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Abstract. In this paper we are interested in the fine-grained complexity of deciding whether there is
a homomorphism from an input graph G to a fixed graph H (the H-Coloring problem). The starting
point is that these problems can be viewed as constraint satisfaction problems (Csps), and that (partial)
polymorphisms of binary relations are of paramount importance in the study of complexity classes of such
Csps.

Thus, we first investigate the expressivity of binary symmetric relations EH and their corresponding
(partial) polymorphisms pPolpEH q. For irreflexive graphs we observe that there is no pair of graphs H and
H 1 such that pPolpEH q Ď pPolpEH1 q, unless EH1 “ H or H =H 1. More generally we show the existence
of an n-ary relation R whose partial polymorphisms strictly subsume those of H and such that CsppRq is
NP-complete if and only if H contains an odd cycle of length at most n. Motivated by this we also describe
the sets of total polymorphisms of nontrivial cliques, odd cycles, as well as certain cores, and we give an
algebraic characterization of projective cores. As a by-product, we settle the Okrasa and Rza̧żewski conjecture
for all graphs of at most 7 vertices.

1. Introduction

This paper aims to improve our understanding of fine-grained complexity of constraint satisfaction problems
(Csps) [11]. In a constraint satisfaction problem (Csp), given a set of variables X and a set of constraints of
the form Rpxq for x P Xk and some k-ary relation R, the objective is to assign values from X to a domain V
such that every constraint in C is satisfied. This problem is usually denoted by CsppΓq, with the additional
stipulation that every relation occurring in a constraint comes from the set of relations Γ, and it is typically
phrased as the decision problem of verifying whether a solution exists.

In this article we take a particular interest in the restricted case when Γ is singleton and contains a binary,
symmetric relation H, viewed as the edge relation of a graph1, the H-Coloring problem [9]. This problem
is arguably more naturally formulated as a homomorphism problem. Recall that a function f : VG Ñ VH is
said to be a homomorphism between the two graphs G and H if it “preserves” the edge relation, that is, if
for every edge pu, vq P EG, we have pfpuq, fpvqq P EH . In that case, we use the notation f : G Ñ H. For
each graph H the H-coloring problem can then succinctly be defined as follows.
H-Coloring Problem. Given a graph G, decide whether there is a homomorphism f : G Ñ H.

Note that H-coloring is the same problem as CspptEHuq (henceforth written CsppEHq). Clearly, the
H-Coloring problem subsumes the well-known k-Coloring problem, k ě 1, that asks for a coloring of the
vertices of a graph using at most k colors such that each pair of adjacent vertices are assigned different colors.
Indeed, it corresponds to the case where H “ Kk, the complete graph (clique) of size k.

Hell and Nešetřil [9] showed that the H-Coloring problem is in P (the class of problems decidable in
polynomial time) whenever H is bipartite, and it is NP-complete otherwise. Our goal is to bring some light into
the (presumably) superpolynomial complexity of the H-Coloring problem when H is non-bipartite. On the
one hand, there are already some strong upper-bounds results on the fine-grained complexity of k-Coloring
for k ě 3. Björklund et al. [2] proved that k-Coloring is solvable in time O˚p2nq (i.e., Op2n ˆ nOp1qq)
where n is the number of vertices of the input graph. Fomin et al. [7] also prove that C2k`1-Coloring is
solvable in time O˚p

`

n
n{k

˘

q “ O˚ppαkqnq, with αk ÝÑ
kÑ8

1, and improved algorithms are also known when H

has bounded tree-width or clique-width [7, 19]. On the other hand, lower bounds by Fomin et al. [6] rule out
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1Throughout, we assume that all graphs are finite, simple (no loops) and undirected. Every graph H is defined by its set VH

of vertices and its set EH of edges.
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the existence of a uniform 2Opnq time algorithm under the exponential-time hypothesis (i.e., that 3-Sat can
not be solved in subexponential time).

We notice, however, that there is a lack of general tools for describing fine-grained properties of Csps, and
in particular we lack techniques for comparing NP-hard H-Coloring problems with each other, e.g., via
size-preserving reductions. We explore these ideas through an algebraic approach, by investigating algebraic
invariants of graphs. For this purpose, viewing H-Coloring as Csp(EH) is quite useful as it allows us
to use the widely studied theory of the complexity of Csp(Γ), since the former is just the special case
when Γ “ tRu is a singleton containing a binary, symmetric relation. In particular, it was shown that the
fine-grained complexity of Csp(R) only depends on the so-called partial polymorphisms of R [5, 11]. Briefly,
a polymorphism is a higher-arity homomorphism from the relation to the relation itself. Additionally, a
polymorphism that is not necessarily everywhere defined is known as a partial polymorphism, and we write
PolpRq (respectively, pPolpRq) for the set of all (partial) polymorphisms of a relation R. If H is a graph,
then by pPolpHq, we simply mean the set of partial polymorphisms of the edge relation EH . It is then known
that partial polymorphisms correlate to fine-grained complexity in the sense that if pPolpRq Ď pPolpR1q and
if CsppRq is solvable in O˚pcnq time for some c ą 1 then CsppR1q is also solvable in O˚pcnq time [11].

Thus, describing the inclusion structure between sets of the form pPolpHq would allow us to relate the
fine-grained complexity of H-Coloring problems with each other, but, curiously, we manage to prove that
no non-trivial inclusions of this form exist, suggesting that partial polymorphisms of graphs are not easy
to relate via set inclusion. As a follow-up question we also study inclusions of the form pPolpHq Ď pPolpRq

when R is an arbitrary relation, and manage to give a non-trivial condition based on the length of the shortest
odd cycle of H. Concretely, we prove that it is possible to find an n-ary relation R with pPolpEHq Ĺ pPolpRq

where Csp(R) is NP-complete, if and only if H contains an odd-cycle of length at most n. This result
suggests that the size of the smallest odd-cycle is an interesting parameter when regarding the complexity of
H-Coloring. As observed above, the smaller pPolpEHq is, the harder Csp(EH) (and thus H-Coloring) is.
In other words, the greater the smallest odd-cycle of H is, the easier the H-Coloring problem is. This fact
supports the already known algorithms presented in [7].

Despite this trivial inclusion structure, it could still be of great interest to provide a succinct description of
pPolpHq for some noteworthy choices of non-bipartite, core H. As a first step in this project we concentrate
on the total polymorphisms of H, and conclude that projective graphs [13] appear to be a reasonable class
to target since the total polymorphisms of projective cores are essentially at most unary. Projective cores
were studied by Okrasa and Rza̧żewski [15] in the context of fine-grained aspects of H-coloring problems
analyzed under tree-width. We have the following conjecture.

Okrasa and Rza̧żewski Conjecture ([15]). Let H be a connected non-trivial core on at least 3 vertices.
Then H is projective if and only if it is indecomposable.

Thus, we should not hope to easily give a complete description of projective cores, but we do succeed in
(1) proving that several well-known families of graphs, e.g., cliques, odd-cycles, and other core graphs, are
projective, and (2) confirm the conjecture for all graphs with at most 7 vertices. Importantly, our proofs
use the algebraic approach and are significantly simpler than existing proofs, and suggest that the algebraic
approach might be a cornerstone in completely describing projective cores.

This paper is organized as follows. In Section 2, we recall the basic notions and preliminary results needed
throughout the paper. We investigate the order structure of classes of graph (partial) polymorphisms in
Section 3 where we show the aforementioned main results. In Section 4 we focus on projective and core graphs
and present several general examples of projective cores, and settle the Okrasa and Rza̧żewski conjecture for
graphs with at most 7 vertices. In Section 6 we discuss some consequences of our results and state a few
noteworthy conjectures.

2. Preliminaries

Throughout the article we use the following notation.
For any n P N, rns denotes the set t1, . . . , nu. For every set V , n ě 1 and t “ pt1, . . . , tnq P V n, tris denotes

ti, and given a relation R Ď rksn for some k ě 1, we write arpRq for its arity n. For all m ě 1 and i P rms,
we write πm

i : V m Ñ V for the projection on the i-th coordinate (the set V will always be implicit in the
context).
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For H a graph and V Ď VH , we denote by HrV s the graph induced by V on H. We use the symbol Z to
express the disjoint union of sets, and ` to express the disjoint union of graphs.

