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Quantum Monte Carlo (QMC) is a powerful method to calculate accurate energies and forces for
molecular systems. In this work, we demonstrate how we can obtain accurate QMC forces for the
fluxional ethanol molecule at room temperature by using either multi-determinant Jastrow-Slater
wave functions in variational Monte Carlo or just a single determinant in diffusion Monte Carlo.
The excellent performance of our protocols is assessed against high-level coupled cluster calculations
on a diverse set of representative configurations of the system. Finally, we train machine-learning
force fields on the QMC forces and compare them to models trained on coupled cluster reference
data, showing that a force field based on the diffusion Monte Carlo forces with a single determinant
can faithfully reproduce coupled cluster power spectra in molecular dynamics simulations.

I. INTRODUCTION

Accurate forces are crucial to perform geometry relax-
ation and molecular dynamics (MD) simulations. Classi-
cal force fields, which are widely used for such purpose,
are often parameterized to reproduce quantum chemical
data obtained with approaches such as coupled cluster
(CC) or density functional theory (DFT). Unfortunately,
these force fields cannot always easily capture effects
which are fundamentally quantum mechanical. More-
over, their accuracy is intrinsically limited by the prede-
fined functional form, which is in general unknown. For
instance, for a system as simple as ethanol at room tem-
perature, MD trajectories based on classical force fields
like AMBER [1] cannot faithfully explore the potential-
energy surface. Consequently, the resulting dynamics
does not correctly sample the statistical occupational
weights of the hydroxyl rotor group [2].

Machine-learning (ML) force fields [3] enable perform-
ing long MD simulations of ab initio quality without the
need for expensive quantum chemical calculations at ev-
ery time step, given a sufficient amount of training data.
These ML models are often trained on DFT energies and
forces. [2, 4–19] Unfortunately, such a procedure can
be unreliable due to the use of approximate functionals
as, for instance, whenever additional corrections for DFT
must be introduced to capture dispersion interactions.
Then, the accuracy of the DFT reference data must be
assessed against highly correlated methods such as cou-
pled cluster (CC) approaches. The most accurate flavors
of coupled cluster are however computationally demand-
ing and therefore limited to relatively small molecules.
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Quantum Monte Carlo (QMC) calculations can be in-
strumental in generating the needed reference data for
accurate machine-learning potentials. Although QMC is
computationally expensive, it provides highly accurate
energies and forces, and scales favorably with system
size also when forces are computed [20–22]. Calculat-
ing atomic forces in quantum Monte Carlo has been an
active field of research and different algorithms and ap-
proximations have been put forward for this purpose [23–
30]. The use of QMC to construct machine-learning force
fields is a relatively new field that has seen applications
in the description of high-pressure hydrogen [31–33] and
in molecular systems [34, 35]. Recently, the effect of the
statistical noise on the resulting potentials has also been
investigated [36].
Here, we show how QMC can yield forces as accu-

rate as those computed with the “golden standard” of
quantum chemistry, CCSD(T), over a large set of con-
figurations of the fluxional ethanol molecule at room
temperature. In particular, competitive accuracy can
be obtained either in variational Monte Carlo (VMC)
using multi-determinant wave functions or in diffusion
Monte Carlo (DMC) with the affordable variational-drift-
diffusion approximation [27, 28] and just a single deter-
minant. Since ethanol is characterized by weak intra-
molecular interactions, we also compare our results with
DFT calculations treating dispersion interactions with
the Tkatchenko-Scheffler (TS) [37] or the many-body dis-
persion (MBD) [38] approaches. Finally, we demonstrate
the very good performance of the ML potentials trained
on QMC forces using the sGDML model [5] on unseen
test datasets as well as by reproducing the power spectra
obtained from MD simulations with CCSD(T) models.
The manuscript is organized as follows. The algo-

rithms to compute the QMC forces and the choice of
wave function are described in Sec. II and the compu-
tational details given in Sec. III. The QMC results and
the performance of corresponding ML potentials are dis-
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cussed in Sec. IV. We conclude in Sec. V.

