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ABSTRACT
Common Crawl is a multi-petabyte longitudinal dataset containing
over 100 billion web pages which is widely used as a source of lan-
guage data for sequence model training and in web science research.
Each of its constituent archives is on the order of 75TB in size. Using
it for research, particularly longitudinal studies, which necessarily
involve multiple archives, is therefore very expensive in terms of
compute time and storage space and/or web bandwidth. Two new
methods for mitigating this problem are presented here, based on
exploiting and extending the much smaller (<200 gigabytes (GB)
compressed) index which is available for each archive. By adding
Last-Modified timestamps to the index we enable longitudinal ex-
ploration using only a single archive. By comparing the distribution
of index features for each of the 100 segments into which archive
is divided with their distribution over the whole archive, we have
identified the least and most representative segments for a number
of recent archives. Using this allows the segment(s) that are most
representative of an archive to be used as proxies for the whole. We
illustrate this approach in an analysis of changes in URI length over
time, leading to an unanticipated insight into the how the creation
of Web pages has changed over time.
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1 INTRODUCTION
CommonCrawl [9] is a very-large-scale corpus containing petabytes
of data from more than 100 archives. It contains over 100 billion
web pages, more than 99% of which are HTML formatted, collected
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since 2008. It is hosted online free of charge courtesy of Amazon
Web Services’ Open Data Sponsorship program [1].

Existing Web Analytics literature focuses on small subsets of
the Web, or only examines the distribution of Top-Level Domains
(TLDs). Although Common Crawl offers a large and freely available
source of data, it has rarely been used as a basis for studying the
evolution of the Web.

One obvious reason for this is the considerable cost, both in
compute time, web bandwidth and storage that is involved in pro-
cessing multiple archives. The average size of a compressed archive
has grown from 50 terabytes (TB) in 2019 to 100TB in 2023.

In this work we explore how to take advantage of two aspects
of Common Crawl archives to mitigate this problem:

(1) Each archive is packaged in 100 randomised subsets called
segments of approximately equal size;

(2) Each archive since 2013 comes with a sharded index [21],
which provides descriptive metadata for every retrieved item
therein.

The index for a given archive is available for separate download
and is less than 200GB in size. It is thus possible to explore the
evolution of a number of important aspects of Web architecture
which are manifest in the index with much less computational cost
compared to that required for working with the corresponding
complete archives themselves.

Chen [6] suggested that if one could guarantee that "each seg-
ment [of a Common Crawl archive] has similar distribution [to
the whole]", then processing only a single segment per year would
provide comparable results to those for the whole, at 1% of the cost.
We take up that suggestion here by using the index to measure
the extent to which each segment is representative of the whole
archive, we can use the segment(s) that are most representative of
an archive as proxies for the whole, again reducing the computa-
tional cost involved even when the properties of interest are not
available from the index.

In what follows we report on a two-part study. The first explores
the use of index features from four archives fromAugust/September
of 2019, 2020, 2021 and 2023 to determine how we can best measure
segment representativeness in order to chose proxies. The second
uses this approach to evaluate the hypothesis that the length of
URIs is growing, and that this growth is due primarily to a growth
in the query URI component. We conclude with some surprising
evidence for the ongoing change in the way web pages are created,
from human authoring to automatic generation.

2 MATERIALS
“The Common Crawl corpus contains petabytes of
data collected since 2008. It contains raw web page
data, extracted metadata and text extractions.
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Table 1: Scale of archives used

Archive ID WARC files WARC Size (compressed)

CC-MAIN-2019-35 56,000 54TB
CC-MAIN-2029-34 60,000 49TB
CC-MAIN-2021-31 72,000 75TB
CC-MAIN-2023-40 90,000 98TB

Table 2: Size of archive components (in millions of retrievals)

2019-35 2020-34 2021-31 2023-40

WARC 2,955 2,450 3,165 3,445
non-200 549 520 465 553

robots.txt 114 108 86 90

Total 3,618 3,078 3,716 4,089

The Common Crawl dataset lives on Amazon S3 as
part of the Amazon Web Services’ Open Data Spon-
sorships program. You can download the files entirely
free using HTTP(S) or S3.” [24]

Each Common Crawl archive has six main components [8]:
(1) Data files
(a) Successful retrievals

(i) WARC files: Complete HTTP request and response;
archive metadata

(ii) WAT files: Response metadata only
(iii) WET files: Text content (HTML responses only)

(b) Unsuccessful retrievals
(i) robots.txt files: HTTP headers and message body
(ii) non-200 responses files: HTTP headers and message

body for e.g. not found, server fault, redirect
(2) URI index files: 300 shards, alphabetical by URI inverse

hostname, plus binary-searchable master index
All the constituent files are compressed, with the exception of

the URI master index.
The data files are divided into 100 segments, numbered from 0

to 99, with equal numbers of files, but not necessarily of pages1.
The details of the four CommonCrawl archiveswe used are given

in Tables 1 and 2. The two-digit number at the end of the Archive ID
gives the week in which the archive was carried out. Each gzipped
WARC-format [19] file in these archives contains around 50,000
records of successful HTTP(S) request-response exchanges. The
CDX-format [20] index of request URIs provides file-ids, offset and
length for all records in theWARC, robots.txt and non-200 response
components (details below).

