
Transforming a Non-Differentiable Rasterizer into a

Differentiable One with Stochastic Gradient Estimation

THOMAS DELIOT, ERIC HEITZ, and LAURENT BELCOUR, Intel Corporation, France

control mesh textures

init.

our method

control mesh textures

130 sec

our method

control mesh textures

720 sec

our method reference

Fig. 1. In-engine optimization of assets in their engine-specific geometry and material represen-

tations. Here, we optimize a control mesh of 2K triangles that controls the tessellation of a Catmull-Clark
subdivision surface. The surface has 50K triangles after two levels of subdivision, which are further displaced,
normal mapped and shaded with 1024

2 physically based textures. Timings are for an Intel Arc 770 GPU.

We show how to transform a non-differentiable rasterizer into a differentiable one with minimal engineering

efforts and no external dependencies (no Pytorch/Tensorflow). We rely on Stochastic Gradient Estimation,
a technique that consists of rasterizing after randomly perturbing the scene’s parameters such that their

gradient can be stochastically estimated and descended. This method is simple and robust but does not scale

in dimensionality (number of scene parameters). Our insight is that the number of parameters contributing to

a given rasterized pixel is bounded. Estimating and averaging gradients on a per-pixel basis hence bounds

the dimensionality of the underlying optimization problem and makes the method scalable. Furthermore,

it is simple to track per-pixel contributing parameters by rasterizing ID- and UV-buffers, which are trivial

additions to a rasterization engine if not already available. With these minor modifications, we obtain an

in-engine optimizer for 3D assets with millions of geometry and texture parameters.

CCS Concepts: • Computing methodologies→ Rasterization.

ACM Reference Format:

Thomas Deliot, Eric Heitz, and Laurent Belcour. 2024. Transforming a Non-Differentiable Rasterizer into

a Differentiable One with Stochastic Gradient Estimation. Proc. ACM Comput. Graph. Interact. Tech. 7, 1
(May 2024), 15 pages. https://doi.org/10.1145/3651298

Authors’ address: Thomas Deliot, thomas.deliot@intel.com; Eric Heitz, eric.heitz@intel.com; Laurent Belcour, Intel Corpo-

ration, Grenoble, France, laurent.belcour@intel.com.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive

Version of Record was published in Proceedings of the ACM on Computer Graphics and Interactive Techniques, https:
//doi.org/10.1145/3651298.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article . Publication date: May 2024.

ar
X

iv
:2

40
4.

09
75

8v
2 

 [
cs

.G
R

] 
 1

7 
A

pr
 2

02
4

https://doi.org/10.1145/3651298
https://doi.org/10.1145/3651298
https://doi.org/10.1145/3651298


2 Deliot et al.

1 INTRODUCTION

Motivation for differentiable rendering. A differentiable renderer is a rendering engine that com-

putes a 2D image for a given 3D scene and has, in addition, the ability to provide gradients for

the 3D scene parameters via backpropagation through the rendering calculations. The benefits

of having these gradients is that it makes possible to optimize the 3D scene parameters to obtain

a target 2D image via gradient descent. This allows for many applications such as object place-

ment [Rhodin et al. 2015], object reconstruction [Kato and Harada 2019; Wu et al. 2023], model

simplification [Hasselgren et al. 2021], material estimation [Azinovic et al. 2019], etc.

Objective. We assume that a rasterization engine is available and we wish to use differentiable

rendering to optimize assets for their final in-engine rendering. Ideally, the solution should keep the

workflow simple and self-contained, i.e.without using other tools and dependencies than the engine

itself. In this context, implementing a renderer from scratch within a differentiable frameworks

such as Dr.JIT [Jakob et al. 2022] or Slang.D [Bangaru et al. 2023] is not an option. Using existing

differentiable rasterizers such as nvDiffRast [Laine et al. 2020] requires externalizing the workflow

and relying on external (sometimes vendor-specific) dependencies, which is also problematic. This

is why we aim at transforming an existing non-differentiable rasterizer into a differentiable one.

Contribution. Our method is based on the concept of Stochastic Gradient Estimation [Fu 2005],

a stochastic variant of finite differentiation that allows for estimating gradients without a differ-

entiable framework. However, akin to finite differentiation, this method does not scale to high-

dimensional problems: the more dimensions, the noisier the gradient estimates, the more optimiza-

tion steps are required. Our idea is to cut down the dimensionality by estimating gradients on a

per-pixel basis rather than on the whole image. Indeed, the number of parameter contributing to a

given rasterized pixel is of tractable dimensionality, regardless of the total number of parameters in

the scene. This idea yields a method to make an existing rasterizer differentiable. Namely:

• It is simple to implement. Our base differential rasterization component consists of adding

ID/UV-buffers to the existing raster targets and two compute shaders.

• It keeps the workflow self-contained by bringing the benefits of differentiable rasteriza-

tion to an existing conventional rasterizer without requiring external dependencies.

• It is cross-platform since it uses only conventional graphics API functionalities. This is a

significant bonus point for adoption given that existing differential rendering solutions are

bound to vendor-specific hardware and/or software.

• It is efficient and scales well in scene complexity. We optimize scenes with 1M+ parame-

ters on a customer GPU. Furthermore, despite stochastic differentiation with noisy gradients

being theoretically less efficient than backpropagated differentiation with clean gradients,

our implementation is qualitatively on par with nvDiffRast [Laine et al. 2020] in our ex-

periments. This is because the gain in speed of remaining in an existing and well-optimized

rasterization engine, in contrast to switching to a significantly slower Pytorch environment,

finally compensates for the slower convergence due to noisier gradients.

