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Abstract

This work addresses the scattering problem of an incident wave at a junction connecting two semi-infinite waveguides, which
we intend to solve using Physics-Informed Neural Networks (PINNs). As with other deep learning-based approaches, PINNs are
known to suffer from a spectral bias and from the hyperbolic nature of the Helmholtz equation. This makes the training process
challenging, especially for higher wave numbers. We show an example where these limitations are present. In order to improve
the learning capability of our model, we suggest an equivalent formulation of the Helmholtz Boundary Value Problem (BVP) that
is based on splitting the total wave into a tapered continuation of the incoming wave and a remaining scattered wave. This allows
the introduction of an inhomogeneity in the BVP, leveraging the information transmitted during back-propagation, thus, enhancing
and accelerating the training process of our PINN model. The presented numerical illustrations are in accordance with the expected
behavior, paving the way to a possible alternative approach to predicting scattering problems using PINNs.

Keywords: scattering problems, Helmholtz equation, Dirichlet-to-Neumann operator, PINNs, spectral bias, training process

1. Introduction

Since their introduction in 2019 by Raissi et al. [1], Physics-
Informed Neural Networks (PINNs) have gained a huge pop-
ularity and interest in the scientific machine learning commu-
nity and beyond. Remarkable results have been achieved across
a wide range of engineering and physical problems. This in-
volves studying both forward problems, e.g., [2–4] and inverse
problems, such as [5–7]. For a comprehensive review and
discussion on PINNs, refer to [8]. Despite being undeniably
promising, PINNs still face several challenges, particularly for
forward problems that exhibit higher frequencies, sharp tran-
sitions, and complex computational domains [9–11]. Never-
theless, PINNs framework’s flexibility has enabled the devel-
opment of several extensions of the vanilla version that target
various PINN-related issues. One such extension is the Self-
Adaptive Physics-Informed Neural Network (SA-PINN) [12],
which allows to adaptively correct possible discrepancies in
the convergence rates for multiple-terms loss functions. Sim-
ilarly, [10] studied and analyzed the latter problem using the
Neural Tangent Kernel (NTK), proposing a deterministic ap-
proach to compute suitable scalar weightings of the different
loss function’s components. In the same context of NTK-
theory, [11] introduced Fourier-feature networks to counteract
the spectral bias of PINNs. On another note, domain decompo-
sition approaches such as Extended Physics-Informed Neural
Networks (XPINNs) [13] provide a high potential framework
to deal with large and complex computational domains. In this
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work, we address the scattering problem of an incident wave
at a junction connecting two semi-infinite closed waveguides.
Such problems have been studied and analyzed using classical
numerical techniques, both theoretically and numerically using
the Finite Element Method (FEM), for instance. An applica-
tion can involve scattered elastic waves, however, we consider
the simpler case of an optical wave. The underlying problem
is governed by the Helmholtz equation, and a set of mixed
boundary conditions using the Dirichlet-to-Neumann (DtN) op-
erator. We refer, e.g., to [14–16], for more details. Solving the
Helmholtz equation is challenging due to its hyperbolic nature
and structure, even with classical iterative methods [17, 18],
particularly for higher wave numbers. This challenge per-
sists and is more pronounced when the solution framework is
deep learning-based. To mitigate this, considering adaptive
sine activation functions, hyper-parameter tuning, or extend-
ing the commonly considered fully-connected neural network
by Fourier-feature mappings, enhances significantly the train-
ing capabilities of PINNs, see [19–21], respectively. Further-
more, we refer to [22] for a study on the challenges and feasi-
bility of solving the Helmholtz equation in 3D. Perceiving the
training difficulty of the considered Helmholtz Boundary Value
Problem (BVP) with PINNs, in particular when no sources are
present, we propose an equivalent taper-based scattering for-
mulation that introduces inhomogeneities to the right-hand side
of the Helmholtz equation and on the homogeneous Dirichlet
boundary parts. We begin this article by introducing the clas-
sical formulation and the proposed taper-based scattering for-
mulation of the Helmholtz BVP. Next, we briefly define the
considered PINN model. In the penultimate section, we present
the training results for both formulations using the same PINN
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model for different wave numbers, and discuss our findings. Fi-
nally, we conclude the work with a brief summary and an out-
look for possible improvements in future research.

