
Eliminating Crossings in Ordered Graphs
Akanksha Agrawal
Indian Institute of Technology Madras, Chennai, India

Sergio Cabello
Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

Michael Kaufmann
Department of Computer Science, Tübingen University, Tübingen, Germany

Saket Saurabh
Institute of Mathematical Sciences, Chennai, India

Roohani Sharma
University of Bergen, Bergen, Norway

Yushi Uno
Graduate School of Informatics, Osaka Metropolitan University, Sakai, Japan

Alexander Wolff
Universität Würzburg, Würzburg, Germany

Abstract
Drawing a graph in the plane with as few crossings as possible is one of the central problems in
graph drawing and computational geometry. Another option is to remove the smallest number of
vertices or edges such that the remaining graph can be drawn without crossings. We study both
problems in a book-embedding setting for ordered graphs, that is, graphs with a fixed vertex order.
In this setting, the vertices lie on a straight line, called the spine, in the given order, and each edge
must be drawn on one of several pages of a book such that every edge has at most a fixed number of
crossings. In book embeddings, there is another way to reduce or avoid crossings; namely by using
more pages. The minimum number of pages needed to draw an ordered graph without any crossings
is its (fixed-vertex-order) page number.

We show that the page number of an ordered graph with n vertices and m edges can be computed
in 2m · nO(1) time. An O(log n)-approximation of this number can be computed efficiently. We
can decide in 2O(d

√
k log(d+k)) · nO(1) time whether it suffices to delete k edges of an ordered graph

to obtain a d-planar layout (where every edge crosses at most d other edges) on one page. As an
additional parameter, we consider the size h of a hitting set, that is, a set of points on the spine
such that every edge, seen as an open interval, contains at least one of the points. For h = 1,
we can efficiently compute the minimum number of edges whose deletion yields fixed-vertex-order
page number p. For h > 1, we give an XP algorithm with respect to h + p. Finally, we consider
spine+t-track drawings, where some but not all vertices lie on the spine. The vertex order on the
spine is given; we must map every vertex that does not lie on the spine to one of t tracks, each of
which is a straight line on a separate page, parallel to the spine. In this setting, we can minimize in
2n · nO(1) time either the number of crossings or, if we disallow crossings, the number of tracks.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Fixed parameter tractability; Human-centered computing → Graph
drawings; Mathematics of computing → Graph theory

Keywords and phrases Ordered graphs, book embedding, edge deletion, d-planar, hitting set

Funding Funded in part by Science and Engineering Research Board, Startup Research Grant
(SRG/2022/000962). Funded in part by the Slovenian Research and Innovation Agency (P1-0297,
J1-2452, N1-0218, N1-0285). Funded in part by the EU (ERC, KARST, project no. 101071836).
Views and opinions expressed are however those of the authors only and do not necessarily reflect
those of the EU or the ERC. Neither the EU nor the granting authority can be held responsible for

ar
X

iv
:2

40
4.

09
77

1v
1

 [
cs

.C
G

]
 1

5
A

pr
 2

02
4

2 Eliminating Crossings in Ordered Graphs

them. Partially supported by JSPS KAKENHI grant no. JP17K00017, 20H05964, and 21K11757.

Acknowledgements We thank the organizers of the 2023 Dagstuhl Seminar “New Frontiers of
Parameterized Complexity in Graph Drawing”, where this work was initiated.

1 Introduction

Many crossings typically make it hard to understand the drawing of a graph, and thus
much effort in the area of Graph Drawing has been directed towards reducing the number of
crossings in drawings of graphs. In terms of parameterized complexity, several facets of this
problem have been considered. For example, there are FPT algorithms that, given a graph G

and an integer k, decide whether G can be drawn with at most k crossings [16, 20]. Crossing
minimization has also been considered in the setting where each vertex of the given graph
must lie on one of two horizontal lines. This restricted version of crossing minimization is
an important subproblem in drawing layered graphs according to the so-called Sugiyama
framework [32]. There are two variants of the problem; either the vertices on both lines may
be freely permuted or the order of the vertices on one line is given. These variants are called
two-layer and one-layer crossing minimization, respectively. For both, FPT algorithms exist
[21, 22]. Zehavi [37] has surveyed parameterized approaches to crossing minimization.

Surprisingly, crossing minimization remains NP-hard even when restricted to graphs that
have a planar subgraph with just one edge less [8]. Another way to deal with crossings is
to remove a small number of vertices or edges such that the remaining graph can be drawn
without crossings. In fact, it is known that vertex deletion to planarity is FPT with respect
to the number of deleted vertices [17, 19, 27]. However, the running times of these algorithms
depends at least exponentially on the number of deleted vertices. On the kernelization front,
there exists an O(1)-approximate kernel for vertex deletion to planarity [18], whereas vertex
deletion to outerplanarity is known to admit an (exact) polynomial kernel [12].

In this paper, we focus on another model to cope with the problem of crossing edges,
namely book embeddings, drawings where the vertices lie on a straight line, called the spine,
and each edge must be drawn on one of several halfplanes, called pages, such that the drawing
on each page is crossing-free (planar) or such that each edge has at most a constant number c

of crossings (that is, the drawing is c-planar). We consider the variant of the problem where
the order σ of the vertices is given and fixed. The minimum number of pages to draw an
(ordered) graph without any crossings is its (fixed-vertex-order) page number.

In this paper, we study the problem of designing parameterized algorithms, where the
possible parameters are the number k of edges to be deleted, the number c of allowed crossings
per edge, the number p of pages, and their combinations.

Problem description. Given a graph G, let V (G) denote the vertex set and E(G) the edge
set of G. An ordered graph (G, σ) consists of a graph G and an ordering of the vertices of G,
that is, a bijective map σ : V (G) → {1, . . . , |V (G)|}. Henceforth, we specify every edge (u, v)
of (G, σ) such that σ(u) < σ(v). For two edges e = (u, v) and e′ = (u′, v′) of an ordered
graph (G, σ), we say that e and e′ cross with respect to σ if their endpoints interleave, that
is, if σ(u) < σ(u′) < σ(v) < σ(v′) or if σ(u′) < σ(u) < σ(v′) < σ(v). The ordered graph
models the scenario where the vertices of G are placed along a horizontal line in the given
order σ and all the edges are drawn above the line using curves that cross as few times as
possible. Whenever e and e′ cross with respect to σ, their curves must intersect. Whenever
e and e′ do not cross with respect to σ, their curves can be drawn without intersections; for
example, we may use halfcircles. In this setting, we get a drawing such that two edges of

Agrawal, Cabello, Kaufmann, Saurabh, Sharma, Uno, and Wolff 3

G cross precisely if and only if they cross with respect to σ. Given a positive integer d, we
say that an ordered graph (G, σ) is d-planar if every edge in G is crossed by at most d other
edges (where 0-planar simply means planar).

In this paper, we focus on fast parameterized algorithms for the following problem.

Input: An ordered graph (G, σ) and positive integers k, p, and d.
Parameters: k, p, d

Question: Does there exist a set S of at most k edges of G such that (G − S, σ) is p-page
d-planar?

Edge Deletion to p-Page d-Planar

We stress that we view p and d, though they appear in the problem name, not as constants,
but as parameters.

Related work. Given an ordered graph (G, σ), its conflict graph H(G,σ) is the graph that
has a vertex for each edge of G and an edge for each pair of crossing edges of G. Note
that H(G,σ) is a circle graph, that is, the intersection graph of chords of a circle, because two
chords in a circle intersect if and only if their endpoints interleave.

We can express Edge Deletion to 1-Page d-Planar as the problem of deleting
from H(G,σ) a set of at most k vertices such that the remaining graph has maximum degree
at most d. For general graphs, this problem is called Vertex Deletion to Degree-d [30];
it admits a quadratic kernel [14, 36].

Testing whether (G, σ) has (fixed-vertex-order) page number p (without any edge deletions)
is equivalent to the p-colorability of the conflict graph H(G,σ). For p = 2, it suffices to test
whether the conflict graph H(G,σ) is bipartite. An alternative approach, discussed by Masuda,
Nakajima, Kashiwabara, and Fujisawa [28], is to add to G a cycle connecting the vertices
along the spine in the given order, and then test for planarity. Another possibility is to
use 2-Sat. For p = 4, Unger [33] showed that the problem is NP-hard. For p = 3, he [34]
claimed an efficient solution, but recently his approach was shown to be incomplete [3].

Edge Deletion to p-Page Planar is the special case where c = 0; it can be interpreted
as deletion of as few vertices as possible in the conflict graph H(G,σ) to obtain a p-colorable
graph. For p = 1, the problem can be solved by finding a maximum independent set in a circle
graph, which takes linear time [15, 29, 35]; see Lemma 3 in Section 2. Edge Deletion to
2-Page Planar can be phrased as Odd Cycle Transversal in the conflict graph, which
means that it is FPT with respect to the number of edges that must be deleted [31]. The
case p = 2 can also be modeled as a (geometric) special case of Almost 2-Sat (variable),
which can be solved in 2.3146k · nO(1) time, where k is the number of variables that need to
be deleted so that the formula becomes satisfiable [26, Corollary 5.2].