For a unary function f : V Ñ V , and an m-ary function g : V m Ñ V we write f ˝ g for their composition
that is defined by pf ˝ gqpx1, . . . , xmq “ fpgppx1, . . . , xmqqq, for every px1, . . . , xmq P V m.

Also, for k ě 3, Kk and Ck denote respectively a k-clique and a k-cycle.

2.1. Graph homomorphisms and cores. For two graphs G and H a function f : VG Ñ VH is a homomor-
phism from G to H if @pu, vq P EG, pfpuq, fpvqq P EH . In this case, f is also called an H-coloring of G, and
we denote this fact by f : G Ñ H. The graph G is said to be H-colorable, which we denote by G Ñ H, if
there exists f : G Ñ H. For a graph H, the H-Coloring problem thus asks whether a given graph G is
H-colorable.

Theorem 1 ([9]). H-Coloring is in P whenever H is bipartite, and is NP-complete, otherwise.

A key notion in the proof of Theorem 1 is the notion of a graph core: let corepHq be the smallest induced
subgraph H 1 of H such that H Ñ H 1. The graph H is said to be a core if H “ corepHq. Note that the core
of a graph H is unique up to isomorphism and that the problems H-Coloring and corepHq-Coloring are
equivalent. Thus, for both classical and fine-grained complexity, it is sufficient to consider corepHq-Coloring.
Moreover, it is not difficult to verify that cliques and odd-cycles are cores. Notice that a graph H is a core if
and only if every H-coloring of H is bijective.

For two graphs G and H, we define their cross product G ˆ H as the graph with VGˆH “ VG ˆ VH and
EGˆH “ tppu1, v1q, pu2, v2qq | pu1, u2q P EG, pv1, v2q P EHu.

Clearly, for graphs A,B and C, we have that pVA ˆ VBq ˆ VC and VA ˆ pVB ˆ VCq are in bijection and thus,
up to isomorphism, the cross product is associative. Hence, for each m ě 1, we can define Hm “ H ˆ . . . ˆ H

loooooomoooooon

m times

.

Last, we need the following graph parameter, defined with respect to the smallest odd-cycle in the graph.

Definition 2. The odd-girth of a non-bipartite graph H (denoted by ogpHq) is the size of a smallest odd-cycle
induced in H.

For a bipartite graph we define the odd-girth to be infinite.

2.2. Polymorphisms, pp/qfpp-definitions. Even though the previous definitions apply only to graphs,
i.e., binary symmetric and irreflexive relations, we will need to introduce the following notions for relations R
of arbitrary arity.

Definition 3. Let V be a finite set, n, m ě 1 be integers, and let R Ď V n be an n-ary relation on V . A
partial function f : dompfq Ñ V , with dompfq Ď V m, is said to be a partial polymorphism of R if for every
n ˆ m matrix A “ pAi,jq P V nˆm such that for every j P rms, the j-th column A˚,j P R and for every i P rns,
the i-th row Ai,˚ P dompfq, the column pfpA1,˚q, . . . , fpAn,˚qqJ P R. In the case when dompfq “ V m, f is
a said to be a total polymorphism (or just a polymorphism) of R. We denote the sets of total and partial
polymorphisms of R by PolpRq and pPolpRq, respectively.

Every (partial) function over a set V is a (partial) polymorphism of both the empty relation (denoted by
H) and the equality relation EQV “ tpx, xq | x P V u over V (or simply EQ when the domain is clear from
the context).

For a graph H, we sometimes use pPolpHq and PolpHq instead of pPolpEHq and PolpEHq, where EH is
viewed as a binary relation over the domain VH . Note that PolpHq is exactly the set of H-colorings of Hm

for m ě 1, and that pPolpHq is exactly the set of H-colorings of the induced subgraphs of Hm for m P N.

Definition 4. Let R be a relation over a finite domain V . An n-ary relation R1 over V is said to have a
primitive positive-definition (pp-definition) w.r.t. R if there exists m, m1, n1 P N such that

(1) R1px1, . . . , xnq ” Dxn`1, . . . , xn`n1 :
Rpx1q ^ . . . ^ Rpxmq ^ EQpy1q ^ . . . ^ EQpym1 q

where each xi is an arpRq-ary tuple and each yi is an binary tuple of variables from x1, . . . , xn, xn`1, . . . , xn`n1 .
Each term of the form Rpxiq or EQpyjq is called an atom or a constraint of the pp-definition (1).
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In addition, if n1 “ 0, then (1) is called a quantifier-free primitive positive-definition (qfpp-definition) of R1.
Let xRy

�D
and xRy be the sets of qfpp-definable and of pp-definable, respectively, relations over R.

Theorem 5 ([17]). Let R and R1 be two relations over the same finite domain. Then
(1) R1 P xRy

�D
if and only if pPolpRq Ď pPolpR1q and

(2) R1 P xRy if and only if PolpRq Ď PolpR1q.

2.3. Csps and polymorphisms. We now recall the link between the complexity of Csps and the algebraic
tools described in the previous section (recall that the H-Coloring problem is the same problem as
Csp(EH)).

Theorem 6 ([10]). Let R and R1 be two relations over the same finite domain where PolpRq Ď PolpR1q.
Then Csp(R1) is polynomial-time many-one reducible to Csp(R).

Let R be a relation over a finite domain V . Define:
TpRq “ inftc ą 1 : Csp(R) is solvable in time O˚pcnqu

where n is the number of variables in a given Csp(R) instance, (with the notation O˚pvnq “ Opvn ˆ nOp1qq

for all pvnqnPN P RN).

Theorem 7 ([11]). Let R and R1 be relations over a finite domain V . If pPolpRq Ď pPolpR1q, then
TpR1q ď TpRq.

These two theorems motivate our study of polymorphisms of graphs: since CsppEHq is the same problem
as H-Coloring, key information about the fine-grained complexity of H-Coloring is contained in the set
pPolpEHq.

3. The inclusion structure of partial polymorphisms of graphs

In this section we study the inclusion structure of sets of the form pPolpHq when H is a graph with
VH “ V for a fixed, finite set V . In other words, we are interested in describing the set

H “ tpPolpHq | H is a graph over V u

partially ordered by set inclusion. Here, one may observe that the requirement that VH “ VH1 “ V is not an
actual restriction. Indeed, if VH1 Ĺ V , then we can easily obtain a graph over V simply by adding isolated
vertices, with no impact on the set of partial polymorphisms.

3.1. Trivial inclusion structure. Our starting point is to establish pPolpHq Ď pPolpH 1q when H, H 1 are
non-bipartite graphs, since it implies that (1) H-Coloring and H 1-Coloring are both NP-complete, and
(2) TpH 1q ď TpHq, i.e., that H 1-Coloring is not strictly harder than H-Coloring.

Inclusions of this kind e.g. raise the question whether there exist, for every fixed finite domain V , an
NP-hard H-Coloring problem which is (1) maximally easy, or (2) maximally hard2.

As we will soon prove, the set H does not admit any non-trivial inclusions, in the sense that pPolpHq Ď

pPolpH 1q implies that either H “ H 1 or EH1 “ H, for all pPolpHq, pPolpH 1q P H.

Theorem 8. Let H and H 1 be two graphs with the same finite domain VH “ VH1 “ V . Then pPolpHq Ď

pPolpH 1q if and only if H “ H 1 or EH1 “ H.

Proof. To prove sufficiency, assume that H “ H 1 or that H 1 has no edges. Then pPolpHq “ pPolpH 1q or
pPolpHq Ď pPolpH 1q since in the latter case pPolpH 1q contains every partial function.