2. The scattering problem

In this section, we introduce the considered scattering prob-
lem of an incident wave at a two-dimensional waveguide junc-
tion. As illustrated in Figure 1, the geometric setting consists
of the junction Ω ⊂ (−b, b) × R, b > 0, connecting two straight
semi-infinite closed waveguides, designated byΩ− andΩ+. The
waveguide junction is assumed to be bounded with boundary
∂Ω := Γ− ∪ Γ0,1 ∪ Γ0,2 ∪ Γ+. Thereby, Γ− := Ω̄− ∩ Ω̄ and
Γ+ := Ω̄+ ∩ Ω̄ denote the interfaces between the waveguides
and the junction, and constitute the fixed parts of the junction’s
shape, whereas Γ0 := Γ0,1 ∪ Γ0,2 corresponds to the freely des-
ignable part. Note that the main geometric requirement that
needs to be accounted for is guaranteeing a sufficiently regular
boundary across the interfaces, e.g., with a C2-smooth bound-
ary. We refer to [16] for more details and a thorough formula-
tion of the considered framework. Given an appropriate incom-
ing wave uinc from Ω− and propagating towards Ω, we consider
in this work the case of a closed waveguide junction that satis-
fies the Helmholtz Boundary Value Problem (BVP), as defined
in [16]. First, the notion of a Dirichlet-to-Neumann (DtN) op-
erator is required, see [14] for instance.

ΩΩ− Ω+Γ− Γ+

Γ0,1

Γ0,2

x

z
x = −b x = b

Figure 1: Illustration of the considered type of waveguide junctionsΩ. Thereby,
Ω+ and Ω− denote two semi-infinite waveguides connected by Ω at the inter-
faces Γ− (at x = −b) and Γ+ (at x = b), respectively. Γ0,1 and Γ0,2 designate the
remaining boundaries of Ω [16].

Definition 2.1 (Dirichlet-to-Neumann (DtN) operator). Let
µ2

n = n2π2, ϕn (z) =
√

2 sin (nπz) for z ∈ (0, 1), and k > 0.
Provided k2 , µ2

n for all n ∈ N, the DtN operator is defined for
w ∈ L2 ((0, 1)) by

Λw := w 7→
∑
n∈N
ιλn (ϕn,w)L2((0,1)) ϕn.

Thereby, λn :=


√

k2 − µ2
n, k2 > µ2

n

ι
√
µ2

n − k2, k2 ≤ µ2
n

denotes the longitudinal

frequency and ι the imaginary unit.

Then, the governing equations can be formulated as follows.

Problem 2.1 (Classical Helmholtz BVP). Let Ω be a bounded
waveguide junction as defined above with boundary Γ := Γ0,1 ∪

Γ0,2 ∪ Γ+ ∪ Γ−, and let ν denote a corresponding outer-pointing
normal vector. For a wave number k > 0, find u ∈ C2 (Ω) ∩
C1(Ω), (x, z) 7→ u(x, z) such that

∆u + k2u = 0 in Ω,
u = 0 on Γ0,1 ∪ Γ0,2,

∂νu = Λu − 2Λuinc on Γ−,
∂νu = Λu on Γ+.

Thereby, ∂νu denotes the standard Neumann trace of u, and Λ
the DtN operator.

In addition, we propose the consideration of an equivalent
formulation of Problem 2.1, which we call the taper-based scat-
tering formulation of the Helmholtz equation. The main idea
of the ansatz consists in splitting the unknown wave function
u = usct + χuinc to separate the incoming wave uinc and rewrite
the problem in terms of the scattered wave usct. Thereby, we call
the function χ : (−b, b) → [0, 1] a taper-function and define it
as

χ(x) =

−6
b5 x5 − 15

b4 x4 − 10
b3 x3, x < 0,

0, x ≥ 0.
(1)

Per construction, the taper-function satisfies χ(−b) = 1 and
χ(0) = 0, and possesses vanishing first and second derivatives
at x = −b and x = 0 as well. Hence, χ ∈ C2((−b, b)). With this
and by taking into account that a suitable incoming wave uinc

solves Problem 2.1, the equivalent taper-based Helmholtz BVP
reads as follows.