Masuda et al. [28] showed that the problem Fixed-Order 2-Page Crossing Number is
NP-hard. In this problem, we have to decide, for each edge of the given ordered graph (G, σ),
whether to draw it above or below the spine, so as to minimize the number of crossings.

Bhore, Ganian, Montecchiani, and Nöllenburg [6]studied the fixed-vertex-order page
number and provide an algorithm to compute it with running time 2O(vc3)n, where vc is the
vertex cover number of the graph. They also proved that the problem is fixed-parameter
tractable parameterized by the pathwidth (pw) of the ordered graph, with a running time
of pwO(pw2) n. Note that the pathwidth of an ordered graph is in general not bounded by
the vertex cover number [6]. This has been improved by Liu, Chen, Huang, and Wang [25]
to 2O(pw2)n. They also showed that the problem does not admit a polynomial kernel if
parameterized only by pw (unless NP ⊆ coNP/poly). Moreover, they gave an algorithm that

4 Eliminating Crossings in Ordered Graphs

Table 1 New and known results concerning Edge Deletion to p-Page d-Planar.

k p d add. param. ref. result (runtime, ratio, or kernel size)

0 min 0 – Cor. 2 EXP: 2mnO(1)

0 min 0 – Thm. 4 approx: ratio O(log n)
0 min param. – Cor. 5 approx: ratio O((d + 1) log n)

param. 1 param. – Thm. 6 FPT: 2O(d
√

k log(d+k)) · nO(1)

min param. 0 – Sect. 4 EXP: 4mnO(1)

min param. 0 h = 1 Thm. 9 P: O(m3 log n log log p)
min param. 0 h Thm. 12 XP: O(m(4h−2)p+3 log n log log p)

0 – min t Thm. 14 EXP: 2nnO(1)

0 – min min t Cor. 15 EXP: 2nnO(1)

param. 1 param. – [14, 36] kernel: quadratic
0 ≥ 4 0 – [33] NPC.
0 ≤ 2 0 – folklore P: linear time; e.g., via 2-Sat

min 1 0 – e.g., [15] P: linear time
param. 2 0 – [31] FPT: Odd Cycle Transversal

0 2 min – [28] NPC.
0 min 0 vc [24] FPT: (d + 2)O(vc3)n

0 min 0 pw [24] FPT: (d + 2)O(pw2)n

0 param. cr pw [25] FPT: n · (cr +2)O(pw2)

0 param. param. pw [25] FPT: 2O(pw2)n; no poly. pw-kernel

checks in (cr + 2)O(pw2)n time whether a graph with n vertices and pathwidth pw can be
drawn on a given number of pages with at most cr crossings in total.

Liu, Chen and Huang [24] considered the problem Fixed-Order Book Drawing with
bounded number of crossings per edge: decide if there is a p-page book-embedding of G

such that the maximum number of crossings per edge is upper-bounded by an integer d.
This problem was posed by Bhore et al. [6]. Liu et al. showed that this problem, when
parameterized by both the maximum number d of crossings per edge and the vertex cover
number vc of the graph, admits an algorithm running in (d + 2)O(vc3)n time. They also
showed that the problem, when parameterized by both d and the pathwidth pw of the vertex
ordering, admits an algorithm running in (d + 2)O(pw2)n time.

All these problems can be considered also in the setting where we can choose the ordering
of the vertices along the spine; see, for instance, [6, 10].

Our contribution. For an overview over our results and known results, see Table 1. First,
we show that the fixed-vertex-order page number of an ordered graph with m edges and
n vertices can be computed in 2m · nO(1) time; see Section 2. We use subset convolution [7].
Alternatively, given a budget p of pages, we can compute a p-page book embedding with
the minimimum number of crossings. By combining the greedy algorithm for Set Cover
with an efficient algorithm for Maximum Independent Set in circle graphs [15, 29, 35],
we obtain an efficient O((d + 1) log n)-approximation algorithm for the fixed-vertex-order
d-planar page number.

Second, we tackle Edge Deletion to 1-Page d-Planar; see Section 3. We show how
to decide in 2O(c

√
k log(c+k)) · nO(1) time whether deleting k edges of an ordered graph suffices

to obtain a c-planar layout on one page. Note that our algorithm is subexponential in k.

Agrawal, Cabello, Kaufmann, Saurabh, Sharma, Uno, and Wolff 5

Third, we consider the problem Edge Deletion to p-Page Planar; see Section 4.
As an additional parameter, we consider the size h of a hitting set, that is, a set of points
on the spine such that every edge, seen as an open interval, contains at least one of the
points. For h = 1, we can efficiently compute the smallest set of edges whose deletion yields
fixed-vertex-order page number p. For h > 1, we give an XP algorithm with respect to h + p.

Finally, we consider spine+t-track drawings; see Section 5. In such drawings, some but
not all vertices lie on the spine. The vertex order on the spine is again given, but now we
must map every vertex that does not lie on the spine to one of t tracks, each of which is
a straight line on a separate page, parallel to the spine. Using subset convolution, we can
minimize in 2n · nO(1) time either the number of crossings or, if we disallow crossings, the
number of tracks.

We close with some open problems; see Section 6.

2 Computing the Fixed-Vertex-Order Page Number

Let (G, σ) be an ordered graph, and let p be a positive integer. In this section, we consider
p-page book-embeddings of (G, σ): the vertices of G are placed on a spine ℓ according to σ,
there are p pages (halfplanes) sharing ℓ on their boundary, and for each edge we have to
decide on which page it is drawn. The aim is to minimize the total number of crossings for a
given number of pages, or minimize the number of pages to attain no crossings; see Figure 1.

Let crp(G, σ) be the minimum number of crossings over all possible assignments of the
edges of E(G) to the p pages. As discussed in the introduction, we can decide in linear
time whether cr2(G, σ) = 0, but in general, computing cr2(G, σ) is NP-hard [28]. The
fixed-vertex-order page number of (G, σ) is the minimum p such that crp(G, σ) = 0.

▶ Theorem 1. Given an ordered graph (G, σ) with n vertices and m edges, and a positive
integer p, we can compute the values cr1(G, σ), . . . , crp(G, σ) in 2m ·nO(1) time. In particular,
given a budget p of pages, we can compute a p-page book embedding with the minimum number
of crossings within the given time bound.

Proof. Consider a fixed-vertex-order graph ((V, E), σ) with n vertices and m edges. We need
to consider only the case p < m because, for p ≥ m, it obviously holds that crp((V, E), σ) = 0.

First note that, for any fixed F ⊆ E, we can easily compute cr1((V, F), σ) in O(|F |2) =
O(m2) time by checking the order of the endpoints of each pair of edges. It follows that we
can compute cr1((V, F), σ) for all subsets F ⊆ E in 2m · nO(1) time.

For every q > 1 and every F ⊆ E, we have the recurrence

crq((V, F), σ) = min {cr1((V, F ′), σ) + crq−1((V, F \ F ′), σ) | F ′ ⊆ F} . (1)

Here, F ′ ⊆ F corresponds to the edges that in the drawing go to one page, and thus F \ F ′

goes to the remaining q − 1 pages, where we can optimize over all choices of F ′ ⊆ F .

ℓ

p1

p2

p3

Figure 1 A 3-page book embedding of K5 with fixed vertex order. For each edge, we can choose
on which page it is drawn. Note that K5 cannot be drawn on two pages without crossings.

6 Eliminating Crossings in Ordered Graphs

From the recurrence in Equation (1) we see that, for q > 1, the function F 7→ crq((V, F), σ)
is, by definition, the subset convolution of the functions F 7→ cr1((V, F), σ) and F 7→
crq−1((V, F), σ) in the (min, +) ring. Since crq((V, F), σ) takes integer values from {0, . . . , m2}
for every q and F , it follows from [7] that one can obtain crq((V, F), σ) for all F ⊆ E in
2m · nO(1) time, for a fixed q > 1, assuming that cr1((V, F), σ) and crq−1((V, F), σ) are
already available. Therefore, we can compute the values crq((V, F), σ) for q ∈ {2, . . . , p} in
2m · nO(1) time since p ≤ m < n2. ◀

▶ Corollary 2. The fixed-vertex-order page number of a graph with n vertices and m edges
can be computed in 2m · nO(1) time.

▶ Lemma 3. Given an ordered graph (G, σ), we can compute in polynomial time a smallest
subset S ⊆ E(G) such that cr1(G − S, σ) = 0.