• It covers multiple use cases. We estimate gradients for meshes, displacement mapping,

Catmull-Clark subdivision surfaces [Catmull and Clark 1978], semi-transparent geometry,

physically based materials, 3D volumetric data and 3D Gaussian Splats [Kerbl et al. 2023].

• Our scope is raster graphics (direct visibility only). Our method does not cover further

rendering events such as shadows or multiple-bounce illumination.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article . Publication date: May 2024.



Transforming a Non-Differentiable Rasterizer into a Differentiable One with Stochastic Gradient Estimation 3

2 PREVIOUS WORK

2.1 Differentiable rasterization

Differentiable rasterization usually revolves around smoothing the discontinuous visibility function

to make it differentiable [Kato et al. 2018; Liu et al. 2019; Loper and Black 2014]. The state-of-the-art

framework is nvDiffRast [Laine et al. 2020], a performant and modular differentiable rasterizer,

which we use as a comparison baseline.

Note that all these methods require a Pytorch/Tensorflow context with external dependencies

and are often vendor-specific. We position our method as an in-engine, dependency-free and

cross-platform alternative. Our experiments on mesh and texture optimization show qualitatively

that it is competitive in terms of optimization speed for these applications.

2.2 Stochastic Gradient Estimation

The concept of estimating gradients in a stochastic manner by applying random perturbations to

the input comes in many flavors and under many names such as Stochastic Gradient Estimation [Fu

2005], Monte Carlo Gradient Estimation [Patelli and Pradlwarter 2010], Gradient Estimation Via Per-
turbation Analysis [Glasserman 1991], Perturbed Optimization [Berthet et al. 2020], and many others.

We use one of the variants presented in Stochastic Gradient Estimation [Fu 2005], a stochastic variant
of finite differentiation. We found it to be the simplest one to convey while proving competitive

enough in our experiments.

2.3 Differentiable Rendering with Stochastic Gradient Estimation

Variants of stochastic gradient estimation have already been transposed to the field of rendering [Fis-

cher and Ritschel 2023; Le Lidec et al. 2021]. In this context, it consists of randomly perturbing the

3D scene parameters such that the variation of the 2D image error averaged over the perturbations

provides an unbiased estimate of the 3D scene parameter gradients. With this, the scene parameters

can be optimized to match a target image. The approach of Fischer and Ritschel. [2023] is especially

close to ours because it can be directly implemented within an existing renderer without further

dependencies. However, these methods do not scale to high-dimensional problems: the more dimen-

sions, the noisier the gradient estimates, the more optimization steps are required. They are thus

limited to low-dimensional problems such as 6D pose estimation or optimizing low-poly meshes.

The key difference of our method is that it estimates gradients on a per-pixel basis rather than

on the whole image. Thanks to this, it scales up to scenes with 1M+ parameters such as dense or

textured meshes.

2.4 Differentiable Monte Carlo Rendering

Differentiable Monte Carlo path tracers that account for illumination effects beyond direct visibility

have been developed [Li et al. 2018; Nimier-David et al. 2019; Vicini et al. 2021; Zhang et al. 2020].

They come with dedicated algorithms to cover difficult cases such as silhouettes and shadows [Ban-

garu et al. 2020; Loubet et al. 2019; Yan et al. 2022].

Our method is solely based on rasterization (direct visibility) and excludes multiple-bounce effects.

We hence do not compete with this line of work.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article . Publication date: May 2024.



4 Deliot et al.

3 BACKGROUND ON STOCHASTIC GRADIENT ESTIMATION

In this section, we provide background on Stochastic Gradient Estimation, a stochastic variant of
the finite-difference method. We refer the reader to the work of Fu [2005] for more details.

Problem statement. We consider a 𝑑-dimensional space of parameters 𝜽 = (𝜃1, .., 𝜃𝑑 ) where 𝑑 is

large and an objective function 𝑓 (𝜽 ) ∈ R+. Our objective is to solve the minimization problem:

min

𝜽 ∈R𝑑
𝑓 (𝜽 ). (1)

For this purpose, we wish to use a gradient-descent optimizer. We thus need a way to evaluate

𝜕𝑓

𝜕𝜽
= ? (2)

In machine-learning frameworks (Pytorch/Tensorflow), this gradient is estimated via backprop-

agation. We wish to find an alternative way to estimate this gradient when a backpropagation

machinery is not available.

Finite difference. The classic finite-difference method method computes a numerical derivative in

each dimension by perturbing each component with a small offset:

𝜕𝑓

𝜕𝜃𝑖
=

𝑓 (𝜽 + 𝒃𝑖 ⊙ 𝝐) − 𝑓 (𝜽 − 𝒃𝑖 ⊙ 𝝐)
2 𝜖𝑖

. (3)

where 𝝐 = (𝜖1, .., 𝜖𝑑 ) is a user-defined perturbation magnitude vector and 𝑏𝑖 = (0..0, 1, 0..0) is the
𝑖-th basis vector. We note 𝒃𝑖 ⊙ 𝝐 the element-wise product of both vectors. The limitation of this

approach is that it requires two evaluations of 𝑓 () per dimension, which makes it untractable in

high-dimensional spaces.