Problem 2.2 (Taper-based scattering BVP). For k > 0 and χ as
defined in (1), find usct ∈ C2 (Ω) ∩ C1(Ω) such that

∆usct + k2usct = −2
∂uinc

∂x
∂χ

∂x
− uinc ∂

2χ

∂x2 in Ω,

usct = −uincχ on Γ0,1 ∪ Γ0,2,

∂νusct = Λusct on Γ− ∪ Γ+.

After solving Problem 2.2, the total wave u is merely recon-
structed by adding uincχ to the solution usct. Obviously, Prob-
lems 2.1 and 2.2 are equivalent, yet structurally different due to
the inhomogeneity introduced to the BVP via the splitting. This
is expected to improve the prediction capabilities of our model-
based deep learning approach, namely Physics-Informed Neu-
ral Networks (PINNs), which we briefly introduce in the next
section.

3. Physics-Informed Neural Networks

PINN was first introduced in 2019 by Raissi et al. [1]. It con-
sists in a hybrid approach that supplements a given Artificial
Neural Network (ANN) by the underlying mathematical model
(or parts of it), rendering a successful prediction physically con-
sistent. In its vanilla version, the main building block of a PINN
is a deep ANN, which consists of a plain stack of layers. The
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first and last layer are known as input and output layer, respec-
tively, whereas the remaining ones correspond to the hidden
layers. For i = 1, . . . ,M and M > 1, we denote the realiza-
tion function of the i-th layer by li : RNi−1 → RNi , where Ni

is the number of neurons of the i-th layer. Formally, the net-
work function NNθ of an ANN mapping an input x ∈ RN0 to an
output uθ := NNθ(x) ∈ RNM+1 is defined recursively via

l0 := x,

li = σi (Wili−1 + bi) , i = 1, . . . ,M,
uθ = WM+1lM + bM+1,

where σi is a possibly non-linear activation function for the i-th
layer, and Wi ∈ RNi×Ni−1 and bi ∈ RNi are known as the weight
matrices and bias vectors, respectively. For convenience, let
θ := (W1, b1, . . . ,WM+1, bM+1) denote the set of all trainable
parameters of the neural network. Using automatic differentia-
tion [23], derivatives of the ANN’s output function can be com-
puted efficiently. This allows the penalization of non-physical
solutions during the optimization process by incorporating the
model equations into the loss function. For instance, let L be
a differential operator (e.g., Helmholtz operator) and B j some
boundary operators, defining with suitable right-hand side f
and boundary conditions g j the following BVP

L[u] (x) = f (x) x ∈ Ω,

B j[u] (x) = g j (x) x ∈ Γ j ⊂ ∂Ω, j = 1, . . . , 4.
(2)

The PINN ansatz consists in using uθ := NNθ(x) as a surro-
gate model for the solution u, cf. [1]. In practice, training
a PINN model without additional data reduces to minimiz-
ing an empirical loss function that evaluates the model equa-
tions. Concretely, for the training points xr = {xr,i}

Nr
i=1 ⊂ Ω and

xb j = {xb j,i}
Nb j

i=1 ⊂ Γ j, j = 1, . . . , 4, a typical loss function reads

L(θ, xr, xb) := Lr(θ, xr) +
4∑

j=1

Lb j (θ, xb j )

with

Lr(θ, xr) =
1
Nr

Nr∑
i=1

(
L[uθ]

(
xr,i
)
− f
(
xr,i
))2 ,

Lb j (θ, xb j ) =
1

Nb j

Nb j∑
i=1

(
B j[uθ]

(
xb j,i

)
− g j

(
xb j,i

))2
.