II. METHOD

A. QMC forces

In QMC [39–41], the energy is computed as

E =

∫
dREL(R)P (R) ≡ ⟨EL⟩P , (1)

where R is the coordinates of the electrons, EL(R) =
HΨ(R)/Ψ(R) is the local energy for a given trial wave
function Ψ(R), and P (R) is the probability distribu-
tion sampled in the QMC run. In VMC, this is equal
to PVMC(R) = |Ψ(R)|2/

∫
dR|Ψ(R)|2 and, in DMC,

PDMC(R) = Φ(R)Ψ(R)/
∫
dRΦ(R)Ψ(R) where Φ(R) is

the fixed-node solution.
The nuclear forces are obtained by taking the deriva-

tive of the energy with respect to the nuclear coordinates,

F = −∇αE (2)

= −⟨∇αEL(R) + (EL(R)− E)∇α lnP (R)⟩P .

While the derivative of the distribution function in
VMC can be readily performed to compute forces, the
distribution function in DMC is not known in closed
form but is sampled via a stochastic implementation
of the power method through the repeated application
of the importance sampled Green function G(R′,R) =
Ψ(R′)⟨R′| exp[−τ(H− ET)]|R⟩/Ψ(R) with τ the time-
step and ET an energy shift. Therefore, once equilibrium
is reached, PDMC is given by

PDMC(Rn) =

∫
dRn−1 . . . dRn−k (3)

×
n−1∏

i=n−k

G(Ri+1,Ri)PDMC(Rn−k) ,

where n is the last iteration. The nuclear force in DMC
can then be rewritten as

FDMC = − ⟨∇αEL(Rn) + [EL(Rn)− E] (4)

×
n−1∑

i=n−khist

∇α lnG(Ri+1,Ri)⟩PDMC
.

where khist has to be larger than the correlation time
between EL and ∇α lnG along the random walk [28].
The importance-sampled Green function must be approx-
imated and, in the limit of small time-steps, becomes

G(R′,R) =
e−[R′−R−V (R)τ ]2/2τeS(R′,R)

(2πτ)3N/2
, (5)

where V (R) = ∇Ψ(R)/Ψ(R) and S(R′,R) = τ{ET −
[EL(R

′) + EL(R)]/2}. Modified expressions of V and S

are used in actual calculations [42] and the bias due to
the short-time approximation can be removed by extrap-
olating the results at zero time-step.
While it is possible to compute forces in DMC which

are fully compatible with the derivative of the fixed-node
DMC energy at any given time-step [29], the derivative
of the drift-diffusion part of the Green function intro-
duces larger fluctuations in the force estimator. There-
fore, we consider here an estimator of the DMC force in
the so-called variational drift-diffusion (VD) approxima-
tion [27, 28], which only includes the derivative of the
branching factor and approximates the derivative of the
drift-diffusion contribution by the VMC estimator,

FVD = −⟨∇αEL(Rn) + [EL(Rn)− E] (6)

× [∇αPVMC(Rn) +

n−1∑
i=n−khist

∇αS(Ri+1,Ri)]⟩PDMC
.

Intuitively, this approximation can be derived by regard-
ing the random walk in the standard DMC algorithm
(drift and diffuse a walker, accept or reject the move, and
reweight by the branching factor) as simply reweighting
the VMC distribution by the branching factor.
Computationally, the VD approximation comes at no

additional cost since the energy derivatives required for
the sum have already been calculated at earlier time-
steps. Furthermore, as shown in our calculations, the
statistical fluctuations in the VD forces are nearly the
same as those obtained when computing the even sim-
pler approximate DMC force introduced by Reynolds et
al. (RE) [23], which computes the VMC force estimator
on the DMC distribution,

FRE = −⟨∇αEL(R) + [EL(R)− E] (7)

× ∇α lnPVMC(R)⟩PDMC
.