To prove necessity, assume that pPolpHq Ď pPolpH 1q. Then, by Theorem 5, EH qfpp-defines EH1 . However,
the only possible atoms using EH and two variables x and y are: (1) EHpx, xq and EHpy, yq, which cannot
appear by irreflexivity, unless EH1 “ H and (2) EHpx, yq and EHpy, xq, which are equivalent by symmetry.
Also, if the qfpp-definition would contain an equality constraint EQpx, yq, then EH1 would not be irreflexive,
unless EH1 “ H. Hence, any qfpp-definition of EH1 either (1) contains EHpx, xq, EHpy, yq or EQpx, yq,
meaning that EH1 “ H, or (2) only contains EHpx, yq or EHpy, xq, meaning that H “ H 1. □

2Here, “maximally” refers to the function T.
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3.2. Higher-arity inclusions. As proven in Theorem 8, the expressivity of binary irreflexive symmetric
relations is rather limited, in the sense that H does not admit any non-trivial inclusions. It is thus natural
to ask whether anything at all can be said concerning inclusions of the form pPolpHq Ď pPolpRq when
R is an arbitrary relation. In particular, under which conditions does there exist an n-ary R such that
pPolpHq Ĺ pPolpRq, given that H-Coloring and CsppRq are both NP-complete? We give a remarkably
sharp classification and, assuming that P ‰ NP, we prove that an n-ary relation R with the stated properties
exists if and only if H contains an odd-cycle of length ď n. We first require the following auxiliary lemma
(recall the definition of odd-girth from Section 2).

Lemma 9. Let H be a non-bipartite graph and let k :“ ogpHq. Let px1, . . . , xkq P pVHqk. Then, x1x2 . . . xkx1
forms an induced k-cycle in H if and only if px1, x2q, px2, x3q, . . . pxk´1, xkq and pxk, x1q are edges in H.

Proof. First, notice that if x1x2 . . . xkx1 forms an induced k-cycle in H, then px1, x2q, px2, x3q, . . . pxk´1, xkq

and pxk, x1q are edges in H, which proves sufficiency.
To prove necessity, assume that px1, x2q, px2, x3q, . . . pxk´1, xkq and pxk, x1q are edges in H. Consider a

smallest odd-cycle C “ x1
1 . . . x1

px1
1 (with p odd and p ď k) that is a subgraph (not necessarily induced) of

Hrtx1 . . . xkus. Such an odd-cycle exists because x1 . . . xkx1 is an odd-cycle. We prove by contradiction that
C is induced in H. If C is not induced in H, there exists an edge px1

i, x1
jq P EH with i ă j and j ´ i R t1, p´1u.

Then either j ´ i is odd and x1
1 . . . x1

i´1x1
ix

1
jx1

j`1 . . . x1
px1

1 is an odd-cycle (of size p ´ pj ´ iq ` 1 ă p) smaller
than C that is a subgraph of Hrtx1 . . . xkus, which contradicts the definition of C, or j ´ i is even and
x1

ix
1
i`1 . . . x1

jx1
i is an odd-cycle (of size pj ´ iq ` 1 ă p) smaller than C that is a subgraph of Hrtx1 . . . xkus,

which contradicts the definition of C.
By definition of k :“ ogpHq, the induced odd-cycle C has at least k vertices. Since C is an induced

subgraph of Hrtx1 . . . xkus with k vertices that is an odd-cycle, x1 . . . xkx1 induces a k-cycle, which proves
necessity. □

The following definition and lemma are particularly usefull when establishing our classification.

Definition 10. Let n, m ě 1 be integers, H be a graph, R be a relation of arity n over VH , and let M “ pMi,jq

be a n ˆ m matrix of elements of VH . We say that M is an R-wall for H if:
(1) @j P rms, pM1,j , ..., Mn,jqJ P R, and
(2) @pi, i1q P rns2, Dj P rms, pMi,j , Mi1,jqJ R EH .

In the following lemma, we say, for a relation R, that Csp(R) is trivial if every instance of Csp(R) is
satisfiable. Clearly, if Csp(R) is trivial, it is not NP-complete, even if P=NP.

Lemma 11. Let H be a graph and let R be an n-ary relation over VH . Suppose that pPolpHq Ď pPolpRq

and that there exists an R-wall M for H. Then, Csp(R) is trivial.

Proof. Using property 2) of Definition 10, it is easy to check that any partial function f whose domain is
the set of rows of M is in pPolpHq. In particular, f can be chosen to be of constant value a P VH . Then,
from pPolpHq Ď pPolpRq it follows that f P pPolpRq. Combining this with property 1) of Definition 10, we
conclude that pa, . . . , aqJ P R. Since the valuation sending all variables to a satisfies any instance of Csp(R),
the proof is now complete. □

We now propose a construction of an R-wall for a graph H with n :“ arpRq ă ogpHq, and such that
pPolpHq Ĺ pPolpRq.

Lemma 12. Let H be a graph with ogpHq ą n, and let R ‰ H be an n-ary relation such that pPolpHq Ď

pPolpRq. If @px1, . . . , xnq P pVHqn, Rpx1, . . . , xnq ùñ EHpx1, x2q, then R qfpp-defines EH .

Proof. Suppose that Rpx1, . . . , xnq ùñ EHpx1, x2q, and let pa1, . . . , anq P R ‰ H. Since H has no odd-cycle
of size ď n, ta1, . . . anu induces a bipartite graph in H: there exists a partition AZB of ta1, . . . , anu such that
EHrta1,...,anus Ď pAˆBq Z pB ˆAq. For px, yq P EH , define fx,y : ta1, . . . , anu Ñ VH by fx,ypaiq “ x, if ai P A,
and fx,ypaiq “ y, if ai P B. Since px, yq P EH , we have that fx,y P pPolpHq, and since pPolpHq Ď pPolpRq,
we also have that fx,y P pPolpRq. As pa1, . . . , anq P R, it follows pfx,ypaiqq1ďiďn P R.

This proves that EHpx, yq ùñ RpxA,Bpx, yqq, where xA,Bpx, yqris :“ fx,ypaiq equals x if ai P A and
xA,Bpx, yqris “ y if ai P B.
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Reversely, since pa1, . . . , anq P R and Rpx1, . . . , xnq ùñ EHpx1, x2q, we have pa1, a2q P EH . Recall
that EH Ď pA ˆ Bq Z pB ˆ Aq: it follows by definition of xA,Bpx, yq that for all vertices x and y of
H, that txA,Bpx, yqr1s, xA,Bpx, yqr2su “ tx, yu. From the fact that EH is symmetric and the hypothesis
that Rpx1, . . . , xnq ùñ EHpx1, x2q, we deduce that RpxA,Bpx, yqq ùñ EHpx, yq. Hence, EHpx, yq ”

RpxA,Bpx, yqq, and R qfpp-defines EH . □

Lemma 13. Let n ě 1, H be a graph with ogpHq ą n, and let R ‰ H be an n-ary relation such
that pPolpHq Ĺ pPolpRq. Then, for all pi, i1q P rns2 with i ă i1, there is px

pi,i1
q

1 , . . . , x
pi,i1

q
n qJ P R with

px
pi,i1

q

i , x
pi,i1

q

i1 qJ R EH .

Proof. We show only the existence for i “ 1 and i1 “ 2; the other cases can be proven similarly. For
the sake of a contradiction, suppose that @px1, . . . , xnq P pVHqn, px1, . . . , xnq P R ùñ px1, x2q P EH . By
Lemma 12 we have EH P xRy

�D
, and by Theorem 5, pPolpRq Ď pPolpEHq. This contradicts our hypothesis

that pPolpHq Ĺ pPolpRq. □

This leads to the following corollary whose proof provides a simple construction of an R-wall for graph H
in the conditions of Lemma 13.

Corollary 14. Let n ě 1, H be a graph with ogpHq ą n, and let R ‰ H be an n-ary relation such that
pPolpHq Ĺ pPolpRq. Then there is an R-wall for H.

Proof. Using the notation of Lemma 13, we can take the n ˆ
npn´1q

2 matrix M , whose npn´1q

2 columns are
the px

pi,i1
q

1 , . . . , x
pi,i1

q
n qJ, for each pi, i1q P rns2 with i ă i1. □

We are now ready to prove the main result of this section.