Proof. Consider the conflict graph H(G,σ) of (G, σ), already defined in the Introduction.
Note that H(G,σ) is a circle graph. Therefore, a largest independent set in H(G,σ) corresponds
to a largest subset F of edges with cr1((V, F), σ) = 0, which corresponds to a minimum set
S ⊆ E(G) such that cr1(G − S, σ) = 0. Finally, note that a largest independent set in circle
graphs can be computed in polynomial time [15, 29, 35]. ◀

▶ Theorem 4. We can compute an O(log n)-approximation to the fixed-vertex-order page
number of a graph with n vertices in polynomial time.

Proof. Let ((V, E), σ) be the given ordered graph, and let OPT be its fixed-vertex-order
page number. Define the family F = {F ⊆ E | cr1((V, F), σ) = 0}. Consider the Set Cover
instance (E, F), where E is the universe and F ⊆ 2E is a family of subsets of E. A feasible
solution of this Set Cover instance is a subfamily F ′ ⊆ F such that

⋃
F ′ = E. The task

in Set Cover is to find a feasible solution of minimum cardinality.
Each feasible solution F ′ to the Set Cover instance (E, F) corresponds to a fixed-

vertex-order drawing of (G, σ) with |F ′| pages. Similarly, each fixed-vertex-order drawing of
(G, σ) with p pages represents a feasible solution to Set Cover with p sets. In particular,
the size of the optimal solution to the Set Cover instance (E, F) is equal to OPT, the
fixed-vertex-order page number of (G, σ).

Consider the usual greedy algorithm for Set Cover, which works as follows. Set E1 = E

and i = 1. While Ei ̸= ∅, we set Fi to be the element of F that contains the largest
number of edges from Ei, increase i, and set Ei = Ei−1 \ Fi−1. Let i⋆ be the maximum
value of i with Ei ≠ ∅. Thus Ei⋆+1 = ∅, and the algorithm finishes. It is well known that
i⋆ ≤ OPT · log |E|; see for example [11, Section 5.4]. Therefore, this greedy algorithm yields
an O(log |V |)-approximation for our problem.

Finally, note that the greedy algorithm can be implemented to run efficiently. Indeed,
Fi can be computed from Ei in polynomial time because of Lemma 3, and the remaining
computations in every iteration are trivially done in polynomial time. The number of
iterations is polynomial because i⋆ ≤ |E|. ◀

▶ Corollary 5. We can compute an O((d + 1) log n)-approximation to the fixed-vertex-order
d-planar page number of a graph with n vertices in polynomial time.

Proof. Consider first an ordered graph (H, σ) that is d-planar if drawn on a single page,
with d > 0. Let Fd be the subset of E(H) such that each edge in Fc participates in exactly d

crossings, and let Sd be a maximal subset of Fd such that no two edges in Sd cross each other.
Then, (H − Sd, σ) is (d − 1)-planar because each edge of H has fewer than d crossings, is in

Agrawal, Cabello, Kaufmann, Saurabh, Sharma, Uno, and Wolff 7

Sc, or is crossed by some edge in Sd. It follows by induction that (H, σ) can be embedded in
d + 1 pages without crossings.

Consider now the input ordered graph (G, σ) and let OPTd be the minimum number of d-
planar pages needed for (G, σ). By the argument before applied to each page, we know that the
minimum number of planar pages, OPT0, is at most (d+1) OPTd. Using Theorem 4, we obtain
a drawing of (G, σ) without crossings with at most OPT0 · O(log n) ≤ (d+ 1) OPTd · O(log n)
(planar) pages, where n = |V (G)|. Such a drawing is of course also d-planar. ◀

3 Edge Deletion to 1-Page d-Planar

The main result of this section is as follows.

▶ Theorem 6. Edge Deletion to 1-Page d-Planar admits an algorithm with running
time 2O(d

√
k log(d+k)) · nO(1), where n is the number of vertices in the input graph and k is

the number of edges to be deleted.

In other words, we obtain a subexponential fixed-parameter tractable algorithm for Edge
Deletion to 1-Page d-Planar parameterized by k, the number of edges to be deleted;
note that we consider d to be a constant here (although we made explicit how the running
time depends on d). Our algorithm to prove Theorem 6 has two steps. First it branches
on edges that are crossed by at least d +

√
k other edges. When such edges do not exist,

we show that the conflict graph H(G,σ) has treewidth O(d +
√

k). This is done by showing
that the conflict graph has balanced separators. Finally the bound on the treewidth allows
us to use a known (folklore) algorithm [23] for Vertex Deletion to Degree-d whose
dependency is singly exponential in the treewidth of H(G,σ).

3.1 Branching
Let cross(G,σ)(e) denote the set of edges of G that cross e with respect to σ. We drop the
subscript (G, σ) when it is clear from the context. We show that we can use branching to
reduce any instance to a collection of instances where each edge e of the graph satisfies
|cross(e)| < d +

√
k. In particular we show the following lemma.

▶ Lemma 7. Let (G, σ, k) be an instance of Edge Deletion to 1-Page d-Planar. There
is a 2O(d

√
k log(d+k)) · nO(1)-time algorithm that outputs 2O(d

√
k log(d+k)) many instances of

Edge Deletion to 1-Page d-Planar (G1, σ, k1), . . . , (Gr, σ, kr) such that for each i ∈ [r],
Gi is a (d +

√
k)-planar graph, and (G, σ, k) is a Yes-instance of Edge Deletion to 1-

Page d-Planar if and only if (Gi, σ, ki) is a Yes-instance of Edge Deletion to 1-Page
d-Planar for some i ∈ [r].

Proof. Let e be an edge of G with |cross(e)| ≥ d + ⌈
√

k⌉. If |cross(e)| > d + k, then e

must be deleted, as we cannot afford to keep e and delete enough edges from cross(e). If
|cross(e)| ≤ d + k, then either e must be deleted or at least |cross(e)| − d many edges from
cross(e) must be deleted, so that at most d edges of cross(e) stay. This results in the
following branching rule, where we return an OR over the answers of the following instances:
1. Recursively solve the instance (G − e, σ, k − 1). This branch is called the light branch.
2. If |cross(e)| > d + k, we do not consider other branches. Otherwise, for each subset X of

cross(e) with |cross(e)|−d many edges, recursively solve the instance (G−X, σ, k−|X|).
Each of these branches is called a heavy branch.

8 Eliminating Crossings in Ordered Graphs

We are going to show that the recursion tree has 2O(d
√

k log(d+k)) branches. Note that the
number of possible heavy branches at each is node is(

|cross(e)|
|cross(e)| − d

)
=

(
|cross(e)|

d

)
≤

(
d + k

d

)
≤ (d + k)d.

To prove the desired upper bound, we interpret the branching tree as follows. First note that,
in each node, we have at most (d + k)d heavy branches. We associate a distinct word over the
alphabet Σ = {0, 1, . . . , (d + k)d} to each leaf (or equivalently each root to leaf path) of the
recurrence tree. For each node of the recurrence tree, associate a character from Σ with each
of its children such that the child node corresponding to the light branch gets the character
0 and the other nodes (corresponding to the heavy branches) get a distinct character from
Σ \ {0}. Now a word over the alphabet Σ for a leaf ℓ of the recurrence tree is obtained by
taking the sequence of characters on the nodes of the root to leaf ℓ path in order. In order to
bound the number of leaves (and hence the total number of nodes) of the recurrence tree, it
is enough to bound the number of such words. The character 0 is called a light label and all
other characters are called heavy labels. Recall that a light label corresponds to the branch
where k drops by 1, while the heavy labels correspond to the branches where k drops by
|cross(e)| − d ≥

√
k. This implies that each word (that is associated with the leaf of the

recurrence tree) has at most
√

k heavy labels. In order to bound the number of such words,
we first guess the places in the word that are occupied by heavy labels and then we guess the
(heavy) labels themselves at these selected places. All other positions have the light label on
them and there is no choice left. Hence, the number of such words is upper-bounded by

√
k∑

i=0

(
k

i

)
((d + k)d)i ≤

√
k

(
k√
k

)
((d + k)d)

√
k = 2O(d

√
k log(d+k)).

This shows that the number of such words is bounded by 2O(d
√

k log(d+k)), and hence the
number of leaves (and nodes) of the recurrence tree is bounded by 2O(d

√
k log(d+k)). ◀

3.2 Balanced Separators in the Conflict Graph
Let (G, σ) be an ordered graph. For any edge e = (u, v) of G, let span(G,σ)(e) be the set of
all edges (u′, v′) ̸= e of G such that σ(u) ≤ σ(u′) ≤ σ(v′) ≤ σ(v). For example, in Figure 2a,
span(e) = {e1}. For any vertex w of G, let left(G,σ)(w) be the set of all edges (u, v) of
G such that σ(u) < σ(v) ≤ σ(w). Whenever it is clear from the context, we will drop the
subscript (G, σ). We say that an edge e of G is maximal if G contains no edge e′ such that
e ∈ span(e′),

▶ Lemma 8 (Balanced Separator in the Conflict Graph). If (G, σ) is an ordered d-planar
graph, then G contains a set X of at most 3(d + 1) edges such that E(G) \ X = E1 ∪ E2,
E1 ∩ E2 = ∅, |E1| ≤ 2m/3, |E2| ≤ 2m/3, and no edge e1 ∈ E1 crosses an edge e2 ∈ E2 with
respect to σ.