This approximation can be partially corrected by con-
sidering the generalized hybrid estimator, FRE-hybrid =
2FRE −FVMC at the cost of increased statistical fluctua-
tions [25].
In general, in addition to the explicit dependence of the

energy on the nuclear coordinates through the potential
and the trial wave function when an atom-centered ba-
sis set is used, there is an implicit dependence through
the variational parameters, pi. Consequently, the force
acquires an additional term, namely,

F = −∂E

∂α
−

∑
i

∂E

∂pi

∂pi
∂α

, (8)

where the second term vanishes if the energy is optimal
with respect to the parameter variations. Since we fully
optimize the wave function in energy minimization at the
VMC level, this additional contribution is equal to zero
and our VMC forces are fully consistent with the corre-
sponding energy. In DMC, neglecting this term leads in
principle to a bias in the corresponding forces, which has
however been shown to be quite small if the wave func-
tion is fully optimized in VMC, or partially optimized
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but of sufficient quality like when a multi-determinant
expansion is employed [28].

Finally, all force estimators described above obey a
zero-variance principle in the limit of the trail wave func-
tion and its derivatives being exact but, for an approxi-
mate trial function, display an infinite variance. In VMC,
to cure this problem, we employ a guiding wave function
which differs from the trial function close to the nodes
and is finite at the nodes [43], where we use d = |∇Ψ/Ψ|
as a measure of the distance from the nodes. While it
is possible to adapt this regularization to the computa-
tion of DMC forces, this has the downside of promoting
walkers close to the nodes. Therefore, in the computa-
tion of DMC forces, we adopt instead the reguralization
scheme from Ref. 44, where the force estimator is sim-
ply multiplied by a function fϵ(x) = 9x2 − 15x4 + 7x6 if
x = d/ϵ < 1 and ϵ is chosen sufficiently small to have a
negligible bias.

B. Trial wave function

We employ so-called Jastrow-Slater wave functions of
the form

Ψ = J
∑
i

ciDi, (9)

where Di are Slater determinants of single-particle or-
bitals and J is the Jastrow correlation factor, which
contains electron-electron and electron-nucleus correla-
tion terms [45]. All wave function parameters (Jastrow,
orbital, and linear coefficients) are fully optimized in en-
ergy minimization at the VMC level.

The determinantal component is here either a single
determinant or a multi-determinant expansion generated
in an automatic manner with the configuration inter-
action using a perturbative selection made iteratively
(CIPSI) approach [46]. Starting from a wave function
expanded on a set of determinants in a given space S,

ΨCIPSI =
∑
Di∈S

ciDi , (10)

the approach builds expansions by iteratively selecting
determinants based on their second-order perturbation
(PT2) energy contribution obtained via the Epstein-
Nesbet partitioning of the Hamiltonian [47, 48],

δE(2)
γ =

|⟨γ|H|ΨCIPSI⟩|2

⟨ΨCIPSI|H|ΨCIPSI⟩ − ⟨γ|H|γ⟩
, (11)

where |γ⟩ denotes a determinant outside the current CI
space that is connected to S by H. The total PT2 en-
ergy contribution, E(PT2), goes to zero as the expansion
approaches the full CI (FCI) limit.

We are here interested in computing forces on different
structural configurations and want to achieve a balanced
CIPSI description of the determinantal component of the

QMC wave function across the ground-state potential en-
ergy surface of ethanol. As a measure of the quality of
a CIPSI wave function, we use its PT2 energy contri-
bution, which represents an approximate estimate of the
error of the expansion with respect to FCI. Therefore,
given the chosen expansion and its energy PT2 correc-
tion for an arbitrary reference configuration, we generate
expansions for the other configurations by matching the
reference E(PT2). In general, the procedure will result
in expansions of different length at the different geome-
tries.