2.1 URL index
“The index format is relatively simple: It consists of
a compressed plaintext index (with one line for each

1Strictly speaking the contents of archives are not pages, but records of HTTP requests
and responses. For successful requests the response body is a (text/html or applica-
tion/pdf or ...) representation of one or more pages, and we’ll use page below in this
informal way.

entry) compressed into gzipped chunks, and a [mas-
ter] index of the compressed chunks. This index is
often called the ‘ZipNum’ CDX format [20] and it is
the same format that is used by the Wayback Machine
at the Internet Archive.” [21]

Taken together, the two parts of the URI index make it possible
to access a single request-response record, either from a local copy
of the WARC component2 or by via an HTTP request.

An abbreviated example is the best way to explain how this
works. Suppose we want to see if the XML specification [23], whose
URI is https://www.w3.org/TR/xml/, is in theAugust 2021 archive,
for which we have the index.

Both the master index (cluster.idx) and the individual primary
index files are keyed with a urlkey, which is a version of a URI,
canonicalised using a version of the Internet Archive’s Sort-friendly
URI Reordering Transform [3]3:

• Remove http(s)://;
• replace A-Z with a-z throughout;
• if the authority component begins with www., remove it;
• reverse the order of the authority component, replace any
periods with commas and insert a right-parenthesis at the
end;

• if the path ends with a slash, remove it.
For our example, this would turn https://www.w3.org/TR/xml/

into org,w3)/tr/xml.
The lines of the primary and master index files consist of space-

separated fields, the first of which is a urlkey, and the lines are in
alphabetical order based on that field.

There are 300 primary index files, and each file is compressed
into blocks of 3000 lines. The master index file contains one line
for each of those compressed blocks, keyed by the urlkey for the
first line in the block. The remaining fields in the master index give
the primary index file name and the offset and length of the block
in that file.

This provides for very efficient search for a URI, as follows:
(1) Convert to a urlkey;
(2) binary search in the master index for the last line whose key

is less than or equal to that urlkey, and note the primary
index file name, offset and length therein;

(3) extract the block of the given length at the given offset from
the gzipped version of the given primary index file and unzip
it;

(4) binary search therein for the last line whose key is less than
or equal to your urlkey: if equal, you win, if not, you lose.

Note that this depends on an important property of the gzip
compression format [12], which is used by Common Crawl for
compression: a single compressed file may consist of the concate-
nation of separately compressed files. Not only the primary index
files, but also the WARC files themselves exploit this. For each suc-
cessful retrieval there is a separate gzipped block containing the
three WARC-format records for HTTP request, HTTP response
and archive metadata. This allows individual entries in the primary

2As noted earlier, the index actually covers the robots.txt and non-200 responses
components as well, but the work reported here makes no use of that.
3Actual implementations not only do more than what is described here, they also differ
with respect to the how they handle various corner cases, caveat emptor.
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index file to reference individual retrievals by file ID, offset and
length in a gzipped WARC file.

Although there are only on the order of 3×109 successful re-
trievals in recent archives, because the index also covers the robots.txt
and non-200 retrievals, there are around 3.6×109 index entries in
total, split into 300 primary index files. Each individual index file
thus has on the order of 1.2×107 lines. This in turn means that,
since the compressed blocks in each file contain 3, 000 lines, a sin-
gle primary index file is split into about 4, 000 blocks and the master
index, with one line per block, has about 1.2 million lines.

Looking up a given URI thus takes around 21 tests in the master
index (step 2 above) and 12 tests in the resulting primary index
block (step 4) and only requires unzipping one 3, 000-line block.

Note that if you win, there may be more than one entry in the
primary index which matches, as we will see with our example,
which goes like this:

(1) Convert https://www.w3.org/TR/xml/
into urlkey: org,w3)/tr/xml

(2) In the primary index, we find on lines 843315 and 843316:
org,w3)/tr/tr.xml cdx-00253.gz 557238519 185309
org,w3)/wai/videos/standards-and-benefits/ja
cdx-00253.gz 557423828 182738

(3) Extract 185309 bytes from cdx-00253.gz beginning at offset
557238519 and unzip the resulting block of 3000 lines

(4) Binary search therein finds the following lines, beginning at
line 1518:
org,w3)/tr/xml
20210613173657
{"url": "https://www.w3.org/TR/XML/",
"mime": "text/html",
"mime-detected": "text/html",
"status": "301",
"digest": "LQRWZ7SMYYGCL55UJSVAS3BY64YNZ4DQ",
"length": "743",
"offset": "27241472",
"filename": "crawl-data/CC-MAIN-2021-25/segments/\