Proof. We consider three cases depending on the spans of the edges of G.
Case 1: There exists an edge e = (u, v) ∈ E(G) such that m/3 ≤ |span(e)| ≤ 2m/3.

In this case, let X = cross(e)∪{e}, let E1 = span(e), and let E2 = E(G)\(X ∪E1). Note
that, by construction, |X| ≤ d+1, |E1| ≤ 2m/3, and |E2| ≤ 2m/3. Now let e1 = (u1, v1) ∈ E1
and e2 = (u2, v2) ∈ E2. Since e1 ∈ E1, we have σ(u) ≤ σ(u1) < σ(u2) ≤ σ(v); see Figure 2a.
Since e2 ∈ E2, we have σ(v2) ≤ σ(u) or σ(v) ≤ σ(u2); see the black and the gray versions
of e2 in Figure 2a, respectively. In both cases, e1 and e2 do not cross.

Agrawal, Cabello, Kaufmann, Saurabh, Sharma, Uno, and Wolff 9

e

u v

e1e2

u1 v1v2

e2

u2

(a) case 1

ua vaua+1 va+1

E1 = left(ua+1)
X

left(ua)

(b) case 2

X

E′
1 E′

2

E2 \ E′
2 E2 \ E′

2

Xe

u v

(c) case 3

Figure 2 Case distinction for the proof of Lemma 8.

Case 2: For every edge e ∈ E(G), it holds that |span(e)| ≤ m/3.
Let M ⊆ E(G) be the collection of all maximal edges of G in σ. Let µ = |M |, and let

M = {(u1, v1), . . . , (uµ, vµ)}, where σ(u1) < σ(u2) < · · · < σ(uµ). Note that |left(u1)| ≤
· · · ≤ |left(uµ)| and that |left(u1)| = 0. The equality is due to the fact that u1 is the first
non-isolated vertex of G in σ (and v1 is the rightmost neighbor of u1).

Let a ∈ [µ] be the largest index such that |left(ua)| ≤ m/3. Since |left(u1)| = 0, it is
clear that such an index a exists. Moreover, we have a < µ. This is because |left(va)| ≤
|left(ua)| + |span(ua, va)| ≤ 2m/3 and left(vµ) = E(G). Therefore, a + 1 ∈ [µ].

We claim that m/3 < |left(ua+1)| ≤ 2m/3 + d + 1. From the choice of a, it is
clear that |left(ua+1)| > m/3. Note that left(ua+1) ⊆ left(ua) ∪ span((ua, va)) ∪
cross((ua, va)) ∪ {(ua, va)}; see Figure 2b. This yields our claim since |left(ua+1)| ≤
|left(ua)| + |span((ua, va))| + |cross((ua, va))| + 1 ≤ 2m/3 + d + 1.

Now let X = cross((ua+1, va+1)) ∪ {(ua+1, va+1)}, E1 = left(ua+1) and E2 = E(G) \
(X ∪ E1). Since m/3 ≤ |left(ua+1)| ≤ 2m/3 + d + 1, |E1| ≤ 2m/3 + d + 1, and |E2| ≤ 2m/3.
Finally, we simply move d + 1 edges from E1 to X. Then |X| ≤ 2(d + 1) and |E1| ≤ 2m/3.
Given our construction, it is clear that no edge in E1 crosses any edge in E2; see Figure 2b.
Case 3: There exists an edge e ∈ E(G) such that |span(e)| > 2m/3.
Let e = (u, v) be an edge of G such that |span(e)| > 2m/3 and there is no e′ ∈ span(e) such
that |span(e′)| > 2m/3. Let V ′ = {w ∈ V (G) : σ(u) ≤ σ(w) ≤ σ(v)}. Let G′ = G[V ′], and
let σ′ be the restriction of σ to V ′.

Since Case 1 does not apply, for each e′ ∈ span(e), we have |span(e′)| ≤ m/3. Therefore,
Case 2 applies to the ordered graph (G′, σ′). This yields a set X ′ ⊆ E(G′) of size at
most 2(d + 1), and disjoint sets E′

1 and E′
2 of edges such that E(G′) \ X ′ = E′

1 ∪ E′
2,

m/3 ≤ |E′
1| ≤ 2m/3, |E′

2| ≤ 2m/3, and no edge in E′
1 crosses any edge in E′

2.
Let X = X ′∪cross(e)∪{e}. Then |X| ≤ 3(d+1). Let E1 = E′

1 and E2 = E(G)\(X∪E1).
Since m/3 ≤ |E′

1| ≤ 2m/3, clearly |E2| ≤ 2m/3. It remains to show that no edge of E2
crosses any edge of E1; see Figure 2c. By construction, no edge of E′

2 crosses any edge of
E′

1. The edges in E2 \ E′
2 neither cross e nor do they lie in span(e), so they cannot cross any

edge in E1 ⊆ span(e). ◀

3.3 Proof of Theorem 6
We now need to establish a relation between the treewidth of the graph and the size of a
balanced separator in it. For this we use the result of Dvořák and Norin [13] that shows
a linear dependence between the treewidth and the separation number of a graph: the
separation number of a graph is the smallest integer s such that every subgraph of the given
graph has a balanced separator of size at most s. A balanced separator in a graph H is a set
of vertices B such that the vertex set of H − B can be partitioned into two parts V1 and V2
such that E(V1, V2) = ∅ and |V1|, |V2| ≤ 2|V (H)|/3. In other words, they show that if the
separation number of the graph is s, then the treewidth of such a graph is O(s).

10 Eliminating Crossings in Ordered Graphs

Recall that (G, σ, k) is an instance of Edge Deletion to 1-Page d-Planar. By
Lemma 8, if the ordered graph (G, σ) is (d +

√
k)-planar, then the conflict graph H(G,σ) has

a balanced separator of size at most 3(d +
√

k + 1). Thus, due to the result of Dvořák and
Norin [13], the treewidth of H(G,σ) is O(d +

√
k).

Given a graph with N vertices and treewidth tw, one can compute, in (d + 2)tw · NO(1)

time, the smallest set of vertices whose deletion results in a graph of degree at most d [23].
Applying this result to the conflict graph H(G,σ), which has at most |V (G)|2 = n2 vertices
and treewidth O(d +

√
k), we conclude that Edge Deletion to 1-Page d-Planar can be

solved in 2O((d+
√

k) log d) · nO(1) time if the given ordered graph (G, σ) is (d +
√

k)-planar.
From Lemma 7, we can assume, at the expense of a multiplicative factor of 2O(d

√
k log(k+d))·

nO(1) on the running time, that the given ordered graphs (G, σ) to consider are (d +
√

k)-
planar. Thus, given (G, σ, k), we can solve Edge Deletion to 1-Page d-Planar in
2O(d

√
k log(d+k)) · nO(1) time. This concludes the proof of Theorem 6.

4 Edge Deletion to p-Page Planar

In this section we treat the problem Edge Deletion to p-Page Planar, which is the
special case of Edge Deletion to p-Page d-Planar for d = 0. It can be solved by brute
force in O((p + 1)m · n2) time: For each mapping of the m edges to the p pages, with the
“+1” to mark edge deletion, check for each pair of edges assigned to the same page whether
they intersect. It can also be solved in 4m · nO(1) time: for each of the 2m subsets of E(G),
use Corollary 2 to decide whether its fixed-vertex-order page number is at most p.

We now consider a new parameter in addition to p. The edge set of an ordered graph
(G, σ) corresponds to a set of open intervals on the real line; namely every edge (u, v) of G is
mapped to the interval (σ(u), σ(v)). Given a set I of intervals, a hitting set for I is a set
of points on the real line such that each interval contains at least one of the points. Note
that a hitting set can be much smaller than a vertex cover: an ordered graph (G, σ) with a
hitting set of size 1 can have linear vertex cover number (e.g., G = Kn,n).

Given a set I of m open intervals, a minimum-size hitting set for I can be found in
O(m log m) time by the following simple greedy algorithm: sort the intervals in I by (non-
decreasing) right endpoints, then repeatedly put a point just before the right endpoint v

of the first interval e = (u, v) into the hitting set under construction and delete from I all
intervals (including e) that contain v. Given an ordered graph (G, σ), let h(G, σ) denote the
minimum size of a hitting set for E(G).