III. COMPUTATIONAL DETAILS

The QMC calculations are carried out with the
CHAMP code [49]. We employ scalar-relativistic en-
ergy consistent Hartree-Fock pseudopotentials and the
correlated-consistent Gaussian basis sets specifically con-
structed for these pseudopotentials [50, 51]. For most cal-
culations, we use the cc-pVTZ basis set and perform con-
vergence tests with the cc-pVQZ basis set. As shown in
Table S1 for a representative configuration and a single-
determinant wave function, the use of a cc-pVTZ basis
yields VMC forces which are converged with respect to
the basis set.
All wave function parameters (Jastrow, orbital, and CI

coefficients) are optimized by minimizing the energy in
VMC using the stochastic reconfiguration method [52] in
a low-memory implementation [53]. To cure the diverging
variance of the force estimator, we employ a node cutoff
parameter ϵ of 0.1 a.u. in VMC and 0.05 a.u. in DMC.
In the DMC calculations, we treat the pseudopotentials
beyond the locality approximation using the T-move al-
gorithm [54] and employ a time-step of 0.005 a.u. which
ensures converged VD forces as shown in Fig. S5. A value
of 900 is used for khist (Eq. (6)) and the dependence of the
VD forces on this parameter is illustrated in Fig. S6. In
the regularization procedure [44], our choice of 0.05 a.u.
for ϵ yields a negligible bias compared to the statistical
error as shown in Section S3.
We perform the HF calculations with the program

GAMESS(US) [55] and generate the CIPSI wave func-
tions with Quantum Package [56] using the same pseu-
dopotential and basis sets as in QMC. The interface of
both these codes with CHAMP uses the TREXIO li-
brary [57]. The Psi4 package [58] is employed for the
all-electron coupled cluster calculations with Dunning’s
correlated consistent basis sets [59].
The machine learning models for ethanol use 100 train-

ing and 100 validation configurations (thereafter referred
as set A), obtained by clustering a set of 2000 representa-
tive configurations (set B) down to 200 (set A), based on
their geometry and energy. To this aim, we first split the
2000 configurations into 40 clusters based on their geom-
etry, using the agglomerative clustering algorithm and,
then, split each cluster into 5 clusters based on energy
using the k-means method. Afterward, configurations
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closest to the centroids of each cluster are selected to
form the training set (see Ref. 60 for more details). The
initial 2000 configurations (set B) were extracted from a
long MD trajectory based on DFT calculations with the
PBE-TS functional [4] by sampling them according to the
energy distribution in this trajectory. For this purpose,
we use the implementation from the symmetric gradient
domain machine learning (sGDML) software package [2]:
the energies of the configurations are histogrammed and
a number of configurations proportional to the height of
the histogram is then selected randomly within each bin.
A second set of 2000 configurations (set C) is clustered
from the complete MD trajectory according to the proce-
dure followed for set A. Therefore, in contrast to set B,
set C equally represents different possible molecular ge-
ometries and energy states irrespective of their statistical
probability in the reference dataset.

The sGDML models are trained on set A with en-
ergy and forces computed with different ab initio meth-
ods, namely, QMC (i.e. VMC, RE, RE-hybrid, and VD
DMC), CCSD(T) with the cc-pVTZ and cc-pVQZ basis
sets, and DFT PBE-TS and PBE0-MBD. For the DFT
and CCSD(T)/cc-pVTZ, sGDML models are also trained
on the larger set B. The error of the obtained force fields
is analyzed using the open-source FFAST software pack-
age [61].

The classical MD simulations are carried out with a
time-step of 0.2 fs at a temperature of 300 K employing
a Langevin thermostat with a time constant of 100 fs,
using the i-PI package [62]. The total duration of the
MD trajectories is 0.6 ns.

IV. RESULTS AND DISCUSSION

We demonstrate the performance of QMC forces on
the fluxional ethanol molecule, characterized by intra-
molecular dispersion forces between the the hydroxyl and
methyl rotors, namely, between the lone pairs of the oxy-
gen and the partially positive charges of the hydrogen
atoms. We compute here the QMC forces with different
algorithms and wave functions, and discuss the impact
of these choices on the corresponding ML models con-
structed with the sGDML framework for which ethanol
is particularly suitable given its many symmetries. We
also compare the QMC results to those obtained with two
DFT functionals, namely, PBE-TS and PBE0-MBD.

As reference, we calculate the CCSD(T) forces also
with a cc-pVQZ basis on set A, while, on the larger set
B, we only perform the CCSD(T) calculations with the
smaller cc-pVTZ basis set. We discuss the basis set con-
vergence of the CC results below and in Section S2.