Stochastic finite difference. To overcome the dimensionality problem of the finite-difference

method, a variant consists of randomly perturbing all the dimensions simultaneously to obtain a

stochastic estimator of the gradient:

�̂� 𝑓

𝜕𝜃𝑖
=

𝑓 (𝜽 + 𝒔 ⊙ 𝝐) − 𝑓 (𝜽 − 𝒔 ⊙ 𝝐)
2 𝑠𝑖 𝜖𝑖

. (4)

where 𝒔 = (𝑠1, .., 𝑠𝑑 ) is a random sign vector that contains independent variables 𝑠𝑖 ∈ {−1, +1}
where each sign has probability

1

2
. The advantage of this method is that two evaluations of 𝑓 ()

yield an estimation of the gradient regardless of the number of dimensions. The downside is that

the estimator is stochastic, i.e. it is a random variate that is correct on expectation
1
but exhibits

some variance. Furthermore, the more dimensions, the higher the variance of the estimator is. In

summary, replacing Equation (3) by Equation (4) means trading accuracy for performance.

4 DIFFERENTIABLE RASTERIZATIONWITH STOCHASTIC GRADIENT ESTIMATION

We now apply Stochastic Gradient Estimation to differential rasterization, where the objective is to

optimize a 3D scene such that a rasterized 2D image produced with this scene matches a target

image. To do this, we need to estimate the gradients of the rasterization computations.

1
Note that finite-difference methods are biased. The expectation of Equation (4) is thus an approximation of the exact

gradient, depending on the perturbation magnitude 𝝐 . We explain how to set this parameter in practice in Section 4.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article . Publication date: May 2024.



Transforming a Non-Differentiable Rasterizer into a Differentiable One with Stochastic Gradient Estimation 5

4.1 Notations

In this context, the vector 𝜽 ∈ R𝑑 represents a 3D scene defined by a set of parameters, typically

geometry, textures, etc. A rasterizer computes a 2D image 𝐼 (𝜽 ) using this 3D scene. Finally, the

objective function 𝑓 (𝜽 ) = ∥𝐼 (𝜽 ) − 𝐼 ∥2 is the error between the rasterized image 𝐼 (𝜽 ) and a target

image 𝐼 . We summarize these notations in Table 1.

Name Domain Description

𝜽 = (𝜃1, .., 𝜃𝑑 ) R𝑑 3D scene parameters (geometry, textures, etc.)

𝒔 = (𝑠1, .., 𝑠𝑑 ) {−1, +1}𝑑 random sign vector

𝝐 = (𝜖1, .., 𝜖𝑑 ) R𝑑 perturbation magnitude vector

𝐼 R3×𝑊 ×𝐻 2D target RGB image

𝐼 (𝜽 ) R3×𝑊 ×𝐻 2D rasterized RGB image

𝐼𝑤,ℎ R3 pixel (𝑤,ℎ) in target image 𝐼

𝐼𝑤,ℎ (𝜽 ) R3 pixel (𝑤,ℎ) in rasterized image 𝐼 (𝜽 )
𝑓 (𝜽 ) = ∥𝐼 (𝜽 ) − 𝐼 ∥2 R+ 𝑙2 image error

𝑓𝑤,ℎ (𝜽 ) = ∥𝐼𝑤,ℎ (𝜽 ) − 𝐼𝑤,ℎ ∥2 R+ 𝑙2 pixel (𝑤,ℎ) error

Table 1. Notations.

4.2 Per-Pixel Formulation

Motivation. As explained previously, the downside of Equation (4), is that the stochastic gradient

estimate is noisy, especially in a high-dimensional parameter space. Intuitively, in our rasterization

use case, a large part of this noise can be explained by the fact that the error over the whole image

(the error in every pixel) contributes to all the scene parameters. Even if a parameter is never used to

compute a pixel it receives noisy gradients from this pixel. In theory, this is not a problem because

the noisy gradients conveyed by a pixel not impacted by a parameter are null on expectation.

However, in practice, the noisy gradients dramatically burden the gradient decent. In Section 6,

we show that this method can hardly be used as is to optimize large scenes. We thus propose a

per-pixel gradient computation approach that alleviates this problem and makes the method usable.

Derivation. The error we use is the 𝑙2 error, which is sum of per-pixel errors:

𝑓 (𝜽 ) =
∑︁

(𝑤,ℎ) ∈𝑊 ×𝐻
𝑓𝑤,ℎ (𝜽 ), (5)

and the gradient can be defined in the same way:

𝜕𝑓

𝜕𝜃𝑖
=

∑︁
(𝑤,ℎ) ∈𝑊 ×𝐻

𝜕𝑓𝑤,ℎ

𝜕𝜃𝑖
. (6)

Note that if the parameter 𝜃𝑖 is not implicated in the computation of pixel (𝑤,ℎ) then 𝜕𝑓𝑤,ℎ

𝜕𝜃𝑖
= 0.

We can thus rewrite the gradient with a sparse sum where only impacted pixels contribute:

𝜕𝑓

𝜕𝜃𝑖
=

∑︁
(𝑤,ℎ) impacted by 𝜃𝑖

𝜕𝑓𝑤,ℎ

𝜕𝜃𝑖
. (7)

By applying the estimator of Equation (4) to Equation (7) we obtain the stochastic gradient estimate

our method is based on:

�̂� 𝑓

𝜕𝜃𝑖
=

∑︁
(𝑤,ℎ) impacted by 𝜃𝑖

𝑓𝑤,ℎ (𝜽 + 𝒔 ⊙ 𝝐) − 𝑓𝑤,ℎ (𝜽 − 𝒔 ⊙ 𝝐)
2 𝑠𝑖 𝜖𝑖

. (8)

In Section 4.3, we show how to implement this equation with a rasterizer and compute shaders.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article . Publication date: May 2024.