For two edges (u, v), (u′, v′) of (G, σ), we say that (u, v) contains (u′, v′) if the interval
(σ(u), σ(v)) contains the interval (σ(u′), σ(v′)). If (u, v) and (u′, v′) cross with respect to σ,
then there is no containment, otherwise one contains the other.

Hitting set of size 1. We start by treating the following special case of Edge Deletion
to p-Page Planar. Given an ordered graph (G, σ), a point z on the real line that is
contained in every interval defined by E(G), a number p of pages, and a threshold k ≥ 0, we
want to decide whether there is a set E′ ⊆ E(G) of size at most k such that that G − E′ can
be drawn without crossings on p pages (respecting vertex order σ). Note that if there is a
hitting set of size 1, then G is necessarily bipartite and that z /∈ σ(V (G)). We show that
Edge Deletion to p-Page Planar can be solved efficiently if h(G, σ) = 1.

Alam et al. [2] have called this setting separated; they showed that the mixed page number
of an ordered Kn,n is ⌈2n/3⌉ in this case. While we study the (usual) page number of an
ordered graph where each page corresponds to a stack layout, the mixed page number asks

Agrawal, Cabello, Kaufmann, Saurabh, Sharma, Uno, and Wolff 11

z
v10v9v8v7v1 v2 v3 v4 v5 v6

(a) intervals corrsponding to the edges of G;
auxiliary graph G+ without transitive edges

ℓ

p1

p2

p3

v1

v10

(b) optimal solution for (a): only the edge (v4, v10) is
deleted; the pages correspond to the colored paths in (a)

Figure 3 Instance with hitting set of size 1 and optimal solution for three pages.

for the smallest number of stacks and queues (where nested edges are not allowed on the
same page) needed to draw an ordered graph.

▶ Theorem 9. Given an ordered graph (G, σ) with n vertices, m edges, and h(G, σ) = 1,
Edge Deletion to p-Page Planar can be solved in O(m3 log n log log p) time.

Proof. From (G, σ) we construct an acyclic directed auxiliary graph G+, from which we
then construct an s–t flow network N such that an integral maximum s–t flow of minimum
cost in N corresponds to p vertex-disjoint directed paths in G+ of maximum total length,
and each path in G+ corresponds to a set of edges in G that can be drawn without crossings
on a single page in a book embedding of (G, σ). The set E′ of edges that need to be deleted
from G such that G − E′ has page number p corresponds to the vertices of G+ that do not
lie on any of the p paths.

We now describe these steps in detail. The auxiliary graph G+ has a node for each
edge of G and an arc from edge node (a, b) to edge node (a′, b′) if in (G, σ) the edge (a′, b′)
contains the edge (a, b) (meaning that the edges do not cross); see Figure 3. Hence G+ has
exactly m nodes and at most

(
m
2
)

edges, and can be constructed from (G, σ) in O(m2) time.
The s–t flow network N is defined as follows. For each node v of G+, introduce two

vertices vin and vout in N , connected by the arc (vin, vout) of capacity 1 and cost −1. All
other arcs in N have cost 0. For each arc (u, v) of G+, add the arc (uout, vin) of capacity 1
to N . Then add to N new vertices s, s′, and t, the edge (s, s′) of capacity p, and the edges
{(s′, vin), (vout, t) : v ∈ V (G+)} of capacity 1. Summing up, N has 2m + 3 vertices, at most(

m
2
)

+ 3m + 1 edges, and can be constructed from G+ in O(m2) time.
Due to the edge (s, s′), a maximum flow in N has value at most p. If m ≥ p (otherwise

the instance is trivial, and no edge has to be deleted), then a maximum flow has value
exactly p. Since all edge capacities and costs are integral, the minimum-cost circulation
algorithm of Ahuja, Goldberg, Orlin, and Tarjan [1] yields an integral flow. Since all edges
(except for (s, s′)) have edge capacity 1 and N is acyclic, the edges (except for (s, s′)) with
non-zero flow form p paths of flow 1 from s′ to t that are vertex-disjoint except for their
endpoints. These paths (without s′ and t) correspond to vertex-disjoint paths in G+. Due to
the negative cost of the edges of type (vin, vout), the flow maximizes the number of such edges
with flow. This maximizes the number of vertices in G+ that lie on one of the p paths. This,
in turn, maximizes the number of edges of G that can be drawn without crossings on p pages

12 Eliminating Crossings in Ordered Graphs

in a book embedding of (G, σ). Given a flow network with n′ vertices, m′ edges, maximum
capacity U , and maximum absolute cost value C, the algorithm of Ahuja et al. runs in
O(n′m′(log log U) log(n′C)) time. In our case, n′ ∈ O(m), m′ ∈ O(m2), U = p, and C = 1.
Hence computing the maximum flow of minimum cost in N takes O(m3 log n log log p) time.
This dominates the time needed to construct G+ and N . ◀

In our forthcoming algorithm, we will use an extension of this result, as follows. Two
subsets E′, E′′ ⊂ E(G) are compatible if |E′| = |E′′| and there is an enumeration e′

1, . . . , e′
|E′|

of E′ and an enumeration e′′
1 , . . . , e′′

|E′| of E′′ such that e′
i is contained in e′′

i for all i ∈ [|E′|].
Note that we may have E′ ∩ E′′ ̸= ∅.

▶ Lemma 10. Given an ordered graph (G, σ) with n vertices, m edges, h(G, σ) = 1, and
subsets E′, E′′ ⊂ E(G) with p = |E′| = |E′′|, we can decide, in O(m3 log n log log p) time,
whether E′ and E′′ are compatible and, if yes, solve a version of Edge Deletion to p-Page
Planar where, on each page, one edge of E′ is contained in all others edges and one edge
of E′′ contains all other edges on that page.

Proof. We adapt the proof of Theorem 9 by modifying the flow network N that is considered.
More precisely, we insert arcs from s′ only to the edges e′ ∈ E′, and we insert arcs to t only
from the edgs e′′ ∈ E′′. No other arcs go out from s′ nor go into t.

Note that E′ and E′′ are compatible if and only if the value of the maximum flow in the
modified flow network is exactly p. ◀

Our technique, based on flows, does not allow us to enforce a pairing of the edges in E′

and in E′′. With other words, we cannot select edges e′
1, e′

2 ∈ E′ and e′′
1 , e′′

2 ∈ E′′, and insist
that e′

1 and e′′
1 go to one page, and e′

2 and e′′
2 go to another page. This difficulty will play an

important role in our forthcoming extension.

An XP algorithm for the general case. Let H be a finite hitting set of (G, σ). We assume,
without loss of generality, that H ∩ σ(V (G)) = ∅. Given a subset X ⊆ H, we say that an
edge (u, v) of G with σ(u) < σ(v) bridges X if σ(u) < min X, max X < σ(v), and X is the
largest subset of H with this property. For each X ⊆ H, let EX be the subset of edges
of (G, σ) that bridge X. For example, in Figure 4, |H| = 3, and the edges in EH lie in the
outer gray region.

Consider any drawing of a subgraph of (G, σ) with edge set Ẽ on p pages without crossings.
For each page q ∈ [p], let Ẽq be the set of edges in Ẽ that are on page q, and let X q be the
family of subsets of H bridged by some edge of Ẽq. Since there are no crossings on page q,
the sets of X q form a so-called laminar family: any two sets in X q are either disjoint or one
contains the other. For each X ∈ X q, let eq

X be the smallest edge of Ẽq that bridges X, and
let fq

X be the largest edge of Ẽq that bridges X; it may be that eq
X = fq

X . Note that for each
X, Y ∈ X q with X ⊊ Y , the edge eq

Y contains fq
X . We say that the partial encoding of Ẽ on

page q is Eq = {(X, eq
X , fq

X) | X ∈ X q} and the encoding of Ẽ is ⟨E1, . . . , Ep⟩.
When a set X is bridged on only one page of an optimal drawing, say X ∈ X 1, then we

just have to select as many edges as possible without crossing from those contained between
e1

X and f1
X , because the edges of EX cannot appear in any other page. The challenge that

we face is the following: when the same set X appears in X q for different q ∈ [p], the choices
of which edges are drawn in each of those pages are not independent. However, we can treat
all such pages together, exchanging some parts of the drawings from one page to another, as
follows. For each X ⊆ H, let QX = {q ∈ [p] : (X, eq

X , fq
X) ∈ X q} be the set of pages where

some edges bridge X.

Agrawal, Cabello, Kaufmann, Saurabh, Sharma, Uno, and Wolff 13

e1{b,c} = f1
{b,c}

a
b

c

e1{a,b,c}

f1
{a,b,c}

f2
{a,b}

e2{a,b}

f2
{a,b,c}

f2
{c}

e1{c}

Figure 4 Encoding ⟨E1, E2⟩ of a 2-page drawing for an instance with hitting set H = {a, b, c}
(red crosses). For each X ⊆ H and page q ∈ [2], the edges eq

X and fq
X (if they exist) are thicker than

the other edges. Each colored region corresponds to a set of edges that bridge the same subset of H.