The minimization procedure is usually performed using a
gradient-descent type optimizer, e.g., Adaptive moment esti-
mation (Adam) [24]. As per all iterative methods, optimizing
the ANN’s trainable parameters require initialization. Popular
choices include the Glorot [25] or He initialization [26], for in-
stance.
Although promising, the vanilla version of PINN suffers from
two main pathologies that limit its use cases. The first one,
known as the spectral bias, is inherited from the conventional
neural networks commonly used for PINNs. It states that neu-
ral networks tend to learn functions along the dominant eigen-
directions, which correspond to the lowest frequencies. In other

words, they struggle to learn functions with higher frequencies.
We refer the reader, e.g., to [9, 11] and the references therein
for more details. The second pathology addresses a possible
imbalance in the convergence rates of the constituent terms of
the total loss function, which could result in neglecting certain
aspects of the solution, hence to training failure, see [10, 27],
for instance. Several extensions of PINN that address and (par-
tially) circumvent these effects have been proposed and suc-
cessfully deployed. However, to the authors knowledge, there is
still no generic PINN approach that allows efficient predictions
of forward problems based solely on the mathematical model.
In this work, we consider the Self-Adaptive Physics-Informed
Neural Network (SA-PINN), introduced in [12]. This approach
is based on soft attention mechanisms and allows the reduc-
tion of convergence discrepancies of the loss terms by intro-
ducing a self-adaptive mask function m : [0,∞) → [0,∞) that
associates to each training point a trainable weight. The func-
tion m is assumed to be differentiable and strictly increasing,
see [12] for possible choices of m and their effect on the train-
ing procedure. Provided λr =

(
λr,1, . . . , λr,Nr

)
and λb :=

(
λb j

)4
j=1

with λb j =
(
λb j,1, . . . , λb,Nb j

)
are non-negative, the extended loss

function, reads

L (θ, xr, xb, λr, λb) = Lr (θ, xr, λr) +
4∑

j=1

Lb j

(
θ, xb j , λb j

)
, (3)

where

Lr (θ, xr, λr) =
1
Nr

Nr∑
i=1

m
(
λr,i
) (
L[θ]

(
xr,i
)
− f
(
xr,i
))2 ,

Lb j

(
θ, xb j , λb j

)
=

1
Nb j

Nb j∑
i=1

m
(
λb j,i

) (
B j[θ]

(
xb j,i

)
− g j

(
xb j,i

))2
.

With this, the optimization problem turns to a saddle point prob-
lem that simultaneously minimizes θ, and penalizes the regions
with higher losses by maximizing λr and λb, i.e., solving

min
θ

max
λr,λb

L (θ, λr, λb) . (4)

Besides SA-PINN, we consider layer-wise adaptive activation
functions to further ameliorate the approximation capabilities
of our PINN model [28]. In particular, we use for all i =
1, . . . ,M, σi : x 7→ tanh(αix), where (αi)i are trainable coef-
ficients to be minimized along with the network weights and
biases. In a slight abuse of notation, we include (αi)i in the set
of trainable parameters θ.

4. Numerical Studies

In this section, we compare the approximation capability
of the previously discussed PINN model when applied to
Problems 2.1 and 2.2. For the sake of comparability, we use the
same network architecture and hyper parametrization for both
cases. In particular, the employed ANN consists of M = 10
hidden layers with Ni = 45 neurons, for all i = 1, . . . ,M.

3
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(a) Successfull prediction for k = 8.
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(b) Failed prediction of the expected amplitude for k = 13.

Figure 2: Visualization of the real part of the PINN’s prediction û := uθ using Problem 2.1 after 50000 Adam training steps.
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(a) Successfull prediction for k = 13.
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(b) Successfull prediction for k = 16.
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(c) Tapered incoming wave χuinc for k = 13.
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(d) PINN prediction of the scattering wave uθ := usct for k = 13.

Figure 3: Visualization of the real part of the reconstructed solution û := uθ + χuinc and its constituents using Problem 2.2 after 50000 Adam training steps.

As mentioned in the previous section, we consider adaptive
hyperbolic tangents as activation functions initialized with
αi = 2, for i = 1, . . . ,M, whereas the remaining trainable
parameters of θ are initialized using a Glorot normal initializer.