Theorem 15. Let H be a graph, and let k :“ ogpHq. There exists an n-ary relation R ‰ H with
pPolpHq Ĺ pPolpRq such that Csp(R) is NP-complete if and only if k ď n. Moreover, if k ą n, any n-ary
relation R ‰ H with pPolpHq Ĺ pPolpRq is such that Csp(R) is trivial.

Proof. We sketch the most important ideas.
Suppose first that k ą n. In this case, H does not have an odd-cycle of length ď n. Again for the sake

of a contradiction, suppose that such a relation R exists. Note that R ‰ H since Csp(R) is NP-complete.
Using Corollary 14, there exists an R-wall for H. Then, by Lemma 11, Csp(R) is trivial. This contradicts
the fact that Csp(R) is NP-complete, and thus such a relation R does not exist.

Suppose now that k ď n. Define Rpx1, . . . , xnq ” EHpx1, x2q^EHpx2, x3q^. . .^EHpxk´1, xkq^EHpxk, x1q.
Since k “ ogpHq, it follows from Lemma 9 that R “ tpx1, . . . , xnq | px1, . . . , xkq forms a k-cycleu (the variables
xk`1, . . . , xn are inessential).

We then proceed as follows. Since EH qfpp-defines R, we have that pPolpHq Ď pPolpRq, by Theorem 5.
Also, the inclusion is strict since, for any edge px, yq of H, the function f : tx, yu Ñ VH that maps both x
and y to any a P VH , belongs to pPolpRqzpPolpHq. Indeed, f P pPolpRq because tx, yun X R “ H, since it is
impossible to form an odd-cycle with only x and y.

To prove that Csp(R) is NP-complete, consider CkpHq, the subgraph of H, with VCkpHq “ VH , and where
each edge of H that does not belong to a cycle of length k has been removed. Note that as H contains a
k-cycle, CkpHq also contains a k-cycle, and is therefore non-bipartite. Hence, Csp(ECkpHq), which is the
same problem as the CkpHq-Coloring problem, is NP-hard (by Theorem 1).

It is easy to see that R pp-defines ECkpHq, as

ECkpHqpx1, x2q ” Dx3, . . . , xn, Rpx1, x2, x3 . . . , xnq.

From Theorem 5 and 6, Csp(ECkpHq)=CkpHq-Coloring has a polynomial-time reduction to Csp(R),
and Csp(R) is thus NP-hard. Clearly, it is also included in NP. □

4. Projective and core graphs

In this section we study the inclusion structure of sets of total polymorphisms. We are particularly
interested in graphs H with small sets of polymorphisms since, intuitively, they correspond to the hardest
H-Coloring problems. This motivates the following definitions.
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An m-ary function f is said to be essentially at most unary if it is of the form f “ f 1 ˝ πm
i for some

i P rms and some unary function f 1. Larose [12] says that a graph H is projective if every idempotent
polymorphism (i.e., fpx, . . . , xq “ x for every x P VH) is a projection. Okrasa and Rza̧żewski [15] showed
that the polymorphisms of a core graph H are all essentially at most unary if and only if H is projective.
Since it is sufficient to study cores in the context of H-Coloring, determining whether H is projective is
particularly interesting.

In this section we use the algebraic approach for proving that a given graph is a projective core, that is,
both projective and a core. As we will see, this enables simpler proofs than those of [12], and suggests the
possibility of completely characterizing projective cores.

Using the following theorem, our proofs of projectivity can be seen as reductions from cliques.

Theorem 16 ([3, 14]). For k ě 3, Kk is projective.

Let Sk be the set of permutations over rks. It then follows that PolpKkq “ tσ˝πm
i | σ P Sk, m ě 1, i P rmsu.

The inclusion Ě is indeed clear. To justify Ď, note that if f P PolpKkq with arpfq “ m, the function
σ : x ÞÑ fpx, . . . , xq is a unary polymorphism of Kk, and is therefore bijective: σ is an automorphism of Kk

ie. σ P Sk. Then, since σ´1 ˝ f is a polymorphism of Kk (by composition of polymorphisms of Kk) that is
idempotent, it is a projection πm

i with i P rms by Theorem 16, and then f “ σ ˝ πm
i .

Corollary 17 below implies that the graphs we will consider in this subsection are projective cores.

Corollary 17. Let H be a graph on rks with k ě 3. Then EH pp-defines the relation NEQk “ tpx, x1q P

VH | x ‰ x1u if and only if H is a projective core.

Proof. First observe that NEQk “ EKk
. From Theorem 5 and using the definitions of cores and of projective

graphs, we thus have that the following assertions are equivalent:
(1) NEQk P xEHy;
(2) PolpHq Ď PolpKkq;
(3) all polymorphisms of H are essentially at most unary, and all unary polymorphisms of H are bijective;
(4) H is a projective core. □

By following the steps in the proof of Corollary 17 we can obtain the following result.

Corollary 18. Let G and H be two graphs on the same set of vertices, with G projective (respectively, a
core), and such that EH that pp-defines EG. Then H is also projective (respectively, a core).

Pp-definitions thus explains the property of being projective (respectively, a core). We hope that this
viewpoint helps to discover new classes of projective graphs. For example, Corollary 17 enables a much
simpler proof of the following theorem by Larose [12].

Theorem 19 ([12],[13]). Let k ě 3 be an odd integer. The k-cycle Ck is a projective core.

Proof. We claim that
NEQkpx, x1q ” Dx2, . . . , xk´2 : ECk

px, x2q ^ ECk
px2, x3q

^ . . . ^ ECk
pxk´3, xk´2q ^ ECk

pxk´2, x1q.

To see this, note that for any two vertices x and x1 in Ck, x ‰ x1 if and only if there exists an odd-path from
x to x1 of size ă k (since k is odd). In other words, x ‰ x1 if and only if there exists a pk ´ 2q-path from x to
x1 (by going through the same edge as many times as necessary, k ´ 2 being odd). By Corollary 17, it then
follows that Ck is a projective core. □

There are also other examples of cores that are projective, other than k-cliques for k ě 3 and k-cycles. For
instance, Okrasa and Rza̧żewski [15] proved that the so-called Grötzsch graph (see Figure 1) is a projective
core.

Theorem 20. The Grötzsch and Petersen graph is a projective core3

3We acknowledge Mario Valencia-Pabon for pointing out that the proof for the Grötzsch graph also applies to the Petersen
graph.
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Figure 1. The Grötzsch graph (left) and the Petersen graph (right)

Proof. We provide an alternative proof using our algebraic framework. Let EG be the set of edges of the
Grötzsch graph. Note that the Grötzsch graph has 11 vertices. We can see that EG pp-defines NEQ11:

NEQ11px, x1q ” Dx2, x3 : EGpx, x2q ^ EGpx2, x3q ^ EGpx3, x1q.

From Corollary 17 it follows that the Grötzsch graph is a projective core. The proof for the Petersen graph
is analogous. □

Complements Ck of odd-cycles of length k ě 5 are also projective cores. Since C5 “ C5 has already been
studied, we take a look at C2p`1, for p ě 3. The following result is an immediate corollary of Larose [12], but
we give an algebraic proof using Corollary 17.

Theorem 21. C2p`1 is a projective core for p ě 3.

Proof. It is not difficult to see that NEQ2p`1px1, x4q ” Dx2, x3, w1, . . . , wp´2 : R1 ^ R2 ^ R3, where
(1) R1 “

Ź

iPr3s

EC2p`1
pxi, xi`1q,

(2) R2 “
Ź

iPr4s,jPrp´2s

EC2p`1
pxi, wjq, and

(3) R3 “
Ź

pj,j1qPrp´2s2,jăj1

EC2p`1
pwj , wj1 q.

The result then follows from Corollary 17. □

Moreover, we can prove by Corollary 17 that adding universal vertices to C5 results in a projective core.

Theorem 22. Let p ě 0. The graph C5 ` p, obtained from C5 by adding p universal vertices4 is a projective
core.