1623487610196.46/crawldiagnostics/\
CC-MAIN-20210613161945-20210613191945\

-00275.warc.gz",
"redirect": "https://www.w3.org/TR/xml/"}
org,w3)/tr/xml
20210613173657
{"url": "https://www.w3.org/TR/xml/",
"mime": "text/html",
"mime-detected": "application/xhtml+xml",
"status": "200",
"digest": "AOMNGHUQLUKLHHWBNUL7MOVXKIUX522W",
"length": "55091",
"offset": "968583998",
"filename": "crawl-data/CC-MAIN-2021-25/segments/\

1623487610196.46/warc/CC-MAIN-\
20210613161945-20210613191945-00371.warc.gz",

"charset": "UTF-8",
"languages": "eng"}

The first of these lines is the entry for https://www.w3.org/TR/XML/,
which resulted in a redirection (status code 301) when retrieved,
and the record of this is therefore contained in the non-200 archive
component, indicated by the “crawldiagnostics” part of the file-
name.

The second line, with a status code of 200, is the one we were
looking for, with “warc” in its filename.

The format of the primary index lines is simple:

urlkey<space>timestamp<space>JSON-array

In addition to the WARC filename, offset and length which allow
direct access to the complete response, the JSON-array always
contains the following features:

• “url”: as contained in the successful HTTP request
• “status”: HTTP response status code
• “mime”: from the Content-Type HTTP response header
• “digest”: a SHA1 hash of the response payload.

HTML responses have two additional computed features:

• “charset”: from the Content-Type HTTP response header
• “mime-detected”: ’sniffed’ from the response body itself, us-
ing Apache Tika [2]

• “languages”: computed from the HTML using CLD2 [27].
May be absent, or contain up to three, comma-separated,
lower-case ISO three-letter language codes.

3 BACKGROUND
There are relatively few reports of large-scale longitudinal studies of
the Web based on data from Common Crawl. As was the case with
our own earlier work [28], which was based on only two Common
Crawl archives, such studies often draw on only a small number
of archives. This is likely to be at least in part because of the large
amount of processing required to tabulate some phenomenon from
a number of multi-TB archives.

For example although Chapuis et al. [5] used seven archives from
between 2016 and 2019, they commented that “Parsing the content
of all the webpages contained in a snapshot [archive] of CC is time
consuming”, so they proceeded to extract only 1% of those seven
archives for use in most of their analysis. They don’t discuss the
question of the mechanism by which that 1% was chose or how
representative it was, but it does appear from their code archive
that it was a single segment. Similarly, Luciano and Viviani [22]
say “[B]oth downloading and analyzing the Common Crawl are
time-consuming and costly endeavors” and go on to sample only
1% of a single archive.

In another recent example, a study of HTML validity [17], Florian
and Stock appear to have used Common Crawl indices to identify
candidate pages for analysis, but only actually downloaded around
1.8 million pages per archive from one archive per year from 2015
through 2022, that is, less than .1% of each.

Other work, such as [15], [25] and [7], uses only (parts of) single
Common Crawl archives or even, as in [14], despite actually being
focused on testing representativeness, don’t specify which or how
many Common Crawl archives are used, only the (small) number
of actual pages processed or analysed.

I’m have not been able to find any previous work which explic-
itly addresses the particular issues that concern us here, namely
measuring the representativeness of individual segments and using
Last-Modified headers to see further into the past.

On the general issue of Common Crawl’s goals, policies and
use in the recent explosion of Large Language Models, a recent
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Table 3: Sample from whole-archive mime tabulation from
2019-35

frequency mime mime-detected

2,232,464,436 text/html ditto
650,577,285 text/html application/xhtml+xml
40,022,222 unk text/html
3,985,789 application/atom+xml ditto
3,879,977 application/pdf ditto
3,741,189 image/jpeg ditto
2,741,054 unk application/xhtml+xml
2,488,581 application/rss+xml ditto
1,565,481 text/xml application/rss+xml
1,229,831 text/plain ditto

research paper from Mozilla [4] is the most comprehensive analysis
I’ve seen.

4 PART 1: MEASURING AND EXPLOITING
SEGMENT REPRESENTATIVENESS

4.1 Methodology
4.1.1 Analysing archive properties. Our first hypothesis is that by
measuring the correlation between the distribution of features of
the individual segments in an archive and their distribution in the
archive as a whole, we can obtain a measure of the extent to which
each segment in a Common Crawl archive contains a representative
sample of the whole of that archive.

To test this we would like an easily available but rich property
of the data whose overall distribution can be compared to its distri-
bution in each segment.

Features found in the index satisfy the easily available require-
ment. We start by testing the use of a composite property based on
the “mime” and “mime-detected” features.

For each of the four archives, we first tabulated the frequency
of such pairs from the index entries for all successful retrievals,
simplifying slightly by replacing a “mime-detected” value identical
to the “mime” value with ditto. We did this for each segment first,
and then merged the results to get a tabulation for the complete
archives.