▶ Lemma 11. Consider Ẽ ⊆ E(G) that can be drawn in p pages without crossings, and
let ⟨E1, . . . , Ep⟩ be the corresponding encoding. For every X ⊆ H with QX ̸= ∅, let Ẽ′

X =
{eq

X | q ∈ QX , (X, eq
X , fq

X) ∈ Eq}, let Ẽ′′
X = {fq

X | q ∈ QX , (X, eq
X , fq

X) ∈ Eq}, and let FX be
the set of edges in EX obtained when using Lemma 10 for p′ = |QX | pages with boundary
edges Ẽ′

X and Ẽ′′
X . Then the ordered subgraph with edge set

⋃
X FX can be drawn on p pages

without crossings and contains at least as many edges as Ẽ.

Proof. Consider a fixed X ⊆ H with QX ̸= ∅. For each q ∈ QX , let F q
X be the set of edges

in FX that appear on the same page as eq
X ∈ Ẽ′

X when using the algorithm of Lemma 10.
Since each element of Ẽ′′

X is on a different page, let σ : QX → QX be the permutation such
that f

σ(q)
X is the unique element of Ẽ′′

X in F q
X .

We make a drawing of Ê := (Ẽ \ EX) ∪ FX on p pages by assigning edges to pages, as
follows. For each q ∈ [p] \ QX , we just set Êq = Ẽq. For each q ∈ QX , let Êq be obtained
from Ẽσ(q) by removing the edges contained in f

σ(q)
X , adding the edges of F q

X , and adding the
edges of Ẽq contained in eq

X . For an example, see Figure 5. For each q, the edges of Êq can
be drawn on a single page without crossings. This is obvious for q ∈ [p] \ QX . For q ∈ QX ,
this is true because eq

X and f
σ(q)
X act as shields between F q

X and the other two groups of
edges, one containing f

σ(q)
X and the other contained in eq

X .
Since Ẽ ∩ EX =

(⋃
q∈QX

Ẽq
)

∩ EX is a feasible solution for the problem solved in
Lemma 10, we have |Ẽ ∩ EX | ≤ |FX |. Therefore Ê = (Ẽ \ EX) ∪ FX is at least as large as Ẽ.

Summarizing: for a fixed X, we have converted Ẽ into another set of edges Ê that is no
smaller and can be drawn without crossings on p pages such that FX = Ê ∩ EX and such
that no edge outside EX is changed (that is, Ẽ \ EX = Ê \ EX). In general, the encoding
⟨E1, . . . , Ep⟩ changes, but the sets Ẽ′

X , Ẽ′′
X remain unchanged for every set X. We now iterate

this process for each X ⊆ H. The last set Ê that we obtain is
⋃

X FX because every edge
of Ẽ is in EX for some X ⊆ H. The result follows. ◀

We now argue that, on a single page q ∈ [p], the number of possible partial encodings Eq

is at most m4h−2. First note that X q contains at most 2h − 1 sets: at most h sets in X q

are inclusionwise minimal, and any non-minimal element X ∈ X q is obtained by joining two
others. This means that Eq is characterized by selecting at most 4h − 2 edges eq

X and fq
X ,

and such a selection already determines implicitly the sets X q. When considering all pages

14 Eliminating Crossings in Ordered Graphs

f1
X

e1X

e2X

f2
X

e1X

e2X

f
σ(1)
X

f
σ(2)
X

edges of Ẽ2 containing f2
X

edges of Ẽ1 containing f1
X edges of Ẽσ(1) containing f

σ(1)
X

edges of Ẽσ(2) containing f
σ(2)
X

Figure 5 Left: A 2-page drawing of Ẽ. The gray region corresponds to the set ẼX = Ẽ1
X ∪ Ẽ2

X

when X is the set of the inner five red crosses. Right: drawing of a set Ê = (Ẽ \ EX) ∪ FX where
σ(1) = 2 and σ(2) = 1. Note that ẼX and ÊX can be different; namely if FX ̸= Ẽ1

X ∪ Ẽ2
X .

together, there are at most m(4h−2)·p encodings ⟨E1, . . . , Ep⟩, and, for each X ∈
⋃

q∈[p] X q,
we have to apply the algorithm of Lemma 10, which takes O(|EX |3 log n log log p) time. Since
the edge sets EX are pairwise disjoint for different X ⊆ H, for each encoding we spend
O(m3 log n log log p) time. Finally, we return the best among all encodings that give rise
to a valid drawing without crossings. Since the encoding of an optimal solution will be
considered at least once, Lemma 11 implies that we find an optimal solution. Therefore, the
total running time is O(m(4h−2)·p+3 log n log log p). We summarize our result.

▶ Theorem 12. Edge Deletion to p-Page Planar is in XP with respect to h + p.

5 Multiple-Track Crossing Minimization

Let G = (A ∪ B, E) be a bipartite graph where all edges connect a vertex of A to a vertex
of B and A ∩ B = ∅. We further have a given linear order σA for the vertices of A. For the
vertices of B we do not have any additional information or constraints. In this section we
consider spine+t-track drawings of G, defined as follows:

the vertices of A are placed on a line ℓ0, called spine, in the order determined by σA;
the vertices of B are placed on t different lines ℓ1, . . . , ℓt parallel to the spine; each line ℓq

is placed on a different page (half-plane) πq of a book;
all pages π1, . . . , πt have ℓ0 as a common boundary and are otherwise pairwise disjoint;
for each q ∈ [t], the edges with endpoints in ℓ0 and ℓq are drawn as straight-lines edges in
the page πq.

One can interpret this as a drawing in three dimension, as shown in Figure 6. Note that
because the graph is bipartite and each edge has a vertex in A and a vertex in B, there are
no edges connecting two vertices in the spine, and in particular there are no “nested” edges.

To describe the drawing combinatorially, it suffices to partition B into sets B1, . . . , Bt,
one per line, and we have to decide for each Bq the order σBq of the vertices Bq along ℓq.
The number of crossings of the drawing is the sum of the number of crossings within each
page, where the number of crossings within a page is the number of pairs of edges that
cross each other. The value crt((A, σA), B, E) is the minimum number of crossings over all
spine+t-track drawings, and the purpose of this section is to discuss its computation.

We start discussing spine+1-track drawings and its corresponding value cr1((A, σA), B, E).
See Figure 7 for examples of drawings. This is the minimum number of crossings in a two-layer

Agrawal, Cabello, Kaufmann, Saurabh, Sharma, Uno, and Wolff 15

ℓ0

ℓ1

ℓ2

ℓ3

Figure 6 A spine+3-track drawing. In this example, B1 has two vertices, B2 has four vertices
and B3 has three vertices. The drawing has 2 + 5 + 2 = 9 crossings.

ℓ0, fixed order for A

ℓ1, variable order for B
b1 b2 b3 b1 b2b3

Figure 7 Two different orders σB give different number of crossings in the spine+1-track drawing:
10 on the left and 2 on the right.

drawing with the order on one layer, A in this case, fixed. We want to choose the order σB

that minimizes the number of crossings. Let cr1((A, σA), (B, σB), E) be the crossing number
for a fixed order σB. Then cr1((A, σA), B, E) is the minimum of cr1((A, σA), (B, σB), E)
when we optimize over all orders σB of B. The obvious approach is to try all different
possible orders σB of B, compute cr1((A, σA), (B, σB), E) for each of them, and take the
minimum. This yields an algorithm with time complexity 2O(n log n). We improve over this
trivial algorithm as follows.

▶ Theorem 13. We can compute cr1((A, σA), B, E) in O(2nn) time, where n = |A| + |B|.

Proof. Construct a complete, directed, edge-weighted graph H as follows:
V (H) = B

put all directed edges in H;
the directed edge (x, y) of H gets weight cx,y = cr1((A, σA), ({x, y}, σx,y), E), where σx,y

is the order for {x, y} that places x before y.
An ordering of B corresponds to a Hamiltonian path in H. Consider any Hamiltonian path
in H defined by an order σB. Since each crossing happens between two edges incident to
different vertices of B, we have

cr1((A, σA), (B, σB), E) =
∑

x, y ∈ B
σB(x) < σB(y)

cx,y =
∑
x∈B

∑
y ∈ B

σB(x) < σB(y)

cx,y. (2)

With this interpretation, the task is to find in H a Hamiltonian path such that the sum
of the c·,·-weights from each vertex to all its successors is minimized. This problem is
amenable to dynamic programming across subsets of vertices, as it is done for the Traveling
Salesperson Problem; see [4] or [11, Section 6.6].

We define a table C by setting, for each X ⊆ B,

C[X] = cr1((A, σA), X, {(a, x) ∈ E | x ∈ X, a ∈ A}).

Then C[X] is the number of crossings when we remove the vertices B \ X from H. We are
interested in computing C[B] because C[B] = cr1((A, σA), B, E).