For the sake of simplicity, we consider a rectangular wave-
guide junction Ω := (−b, b)× (0, 1), b = 2. With the boundaries
of Ω, Γ0,1, Γ0,2, Γ−, and Γ+ corresponding to Γ j, j = 1, . . . , 4 in
(2), respectively, and by assigning accordingly the right-hand
sides, we arrive at a loss function for Problems 2.1 and 2.2
similar to (3). Thereby, the interior and boundary points xr
and xb j are taken as a uniform grid of size (120, 10), and with
Nb j := Nb = 80 for all j = 1, . . . , 4, respectively. Moreover,
we define the considered self-adaptive mask function by
m : x 7→ x2, and draw the initial self-adaptive weights from
uniform distributions as λr ∼ (U(0, 0.5))Nr , λb j ∼ (U(0, 30))Nb ,

for j = 1, 2, and λb j ∼ (U(0, 10))Nb , for j = 3, 4. To solve (4),
we employ an Adam optimizer with an exponential learning
rate decay (with a rate of 0.95 every 1000 steps). With this,
a training process consists of 50000 steps. All computations
are performed using a TensorFlow v2.11.0 implementation in
Python v3.10.12. To ensure reproducibility of the results, we
choose the number 11 as seed for the generation of pseudo-
random numbers.

In the following experiments, we assume that only the first
mode propagates through the waveguide, i.e., in Definition 2.1,
we assume n = 1. Moreover, the incoming wave reads

uinc (x, z) =
1
√

2
eι(x+b)·λ1ϕ1(z), (x, z) ∈ Ω.

Note that in the considered case of a simple rectangular wave-

guide junction, the energy transmission is total, hence the ex-
pected exact solution uref corresponds to the incoming wave
propagating along the x-axis.
On one hand, we notice that the prediction results of our PINN
model using the ansatz û := uθ = u in Problem 2.1, i.e, when
applied to the classical Helmholtz BVP are only successful up
to k = 8. In Figure 2a, we illustrate the real part of the predicted
solution for a successful example at k = 8. By increasing the
wave number, we observe that the PINN solution starts to de-
generate. In particular, the predicted amplitude decreases with
higher k. For example, we showcase this effect for k = 13
in Figure 2b. On the other hand, the application of the same
model on the equivalent formulation with uθ = usct in Prob-
lem 2.2 seems to clearly ameliorate the approximation capacity
in dependence of k. This is visualized in Figure 3. In particu-
lar, Figure 3a shows the reconstructed solution û := uθ + χuinc

for k = 13, which is in agreement with the expected solution.
Moreover, we verify that this improvement is maintained up to
k = 16, see, e.g., Figure 3b. For convenience, the constituents
of û, namely, the PINN prediction uθ and χuinc are plotted in
Figure 3c and Figure 3d, respectively. Furthermore, we com-
pare in Table 1 the prediction results for different wave num-
bers k using both formulations. For this, we use as metric the
relative error with ∥ · ∥2 being the Euclidean norm

ε(u) :=
∥u − uref∥2

∥uref∥2
, (5)

and denote the PINN-based solution again by û. Note that
the latter is understood as û := uθ for Problem 2.1 and as
û = uθ + χuinc for Problem 2.2.
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k 8 9 10 13 15 16

Prob. 2.1
εR 0.057 0.158 0.21 0.58 − −

εI 0.059 0.15 0.22 0.6 − −

Prob. 2.2
εR 0.018 0.024 0.028 0.036 0.071 0.09

εI 0.012 0.023 0.038 0.045 0.089 0.1

Table 1: Relative errors εR := ε(ℜ{û}) and εI := ε(ℑ{û}) w.r.t. the real and
imaginary parts of û, respectively (denoted byℜ{û} and ℑ{û}) for Problems 2.1
and 2.2 at different k.

The accuracy of the trained models is computed for k =
8, 9, 10, 13, 15, 16. We notice the expected amelioration even
for k = 8, where the classical formulation in Problem 2.1
is sufficient to successfully learn the solution in the wave-
guide junction. However, it should also be noted that the for-
mulation of Problem 2.2 does not completely circumvent the
spectral bias but reduces it. This can be seen from the in-
creasing error in both cases with increasing wave numbers k.
Besides extending the range of possible wave numbers, the
considered equivalent formulation accelerates the training pro-
cedures, as the same accuracy is reached at a significantly
earlier stage of the training. For instance, Figure 4 shows
the evolution of the training error for the solution’s real part
ℜ{û} w.r.t. the training iterations at k = 8, where both an
improved and more accurate learning can be distinguished.