A. Quality of the forces

We begin our investigation by analyzing in detail the
behavior of the various methods on seven representa-
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FIG. 1. a) Mean absolute deviation (MAD, kcal/mol/Å)
of the forces computed with different methods, compared
to CCSD(T)/cc-pVQZ for 7 representative configurations of
room-temperature ethanol; b) average MAD for each method;
c) zoomed-in version of the MADs with their statistical errors.

tive configurations (selected to represent a variety of
molecular geometries and energies within subset B) of
ethanol at room temperature. In Fig. 1, we show the
mean absolute deviation (MAD) of the forces with re-
spect to CCSD(T)/cc-pVQZ for each configuration as
well as the average MAD over the seven configurations.
Of the methods investigated here, PBE-TS is the least ac-
curate, while the use of PBE0-MBD yields significantly
higher accuracy for this system. Moreover, PBE0-MBD
demonstrates a relatively small dependence of the MAD
upon the specific configuration.

VMC forces with a one-determinant wave function dis-
play a significant error that lies between the two DFT
methods. Using the CIPSI procedure to go beyond a sin-
gle determinant, we construct two expansions for each
configuration, matching two different values of the to-
tal PT2 energy correction to ensure a consistent quality
of the wave function across different geometries. More
specifically, for configuration 2, we generate two expan-
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sions of about 500 and 2500 determinants, yielding a PT2
correction of −0.676 and −0.639 a.u., respectively, and
use these two energy values as target in the CIPSI gen-
eration at the other configurations. The number of de-
terminants in the resulting expansions ranges between
309-995 and 2098-3484, respectively. Further informa-
tion on the convergence of the QMC results as a function
of determinantal number is given in Section S5.

The results obtained with the CIPSI-based fully-
optimized Jastrow-Slater wave functions are shown in
Fig. 1 and denoted for simplicity as “500 det” and “2500
det”. At the VMC level, the 500-det wave function yields
a big improvement on the one-determinant forces, sur-
passing the PBE0-MBD results. Further enlargening the
expansion with the use of the 2500-det wave functions
improves only marginally the accuracy. The relative flat-
ness of the 500-det and 2500-det VMC lines for different
geometries is a clear indication of the success of the PT2-
matching construction in yielding determinantal expan-
sions of comparable quality when employed in a Jastrow-
Slater wave function.

When carrying out DMC calculations on these VMC-
optimized wave functions, we find that the VD forces
perform very well already in the one-determinant case.
On the contrary, the RE forces show some improvement
over VMC but do not beat the accuracy of DFT/PBE0-
MBD. Correcting these forces via the RE-hybrid estima-
tor brings the forces close to the VD ones at the expense
of larger statistical fluctuations (see Fig. 1c). The use
of DMC-VD in combination with the multi-determinant
wave functions shows in general no further, significant
improvement compared to the one-determinant VD case:
The VMC and DMC-VD forces for the multi-determinant
wave functions and the DMC-VD forces for the one-
determinant wave function, have roughly the same MAD
with respect to CCSD(T).

The one-determinant DMC-VD case for configuration
3 is clearly an outlier, displaying a larger deviation from
the reference. This can be explained by inspecting the ge-
ometry of the molecular configuration (shown in Fig. S1),
which is quite distorted with an angle of the methyl group
characteristic of a region near a barrier in the potential
energy surface. The wave function of such a configuration
has therefore a more correlated character and must in-
clude multiple determinants to be accurately described.
In fact, the MAD in DMC-VD for configuration 3 re-
duces when enlargening the expansion from one to 995
and further to 3484 determinants. he accuracy of the
QMC calculations has been pushed to a level where the
remaining discrepancy of the forces with respect to the
all-electron CCSD(T)/cc-pVQZ results can be attributed
to the use of pseudopotentials in QMC, and/or to resid-
ual basis set errors in CCSD(T), as further elaborated in
Section S2.