16 Eliminating Crossings in Ordered Graphs

ℓ0

ℓ1

A

X

A

X \ {y}

ℓ0

ℓ1
y

Figure 8 Schema showing C[X] and what happens when the last vertex of X gets fixed.

We obviously have C[X] = 0 for each X ⊆ B with |X| ≤ 1. Whenever |X| > 1, we use (2)
and the definition of C[X] to obtain the recurrence

C[X] = min
y∈X

C[X \ {y}] +
∑

x∈X\{y}

cx,y

 . (3)

The proof of this is a standard proof in dynamic programming, where y represents the last
vertex of X in the ordering; see Figure 8.

Each value cx,y can be computed in O(degG(x) + degG(y)) = O(n) time, which means
that, over all pairs (x, y), we spend O(n3) time. Each value η[X, y] :=

∑
x∈X\{y} cx,y, defined

for X ⊆ B and y ∈ X, can be computed for increasing values of |X| in constant time per
value by noting that

for every X ⊆ B and distinct y, z ∈ X:
∑

x∈X\{y}

cx,y = cz,y +
∑

x∈X\{y,z}

cx,y.

Therefore, we compute the value η[X, y] for every X ⊆ B and y ∈ X in Θ
(∑n

k=0
(

n
k

)
k
)

=
Θ(2nn) total time. (The direct computation using the sums anew for each value would take
Θ

(∑n
k=0

(
n
k

)
k2)

= Θ(2nn2), which is strictly larger.)
After this we can compute C[X] for increasing values of |X| using the recurrence of

Equation (3), which means that we spend O(|X|) time for each X. This step also takes
O(2nn) time for all X. Finally we return C[B]. An optimal solution can be recovered using
standard book-keeping techniques. ◀

Now we consider the case of arbitrary track number t.

▶ Theorem 14. We can compute crt((A, σA), B, E) in 2nnO(1) time for every t > 1, where
n = |A| + |B|. For t = 1 and t = 2, the value can be computed in O(2nn) time.

Proof. Once we fix a set Bq for the qth page, we can optimize the order σBq
independently

of all other decisions. Therefore, we want to compute

min
t∑

q=1
cr1((A, σA), Bq, Eq),

where Eq is the set of edges connecting vertices from A to Bq, and where the minimum is
only over all the partitions B1, . . . , Bt of B.

As we did in the proof of Theorem 13, for each subset X ⊆ B, we define

C[X] = cr1((A, σA), X, {(a, x) ∈ E | x ∈ X, a ∈ A}).

In the proof of Theorem 13 we argued that the values C[X] can be computed in O(2nn)
time for all X ⊆ B simultaneously.

Agrawal, Cabello, Kaufmann, Saurabh, Sharma, Uno, and Wolff 17

We have to compute now

min
{

t∑
q=1

C[Bq] : B1, . . . , Bt is a partition of B

}
.

The case of t = 1 has been covered in Theorem 13. For t = 2, we have to compute

min {C[B1] + C[B \ B1] | B1 ⊆ B} ,

which can be done in O(2n) additional time iterating over all subsets B1 of B.
For t > 2, we use the algorithm of Björklund et al. [7] for subset convolution, as follows.

Define for each X ⊆ B and for q ∈ [t] the “entry table”

T [X, q] = crq((A, σA), X, {(a, x) ∈ E | x ∈ X, a ∈ A})
= min {C[B1] + . . . + C[Bq] | B1, . . . , Bq is a partition of X} .

We obviously have T [X, 1] = C[X] for all X. For q > 1, we have the recursive relation

T [X, q] = min {T [Y, q − 1] + C[X \ Y] | Y ⊆ X} .

Therefore, for q > 1, the function X 7→ T [X, q] is, by definition, the subset convolution of
the functions X 7→ T [X, q − 1] and X 7→ C[X] in the (min, +) ring. These functions take
integer values on {0, . . . , n4} because n4 is an upper bound for crq((A, σA), B, E) for any q.
It follows from [7] that one can obtain T [X, q] for all X ⊆ B in 2nnO(1) time, assuming that
T [·, q − 1] and C[·] are already available. We compute the entries T [·, q] for q = 2, . . . , t,
which adds a multiplicative t ≤ n to the final running time. ◀

Using the theorem for increasing values of t, we obtain the following.

▶ Corollary 15. We can compute the smallest value t such that crt((A, σA), B, E) = 0 in
2n · nO(1) time, where n = |A| + |B|.

6 Open Problems

1. Could we use the concept of the conflict graph for other crossing reduction problems?
2. Is Edge Deletion to 1-Page d-Planar W [1]-hard with respect to the natural

parameter k if d is part of the input? Can we reduce from Independent Set? Note
that Vertex Deletion to Degree-d is W [1]-hard with respect to treewidth [5] and
that outer-d planar graphs have treewidth O(d) [9] (which also follows from Lemma 8).

3. What if the vertex order is not given? In other words, what is the parameterized
complexity of edge deletion to outer-d planarity?

4. What about exact algorithms for computing the crossing number of an ordered graph? As
Masuda et al. [28] showed, the problem is NP-hard for two pages. In their NP-hardness
reduction, they use a large number of crossings, and it is easy to get an algorithm that
is exponential in the number of edges; see Theorem 1. Can we get a running time of
2n ·nO(1) or perhaps even subexponential in n? Recall that the algorithm of Liu et al. [25]
checks in n · (cr +2)O(pw2) time whether a graph with pathwidth pw can be drawn on a
given number of pages with at most cr crossings in total.

18 Eliminating Crossings in Ordered Graphs

References
1 R. K. Ahuja, A. V. Goldberg, J. B. Orlin, and R. E. Tarjan. Finding minimum-cost flows by

double scaling. Math. Progr., 53:243–266, 1992. doi:10.1007/BF01585705.
2 J. Alam, M. A. Bekos, M. Gronemann, M. Kaufmann, and S. Pupyrev. The mixed page number

of graphs. Theoret. Comput. Sci., 931:131–141, 2022. doi:10.1016/j.tcs.2022.07.036.
3 P. Bachmann, I. Rutter, and P. Stumpf. On the 3-coloring of circle graphs. In M. Bekos

and M. Chimani, editors, Proc. Int. Symp. Graph Drawing & Network Vis. (GD), volume
14465 of LNCS, pages 152–160. Springer, 2023. URL: https://arxiv.org/abs/2309.02258,
doi:10.1007/978-3-031-49272-3_11.

4 R. Bellman. Dynamic programming treatment of the travelling salesman problem. J. ACM,
9(1):61–63, 1962. doi:10.1145/321105.321111.

5 N. Betzler, R. Bredereck, R. Niedermeier, and J. Uhlmann. On bounded-degree vertex deletion
parameterized by treewidth. Discrete Appl. Math., 160(1):53–60, 2012. doi:j.dam.2011.08.
013.

6 S. Bhore, R. Ganian, F. Montecchiani, and M. Nöllenburg. Parameterized algorithms for book
embedding problems. J. Graph Algorithms Appl., 24(4):603–620, 2020. doi:10.7155/jgaa.
00526.

7 A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier meets Möbius: Fast subset
convolution. In D. S. Johnson and U. Feige, editors, Proc. 39th Ann. ACM Symp. Theory
Comput. (STOC), pages 67–74, 2007. doi:10.1145/1250790.1250801.

8 S. Cabello and B. Mohar. Adding one edge to planar graphs makes crossing number and
1-planarity hard. SIAM J. Comput., 42(5):1803–1829, 2013. doi:10.1137/120872310.

9 S. Chaplick, M. Kryven, G. Liotta, A. Löffler, and A. Wolff. Beyond outerplanarity. In F. Frati
and K.-L. Ma, editors, Proc. 25th Int. Symp. Graph Drawing & Network Vis. (GD), volume
10692 of LNCS, pages 546–559. Springer, 2018. URL: https://arxiv.org/abs/1708.08723,
doi:10.1007/978-3-319-73915-1_42.

10 F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg. Embedding graphs in books: A layout
problem with applications to VLSI design. SIAM J. Algebr. Discrete Meth., 8(1):33–58, 1987.
doi:10.1137/0608002.

11 S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani. Algorithms. McGraw-Hill, 2008.
12 H. Donkers, B. M. P. Jansen, and M. Włodarczyk. Preprocessing for outerplanar vertex

deletion: An elementary kernel of quartic size. Algorithmica, 84(11):3407–3458, 2022. doi:
10.1007/s00453-022-00984-2.

13 Z. Dvořák and S. Norin. Treewidth of graphs with balanced separations. J. Comb. Theory,
Ser. B, 137:137–144, 2019. doi:10.1016/j.jctb.2018.12.007.