6 Deliot et al.

4.3 Overview

Our differentiable rasterizer implements Equation (8) with 2 compute shaders P (perturbation) and

G (gradient) in addition to the rasterizer R. We provide an overview of our pipeline in Figure 2.

p
a
r
a
m
e
t
e
r
s

𝜽

𝜃8

𝜃7

𝜃6

𝜃2

𝜃5

𝜃4

𝜃3

𝜃1

r
a
n
d
o
m

p
e
r
t
u
r
b
a
t
i
o
n

𝒔 ⊙ 𝝐

+𝜖8
−𝜖7
+𝜖6

−𝜖2

+𝜖5
+𝜖4
−𝜖3

+𝜖1

p
e
r
t
u
r
b
e
d
p
a
r
a
m
e
t
e
r
s

𝜽 ± 𝒔 ⊙ 𝝐

s
t
o
c
h
a
s
t
i
c
g
r
a
d
i
e
n
t
s

𝜕𝑓𝑤,ℎ

𝜕𝜽

P R

G

rasterized pixel

𝐼𝑤,ℎ (𝜽 ± 𝒔 ⊙ 𝝐)
target pixel

𝐼𝑤,ℎ

2

pixel error

𝑓𝑤,ℎ (𝜽 ± 𝒔 ⊙ 𝝐)

Fig. 2. Overview of our differentiable rasterizer. The first compute shader (P) perturbs the scene
parameters before they are rasterized (R). The second compute shader (G) accumulates the error differences,
which provide a gradient estimate. The key point of our approach is that it accumulates the contribution of a
pixel (in red in the images) only in its contributing parameters (in red in the vectors).

Algorithm 1 Compute shader P (perturbation)

Require: thread ID 𝑖

load 𝜃𝑖 , 𝜖𝑖 ⊲ load 2 float

𝑠𝑖 = randomsign() ⊲ hash function [Jarzynski and Olano 2020]

store 𝑠𝑖𝜖𝑖 , 𝜃𝑖 + 𝑠𝑖𝜖𝑖 , 𝜃𝑖 − 𝑠𝑖𝜖𝑖 ⊲ store 3 float

Algorithm 2 Compute shader G (gradient)

Require: thread ID (𝑤,ℎ)
load 𝐼𝑤,ℎ (𝜽 + 𝒔 ⊙ 𝝐), 𝐼𝑤,ℎ (𝜽 − 𝒔 ⊙ 𝝐), 𝐼𝑤,ℎ ⊲ load 3 float3 (3× rgb)

𝑓𝑤,ℎ (𝜽 + 𝒔 ⊙ 𝝐) =
𝐼𝑤,ℎ − 𝐼𝑤,ℎ (𝜽 + 𝒔 ⊙ 𝝐)

2
𝑓𝑤,ℎ (𝜽 − 𝒔 ⊙ 𝝐) =

𝐼𝑤,ℎ − 𝐼𝑤,ℎ (𝜽 − 𝒔 ⊙ 𝝐)
2

for each parameter 𝜃𝑖 contributing to pixel (𝑤,ℎ) do ⊲ implementation of Equation (8)

load 𝑠𝑖𝜖𝑖 ⊲ load 1 float

AtomicAdd

(
𝜕𝑓

𝜕𝜃𝑖
← 𝑓𝑤,ℎ (𝜽+𝒔⊙𝝐 )−𝑓𝑤,ℎ (𝜽−𝒔⊙𝝐 )

2 𝑠𝑖 𝜖𝑖

)
⊲ atomic add 1 float

end for

User-defined perturbation magnitude vector 𝝐 . Our general methodology to set the perturbation

magnitude vector 𝝐 is that the perturbation should produce a small but measurable change in the

rasterized image. If 𝜃𝑖 is a triangle vertex coordinate, we set 𝜖𝑖 such that it results in a perturbation

of 1-2 pixels on average in screen-space. If 𝜃𝑖 is a texel (or voxel) parameter, we set 𝜖𝑖 to the

quantization of the texture (or volume) data format.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article . Publication date: May 2024.



Transforming a Non-Differentiable Rasterizer into a Differentiable One with Stochastic Gradient Estimation 7

Compute shader P (perturbation). We launch this compute shader over 𝑑 threads (the number of

scene parameters) that execute Algorithm 1. The shader computes the perturbed scene parameters

𝜽 + 𝒔 ⊙ 𝝐 and 𝜽 − 𝒔 ⊙ 𝝐 . Its main ingredient is the generation of the random sign vector 𝒔 via
randomsign(), which we implement with a random hash function [Jarzynski and Olano 2020].

Rasterization R. We rasterize the scenes of parameters 𝜽 + 𝒔 ⊙ 𝝐 and 𝜽 − 𝒔 ⊙ 𝝐 and obtain two

images 𝐼 (𝜽 + 𝒔 ⊙ 𝝐) and 𝐼 (𝜽 − 𝒔 ⊙ 𝝐).