Proof. We can see that EC5`p pp-defines NEQp`5 though the pp-definition:
NEQp`5px1, x4q ” Dx2, x3, w1, . . . , wp : R1 ^ R2 ^ R3, where
(1) R1 “

Ź

iPr3s

EC5`ppxi, xi`1q,

(2) R2 “
Ź

iPr4s,jPrps

EC5`ppxi, wjq, and

(3) R3 “
Ź

pj,j1qPrps2,jăj1

EC5`ppwj , wj1 q.

which proves that C5 ` p is a projective core by Corollary 17.
To see that the pp-definition is correct, notice that if x1 “ x4, the pp-definition can not be satisfied, since it

would imply the existence of a Kp`3 (induced by x1, x2, x3, w1, . . . , wp) in C5 ` p, which is absurd. Note also
that if x1 ‰ x4 and x1 and x4 are adjacent, then there exists y1, . . . , yp in C5 ` 1 such that tx1, x4, y1, . . . , ypu

induces a Kp`2: taking x2 :“ x4, x3 :“ x1 and wj :“ yj (for all j P rps) satisfies the pp-definition. Also,
if x1 ‰ x4 and x1 and x4 are not adjacent, we can assume by symetry that x1 “ 1 and x4 “ 4 (where the
vertices of the C5 induced in C5 ` p are named 0, 1, 2, 3, 4 in order). Then, taking x2 :“ 2, x3 :“ 3 and
w1, . . . , wp the p universal vertex of C5 ` p satisfies the pp-definition. The pp-definition is thus correct. □

4Formally C5 ` p “ pVC5 Z VKp , EC5 Z EKp Z pVC5 ˆ VKp q Z pVKp ˆ VC5 qq.
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K1 K2 K3 K4 K5 K6

C5 C5 ` 1

Figure 2. Every core graph with at most 6 vertices

5. Verifying the conjecture on small graphs

Okrasa and Rza̧żewski [15] observed that a graph H that can be expressed as a disjoint union of two
non-empty graphs H1 and H2 is not projective, since it admits the binary polymorphism f defined by
f |VH1 ˆVH

“ pπ2
1q|VH1 ˆVH

and f |VH2 ˆVH
“ pπ2

2q|VH2 ˆVH
. The same holds for the cross-product of non-trivial

graphs H “ H1 ˆ H2 (in which case the graph is said to be decomposable), with the binary polymorphism
fppx1, x2q, py1, y2qq ÞÑ px1, y2q. Okrasa and Rza̧żewski also noticed the existence of disconnected cores, such
as G ` K3 (indecomposable cores are much more difficult to study), where G is the Grötzsch graph from
Figure 1. These observations resulted in the following conjecture.

Okrasa and Rza̧żewski Conjecture ([15]). Let H be a connected non-trivial core on at least 3 vertices.
Then H is projective if and only if it is indecomposable.

The goal of this section is to apply the tools constructed in Section 4 to the verification of the conjecture
below by Okrasa and Rza̧żewski [15]. First, in Section 5.1, we completely classify the cores on at most 6
vertices and verify that the Okrasa and Rza̧żewski Conjecture is true on each of these graphs. Then, in
Section 5.2, after giving an exhaustive list of the cores on 7 vertices, we prove the projectivity of all these
graphs.

This section aims at verifying the Okrasa and Rza̧żewski Conjecture on graphs with at most 7 vertices,
and culminates with the proof of the following theorem:

Theorem 23. The Okrasa and Rza̧żewski Conjecture is true on graphs with at most 7 vertices

5.1. Core graphs with at most 6 vertices. In order to verify the conjecture on small graphs, we enumerate
all the (indecomposable) small cores and check their projectivity. Recall from Theorem 16 that cliques are
indecomposable, projective and core, and thus the Okrasa and Rza̧żewski Conjecture is true on cliques. We
can therefore restrict to the non-clique core graphs. This motivates the definition of proper cores.

Definition 24. A proper core is a core graph that is not a clique.

Moreover, a proper core on n ě 0 vertices is called a proper n-core.
Recall that a graph G is said to be perfect if for all induced subgraph G1 of G, the size of the largest clique

of G1 equals the chromatic number of G1.

Remark 25. If a graph G is a proper core then it is not a perfect graph.

Proof. Assume by contradiction that G is a perfect graph, and let k be the chromatic number of G. Since
G is a perfect graph, G has an induced Kk, and by definition of k, G is k-colorable. Since Kk is a core, it
follows that corepGq “ Kk, and since G is a core, G “ corepGq “ Kk. We have that G is a clique, which
contradicts the hypothesis that G is a proper core.

□

Using the famous theorem of perfect graphs, we can drastically reduce the search space when trying to
enumerate all proper 6-cores.
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K7 C7 C7 C5 ` 2

Figure 3. The “trivial” 7-cores. We prove in Theorem 31 that they are projective.

Theorem 26 (Theorem of perfect graphs). [4]
A graph G is perfect if and only if G does not contain any induced Ck or Ck for some k odd and k ě 5.

We can immediately deduce the following corollary from Remark 25 and Theorem 26.

Corollary 27. Let G be a proper core on n ě 1 vertices, then G contains an induced Ck or Ck for some k
odd and 5 ď k ď n.

Via Corollary 27 we can easily classify the cores on ď 5 vertices (remarking that C5 “ C5).

Remark 28. The cliques K1, . . . , K5 are cores. The other cores on ď 5 vertices are proper cores, so must
contain an induced C5. It follows from Corollary 27 that the only proper n-core with n ď 5 is C5.

We have completely classified the cores on ď 5 vertices. We now extend this classification to the cores on
6 vertices.

Theorem 29. The only core graphs on 6 vertices are K6 and the graph C5 ` 1 presented in Figure 2. These
two graphs are projective.

Proof. First, notice that K6 and C5 ` 1 are projective cores by Theorem 16 and 22.
We now prove that K6 and C5 ` 1 are the only cores on 6 vertices. Assume by contradiction that there

exists a proper core G on 6 vertices different from C5 ` 1. Then by Corollary 27, five of the six vertices of G
must induce a 5-cycle, call them a, b, c, d and e, and call u the sixth vertex.

Since G is not isomorphic to C5 ` 1, u must not be a neighbor to (at least) one the vertex in ta, b, c, d, eu.
Assume by symmetry that u and a are not neighbors. Notice that G is 3-colorable by coloring a and u
with the color 1; b and d with the color 2; and c and e with the color 3. We deduce that G has no triangle,
otherwise we would have corepGq “ K3, contradicting the fact that G is a core. It follows that u has at most
2 non-adjacent neighbors, ie. the set of neighbors of u is contained in a set of the form tα, βu where α and β
belong to ta, b, c, d, eu and are non-adjacent. The vertices α and β have a common neighbor γ P ta, b, c, d, eu.
The function that maps u to γ and that leaves the rest of the graph unchanged is a homomorphism from G
to the C5 induced by ta, b, c, d, eu. This proves that corepGq “ C5, contradicting that G is a core.

We have proven by contradiction that the only cores on 6 vertices are K6 and C5 ` 1, and that they are
projective. □

The completeness of the classification of cores on at most 6 vertices presented in Figure 2 follows from
Remark 28 and Theorem 29. All of these graphs are projective, by Theorems 16 and 19 and 29 and thus
are not counter-example to the Okrasa and Rza̧żewski Conjecture. Hence, we have proven that the Okrasa
and Rza̧żewski Conjecture is true on graphs with at most 6 vertices, and we now continue with graphs on 7
vertices.

5.2. Cores on 7 vertices. In order to put the Okrasa and Rza̧żewski Conjecture to the test, we continue to
enumerate the small cores. We provide the exhaustive list of cores on 7 vertices in Figure 3 and 4. The proof
of the fact that this is indeed the exhaustive list of cores on 7 vertices is left to Appendix A.

Theorem 30. Up to isomorphism, there are exactly 10 cores graphs on 7 vertices. They are the graphs
K7, C7, C7, C5 ` 2 presented in Figure 3, and the graphs G1, . . . , G6 presented in Figure 4.