For example, Table 3 shows the top 10 pairs from the 2019 archive.
For each archive, we then created a merged tabulation for the

top 100 pairs in that archive, with the total count and the count
from each segment. Table 4 shows a small extract from this 101 x
101 table for 2019:

Two aspects of this example deserve comment:

(1) The ‘nan’ in the middle This means there was some data
missing. Since we used the top 100 pairs from the whole
corpus when taking counts from the individual segments,
there are a few cases where a given pair from the whole-
archive-top-100 did not occur at all in a given segment. Such
drop-outs are recorded as ‘nan’ (not a number). The cutoff
at 100 was chosen to keep this from happening very often,
so in fact the four years had only 6, 5, 4 and 1 cases of this

Table 4: Example counts from merged mime tabulation for
2019-35

whole archive segment counts
mime pair rank count 71 72 73

text/plain application/mbox 52 37711 435 364 397
application/octet-stream

application/x-tika-msoffice 53 37414 354 nan 2

application/octet-stream
text/x-log 54 36352 651 248 345

Table 5: Example rank correlations

whole segments
archive 71 72 73

whole archive 1. 0.947 0.949 0.937
segment 71 0.947 1. 0.896 0.894
segment 72 0.949 0.896 1. 0.899
segment 73 0.937 0.894 0.899 1.

respectively out of 10, 000, and the impact of the missing
entries is negligible.

(2) The red, bold-face pairs of counts These highlight mis-
matches between the ranks of 53 and 54 in the whole archive
for the 2nd and 3rd media pairs and their counts in segments
71 and 73.

Those two mis-matches suggest a way to measure the represen-
tativeness of the individual segments: the rank correlation between
the columns of this table. We use rank correlation because, as is
already evident from Table 3, the distributions involved are far from
normal.

We used the stats.spearmanr function in the Python Scipy
library [29] to compute a full 101 x 101 array of the rank correlation
between every possible pair in the 100 x 101 tabulation of counts,
using the ’omit’ policy for dealing with missing (‘nan’) cells.

Table 5 shows a small extract, using the same columns as in
Table 4, from the resulting correlation4 array for 2019. For what it’s
worth, the p-values produced by the stats.spearmanr function
were tiny, on the order of 10−60 or less. In subsubsection 4.2.1 below
we’ll provide confidence intervals, which give a better sense of the
reliability of the correlation values.

The results are necessarily symmetrical around the self-correlation
diagonal. The pattern shown in this example, where the correlation
between each segment and the whole is noticeably higher than the
cross-correlations with any other segment, is repeated throughout
the whole tabulation.

4.1.2 Using one property as a proxy for another. Our goal is to
explore the possibility of using a property we have complete data
for to predict the best segment(s) to use in place of the whole. This
may be particularly useful for studying properties for which we
don’t have complete data. We will illustrate this using properties
based on two other features from the index for 2019-35:
4We’ll just say “correlation” from now on, but all numbers described as such are
actually rank correlations
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Table 6: Descriptive statistics for segment-vs-whole rank cor-
relations between mime property distributions

Archive N min max mean variance

2019-35 100 0.898 0.962 0.932 0.0002
2020-34 100 0.891 0.958 0.929 0.0002
2021-31 100 0.873 0.965 0.928 0.0004
2023-40 100 0.853 0.956 0.926 0.0004

(1) language property: For text/html responses, Common
Crawl uses the CLD2 tool to populate the “languages” field
in the index with up to 3 language codes, in rank order,
from which we used only the first. As for the mime case, we
produced a 101 x 101 table of rank correlations with respect
to the number of occurrences of each language in the archive
as a whole and in each segment. We included only the top
100 languages in order to keep the number of NaNs to a
reasonable level.

(2) length property: The index includes the (zipped) “length”
of the response, which we tabulated as a percentile. Once
again this gave us a 101 x 101 table of rank correlations.

For the 2019-35 data, we then tested how successful using one or
more of the best (in terms of correlationwith the whole) segment for
one property was, in terms of those same segments’ performance on
a different property (again, in terms of correlation with the whole).
We report this as a percentile vis-a-vis the range of values for all
100 segments (as shown for the mime property in Table 5).

For example, taking the top five segments in terms of correlation
with the whole for the merged mime property (the basis) and aver-
aging those segments’ correlation with the whole for the language
property (the target) gives 57.7. This is better than the overall mean
of 54.6 for individual segments vs. the whole on that measure, by
about .4 of a standard deviation.

We tested each of our three measures as the basis against the
other two as target, giving a total of six pairings. For each of these
pairs we tested each of the top ten basis segments again the target.
We then tabulated the percentile performance of the top one, and
averages of the top two, three, ...ten.

Note that this is only a simulated test of finding proxies for
properties that are not in the index. We did this precisely because
this waywewere able to compare our results across a wider range of
data than working with actual whole-archive results, which would
have taken more computational resources than we had available.

4.2 Results
4.2.1 Mime property. As noted above, we looked at the full 101 x
101 correlation matrix for the distribution of the mime property,
derived from the index, tabulated for each whole archive and its
100 individual segments.

Although the cross-correlations between segments have some
interesting properties, for our purposes we will focus here on the
100 correlations between each segment and the whole archive.
Table 6 tabulates values from Scipy’s stats.describe as applied
to these for our four archives.