Compute shader G (gradient). We launch this compute shader over𝑊 ×𝐻 threads (the number

of pixels) that execute Algorithm 2. The shader computes the pixel errors 𝑓𝑤,ℎ (𝜽 + 𝒔 ⊙ 𝝐) and
𝑓𝑤,ℎ (𝜽 − 𝒔 ⊙ 𝝐) between the perturbed-scene images 𝐼 (𝜽 + 𝒔 ⊙ 𝝐) and 𝐼 (𝜽 − 𝒔 ⊙ 𝝐) and the target

image 𝐼 . Once these errors are available, they provide the gradient estimate for each parameter

𝑖 contributing to pixel (𝑤,ℎ) following Equation (8). We add the result to the gradient estimate

using an AtomicAdd operation to avoid interferences between multiple threads (pixels) adding

simultaneously their gradient contribution to the same parameter. Note that the critical point of

this algorithm is the ability to loop over each parameter 𝑖 contributing to pixel (𝑤,ℎ). We explain

how we achieve this in practice for each type of primitive in Section 4.4.

4.4 Primitives Implementation

Our method uses different strategies depending on the type of content being optimized. For each

kind of primitive, we explain how to implement the loop in compute shader G (Algorithm 2) over

the parameters 𝜃𝑖 contributing to a given pixel (𝑤,ℎ).

Opaque geometry. We represent opaque geometry with triangles meshes defined by a vertex

buffer that stores the 3D vertices and an index buffer that stores the vertices of each triangle. We

modify the rasterization pass R such that, in addition to the RGB output, it rasterizes an ID buffer

that contains the index of the rasterized triangle in each pixel. In the compute shader G, we sample

the ID buffer for each pixel (𝑤,ℎ) to identify the triangle seen by this pixel and use the index buffer

to recover the vertices of this triangle.

Transparent geometry. In the case of transparent geometry, we further modify our rasterization

pass R to support transparent front-to-back rendering with a pre-sorting pass, and output a deep

ID buffer with multiple triangle IDs per pixel. This gives us an ordered list of the triangles seen by

a pixel. We go through this list in compute shader G and proceed in a similar manner as described

above for each triangle in the list.

Textures. To optimize texture content, we further modify the rasterization pass R to rasterize a

UV buffer in addition to the RGB output and the ID buffer. It contains the UV coordinates used to

fetch the texture in each pixel. In the compute shader G, we use these UV coordindates to recover

the texel that contributed to the pixel. Note that, in theory, a pixel should contribute to the gradient

estimates of all the texels that fall within its texture-space elliptical footprint. In practice, we find

that doing so only for the texel closest to the center of the footprint is sufficient if the rendering

resolution is high enough to avoid sub-pixel scale texels.

Volumes. To render volumetric content, we ray-march a 3D texture during the rasterization pass

R. In the compute shader G, we implement the loop as another pass of ray-marching where each

encountered voxel receives gradient update.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article . Publication date: May 2024.



8 Deliot et al.

5 APPLICATION TO 3D SCENE OPTIMIZATION

We explain how to use the differential rasterizer described in Section 4 to optimize 3D scenes.

Gradient accumulation loop. The differential rasterizer introduced in Section 4 evaluates Equa-

tion (8) to obtain a stochastic (noisy) estimate of the gradient. The noisiness of these gradients can

burden the gradient descent. It is possible to obtain a lower-variance estimator by averaging 𝑁

stochastic gradient estimates:

�̂� 𝑓

𝜕𝜃𝑖
=

1

𝑁

𝑁∑︁
𝑛=1

∑︁
(𝑤,ℎ) impacted by 𝜃𝑖

𝑓𝑤,ℎ (𝜽 + 𝒔 (𝑛)𝝐) − 𝑓𝑤,ℎ (𝜽 − 𝒔 (𝑛)𝝐)
2 𝑠
(𝑛)
𝑖

𝜖𝑖

. (9)

where the 𝑛th estimation uses a different random sign vector 𝑠 (𝑛) . We implement this as a loop that

repeats 𝑁 times the steps P, G, and G. Note this averaging loop is usually necessary anyways even

with deterministic differential rasterizers because there are other sources of noise in the gradients

such as the random choice of the point of view. In our case, we randomize our sign vector 𝒔 (𝑛)

simultaneously with these other random variables in each iteration 𝑛.

Gradient-descent optimizer. After the gradient accumulation loop, we use the gradient estimate

to make a gradient descent over the parameters 𝜽 . Since our gradient estimate is stochastic, it

is preferable to use a gradient-descent optimizer specifically designed for performing stochastic

gradient descent such as Adam [Kingma and Ba 2015]. We implement Adam in a compute shader

launched over 𝑑 threads (the number of scene parameters) that takes 𝜽 and
𝜕𝑓

𝜕𝜽 as inputs and updates

𝜽 . We use it with its default parameters 𝛽1 = 0.9 and 𝛽2 = 0.999 and we set the learning rate of

each parameter 𝜃𝑖 to the same value as its perturbation amplitude 𝜖𝑖 in all our experiments. Note

that Adam is invariant to constant scaling factors. In our implementation, we do not perform the

division by the constants 2, 𝜖𝑖 and 𝑁 in the denominators of Equation (9).

Additional non-gradient-based optimizations. A gradient descent remains a local exploration of

the optimization landscape. In some cases, even with good gradient estimates, the gradient-descent

optimizer might be stuck in local minima. Some applications require additional non-gradient-

based optimization to converge successfully. For instance, the triangles in Figure 3 or the 3D

Gaussian splats in Figure 7 need to be regularly tested and resampled if they become degenerate.

We implement this as compute shader launched over the target parameters after each gradient

descent. We do not explore thorougly these complementary non-gradient-based optimizations

since they are orthogonal to the gradient estimation, which is our core contribution.