To verify the robustness of these findings over a larger
dataset, VMC and DMC calculations are performed with
a one-determinant fully-optimized Jastrow-Slater wave
function on 200 representative configurations (set A) of

FIG. 2. Mean absolute deviation (kcal/mol/Å) of the QMC
and DFT forces with respect to CCSD(T)/cc-pVQZ for 200
configurations (set A) of room-temperature ethanol.

room-temperature ethanol. The quality of the QMC re-
sults is again assessed against CCSD(T)/cc-pVQZ and
also compared to the outcome of the DFT calculations.
The MADs of all configurations with respect to coupled
cluster are plotted in Fig. 2 and the average MAD values
reported in Table I.
The results show the same pattern as observed for

the 7 configurations of Fig. 1, corroborating the find-
ings above. In particular, VD-DMC lowers the errors
and their spread compared to the VMC and the RE
forces, and shows once again that, for this system, the
one-determinant DMC VD forces are very accurate. The
use of RE-hybrid offer a relatively large improvement on
the RE forces. However, since it comes with a statistical
error more than twice as large, there is no real use case
for this method.

Method MAD
VMC 1 det 3.055(2)
DMC RE 1 det 1.920(4)
RE-hybrid 1.046(8)
DMC VD 1 det 0.899(4)
PBE-TS 5.181
PBE0-MBD 1.431

TABLE I. Average mean absolute deviation (kcal/mol/Å)
of the different methods with respect to CCSD(T)/cc-pVQZ
over 200 configurations (set A) of ethanol. The statistical er-
ror on the last digit is indicated in brackets.

B. Effect on Machine-Learning Force Fields

With the forces computed with the different methods
on the 200 configurations of set A (Fig. 2), we generate
ML force fields using the sGDML model, using half of the
data as training and the other half as validation points.
For CCSD(T)/cc-pVTZ, PBE-TS, and PBE0-MBD, we
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FIG. 3. Vibrational spectra of ethanol at room temperature computed with the various ML models (blue) compared to the
CCSD(T)/cc-pVQZ (black) vibrational spectrum.

show in Section S6 that constructing the ML force fields
on a larger set of configurations does not affect the rela-
tive quality of the models.

model
dataset

A ⊂ B
200
Q

A ⊂ B
200
T

B
2000
T

C
2000
T

VMC 3.2 3.4 3.4 3.4
RE 2.2 2.4 2.5 2.6
RE Hybrid 1.5 1.8 2.0 2.2
VD 1.2 1.4 1.6 1.8
PBE-TS 5.3 5.3 5.3 5.3
PBE0-MBD 1.7 1.9 2.0 2.1
CCSD(T)/cc-pVTZ 1.0 0.7 1.2 1.4
CCSD(T)/cc-pVQZ 0.7 1.0 1.4 1.5

TABLE II. Mean absolute deviation (kcal/mol/Å) of the
forces obtained from the ML models on different datasets (A,
B, C) against CCSD(T)/cc-pVXZ forces with X=T, Q. These
values are calculated with the FFAST software [61].

The performance of the ML models is assessed on three
sets of configurations (A ⊂ B, B, and C) by computing
the MAD of the ML forces with respect to the CCSD(T)
values calculated with either the cc-pVTZ (sets A, B,
and C) or the larger cc-pVQZ basis set (set A). Using
coupled cluster with the smaller basis as reference on set
A leaves the ordering of the MADs unchanged, justifying
the use of cc-pVTZ to evaluate the CCSD(T) reference
on the larger B and C sets as shown in Table II. For all
datasets, we find that the quality of the ML models nicely
follows the quality of the underlying ab initio forces as de-
picted in Fig. 2. Not surprisingly, CCSD(T) displays the

smallest MAD since the reference values are computed
using the same method. Note that the mean absolute
errors of the ML models on the validation sets are about
1.2–1.3 kcal/mol/Å (see Table S5). A difference of the
same magnitude between the force field predictions and
the reference data is therefore not significant for practical
applications.
Importantly, we test the ML models on a dataset of