Proof. See Appendix A. □

By Theorem 30, there are 10 cores on 7 vertices. We call the four 7-cores of Figure 3 “trivial” since it is
very easy to prove that they are projective.
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G1 G2 G3 G4

G5 G6

Figure 4. The “sporadic” 7-cores. We prove in Theorem 35 that they are projective.

Theorem 31. The graphs K7, C7, C7 and C5 ` 2 presented in Figure 3 are projective cores.

Proof. The cases of K7, C7, C7 and C5 ` 2 have been treated, respectively, in Theorems 16, 19, 21 and 22. □

What remains is now to check the projectivity of the “sporadic” 7-cores presented in Figure 4. To simplify
this we make use of Rosenberg’s classification of minimal clones [18], here presented in a slightly condensed
form specifically for projective graphs.

Theorem 32. [18] Let G be a non-projective graph. Then PolpGq contains a function f of one of the following
type:

(1) f : px, y, zq ÞÑ x ` y ` z, where pVG, `q is the additive group of a F2-vector space.
(2) f is a ternary majority operation, i.e., @px, yq P pVGq2, fpx, x, yq “ fpx, y, xq “ fpy, x, xq “ x.
(3) f is a semiprojection of arity m ě 2, i.e. f is not a projection, and there exists i P rms such that

@px1, . . . , xmq P pVGqm, |tx1, . . . , xmu| ă m ùñ fpx1, . . . , xmq “ xi.

We know from the algebraic formulation of the Csp dichotomy theorem (see, e.g., the survey by Barto et
al. [1]) that if G is a graph where PolpGq contains a polymorphism of type 1 or 2, then G is bipartite. We
therefore derive the following corollary.

Corollary 33. Let G be a core on at least 3 vertices such that PolpGq does not contain any semiprojections.
Then, G is a projective core.

In order to apply Corollary 33 to the graphs G1, . . . , G6, we carry out a reasoning in two steps:
‚ We verified by computer search [16] that PolpG1q, . . . , PolpG6q do not contain any semiprojection

of arity 2 and 3.
‚ We prove that PolpG1q, . . . , PolpG6q do not contain any semiprojection of arity ě 4.

The exclusion of non-trivial semiprojections of arity ě 4 is enabled by the following lemma.

Lemma 34. Let G be a core graph on at most n ě 3 vertices, and denote by δ ą 0 the minimal degree of a
vertex in G. Let m :“ t n´1

δ u ` 1 (m is an integer that satisfies 1 ` mδ ą n). Then, PolpGq does not contain
any semiprojection of arity ě m ` 1.

Proof. First, note that since G is a core with G ‰ K1, G has no isolated vertex. It follows that δ ą 0. Assume
there is a semiprojection f P PolpGq of arity M ě m ` 1. Thus, f is not a projection. We can assume, up to
permute the coordinates, that f is a semiprojection on the first coordinate, i.e.,

@px1, . . . , xM q P pVGqM , |tx1, . . . , xM u| ă M ùñ fpx1, . . . , xM q “ x1.

Since f is not the projection on the first coordinate, there exists pa1, . . . , aM q P pVGqM such that fpa1, . . . , aM q “

a ‰ a1. For each vertex u of G, let NGpuq :“ tv P VG | pu, vq P EGu be the open neighborhood of u in
G. We claim that NGpa1qzNGpaq ‰ H. Indeed if we assume by contradiction that NGpa1q Ď NGpaq, then
the function h : VG ÞÑ VG that maps a1 to a and that leaves the rest of the graph unchanged would be a
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non-bijective (since a1 ‰ a) G-coloring of G, contradicting the fact that G is a core. We can therefore take
x1 P NGpa1qzNGpaq. Now, remark that, for cardinality reasons, the sets tx1u, NGpa2q, . . . , NGpaM q can not
be pairwise disjoint: because they are all contained in VG and because

|tx1u| `

M
ÿ

j“2
|NGpajq| ě 1 ` pM ´ 1qδ ě 1 ` mδ ą n “ |VG|.

We can therefore consider px2, . . . , xM q P NGpx2q ˆ ¨ ¨ ¨ ˆ NGpxM q, such that there exists pj0, j1q P rM s2

with j0 ‰ j1 and xj0 “ xj1 .
‚ On the one hand since xj0 “ xj1 , we have |tx1, . . . , xM u| ă M . Since f is a semiprojection on the

first coordinate, we deduce that fpx1, . . . , xM q “ x1.
‚ On the other hand, since we have for all j P rM s that paj , xjqJ P EG (because by definition,

xj P NGpajq). Since f P PolpGq, we deduce that pfpa1, . . . , aM q, fpx1, . . . , xM qqJ P EG.
We obtain that pa, x1q P EG (recall that we defined a :“ fpa1, . . . , aM q), contradicting the definition of x1

(that x1 R NGpaq). Hence, a semiprojection of arity ě m ` 1 cannot exist. □

By Lemma 34, observing that the minimal degree in the each of the core graphs G1, . . . , G6 is 3, we deduce
that there is no semiprojection in the PolpGiq with i P r6s of arity ě pt 7´1

3 u ` 1q ` 1 “ 4.
Our main result in this theorem now follows by Theorem 30, Theorem 31, and Corollary 33.

Theorem 35. All (indecomposable) cores on 7 vertices are projectives.

Hence, we have verified the Okrasa and Rza̧żewski Conjecture for all graphs with at most 7 vertices, and
thereby proved Theorem 23.

6. Conclusion and Future Research

In this paper, we have investigated the inclusion structure of the sets of partial polymorphisms of graphs,
and proved that for all pairs of graphs H,H 1 on the same set of vertices, pPolpHq Ď pPolpH 1q implies that
H “ H 1 or EH1 “ H. Since this inclusion structure is trivial, it is natural to generalize the question and
investigate inclusions of the form pPolpHq Ĺ pPolpRq, where H is a graph, but where R is an arbitrary
relation. We deemed the case when CsppRq was NP-complete to be of particular interest since the problem
CsppRq then bounds the complexity of H-Coloring from below, in a non-trivial way. We then identified a
condition depending on the length of the shortest odd cycle in H (the odd-girth of H), and proved that there
exists such an n-ary relation R if and only if the odd-girth of H is ď n, otherwise, CsppRq must be trivial.
In an attempt to better understand the algebraic invariants of graphs, we then proceeded by studying total
polymorphisms of graphs, with a particular focus on projective graphs, where we used the algebraic approach
to obtain simplified and uniform proofs. Importantly, we used our algebraic tools to verify the Okrasa and
Rza̧żewski Conjecture for all graphs of at most 7 vertices.

Concerning future research perhaps the most pressing question is whether we can use our algebraic results
to prove (or disprove) the Okrasa and Rza̧żewski Conjecture for graphs with more than 7 vertices. By
Corollary 17, the Okrasa and Rza̧żewski Conjecture is equivalent to the following statement.

Conjecture 36. Let H be a connected core on k ě 3 vertices. Then, H is indecomposable if and only if
NEQk P xEHy.

To advance our understanding of the fine-grained complexity of H-Coloring, it would also be interesting
to settle the following question.

Question 37. Let H be a projective core. Describe pPolpHq.

For instance, is it possible to relate pPolpHq with the treewidth of H? More generally, are there structural
properties of classes of (partial) polymorphisms that translate into bounded width classes of graphs [8]?
These questions constitute topics that we are currently investigating.
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a

e

dc

b

u v

Figure 5. Up to isomorphism, any “sporadic” 7-core (not K7, C7, C7 or C5 ` 2)
pta, b, c, d, e, u, vu, E) must satisfy this motif: ta, b, c, d, eu induces a C5, pb, vq R E, all
dashed edges are allowed (as long as pu, vq R E, or pe, uq R E), that pc, uq P E or pc, vq P E,
and that pd, uq P E or pd, vq P E.
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Appendix A. Classification of 7-cores

The goal of this appendix is to prove Theorem 30.