0 1 2 3 4 5
·104

10−1

100

Adam iterations

ε(
ℜ
{û
})

Problem 2.1
Problem 2.2

Figure 4: Comparison of the learning dynamics using the relative error (5)
w.r.t. the real part of the predicted solution û (denoted by ℜ{û}) from Prob-
lems 2.1 and 2.2 with k = 8. The relative error is evaluated for visualization
purpose once each 100 iterations.

5. Summary and Conclusion

We proposed an equivalent taper-based scattering formula-
tion of the two-dimensional Helmholtz BVP by introducing
inhomogeneities to the BVP through a splitting of the solu-
tion. We numerically illustrated that the resulting equivalent
formulation improves and accelerates the learning process of
our PINN model, as it reduces the tendency of our model when
applied to the classical formulation of the Helmholtz BVP, to

learn the zero function. This allowed for more accurate solu-
tions and extended the range of successfully predictable wave
numbers. Although our numerical experiments were limited
to straight waveguide junctions, it is possible to consider more
complex geometrical configurations. Moreover, it should be
noted that other shapes for the taper-function are conceivable,
including non-polynomial functions. In addition, the taper-
based scattering formulation is not restricted to the first mode,
allowing for future extensions to consider higher modes for the
incoming wave and the DtN operator.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work in this paper.

Acknowledgement

W. Dörfler gratefully acknowledges the support of the Deutsche
Forschungsgemeinschaft (DFG) within the SFB 1173 “Wave
Phenomena” (Project-ID 258734477).
M. Elasmi and T. L, aufer acknowledge financial support by
the German Research Foundation (DFG) through the Re-
search Training Group 2218 SiMET – Simulation of Mechano-
Electro-Thermal processes in Lithium-ion Batteries, project
number 281041241.
The authors want to thank M. Sukhova (KIT) for her contribu-
tions in this work at early stages. Additionally, the authors want
to thank R. Schoof (KIT) for his general support.

List of abbreviations

Adam Adaptive moment estimation
ANN Artificial Neural Network
BVP Boundary Value Problem
DtN Dirichlet-to-Neumann
FEM Finite Element Method
PINN Physics-Informed Neural Network
SA-PINN Self-Adaptive Physics-Informed Neural Network
XPINN Extended Physics-Informed Neural Network
NTK Neural Tangent Kernel

References

[1] M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural net-
works: A deep learning framework for solving forward and inverse prob-
lems involving nonlinear partial differential equations, Journal of Compu-
tational Physics 378 (2019) 686–707. doi:10.1016/j.jcp.2018.10.
045.

[2] M. Raissi, A. Yazdani, G. E. Karniadakis, Hidden fluid mechanics:
Learning velocity and pressure fields from flow visualizations, Science
367 (6481) (2020) 1026–1030. doi:10.1126/science.aaw4741.

[3] F. Sahli Costabal, Y. Yang, P. Perdikaris, D. E. Hurtado, E. Kuhl, Physics-
Informed Neural Networks for Cardiac Activation Mapping, Frontiers in
Physics 8 (2020) 42. doi:10.3389/fphy.2020.00042.

[4] Z. Mao, A. D. Jagtap, G. E. Karniadakis, Physics-informed neural net-
works for high-speed flows, Computer Methods in Applied Mechan-
ics and Engineering 360 (2020) 112789. doi:10.1016/j.cma.2019.
112789.

5

http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1126/science.aaw4741
http://dx.doi.org/10.3389/fphy.2020.00042
http://dx.doi.org/10.1016/j.cma.2019.112789
http://dx.doi.org/10.1016/j.cma.2019.112789


[5] A. D. Jagtap, Z. Mao, N. Adams, G. E. Karniadakis, Physics-informed
neural networks for inverse problems in supersonic flows, Journal of
Computational Physics 466 (2022) 111402. doi:10.1016/j.jcp.
2022.111402.