14 M. R. Fellows, J. Guo, H. Moser, and R. Niedermeier. A generalization of Nemhauser
and Trotter’s local optimization theorem. J. Comput. Syst. Sci., 77(6):1141–1158, 2011.
doi:10.1016/j.jcss.2010.12.001.

15 F. Gavril. Algorithms for a maximum clique and a maximum independent set of a circle graph.
Networks, 3(3):261–273, 1973. doi:10.1002/net.3230030305.

16 M. Grohe. Computing crossing numbers in quadratic time. J. Comput. Syst. Sci., 68(2):285–302,
2004. doi:10.1016/j.jcss.2003.07.008.

17 B. M. P. Jansen, D. Lokshtanov, and S. Saurabh. A near-optimal planarization algorithm.
In C. Chekuri, editor, Proc. Ann. ACM-SIAM Symp. Discrete Algorithms (SODA), pages
1802–1811, 2014. doi:10.1137/1.9781611973402.130.

18 B. M. P. Jansen and M. Włodarczyk. Lossy planarization: a constant-factor approximate
kernelization for planar vertex deletion. In S. Leonardi and A. Gupta, editors, Proc. 54th Ann.
ACM Symp. Theory Comput. (STOC), pages 900–913, 2022. doi:10.1145/3519935.3520021.

19 K. Kawarabayashi. Planarity allowing few error vertices in linear time. In Proc. Ann. IEEE
Symp. Foundat. Comput. Sci. (FOCS), pages 639–648, 2009. doi:10.1109/FOCS.2009.45.

https://doi.org/10.1007/BF01585705
https://doi.org/10.1016/j.tcs.2022.07.036
https://arxiv.org/abs/2309.02258
https://doi.org/10.1007/978-3-031-49272-3_11
https://doi.org/10.1145/321105.321111
https://doi.org/j.dam.2011.08.013
https://doi.org/j.dam.2011.08.013
https://doi.org/10.7155/jgaa.00526
https://doi.org/10.7155/jgaa.00526
https://doi.org/10.1145/1250790.1250801
https://doi.org/10.1137/120872310
https://arxiv.org/abs/1708.08723
https://doi.org/10.1007/978-3-319-73915-1_42
https://doi.org/10.1137/0608002
https://doi.org/10.1007/s00453-022-00984-2
https://doi.org/10.1007/s00453-022-00984-2
https://doi.org/10.1016/j.jctb.2018.12.007
https://doi.org/10.1016/j.jcss.2010.12.001
https://doi.org/10.1002/net.3230030305
https://doi.org/10.1016/j.jcss.2003.07.008
https://doi.org/10.1137/1.9781611973402.130
https://doi.org/10.1145/3519935.3520021
https://doi.org/10.1109/FOCS.2009.45

Agrawal, Cabello, Kaufmann, Saurabh, Sharma, Uno, and Wolff 19

20 K. Kawarabayashi and B. A. Reed. Computing crossing number in linear time. In D. S.
Johnson and U. Feige, editors, Proc. 39th Ann. ACM Symp. Theory Comput. (STOC), pages
382–390, 2007. doi:10.1145/1250790.1250848.

21 Y. Kobayashi and H. Tamaki. A fast and simple subexponential fixed parameter algo-
rithm for one-sided crossing minimization. Algorithmica, 72:778–790, 2015. doi:10.1007/
s00453-014-9872-x.

22 Y. Kobayashi and H. Tamaki. A faster fixed parameter algorithm for two-layer crossing
minimization. Inform. Process. Lett., 116(9):547–549, 2016. doi:j.ipl.2016.04.012.

23 M. Lampis and M. Vasilakis. Structural parameterizations for two bounded degree problems
revisited. CoRR, abs/2304.14724, 2023. doi:10.48550/arXiv.2304.14724.

24 Y. Liu, J. Chen, and J. Huang. Parameterized algorithms for fixed-order book drawing with
bounded number of crossings per edge. In W. Wu and Z. Zhang, editors, Proc. 14th Int. Conf.
Combin. Optim. Appl. (COCOA), volume 12577 of LNCS, pages 562–576. Springer, 2020.
doi:10.1007/978-3-030-64843-5_38.

25 Y. Liu, J. Chen, J. Huang, and J. Wang. On parameterized algorithms for fixed-order book
thickness with respect to the pathwidth of the vertex ordering. Theor. Comput. Sci., 873:16–24,
2021. doi:10.1016/j.tcs.2021.04.021.

26 D. Lokshtanov, N. S. Narayanaswamy, V. Raman, M. S. Ramanujan, and S. Saurabh. Faster
parameterized algorithms using linear programming. ACM Trans. Algorithms, 11(2):15:1–15:31,
2014. doi:10.1145/2566616.

27 D. Marx and I. Schlotter. Obtaining a planar graph by vertex deletion. Algorithmica,
62(3-4):807–822, 2012. doi:10.1007/s00453-010-9484-z.

28 S. Masuda, K. Nakajima, T. Kashiwabara, and T. Fujisawa. Crossing minimization in linear
embeddings of graphs. IEEE Trans. Computers, 39(1):124–127, 1990. doi:10.1109/12.46286.

29 N. Nash and D. Gregg. An output sensitive algorithm for computing a maximum independent
set of a circle graph. Inf. Process. Lett., 110(16):630–634, 2010. doi:10.1016/j.ipl.2010.05.
016.

30 N. Nishimura, P. Ragde, and D. M. Thilikos. Fast fixed-parameter tractable algorithms
for nontrivial generalizations of vertex cover. Discret. Appl. Math., 152(1-3):229–245, 2005.
doi:10.1016/j.dam.2005.02.029.

31 B. A. Reed, K. Smith, and A. Vetta. Finding odd cycle transversals. Oper. Res. Lett.,
32(4):299–301, 2004. doi:10.1016/J.ORL.2003.10.009.

32 K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hierarchical
system structures. IEEE Trans. Syst. Man Cybernetics, 11(2):109–125, 1981. doi:10.1109/
TSMC.1981.4308636.

33 W. Unger. On the k-colouring of circle-graphs. In R. Cori and M. Wirsing, editors, Proc.
5th Ann. Symp. Theoret. Aspects Comput. Sci. (STACS), volume 294 of LNCS, pages 61–72.
Springer, 1988. doi:10.1007/BFb0035832.

34 W. Unger. The complexity of colouring circle graphs. In A. Finkel and M. Jantzen, editors,
Proc. 9th Ann. Symp. Theoret. Aspects Comput. Sci. (STACS), volume 577 of LNCS, pages
389–400. Springer, 1992. doi:10.1007/3-540-55210-3_199.

35 G. Valiente. A new simple algorithm for the maximum-weight independent set problem on
circle graphs. In T. Ibaraki, N. Katoh, and H. Ono, editors, Proc. Int. Symp. Algorithms
Comput. (ISAAC), volume 2906 of LNCS, pages 129–137. Springer, 2003. doi:10.1007/
978-3-540-24587-2_15.

36 M. Xiao. On a generalization of Nemhauser and Trotter’s local optimization theorem. J.
Comput. Syst. Sci., 84:97–106, 2017. doi:10.1016/j.jcss.2016.08.003.

37 M. Zehavi. Parameterized analysis and crossing minimization problems. Comput. Sci. Rev.,
45:100490, 2022. doi:10.1016/j.cosrev.2022.100490.

https://doi.org/10.1145/1250790.1250848
https://doi.org/10.1007/s00453-014-9872-x
https://doi.org/10.1007/s00453-014-9872-x
https://doi.org/j.ipl.2016.04.012
https://doi.org/10.48550/arXiv.2304.14724
https://doi.org/10.1007/978-3-030-64843-5_38
https://doi.org/10.1016/j.tcs.2021.04.021
https://doi.org/10.1145/2566616
https://doi.org/10.1007/s00453-010-9484-z
https://doi.org/10.1109/12.46286
https://doi.org/10.1016/j.ipl.2010.05.016
https://doi.org/10.1016/j.ipl.2010.05.016
https://doi.org/10.1016/j.dam.2005.02.029
https://doi.org/10.1016/J.ORL.2003.10.009
https://doi.org/10.1109/TSMC.1981.4308636
https://doi.org/10.1109/TSMC.1981.4308636
https://doi.org/10.1007/BFb0035832
https://doi.org/10.1007/3-540-55210-3_199
https://doi.org/10.1007/978-3-540-24587-2_15
https://doi.org/10.1007/978-3-540-24587-2_15
https://doi.org/10.1016/j.jcss.2016.08.003
https://doi.org/10.1016/j.cosrev.2022.100490

	1 Introduction
	2 Computing the Fixed-Vertex-Order Page Number
	3 Edge Deletion to 1-Page d-Planar
	3.1 Branching
	3.2 Balanced Separators in the Conflict Graph
	3.3 Proof of Theorem 6

	4 Edge Deletion to p-Page Planar
	5 Multiple-Track Crossing Minimization
	6 Open Problems