Theorem 30. Up to isomorphism, there are exactly 10 cores graphs on 7 vertices. They are the graphs
K7, C7, C7, C5 ` 2 presented in Figure 3, and the graphs G1, . . . , G6 presented in Figure 4.

The high-level arguments are as follows.
(1) Enumerate all the graphs compatible with the motif described in Figure 5, and keep only, among

these graphs, the cores.
(2) Keep exactly one representative for each class of isomorphism.

https://github.com/jakub-oprsal/pcsptools
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(3) Prove that all the sporadic 7-cores — core graphs on 7 vertices that are not K7, C7, C7 and C5 ` 2 —
have to be compatible with the motif described in Figure 5.

We begin with the first step. In Figure 6, 7 and 8, we do a case analysis for all compatible graphs,
depending on the 3 possible cases for pu, vq and pu, eq. We eliminate the non-cores by proving that their core
is either K3, K4 or C5 ` 1, and we both show their core as an induced subgraph (represented by the thick
edges), as well as giving a homomorphism to their core, represented by the colors on the vertices. Reciprocally,
we ensure that the remaining graphs are cores due to Lemma 38.

Lemma 38. Let G be a graph on 7 vertices such that:
‚ G is not 3-colorable,
‚ G has no induced K4, and
‚ G has no vertex of degree ě 5.

Then, G is a core.

Proof. Suppose, for the sake of contradiction, that G is not a core. This implies that corepGq must be a core
graph with no more than 6 vertices. According to Remark 28 and Theorem 29 in Section 5.1, it follows that
corepGq is one of the graphs in the set tKn, n P r6su Y tC5, C5 ` 1u, as illustrated in Figure 2.

Given that G is not 3-colorable, we can conclude that corepGq R tK1, K2, K3, C5u. Furthermore, the
absence of an induced K4 in G means corepGq R tK4, K5, K6u. Additionally, the fact that G does not have
any vertex with degree 5 or higher eliminates the possibility of corepGq being C5 ` 1.

This leads to a contradiction: hence, G must indeed be a core. □

We now continue with the second step, and study the isomorphisms between the obtained core graphs. Up
to isomorphism, we find 6 “sporadic” 7-cores:

‚ 11 edges: only G1,
‚ 12 edges: G2, G4, G5,
‚ 13 edges: G3, G6.

We discuss the question of possible isomorphisms here. Recall that isomorphic graphs always have the
same number of edges.

‚ G4 is not isomorphic to G2 because if we keep only vertices of degree 4, G4 becomes a triangle and
G2 a P3.

‚ G5 is not isomorphic to G2 because if we keep only vertices of degree 4, G5 becomes a triangle and
G2 a P3.

‚ G5 is not isomorphic to G4 because if we keep only vertices of degree 3, G4 becomes a P4 and G5 a
star K1,3.

‚ G6 is not isomorphic to G3 because in G6 the 2 vertices of degree 3 are adjacent, and not in G3.
‚ G1

4 (see Figure 8) is isomorphic to G4, by the isomorphism from G1
4 to G4: pa u b c d eq “

ˆ

a b c d e u v
u c d e a b v

˙

.

‚ G1
3 (see Figure 8) is isomorphic to G3 through the isomorphism from G1

3 to G3: pa d b e cqpu vq “
ˆ

a b c d e u v
d e a b c v u

˙

.

The rest of this appendix focuses on the third step, i.e., proving that all the “sporadic” 7-cores (the 7-cores
that are not K7, C7, C7, or C5 ` 2) are necessarily compatible with the motif described in Figure 5. This is
sufficient to prove that the list of 7-cores given by Figures 3 and 4 is exhaustive.

Lemma 39. Let C a core on at least 3 vertices, and let v P VC . Then degCpvq ě 2.

Proof. We give a proof by contradiction by distinguishing between the following 3 cases.
‚ If degCpvq “ 0, the function that maps v to any other vertex and that leaves the rest of the graph

unchanged is a non-bijective homomorphism. This contradicts that C is a core.
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pd, uq P E, pd, vq R E

pd, uq R E, pd, vq P E

pd, uq P E, pd, vq P E

pc, uq P E, pc, vq R E pc, uq R E, pc, vq P E pc, uq P E, pc, vq P E

its core is K3 its core is K3 its core is K3

Core G1 its core is K3 Core G2

isomorphic to G2 its core is K3 Core G3

Figure 6. The 9 candidates with pe, uq R E and pu, vq R E.

pd, uq P E, pd, vq R E

pd, uq R E, pd, vq P E

pd, uq P E, pd, vq P E

pc, uq P E, pc, vq R E pc, uq R E, pc, vq P E pc, uq P E, pc, vq P E

its core is K3 its core is K3 its core is K3

Core G4 its core is K3 its core is C5 ` 1

its core is C5 ` 1 its core is K3 its core is K4

Figure 7. The 9 candidates with pe, uq R E and pu, vq P E.
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‚ If v has a unique neighbor u, and if u has another neighbor w, the function that maps v to w and
that leaves the rest of the graph unchanged is a non-bijective homomorphism. Again, this contradicts
that C is a core.

‚ If v has a unique neighbor u, and if u has no other neighbor, then, since C has at least 3 vertices,
there exists w P VCzpu, vq. Since, by what precedes, degCpwq ‰ 0, w has a neighbor x. The function
that maps v to w and u to x and that leaves the rest of the graph unchanged is a non-bijective
homomorphism. Hence, this contradicts that C is a core.

□

We now continue by establishing the following necessary properties of sporadic 7-cores. In the following
statements we implicitly assume that G is a sporadic 7-core with vertices named as in Figure 5.

Lemma 40. G has an induced C5.

Proof. Let G be a sporadic 7-core. Assume by contradiction that G has no induced C5. Since G has 7
vertices, G has no induced C7, nor has it an induced C7 (otherwise, we would have G “ C7 or G “ C7).
Thus, G has no induced C2k`1 nor has it an induced C2k`1 for any k ě 2 (notice that C5 “ C5). By the
theorem of perfect graphs, G is a perfect graph, i.e., there exists k ě 1 such that G has an induced Kk and G
is k-colorable. In particular, corepGq “ Kk is a clique. Since G is a core, G “ corepGq “ K7, leading to a
contradiction. □

By Lemma 40, we can assume without loss of generality that VG “ ta, b, c, d, e, u, vu and that ta, b, c, d, eu

induce the C5: a ´ b ´ c ´ d ´ e ´ a.
Then, G depends only on the neighborhoods of u and v.

Lemma 41. u and v have a common neighbor.

Proof. Assume, with the aim of reaching a contradiction, that u and v do not have a common neighbor, and
assume by symmetry that degGpuq ě degGpvq. By Lemma 39, degGpvq ě 2. Consider the following case
analysis.

‚ If G has no triangle, then the neighbors of u (respectively v) are non-adjacent, and u and v do not
have a common neighbor. It follows that G is isomorphic to a subgraph of the graph presented in
Figure 9. Thus there exists a homomorphism from G to C5. Since G has an induced C5 by Lemma
40, we deduce that corepGq “ C5, contradicting that G is a core.

‚ If G has a triangle, then G is isomorphic to a subgraph of one of the three graphs presented in Figure
10, and is therefore 3-colorable (i.e., there is a homomorphism from G to K3). Since G has an induced
K3, it proves that corepGq “ K3, contradicting that G is a core.

In both cases, we have a contradiction. It follows that u and v have a common neighbor.
□

Lemma 42. There exists a vertex among ta, b, c, d, eu that is not a common neighbor of u and v.

Proof. We prove it by contradiction. Note that if all vertices among ta, b, c, d, eu are common neighbors of u
and v, then G is one of the two graphs presented in Figure 11.

The first case is impossible, because the core of G would then be C5 ` 1, and hence G would not be a core.
The second case is also impossible, because we assumed that G is a sporadic 7-core, so G is different from
C5 ` 2. Clearly, there is a contradiction in both cases.

