3D references with colors that assist de-
vices in accurately recognizing and matching environmen-
tal features. This integration significantly enhances local-
ization and navigation accuracy and reliability.

Fig. [Qpresents an example of real-time localization and
navigation. When the task is triggered, our localization sys-
tem correlates an image captured at the current location with
our reconstructed colored 3D models and computes a rela-
tive pose. Then, our navigation system generates an optimal
path connecting the current location and destination in the
complex garage environment. During the driving process,
our 3D model and real-time rendering complement the vehi-
cle camera readings and broaden the field of view of the ve-
hicle, providing a comprehensive understanding of the envi-
ronment, thus enabling safe driving. Our web-based render-
ing engine empowers our system to represent expansive 3D
garage maps and navigation trajectories on lightweight de-
vices with limited computational capacity, thus delivering
smooth real-time interactions and superior rendering effi-
cacy.

6.3. Autonomous Vehicle Parking

Our diverse and complex garage environment provides
various challenging parking scenarios with different park-
ing trajectories for vehicle parking algorithm training. Dur-
ing deployment, based on the vivid rendering output of the
garage, autonomous driving systems analyze available park-
ing spaces, generate a trajectory, and guide the vehicle into
these spots along the trajectory.

Apart from this trajectory planning, our LetsGo pipeline
for garage modeling and rendering can also assist au-



Figure 10: VFX demonstration. Through an analysis of the
animation in the reference video, we manually extract the
poses of several keyframes, which enable our system’s ren-
derer to generate corresponding video segments. Our 3D
garage modeling and rendering also enables motion blur
rendering, producing realistic visual effects.

tonomous vehicles in safe parking by complementing sen-
sor readings. As discussed previously, due to the low light
conditions in garage environments, real-time sensor obser-
vations by vehicle-mounted cameras may not observe the
surrounding scene accurately. The vehicle-equipped Li-
DAR or Radar sensors may suffer inaccuracies due to re-
flections in the confined space. Our detailed 3D model helps
identify and classify obstacles within the garage, ensuring
safe and efficient parking. As shown in Fig. [8] our method
generates rear view images with a wide field of view, en-
capsulating drivable area and obstacles (e.g., walls). This
allows accurate distance measurement between the vehi-
cle and the obstacle, avoiding collisions. The proposed
lightweight real-time rendering allows the vehicle to dy-
namically assess its surroundings and make quick decisions,
increasing safety and navigating the vehicle through tight
spaces.

6.4. VFX Production

Our reconstructed garage datasets and real-time render-
ing can significantly contribute to VFX productions. For
example, iconic scenes like the highway chase in ”The Ma-
trix Reloaded” are captivating and impressive. Filming such
scenes can involve shooting or simulating extreme locations
using visual effects. Our LetsGo pipeline can achieve high-
quality modeling and rendering of complex garage scenes.
Moreover, real-time rendering enables the manipulation of
various factors, such as exposure time and the significance
of motion blur, which can be challenging to adjust in actual
filming scenarios. Our GarageWorld serves as a valuable
foundation for creating lifelike backgrounds or integrating
CGI (Computer-Generated Imagery) elements seamlessly
into live-action footage.

13

To demonstrate the capabilities of our approach, we cre-
ate a VFX video production using our reconstructed garage
models (Fig. [I0) and the supplementary video. In this
demonstration, we download a video depicting highway
chase scenes with dynamic viewing angles of a rapidly
moving motorcycle. By manually extracting the camera tra-
jectory, we align it with one of our garage scenes and render
corresponding images. We also synthesize motion blur dur-
ing the rendering process, creating compelling visual effects
of a chase inside a garage.

Moreover, our 3D garage model serves as a versatile
background that can be overlaid with special effects, such
as shots of cars, for movie scene creation. With the advan-
tage of real-time rendering, VFX artists can explore various
camera angles and compositions before finalizing the shot.
This eliminates the need for extensive reshooting, saving
valuable time and resources in the production pipeline. Ad-
ditionally, the appearance consistency between the real and
virtual components can be guaranteed, enhancing the over-
all believability of the scenes.