[6] Y. Chen, L. Lu, G. E. Karniadakis, L. Dal Negro, Physics-informed neural
networks for inverse problems in nano-optics and metamaterials, Optics
express 28 (8) (2020) 11618–11633. doi:10.1364/oe.384875.

[7] I. Depina, S. Jain, S. Mar Valsson, H. Gotovac, Application of physics-
informed neural networks to inverse problems in unsaturated groundwater
flow, Georisk: Assessment and Management of Risk for Engineered Sys-
tems and Geohazards 16 (1) (2022) 21–36. doi:10.1080/17499518.
2021.1971251.

[8] S. Cuomo, V. S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi, F. Pic-
cialli, Scientific Machine Learning Through Physics-Informed Neural
Networks: Where we are and What’s Next, Journal of Scientific Com-
puting 92 (3) (2022) 88. doi:10.1007/s10915-022-01939-z.

[9] N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F. Hamprecht,
Y. Bengio, A. Courville, On the Spectral Bias of Neural Networks, in:
K. Chaudhuri, R. Salakhutdinov (Eds.), Proceedings of the 36th Interna-
tional Conference on Machine Learning, Vol. 97 of Proceedings of Ma-
chine Learning Research, PMLR, 2019, pp. 5301–5310.
URL https://proceedings.mlr.press/v97/rahaman19a.html

[10] S. Wang, X. Yu, P. Perdikaris, When and why PINNs fail to train: A neural
tangent kernel perspective, Journal of Computational Physics 449 (2022)
110768. doi:https://doi.org/10.1016/j.jcp.2021.110768.

[11] S. Wang, H. Wang, P. Perdikaris, On the eigenvector bias of fourier fea-
ture networks: From regression to solving multi-scale pdes with physics-
informed neural networks, Computer Methods in Applied Mechanics and
Engineering 384 (2021) 113938. doi:https://doi.org/10.1016/j.
cma.2021.113938.

[12] L. D. McClenny, U. M. Braga-Neto, Self-adaptive physics-informed neu-
ral networks, Journal of Computational Physics 474 (2023) 111722.
doi:10.1016/j.jcp.2022.111722.

[13] A. D. Jagtap, G. E. Karniadakis, Extended physics-informed neural
networks (XPINNs): a generalized space-time domain decomposition
based deep learning framework for nonlinear partial differential equa-
tions, Communications in Computational Physics 28 (5) (2020) 2002–
2041. doi:10.4208/cicp.oa-2020-0164.

[14] L. Bourgeois, E. Lunéville, The linear sampling method in a waveguide:
a modal formulation, Inverse Problems 24 (1) (2008) 015018. doi:10.
1088/0266-5611/24/1/015018.

[15] T. Arens, D. Gintides, A. Lechleiter, Variational formulations for scatter-
ing in a three-dimensional acoustic waveguide, Mathematical Methods in
the Applied Sciences 31 (7) (2008) 821–847. doi:10.1002/mma.947.

[16] J. Ott, Domain Optimization for an Acoustic Waveguide Scattering Prob-
lem, Applied Mathematics and Optimization 72 (1) (2015) 101–146.
doi:10.1007/s00245-014-9273-1.

[17] O. G. Ernst, M. J. Gander, Why it is Difficult to Solve Helmholtz Prob-
lems with Classical Iterative Methods, in: Numerical Analysis of Multi-
scale Problems, Springer Berlin Heidelberg, 2011, Ch. 10, p. 325–363.
doi:10.1007/978-3-642-22061-6_10.

[18] G. C. Diwan, A. Moiola, E. A. Spence, Can coercive formulations lead
to fast and accurate solution of the Helmholtz equation?, Journal of Com-
putational and Applied Mathematics 352 (2019) 110–131. doi:https:
//doi.org/10.1016/j.cam.2018.11.035.

[19] C. Song, T. Alkhalifah, U. B. Waheed, A versatile framework to solve the
Helmholtz equation using physics-informed neural networks, Geophysi-
cal Journal International 228 (3) (2022) 1750–1762. doi:10.1093/gji/
ggab434.