6 RESULTS

6.1 Validation of the Per-Pixel Formulation

In Section 4.2, we argue that using the stochastic gradient estimator of Equation (4) as is, with a full-

image error 𝑓 (), would not converge in high dimensions. This motivates our per-pixel formulation

of Equation (8) that we expect to alleviate the dimensionality problem. We test this hypothesis in

Figure 3 where we compare the full-image approach of Equation (4) and the per-pixel approach of

Equation (8). In this experiment, each triangle is represented by 12 parameters (3 vertices + 1 RGB

color). The three comparisons use respectively 12288 (1K triangles), 122880 (10K triangles), and

1228800 (100K triangles) parameters. Note that the full-image approach is conceptually similar to the

one of Fischer and Ritschel. [2023], that also estimates the gradient via the impact of perturbations

over a full-image error, the only difference being the distribution of perturbation. As expected,

optimizing with the full-image error is slower and impractical with large numbers of parameters.

In contrast, our per-pixel variant scales well up to 1M+ parameters.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article . Publication date: May 2024.



Transforming a Non-Differentiable Rasterizer into a Differentiable One with Stochastic Gradient Estimation 9

6.2 Qualitative Comparison to nvDiffRast

Our comparison baseline is nvDiffRast [Laine et al. 2020], the state-of-the-art differentiable

rasterizer. Note, however, that our objective is not to compete with it in terms of performance

or quality. The promise of our method is to provide a simple-to-implement, cross-platform, and

dependency-free alternative that can be incorporated into an existing rasterization engine. Still, it is

interesting to investigate how both methods compare. To do that, we reproduced two nvDiffRast

samples provided by Hasselgren et al. [2021] with our implementation. We show these experiments

in Figures 4 and 5 and we provide a performance comparison in Table 2. Note that brute force per-

formance is not a relevant measure because both methods behave differently. Indeed, nvDiffRast

is slower because of its Pytorch environment but it provides clean gradients that allow for an

efficient gradient descent. In contrast, our method executes faster within a rasterization engine but

provides noisy gradients, which make the gradient descent less efficient. We found out that both

effects counterbalance each other and that both approaches tend to produce qualitatively similar

results with the same amount of optimization time. These experiments hence confirm that our

method can be considered as an alternative to nvDiffRast for these applications without suffering

critical performance or quality penalty.

Figures 4 Figures 5

image resolution (𝑊 × 𝐻 ) 1024
2

1024
2

number of vertices 1748 1748

texture resolution 1024
2

512
2

total number of parameters (𝑑) 3150972 791676

nvDiffRast ours nvDiffRast ours

image/step (𝑁 ) 8 16 8 32

time/step 33ms 21ms 33ms 18ms

Table 2. Performance comparison on an NVIDIA 4090 GPU.

6.3 Supported Applications

Triangles, textures and volumes. Figures 3, 4 and 5 showcase optimizing triangle soups, meshes,

textures and volumes. They are straightforward applications of the implementation described in

Section 4.

Subdivision surfaces. In Figure 6, we apply our method to a Catmull-Clark subdivision sur-

face [Catmull and Clark 1978] tessellated on the fly. We optimize the coarse control mesh and the

displacement and normal maps that control the final appearance. To support this application, we

need our compute shader G to associate each tessellated triangle to its original triangle and loop

over its neighbors in the control mesh. The subdivision data structure that we use provides a way

to do this efficiently [Dupuy and Vanhoey 2021].

Physically based shading. Figure 1 showcases a subdivision surface (same algorithm as the one of

Figure 6) with physically based shading using roughness, metallicity, albedo, height and normal

maps.

3D Gaussian splats. Figure 7 shows an optimization of 3D Gaussian Splats [Kerbl et al. 2023].

Estimating the gradient is a straightforward application of our transparent geometry support

explained in Section 4.4 since the splats are rasterized transparent billboard with a vertex shader

and a fragment shader for the shape, color and transparency. To improve the results, we implement

an additional resampling and a splat subdivision compute shader executed after each gradient

descent, following Kerb et al. [2023].

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article . Publication date: May 2024.



10 Deliot et al.
init. 20 iterations

(0.4 sec)

100 iterations

(0.9 sec)

200 iterations

(1.7 sec)

1000 iterations

(8.7 sec)

f
u
l
l
-
i
m
a
g
e
e
r
r
o
r

E
q
.
(
4
)

p
e
r
-
p
i
x
e
l
e
r
r
o
r

E
q
.
(
8
)

1
K
t
r
i
a
n
g
l
e
s

init. 20 iterations

(0.2 sec)

100 iterations

(0.9 sec)

200 iterations

(1.7 sec)

1000 iterations

(8.5 sec)

f
u
l
l
-
i
m
a
g
e
e
r
r
o
r

E
q
.
(
4
)

p
e
r
-
p
i
x
e
l
e
r
r
o
r

E
q
.
(
8
)

1
0
K
t
r
i
a
n
g
l
e
s

init. 20 iterations

(1.2 sec)

100 iterations

(2.9 sec)

200 iterations

(5.8 sec)

1000 iterations

(28.9 sec)

f
u
l
l
-
i
m
a
g
e
e
r
r
o
r

E
q
.
(
4
)

p
e
r
-
p
i
x
e
l
e
r
r
o
r

E
q
.
(
8
)

1
0
0
K
t
r
i
a
n
g
l
e
s

Fig. 3. Validation of the per-pixel formulation. In this experiment, we optimize triangles soups to match
a 2D image. The full-image variant implements Equation (4) where the error over the whole image contributes
to every parameter and the per-pixel approach implements Equation (8). The timings are provided for an
NVIDIA 4090 GPU.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article . Publication date: May 2024.