Figure 1: QQ plot for segment-vs-whole correlations, 2019-35.
Based on the distribution of the mime property

This all looks good from the point of view of our ultimate goal,
that is, to identify segments in any archive that accurately reflect
the archive as a whole, in that the ‘best’ segments each year have
very high correlations (>.95) with the whole archive.

The distribution of the correlations between segments and the
whole archive is reasonably close to normal in all years, with
Shapiro-Wilks values of 0.972, 0.975, 0.945, 0.84, p<=0.5 in all cases.

The QQ-plot produced by the StatsModels api.qqplot [26] for
the 2019-35 data is shown in Figure 1 and the other three are similar,
although the 2023 plots show 5 outliers at the bottom end, consistent
with the somewhat lower Shapiro-Wilks result.

A histogram with mean and standard deviations marked for
2019-35 is shown in Figure 2.

The same data is plotted per-segment, with the overall mean, in
Figure 3.

And finally, same data again, ordered by correlation and with
95% confidence intervals shown, in Figure 4. This certainly suggests
that the best 5–10 segments are likely to be better choices as proxies
for the whole archive, and even more likely that the worst segments
should be avoided.

Appendix B gives a complete tabulation of segment rank for
all four years, using the three properties described above (mime,
language and length).

4.2.2 Testing predictions across properties: Mime, language and
length. We proceeded to see if the correlations computed as de-
scribed in the previous section can identify one or more segments
from a Common Crawl archive which are good proxies for the
whole.

In particular, we can now determine what property, available
from the index, is best for predicting the segments to use for other
properties, as a prelude to working with properties which are not
available from the index. Figure 5 shows, in the form of heatmaps,
all possible pairings of three properties being used as the basis for
predicting one another as targets, computed as described above
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Figure 2: Histogram for segment-vs-whole correlations, 2019-
35. Based on the distribution of the mime property. Blue vertical
lines show standard deviations from the mean.

Figure 3: Segment-vs-whole correlations, ordered by segment,
2019-35. Based on the distribution of the mime property

in subsubsection 4.1.2. For example the cell in 5th column of the
second row of the heatmap, with value 57.7, tests how well we can
predict a good subset of the segments from the 2019-35 archive to
use to study the distribution of the language property in that entire
archive, using the identity of the top 5 segments from that archive
in terms of the correlation between their distribution of the mime
metric with its distribution in the entire archive.

We can see that the predictions are not perfect, but we can learn
what we need from the table as a whole: The language property is
both better on average and more consistent. The length property
is the least reliable, although exactly why it’s so much worse at

Figure 4: Segment-vs-whole correlations, ordered by corre-
lation, with 95% confidence intervals, 2019-35. Based on the
distribution of the mime property. Calculated using the atanh ap-
proach as described in [11]. The worst error bar is just disjoint from
the best.

predicting the mime property than the language property deserves
further investigation.

It’s less clear what the best choice for N is. Overall it seems that
almost any choice in the 1–5 range will be OK. We’ll look at that in
more detail in the next part, when we trial this approach in a case
where we really don’t have all the target data available so we really
do need to use a proxy.

5 PART 2: USING LAST-MODIFIED DATE TO
EXPLORE URI LENGTH

5.1 Methodology
Common Crawl only started releasing archives in 2008, but we can
still get at least some insight even further back into the history
of the Web from even the most recent archives, by exploiting the
information in the Last-Modified HTTP response header. Although
this is optional, it is present in around 17% of the successful re-
sponses for 2019-35. There are around 600 million responses with a
Last-Modified header out of around 3.4×109 in total. The earliest
credible values archive are from the late 20th century.

According to the HTTP specification [16], the Last-Modified
header value must be in one of several standard textual formats,
preferably what is defined there as HTTP-date. However not all
Web servers conform to that requirement. We allowed a certain
limited amount of flexibility, for example in the (mis)placement
of “GMT”, but still ended up rejecting about .01% as unusable as
written, and a further .1% because they were not credible (too early
or in the future).

The accepted values were then converted into POSIX time format
[18], for easier sorting and comparison.
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Predict 1 2 3 4 5 6 7 8 9 10 Avg StDev Avg StDev
len by mime 70.2 68.2 62.4 46.8 50.3 49.7 53.6 51.6 54.8 56.5 56.4 7.6
nl1 by mime 49.2 44.2 45.3 54.2 57.7 52.1 57.3 55.2 58.9 53 52.7 4.8
mime by len 58.1 39.5 44 41 43.1 39.2 41.4 45.1 41.3 42.2 43.5 5.2
nl1 by len 62.9 57.8 63 57.5 60.4 58 58.8 60.1 55.4 57.5 59.1 2.3
mime by nl1 69.8 70 55.6 63.4 68 66.1 58.9 57.4 61.5 62.6 63.3 4.8
len by nl1 70.8 70.2 67 69.6 71.7 71.2 73.1 70.3 62.5 61.8 68.8 3.7
Average 63.50 58.32 56.22 55.42 58.53 56.05 57.18 56.62 55.73 55.60 57.32 2.30