[20] P. Escapil-Inchauspé, G. A. Ruz, Hyper-parameter tuning of physics-
informed neural networks: Application to Helmholtz problems, Neuro-
computing 561 (2023) 126826. doi:https://doi.org/10.1016/j.
neucom.2023.126826.

[21] C. Song, Y. Wang, Simulating seismic multifrequency wavefields with the
Fourier feature physics-informed neural network, Geophysical Journal In-
ternational 232 (3) (2023) 1503–1514. doi:10.1093/gji/ggac399.

[22] S. Schoder, F. Kraxberger, Feasibility study on solving the Helmholtz
equation in 3D with PINNs (2024). doi:10.48550/ARXIV.2403.
06623.

[23] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, J. M. Siskind, Auto-
matic Differentiation in Machine Learning: a Survey, Journal of Machine

Learning Research 18 (1) (2017) 5595–5637.
[24] D. P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization

(2014). doi:10.48550/ARXIV.1412.6980.
[25] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feed-

forward neural networks, in: Y. W. Teh, M. Titterington (Eds.), Pro-
ceedings of the Thirteenth International Conference on Artificial Intel-
ligence and Statistics, Vol. 9 of Proceedings of Machine Learning Re-
search, PMLR, Chia Laguna Resort, Sardinia, Italy, 2010, pp. 249–256.
URL https://proceedings.mlr.press/v9/glorot10a.html

[26] K. He, X. Zhang, S. Ren, J. Sun, Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification, in: 2015 IEEE
International Conference on Computer Vision (ICCV), 2015, pp. 1026–
1034. doi:10.1109/ICCV.2015.123.

[27] A. A. Heydari, C. A. Thompson, A. Mehmood, Softadapt: Techniques for
adaptive loss weighting of neural networks with multi-part loss functions
(2019). doi:10.48550/ARXIV.1912.12355.

[28] A. D. Jagtap, K. Kawaguchi, G. E. Karniadakis, Adaptive activation
functions accelerate convergence in deep and physics-informed neural
networks, Journal of Computational Physics 404 (2020) 109136. doi:
https://doi.org/10.1016/j.jcp.2019.109136.

6

http://dx.doi.org/10.1016/j.jcp.2022.111402
http://dx.doi.org/10.1016/j.jcp.2022.111402
http://dx.doi.org/10.1364/oe.384875
http://dx.doi.org/10.1080/17499518.2021.1971251
http://dx.doi.org/10.1080/17499518.2021.1971251
http://dx.doi.org/10.1007/s10915-022-01939-z
https://proceedings.mlr.press/v97/rahaman19a.html
https://proceedings.mlr.press/v97/rahaman19a.html
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2021.110768
http://dx.doi.org/https://doi.org/10.1016/j.cma.2021.113938
http://dx.doi.org/https://doi.org/10.1016/j.cma.2021.113938
http://dx.doi.org/10.1016/j.jcp.2022.111722
http://dx.doi.org/10.4208/cicp.oa-2020-0164
http://dx.doi.org/10.1088/0266-5611/24/1/015018
http://dx.doi.org/10.1088/0266-5611/24/1/015018
http://dx.doi.org/10.1002/mma.947
http://dx.doi.org/10.1007/s00245-014-9273-1
http://dx.doi.org/10.1007/978-3-642-22061-6_10
http://dx.doi.org/https://doi.org/10.1016/j.cam.2018.11.035
http://dx.doi.org/https://doi.org/10.1016/j.cam.2018.11.035
http://dx.doi.org/10.1093/gji/ggab434
http://dx.doi.org/10.1093/gji/ggab434
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2023.126826
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2023.126826
http://dx.doi.org/10.1093/gji/ggac399
http://dx.doi.org/10.48550/ARXIV.2403.06623
http://dx.doi.org/10.48550/ARXIV.2403.06623
http://dx.doi.org/10.48550/ARXIV.1412.6980
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
http://dx.doi.org/10.1109/ICCV.2015.123
http://dx.doi.org/10.48550/ARXIV.1912.12355
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2019.109136
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2019.109136

	Introduction
	The scattering problem
	Physics-Informed Neural Networks
	Numerical Studies
	Summary and Conclusion
	Appendices