Transforming a Non-Differentiable Rasterizer into a Differentiable One with Stochastic Gradient Estimation 11

mesh albedo map

init.

our method

mesh albedo map

2 sec

our method

mesh albedo map

8 sec

our method

mesh albedo map

29 sec

our method

mesh albedo map

init.

nvDiffRast

mesh albedo map

3 sec

nvDiffRast

mesh albedo map

16 sec

nvDiffRast

mesh albedo map

32 sec

nvDiffRast

target

Fig. 4. Qualitative comparison against nvDiffRast: optimizing a mesh with an albedo map. We
optimize a mesh with 3072 triangles (1748 vertices) and a 10242 albedo texture. The timings are provided for
an NVIDIA 4090 GPU.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article . Publication date: May 2024.



12 Deliot et al.

mesh normal map

init.

our method

mesh normal map

2 sec

our method

mesh normal map

9 sec

our method

mesh normal map

21 sec

our method

mesh normal map

init.

nvDiffRast

mesh normal map

3 sec

nvDiffRast

mesh normal map

13 sec

nvDiffRast

mesh normal map

27 sec

nvDiffRast

target

Fig. 5. Qualitative comparison against nvDiffRast: optimizing a mesh with a normal map. We
optimize a mesh with 3072 triangles (1748 vertices) and a 5122 normalmap texture. The timings are provided
for an NVIDIA 4090 GPU.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article . Publication date: May 2024.



Transforming a Non-Differentiable Rasterizer into a Differentiable One with Stochastic Gradient Estimation 13

control mesh textures

init.

our method

control mesh textures

3 sec

our method

control mesh textures

30 sec

our method target

Fig. 6. Optimizing a subdivision surface with displacement and normal textures. We optimize a
control mesh of 1K vertices that controls the tessellation of a Catmull-Clark subdivision surface. The surface
has 24K triangles after two levels of subdivision, which are further displaced and normal mapped with 1024

2

textures. The timings are provided for an NVIDIA 4090 GPU.

init., 1K splats

our method

3 sec, 2K splats

our method

53 sec, 128K splats

our method reference

Fig. 7. Optimizing 3D Gaussian Splats [Kerbl et al. 2023]. We optimize the splats in a hierarchical
manner. The optimizer starts with 1K splats rendered at 1282 resolution and subdivide them progressively up
to 128K splats rendered at resolution 512

2. The timings are provided for an NVIDIA 4090 GPU.

init.

our method

5 sec

our method

32 sec

our method reference

Fig. 8. Optimizing a 3D volume. We optimize a 128
3 RGBA volume. The timings are provided for an

NVIDIA 4090 GPU.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article . Publication date: May 2024.



14 Deliot et al.

6.4 Performance Breakdown

In Table 3, we provide more fine-grained performance measures showing the timings for each stage

of our method for a single optimization step.

Fig. 3 1K triangles Fig. 3 10K triangles Fig. 3 100K triangles

P (×128) 12𝜇s (×128) 14𝜇s (×128) 54𝜇s (×128)
R (×128) 28𝜇s (×128) 38𝜇s (×128) 126𝜇s (×128)
G (×128) 13𝜇s (×128) 14𝜇s (×128) 35𝜇s (×128)
D 21𝜇s 21𝜇s 105𝜇s

Sum 6.8ms 8.4ms 27ms

Table 3. Performance breakdown for the results of Figure 3. In this experiment, we accumulate 𝑁 = 128

stochastic gradient estimates before computing a gradient descent step (noted D in the table).

7 CONCLUSION

We have proposed a method to transform a non-differentiable rasterizer into a differentiable one.

Our experiments have shown that our transformed rasterizer supports the same applications as

state-of-the-art differentiable rasterizers without critical performance or qualitative penalty. We

successfully used it to optimize triangles, meshes, subdivision surfaces, textures, physically based

materials, volumes, and 3D Gaussian splats.

However, we do not position our method as a replacement for other state-of-the-art differentiable

rasterizers. Our objective is to bring the benefits of differentiable rasterization to an audience

that already possesses a (non-differentiable) rasterization engine and has workflow or platform

constraints that prevent using existing differentiable rasterizers. Our method makes it possible to

enjoy the possibilities of differentiable rasterization for 3D assets optimization, within the existing

engine. We believe that game developers who wish to optimize gaming assets withing their existing

workflow will be interested in our method.

REFERENCES

Dejan Azinovic, Tzu-Mao Li, Anton Kaplanyan, and Matthias Nießner. 2019. Inverse path tracing for joint material and

lighting estimation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2447–2456.
Sai Bangaru, Tzu-Mao Li, and Frédo Durand. 2020. Unbiased Warped-Area Sampling for Differentiable Rendering. ACM

Trans. Graph. 39, 6 (2020), 245:1–245:18.
Sai Bangaru, Lifan Wu, Tzu-Mao Li, Jacob Munkberg, Gilbert Bernstein, Jonathan Ragan-Kelley, Fredo Durand, Aaron

Lefohn, and Yong He. 2023. SLANG.D: Fast, Modular and Differentiable Shader Programming. ACM Transactions on
Graphics (SIGGRAPH Asia) 42, 6 (December 2023), 1–28.

Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe Vert, and Francis Bach. 2020. Learning with

Differentiable Perturbed Optimizers. In Proceedings of the 34th International Conference on Neural Information Processing
Systems (NIPS’20). Article 797, 12 pages.

E. Catmull and J. Clark. 1978. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-Aided
Design 10, 6 (1978), 350 – 355.

J. Dupuy and K. Vanhoey. 2021. A Halfedge Refinement Rule for Parallel Catmull-Clark Subdivision. Computer Graphics
Forum 40, 8 (2021), 57–70.

Michael Fischer and Tobias Ritschel. 2023. Plateau-Reduced Differentiable Path Tracing. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition.

Michael Fu. 2005. Stochastic Gradient Estimation. Technical report (2005).
Paul Glasserman. 1991. Gradient Estimation Via Perturbation Analysis. Norwell, MA:Kluwer.

Jon Hasselgren, Jacob Munkberg, Jaakko Lehtinen, Miika Aittala, and Samuli Laine. 2021. Appearance-Driven Automatic

3D Model Simplification.. In EGSR (DL). 85–97.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article . Publication date: May 2024.



Transforming a Non-Differentiable Rasterizer into a Differentiable One with Stochastic Gradient Estimation 15

Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, and Delio Vicini. 2022. Dr.Jit: A Just-In-Time Compiler for Differentiable

Rendering. Transactions on Graphics (Proceedings of SIGGRAPH) 41, 4 (2022).
Mark Jarzynski and Marc Olano. 2020. Hash Functions for GPU Rendering. Journal of Computer Graphics Techniques (JCGT)

9, 3 (17 October 2020), 20–38.

Hiroharu Kato and Tatsuya Harada. 2019. Learning view priors for single-view 3d reconstruction. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 9778–9787.

Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. 2018. Neural 3d mesh renderer. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 3907–3916.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkuehler, and George Drettakis. 2023. 3D Gaussian Splatting for Real-Time

Radiance Field Rendering. ACM Trans. Graph. 42, 4, Article 139 (2023).
Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.. In ICLR (Poster).
Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo Aila. 2020. Modular Primitives for

High-Performance Differentiable Rendering. ACM Transactions on Graphics 39, 6 (2020).
Quentin Le Lidec, Ivan Laptev, Cordelia Schmid, and Justin Carpentier. 2021. Differentiable rendering with perturbed

optimizers. Advances in Neural Information Processing Systems 34 (2021).
Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. 2018. Differentiable Monte Carlo Ray Tracing through Edge

Sampling. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 37, 6 (2018), 222:1–222:11.
Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. 2019. Soft rasterizer: A differentiable renderer for image-based 3d

reasoning. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 7708–7717.
Matthew M Loper and Michael J Black. 2014. OpenDR: An approximate differentiable renderer. In Computer Vision–ECCV

2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part VII 13. Springer, 154–169.
Guillaume Loubet, Nicolas Holzschuch, andWenzel Jakob. 2019. Reparameterizing discontinuous integrands for differentiable

rendering. ACM Transactions on Graphics (TOG) 38, 6 (2019), 1–14.
Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. 2019. Mitsuba 2: A Retargetable Forward and Inverse

Renderer. ACM Trans. Graph. 38, 6, Article 203 (nov 2019), 17 pages.
Edoardo Patelli and Helmut J Pradlwarter. 2010. Monte Carlo gradient estimation in high dimensions. International journal

for numerical methods in engineering 81, 2 (2010), 172–188.

Helge Rhodin, Nadia Robertini, Christian Richardt, Hans-Peter Seidel, and Christian Theobalt. 2015. A versatile scene model

with differentiable visibility applied to generative pose estimation. In Proceedings of the IEEE International Conference on
Computer Vision. 765–773.

Delio Vicini, Sébastien Speierer, and Wenzel Jakob. 2021. Path replay backpropagation: differentiating light paths using

constant memory and linear time. ACM Transactions on Graphics (TOG) 40, 4 (2021), 1–14.
Shangzhe Wu, Christian Rupprecht, and Andrea Vedaldi. 2023. Unsupervised Learning of Probably Symmetric Deformable

3D Objects From Images in the Wild (Invited Paper). IEEE Transactions on Pattern Analysis and Machine Intelligence 45, 4
(2023), 5268–5281.

Kai Yan, Christoph Lassner, Brian Budge, Zhao Dong, and Shuang Zhao. 2022. Efficient estimation of boundary integrals for

path-space differentiable rendering. ACM Transactions on Graphics (TOG) 41, 4 (2022), 1–13.
Cheng Zhang, Bailey Miller, Kai Yan, Ioannis Gkioulekas, and Shuang Zhao. 2020. Path-Space Differentiable Rendering.

ACM Trans. Graph. 39, 4 (2020), 143:1–143:19.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article . Publication date: May 2024.


	Abstract
	1 Introduction
	2 Previous Work
	2.1 Differentiable rasterization
	2.2 Stochastic Gradient Estimation
	2.3 Differentiable Rendering with Stochastic Gradient Estimation
	2.4 Differentiable Monte Carlo Rendering

	3 Background on Stochastic Gradient Estimation
	4 Differentiable Rasterization with Stochastic Gradient Estimation
	4.1 Notations
	4.2 Per-Pixel Formulation
	4.3 Overview
	4.4 Primitives Implementation

	5 Application to 3D scene Optimization
	6 Results
	6.1 Validation of the Per-Pixel Formulation
	6.2 Qualitative Comparison to nvDiffRast
	6.3 Supported Applications
	6.4 Performance Breakdown

	7 Conclusion
	References