N

66.1

51.3

54.6 6.6

8.8

5.1

Basis

Figure 5: Heat map for prediction percentiles, 2019-35. The first column lists what property is being predicted by what: length (“len”),
mime and language (“nl1”). For example the first row gives the results for predicting what segment(s) should be used to model the distribution
of the length property (the target) based on the best N segments from the distribution of the mime property (the basis). The figure in a
given cell is the percentile rank of the average of the segment-to-whole correlations from those segments in the target identified as the
best N segments in the basis. The heat map colouring is per row, that is, across all the predictions named in the first column as we vary the
number used (N). The black-margin cells highlight the best combination of basis and N for each target. The final two columns give mean and
standard deviation over all the predictions for a given basis, i.e. the based on the twenty cells to the left.

To complete our test of the proxying hypothesis, we wanted to
use the 2023-40 archive, for which we did not have the complete
archive, only the index, to start with.

Since we did have the full archive for 2019-35, we tested one
further property as target, namely the distribution of frequencies
of Last-Modified headers by year, to choose a proxy for our study
of 2023-40. Figure 6 shows the results of a further round of testing
in which the Last-Modified frequency was the target with the same
three properties as before as basis.

This shows somewhat less good results overall, but does confirm
that “language” is the best predictor. We chose to use 𝑁 = 2 to
reduce the risk of hitting a bad segment by accident, and fetched
just the top two segments as measured by the “language” property
from the 2023-40 index, that is, segments 56 and 12 (see Appendix
B).

We extracted and processed the Last-Modified values from those
two 2023-40 segments using the same method described above for
2019-35. Taken together they contain around 12 million responses
with a Last-Modified header out of around 69 million in total, about
17%, the same ratio as observed for the 2019-35 data. We then sorted
and tabulated the Last-Modified dates by year, by month within
2023 and by day within September 2023.

Figure 7 shows the number of headers found by year. The years
before 2000 are clearly very poorly represented, and are not in-
cluded in our subsequent analysis of URI length. 2005 also is badly
distorted from what looks like an anomaly in the Common Crawl
data gathering pipeline or the seeds from which it starts. See Ap-
pendix A for details of the evidence that this is an anomaly and
the corrective action taken, which affects all data and figures after
Table 6 and Figure 7 and the discussion thereof.

A semi-log plot is used in Figure 7 because of the rapid fall-off
in pages with Last-Modified headers with values before 2023: over

10 million in 2023, only 1.3 million in total from earlier years. More
details on this are provided in subsection 5.2.

In order to look at URI length over time, we tabulated the overall
length of each URI from 2023-40 for which we have a Last-Modified
date, as well as the lengths of its parts (scheme, netloc, path, and
query) and three additional measures:

(1) idna: whether or not a non-ascii netloc was present, encoded
using punycode

(2) path%: for URIs with a non-empty path, the number of
percent-encoded characters therein

(3) query%: for URIs with a non-empty query, the number of
percent-encoded characters therein

5.2 Results
Figure 8 compares the proxied results from 2023-40 with both the
full-archive results from 2019-35 and a comparable best-two seg-
ment result from 2019-35.

This does suggest that the chosen proxy is a representative of
the data as a whole. Particularly reassuring is the conformance of
the 2023-40 proxy curve to the 2019-35 whole archive curve, as
the individual pages in those two years are almost all different:
the overlap between the two is less than .4% as measured by the
Common Crawl overlap statistics.

5.2.1 URI lengths. The actual change in the length of URIs, and
their component parts, is shown in Figure 9. Figure 10 shows the
change in the path and query components separately. It appears
that our hypothesis was wrong, and that URI length is increasing
only slowly, and the change is more due to growth in path length
than query length.

5.2.2 Last-minute Last-Modified values. Something interesting emerges
if we explore the Last-Modified values at a detailed granularity. We
should have anticipated this given what we know about the change
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Predict 1 2 3 4 5 6 7 8 9 10 Avg StDev Avg StDev
lmh by mime 73.7 36.9 49.5 52.6 57.2 56.3 60.8 63.2 63.3 63.5 57.7 9.4 57.7 9.4
lmh by len 70.8 77.4 64.3 63.8 66.7 65.5 65.8 65.9 63.9 63.7 66.8 4.1 66.8 4.1
lmh by nl1 88 75.4 73.3 76.9 74.3 74.5 77 78.5 76.6 77.1 77.2 3.9 77.2 3.9
Average 58.4 47.9 47.5 49.3 50.8 50.6 52.7 53.9 53.2 53.6 51.8 3.1

N Basis

Figure 6: Heat map for prediction percentiles, 2023-40. Last-Modified header count per year (“lmh”) predicted by mime, language and
length. Layout the same as Figure 5. As there is only one target, the only the black border now is the best cell overall.

Figure 7: Last-Modified header counts by year. Based on uncor-
rected data from the 2023-40 archive. Semi-log plot for the y-axis.

Figure 8: Comparing Last-Modified header counts by year.
Based on data from the corrected 2019-35 and 2023-40 archives.
Semi-log plot for the y-axis.