7. Limitations and Discussions

Given that the large texture-less regions and repetitive
patterns in garage scenes hinder the 3D reconstruction of
expansive garages from images by SfM and MVS algo-
rithms, this paper designs a Polar device using which the
point cloud data of the large-scale garages can be easily cap-
tured and calibrated, and demonstrated that the collected Li-
DAR data successfully assist a suit of 3D Gaussian splatting
algorithms, enabling high-quality rendering. Moreover, our
lightweight renderer, combined with LOD techniques, facil-
itates real-time rendering of expansive garage environments
on lightweight platforms. Although our rendering results
exhibit commendable realism, our workflow still possesses
certain limitations. Here we present a detailed analysis and
explore further potential applications.

Firstly, our method focuses on large-scale garage scenes
and relies on our lightweight 3D scanner to provide high-
quality LiDAR point clouds, color images, and correspond-
ing camera information. Although we have also vali-
dated the effectiveness of our method on other open-source
datasets, it is important to explore the use of even lighter de-
vices for scanning and rendering large-scale scenes, such as
smartphones equipped with depth sensors. Additionally, we
have currently collected data from five large-scale garages,
but it is necessary to gather more garage data to contribute
to the community and facilitate further research on garage
modeling and rendering.

As a method based on image rendering, our approach
achieves highly realistic rendering effects, almost indistin-
guishable from real scenes. However, the existing pipeline
does not support modifying lighting conditions. This re-
quires us to carefully design the shooting process accord-



Figure 11: A gallery showcasing the rendering results of our pipeline across various scenes in GarageWorld. Our LiDAR-
assisted Gaussian primitives enable photorealistic rendering of expansive garages. The enlarged images illustrate the fidelity
of our high-resolution point clouds and captured imagery.

ing to the lighting conditions, limiting the applicability of work SuGaR [20] has introduced editing operations such
our method in various scenarios. Recently, Gaussian-based as adjusting the size, position, and orientation of objects,
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but it still does not support modifying lighting information.
Enabling rendering and editing of large-scale scenes under
different lighting conditions is a meaningful direction that
deserves further investigation. Our open-source dataset pro-
vides a foundation for the community to conduct research in
these directions, allowing for advancements in this field.

We have demonstrated the applications of our method
in automatic driving data generation, localization and nav-
igation on lightweight devices, and the production of vi-
sual effects in films. These applications illustrate the excel-
lent performance of our method in rendering quality. Fur-
thermore, there are additional directions and applications
worth exploring. Inspired by SMEREF [41], one potential
research direction is to investigate streaming transmission
methods for Gaussian kernels, enabling the distribution and
on-the-fly rendering of large-scale scene data. Additionally,
there are city generation methods such as InfiniCity [34] and
CityDreamer [73], which leverage Generative Adversarial
Networks (GANS) [19] to achieve rapid modeling of large-
scale scenes. We intend to study large-scale scene genera-
tion based on 3D Gaussian representations. This fully ex-
plicit representation can be easily integrated into existing
computer graphics workflows and achieve superior render-
ing effects.

8. Conclusion

This paper has contributed a handheld Polar device
for data collection, a GarageWorld dataset, LiDAR-
assisted Gaussian primitives for scene representation, and a
lightweight rendering technique that allows web-based ren-
dering on consumer-level devices. Benefiting from these in-
novations, we successfully reconstruct various garages with
diverse and challenging environments, allowing real-time
lightweight rendering from any viewpoint. Experimental
results on the collected and two public datasets have demon-
strated the effectiveness of our approach. Our Garage-
World, along with the reconstructed 3D model and real-time
rendering, enables a set of applications, including training
data generation and testbed for autonomous driving algo-
rithms, real-time assistance for autonomous vehicle local-
ization, navigation, and parking, as well as VFX production.
Our current contributions mainly focus on the perception of
the world, and it enables downstream recognition tasks. In
the future, we will also explore garage generation, keeping
pushing the boundary of garage modeling and accomplish-
ing a closure from perception, recognition and generation.
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