2000 configuration (set C), which is totally independent
of the datasets (A and, in Section S6, B) used to gener-
ate the force fields. This test further confirms that the
relative performance of the ML models follows the accu-
racy of the ab initio forces. Also on this dataset, we find
that the model based on DMC-VD forces yields a smaller
MAD than the ones constructed with VMC, other DMC
approximations, and DFT.
Finally, to further analyze the behavior of the force

field models, we compute the vibrational spectra from the
velocity autocorrelation functions in classical MD simu-
lations at room temperature. These can lead the sys-
tem to regions of the potential energy surface which are
not well sampled in the testing datasets. The spectra
are shown in Fig. 3 and compared to the one obtained
with the model trained on CCSD(T)/cc-pVQZ. As re-
gards QMC, we observe again a gradual increase of ac-
curacy moving from VMC, to DMC-RE, and, finally, to
DMC VD. This is clearly visible in the overall shift of
the spectrum and, in particular, of the C-H vibrational
peaks around 3000 cm−1, which are clearly overestimated
by the VMC model. We note that also DMC-Hybrid and
PBE0-MBD perform rather similarly to DMC-VD, while
PBE-TS model underestimates the vibrational frequen-
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cies.

V. CONCLUSION

We have investigated the use of different algorithms
and wave functions for the calculation of forces in QMC
for ethanol at room temperature. For this system, a
multi-determinant wave function in VMC is found to
yield forces of comparable quality to those obtained with
a single-determinant wave function and the DMC-VD
approach. In both cases, the forces are in excellent
agreement with the CCSD(T) values on a representa-
tive set of configurations. Employing the generalized hy-
brid estimator of the RE-Hybrid method also leads to
accurate forces but is of less practical use due to the
larger statistical error. Finally, we demonstrated the
ability to train accurate machine-learning force fields us-
ing QMC. In particular, the sGDML model trained on
single-determinant DMC-VD forces is shown to faith-
fully reproduce the vibrational spectrum of ethanol at
room temperature obtained in molecular dynamics sim-

ulations with the CCSD(T)-based model. These findings
unveil the potential that QMC methods offer in providing
forces as reference data for machine-learning force fields,
being as accurate as coupled cluster calculations and yet
computationally applicable to large molecular systems.
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I. Poltavsky, K. T. Schütt, A. Tkatchenko, and K.-R.
Müller, Machine Learning Force Fields, Chem. Rev. 121,
10142 (2021).

[4] S. Chmiela, A. Tkatchenko, H. E. Sauceda, I. Poltavsky,
K. T. Schütt, and K.-R. Müller, Machine learning of ac-
curate energy-conserving molecular force fields, Sci. Adv.
3, e1603015 (2017).

[5] S. Chmiela, H. E. Sauceda, I. Poltavsky, K.-R. Müller,
and A. Tkatchenko, sGDML: Constructing accurate and
data efficient molecular force fields using machine learn-
ing, Comput. Phys. Commun. 240, 38 (2019).

[6] S. Chmiela, V. Vassilev-Galindo, O. T. Unke,
A. Kabylda, H. E. Sauceda, A. Tkatchenko, and
K.-R. Müller, Accurate global machine learning force
fields for molecules with hundreds of atoms, Sci. Adv. 9,

eadf0873 (2023).
[7] S. Batzner, A. Musaelian, L. Sun, M. Geiger, J. P.

Mailoa, M. Kornbluth, N. Molinari, T. E. Smidt, and
B. Kozinsky, E(3)-equivariant graph neural networks for
data-efficient and accurate interatomic potentials, Nat.
Commun. 13, 2453 (2022).

[8] Z. Qiao, M. Welborn, A. Anandkumar, F. R. Manby,
and T. F. Miller, III, OrbNet: Deep learning for quan-
tum chemistry using symmetry-adapted atomic-orbital
features, J. Chem. Phys. 153, 124111 (2020).

[9] O. T. Unke and M. Meuwly, PhysNet: A Neural Net-
work for Predicting Energies, Forces, Dipole Moments,
and Partial Charges, J. Chem. Theory Comput. 15, 3678
(2019).
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