Figure 9: URI length, divided into component lengths, by
year. Based on data from the 2023-40 archive.

Figure 10: URI path and query length, by year. Based on data
from the 2023-40 archive.

from a human-authored web to a just-in-time machine-generated
web, and indeed some of our previous work [13] suggested Common
Crawl gives evidence of it.

Figures 11 and 12 focus in on the year and month our proxy
segments for 2023-40 were sampled.

The vast majority of the pages have Last-Modified dates on the
two days each of those proxy segments were crawled, 21 and 29
September 2023.
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Figure 11: Last-Modified header counts by month. Based on
data from the 2023-40 archive. Semi-log plot for the y-axis.

Figure 12: Last-Modified header counts by month. Based on
data from the 2023-40 archive. Semi-log plot for the y-axis.

In order to check this further, we can compare the Last-Modified
data for pages crawled on those key days with the crawl timestamp,
to see how many of them were being created on the fly in response
to the crawler request. Figure 13 does exactly that, by converting
the crawl timestamps to 10-digit POSIX timestamps and subtracting
them from the Last-Modified times for all the pages for which we
have Last-Modified data that were crawled on 21 or 29 September.

53% of the offsets are 0.0, 70% are within three seconds of the
crawl time. The marginal numbers are interesting in their own
right—they are at exactly -5, -4, -1 hours earlier and +1 and +2
hours later than the crawl time. That’s what we would expect from
just-in-time pages from various likely areas if their Last-Modified
values were expressed as per their local timezone without being

Figure 13: 20 most frequent Last-Modified time offsets from
crawl time, in seconds. Based on data from the 2023-40 archive.
Overall N is 7,405,211, of which these account for 5,442,578 = 74%.
Negative column labels correspond to Last-Modified times before
their crawl time, positive ones to L-M times after. Semi-log plot for
the y-axis.

converted to UTC and did not contain a timezone indication. For
example, -14400, equivalent to 0 in UTC-4, is what we’d expect
from the East Coast of North America if local times in September
were reported without an explicit “EDT” (Daylight Savings ended
on 5 November in most of the USA).

6 DISCUSSION
6.1 Ranking segments as proxies for the whole
For each of the four archives we’ve tested, we’ve shown that overall
the segmentation does a pretty good job of producing subsets which
closely resemble the whole archive with respect to the distribution
of media types: the worst rank correlation for a segment is .873,
and most are over 0.9. We’ve done this in a way that can be easily
applied to other Common Crawl archives. We plan to produce and
publish a list of segment rankings with respect to several properties
for every archive since January 2019, based on this approach.

We hope the availability of these rankings will in turn make it
much easier to carry out longitudinal studies using only 1% or 10%
of a series of full archives, bringing such work into reach for those
without access to large high-performance clusters.

6.2 Explaining the growth in URI length
The upward blip in the query in 2006 deserves further investigation,
but with 𝑁 still less than 10,000 it’s probably just due to the lumpi-
ness of random processes: after removing all the URIs from two
domains with queries which were sampled more than 100 times and
whose average query length is greater than 100, the mean query
length is down to a similar value to that of the surrounding years.

Once we paid more attention to the predominance of last-minute
Last-Modified values, it looks like the increase in overall size and
of the query component for 2023 is in fact from pages with very
small offsets between Last-Modified date and crawl time, compared
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more ‘normal’ offsets. More investigation of more data is needed
to get a clear picture of what’s going on.

6.3 Last-minute Last-Modified values
It is interesting to note that up until a few days before the crawl
date, the upward slope of the day-by-day curves in Figure 12 is
similar to that of the month-by-month curves Figure 11, but slower
that that of the year-by-year curves Figure 8. It would be interesting
to compare those slopes to whatever the literature has to say about
the actuarial profiles of human-authored pages versus created-on-
demand pages. Or correlation with the amount of JavaScript...
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A DETECTION AND CORRECTION OF
LAST-MODIFIED ISSUE

As noted above in the discussion of Figure 7, the frequency of
Last-Modified dates in 2005 stands out from the surrounding years.
Table 7 shows the details of this in increasingly fine granularity,
to the surprising point where we see that the whole difference is
down to a single day.

Further inspection of the Last-Modified values for that day re-
vealed that the huge increase on that day was due to a single Last-
Modified value, namely Sun, 24 Apr 2005 04:29:37 GMT.

We confirmed the anomalous nature of anything like this by
tabulating the frequency of all the Last-Modified values found in
the 2019-35 archive in 10000-second intervals, by counting the first
6 digits of the corresponding 10-digit POSIX time value. Figure 14
shows the 10 most frequent counts for any such interval in 2005

https://aws.amazon.com/opendata/open-data-sponsorship-program/
https://aws.amazon.com/opendata/open-data-sponsorship-program/
https://tika.apache.org/
http://crawler.archive.org/articles/user_manual/glossary.html#surt
https://foundation.mozilla.org/en/research/library/generative-ai-training-data/common-crawl/
https://foundation.mozilla.org/en/research/library/generative-ai-training-data/common-crawl/
https://doi.org/10.1145/3366423.3380092
https://doi.org/10.1109/NEXTCOMP.2019.8883665
https://doi.org/10.1109/NEXTCOMP.2019.8883665
https://commoncrawl.org/get-started
https://commoncrawl.org/get-started
https://commoncrawl.org
https://commoncrawl.org/terms-of-use
https://commoncrawl.org/terms-of-use
https://stats.stackexchange.com/a/18904
https://www.ietf.org/rfc/rfc1952.html
https://doi.org/10.1109/BigData.2017.8258075
https://doi.org/10.1109/BigData.2017.8258075
https://doi.org/10.1109/BDC.2015.30
https://doi.org/10.17487/RFC7232
https://doi.org/10.1145/3517745.3561437
https://doi.org/10.1145/3517745.3561437
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_16
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_16
https://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.1/
https://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.1/
https://github.com/ikreymer/pywb/wiki/CDX-Index-Format#zipnum-sharded-cdx
https://github.com/ikreymer/pywb/wiki/CDX-Index-Format#zipnum-sharded-cdx
https://commoncrawl.org/blog/announcing-the-common-crawl-index
https://doi.org/10.18653/v1/2021.acl-short.24
https://doi.org/10.18653/v1/2021.acl-short.24
http://www.w3.org/TR/xml/
http://www.w3.org/TR/xml/
https://commoncrawl.org/the-data/get-started/
https://commoncrawl.org/the-data/get-started/
https://www.statsmodels.org/stable/index.html
https://github.com/CLD2Owners/cld2
https://github.com/CLD2Owners/cld2
https://doi.org/10.1145/3184558.3191636
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2


Improved methodology for longitudinal Web analytics using Common Crawl Websci ’24, May 21–24, 2024, Stuttgart, Germany

Table 7: Evidence for anomaly in Last-Modified frequency
By year, month and day. The column in bold is the anomaly. Based
on data from the uncorrected 2019-35 archive.

Source counts

Years 2003 2004 2005 2006 2007
115926 138295 567693 272565 351429

Months in 2005 Feb Mar Apr May Jun
17114 15083 378061 14640 19119

Days in 2005-04 22 23 24 25 26
362 215 365113 1167 554

Figure 14: Last-Modified frequency by 10000 second ranges
The left-most orange point is for the range including 1114316977.
Based on data from the uncorrected 2019-35 archive. Semi-log plot
for the y-axis.

Table 8: Zooming in on anomaly in Last-Modified counts Top
row for each archive shows counts for the most common interval
for Last-Modified values, bottom row for the second-most common.
The figures in bold are for the interval containing 1114316977. Based
on data from the uncorrected 2019-35 archive.

Last-Modified year
Archive 2004 2005 2006

2019-35 (whole) 4511 364934 7400
1521 8521 5047

2023-40 (6 segs only) 215 13408 857
187 824 556

and similar values for the surrounding years, that is, not necessarily
for the same interval, but the same-ranked interval. The outlier, by
nearly two decimal orders of magnitude, is the interval containing
1114316977, the 10-digit POSIX version of the anomalous value.

Table 8 zooms in on counts for full 10-digit Last-Modified values
from the year in question, 2005, and one year on either side.

This unique value accounts for all but 9 cases of its corresponding
6-figure value for 2019-35 and all but 3 for 2023-40. This 10-figure
value never appears in the other two years in either archive. This

level of frequency for a single exact Last-Modified value is unprece-
dented. The next most common full 10-digit LM in the 6-segment
2019-35 archive data for these three years occurs only 7329 times,
in the 6 segments of 2023-40 only 805 times, so we’re looking at
factors of 49 and 15.

On this basis I judged that the twin coincidences of a super-
unlikely over-count for a single LM date, across over 900 domains
in 2023-40, over 31000 in 2019-35 (mostly .ru, .ua, .su, .am, .kz, .xm–
p1ai == rf), and the fact that it occurs in different archives from
mostly different domains (more than half the domains from 2023-
40 don’t show up again in 2019-35) is an indication of a problem
somewhere.

The subsequent analyses reported here are therefore based on
Last-Modified data accordingly are based on data with all entries
with the 1114316977 Last-Modified value removed, amounting to
378,330 out of approximately 521×106.

I’m working with the Common Crawl technical staff to try to
find the cause, but as of this writing without success.

B SEGMENT RANKING TABLES
The accompanying table gives top-10 complete segment rankings,
sorted on correlation of the mime property discussed above in
subsubsection 4.2.1 and divided into deciles, for the first three years
reported here. Full rankings, as well as the index for 2019-35 with
Last-Modified times added, will be published as soon as I can find a
free place to host them.

Table 9: Segment ranks (best-to-worst) based on media type
distribution correlations

Archive
rank 2019-35 2020-34 2021-31

1 33 79 49
2 23 71 83
3 10 34 87
4 34 83 81
5 28 73 62
6 69 38 93
7 94 20 77
8 29 88 86
9 9 44 94
10 26 45 99
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