□

We remark that by Lemma 41, u and v have a common neighbor, and we can thus assume (without loss of
generality, up to isomorphism) that the vertex “a” is a common neighbor of both u and v.

Lemma 43. G has no induced K4.
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pd, uq P E, pd, vq R E

pd, uq R E, pd, vq P E

pd, uq P E, pd, vq P E

pc, uq P E, pc, vq R E pc, uq R E, pc, vq P E pc, uq P E, pc, vq P E

its core is C5 ` 1 Core G5 its core is C5 ` 1

isomorphic to G4 G1
4 isomorphic to G4 G1

3 isomorphic to G3

its core is C5 ` 1 Core G6 its core is C5 ` 1

Figure 8. The 9 candidates with pe, uq P E and pu, vq R E.

1

2

34

5

3 2

Figure 9. Maximal case (up to isomorphism) where u and v do not have a common neighbor
and G has no triangle. Even this maximal case is C5-colorable.

u v u v u v

Figure 10. Maximal case (up to isomorphism) where u and v do not have a common
neighbor and G has a triangle. Even this maximal case is 3-colorable.
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u v u v

Figure 11. The two possible graphs if all vertices in ta, b, c, d, eu are joint neighbors of u and v.

1

2

34

5

5 2

Figure 12. Cases where G has no triangle. G is C5-colorable.

Proof. Note that G is a strict subgraph of C5 ` 2 obtained by removing at least an edge from one of the two
universal vertices. We easily deduce that G is 4-colorable. It follows that G does not contain a K4, since
otherwise corepGq “ K4.

□

Lemma 44. G has a triangle.

Proof. With the goal of reaching a contradiction: if G has no triangle, G is isomorphic to a subgraph of the
graph presented in Figure 12. Indeed, recall that u and v have a common neighbor by Lemma 41. Thus,
there is a homomorphism from G to C5, and then corepGq “ C5, which is a contradicts that G is a core. □

Corollary 45. G is not 3-colorable.

Proof. If G was 3-colorable, since, G has a triangle by Lemma 44, corepGq would be K3.
□

Lemma 46. For every vertex i in ta, b, c, d, eu, i is a neighbor of u or a neighbor of v.

Proof. Assume by contradiction that there exists a vertex i in ta, b, c, d, eu that is not a neighbor of u and
not a neighbor of v. The 5-cycle ta, b, c, d, eu then becomes a P4 “ α ´ β ´ γ ´ δ when i is removed, with α
and δ being the two neighbors of i. First, note that if the two neighbors α and δ of i are also neighbors of u
(respectively v), then the function that maps i to u and that leaves the rest of the graph G unchanged is a
non-bijective homomorphism. This contradicts the fact that G is a core. We can now assume that the two
neighbors α and δ of i are not also two neighbors of u, nor are they two neighbors of v.

With this in mind we prove that G is 3-colorable. It is sufficient to establish that G ´ i is 3-colorable,
because since i has degree 2, we will be able to extend this 3-coloring to G by coloring i with (one of) the
color(s) that is not taken by a neighbor of i. We have the following two cases.

‚ If u and v are both neighbors of α or δ: assume by symmetry that it is α. Then, by what precedes, δ
is not a neighbor of u nor is it a neighbor of v. Since δ has only 1 neighbor among tα, β, γ, u, vu (it is
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α β γ δ

u v

α β γ δ

u v

Figure 13. G ´ i is 3-colorable

γ), it is sufficient to 3-color pG ´ iq ´ δ to prove that G ´ i is 3-colorable. Since G has no induced K4
by Lemma 43, either pu, vq R EG, pβ, uq R EG, or pβ, vq R EG, otherwise tα, β, u, vu. In the first case,
pG ´ iq ´ δ is 3-colorable by coloring α and γ with the color 1, u and v with the color 2, and β with
the color 3. In the second case, color α and γ with the color 1, u and β with the color 2, and v with
the color 3. In the third case, color α and γ with the color 1, v and β with the color 2, and u with
the color 3.

The graph pG ´ iq ´ δ is 3-colorable, which implies that G is 3-colorable, contradicting Corollary
45.

‚ Since neither u nor v are common neighbors of α and δ, and since neither α nor δ are common
neighbors of u and v, we can assume by symmetry that pα, vq R EG and that pδ, uq R EG.

– If pu, vq R EG, color u and v with the same color, and 2-color the rest of G ´ i (which is the P4
α ´ β ´ γ ´ δ).

– If pu, vq P EG, u and v can not have two adjacent common neighbors, otherwise G would have a
K4 which is forbidden by Lemma 43. Thus, either β or γ is not a common neighbor of u and v.
We can assume by symmetry that pβ, vq R EG. G ´ i is now 3-colorable by coloring α and γ, u
and δ, and β and v with the same color.

For an illustration of the two previous cases, G ´ i is isomorphic to a subgraph of the two graphs
presented in Figure 13.

Thus, G is 3-colorable, which contradicts Corollary 45. □

Remark 47. By Lemma 41, u and v have a common neighbor among ta, b, c, d, eu, and by Lemma 42, not
all vertices among ta, b, c, d, eu are common neighbors of both u and v. It is thus possible to find two adjacent
vertices, say a and b, such that a is a common neighbor of u and v, and such that b is not a common neighbor
of u and v. By Lemma 46, b has at least one neighbor among tu, vu. By symmetry between u and v we can
assume that b is a neighbor of u but not a neighbor of v.

Lemma 48. degGpuq ă 5.

Proof. Assume, with the aim of reaching a contradiction, that degpuq ě 5. If pu, vq R EG, then u is a
neighbor of a, b, c, d and e. The function that maps v to u and that leaves the rest of the graph unchanged
is a non-bijective homomorphism. Contradiction with the fact that G is a core. Hence, assume now that
pu, vq P EG.

‚ If degGpuq “ 5, then there exists i P ta, b, c, d, eu such that pu, iq R EG. The function that maps i to
u and that leaves the rest of the graph unchanged is a non-bijective homomorphism. This contradicts
that G is a core.

‚ If degGpuq ą 5, then G is a neighbor of a, b, c, d and e. Since G does not contain a K4 by Lemma 43,
the neighbors of v in ta, b, c, d, eu are non-adjacent. We deduce that the neighbors of v in ta, b, c, d, eu

are contained in a set of the form pα, βq, where α and β are non-adjacent. α and β have a common
neighbor γ in ta, b, c, d, eu. The function that maps v to γ and that leaves the rest of the graph
unchanged is a non-bijective homomorphism. Again, this contradicts that G is a core.

□

Lemma 49. pe, vq P EG.

Proof. Assume by contradiction that pe, vq R EG. Then by Lemma 46, pe, uq P EG. We have by definition of
b and u that pb, vq R EG and pb, uq P EG. By definition of a, pa, uq P EG and pa, vq P EG. By Lemma 48, u
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has at least one non-neighbor among ta, b, c, d, eu. Since u is a neighbor of a, b and e, there are only two
possible cases: either pu, cq R EG or pu, dq R EG.

‚ Assume that pu, cq R EG. Coloring b, v and e; a and d; and u and c with the same color results in a
3-coloring of G, which contradicts Corollary 45.

‚ Assume that pu, dq R EG. Coloring b, v and e; a and c; and u and d with the same color results in a
3-coloring of G, which contradicts Corollary 45.

In either case there is a contradiction. Thus, pe, vq P EG. □

For each vertex let us now summarizes the remaining possible cases.
‚ a: 0 choices: pu, aq and pv, aq are edges of G by Remark 47.
‚ b: 0 choices: pu, bq is an edge, and pv, bq is not an edge by Remark 47.
‚ c: 3 choices since c must be either a neighbor of u or of v by Lemma 46:

– pu, cq and pv, cq are edges of G.
– pu, cq is an edge, and pv, cq is not an edge.
– pv, cq is an edge, and pu, cq is not an edge.

‚ d: 3 choices since d must be either a neighbor of u or of v by Lemma 46:
– pu, dq and pv, dq are edges of G.
– pu, dq is an edge, and pv, dq is not an edge.
– pv, dq is an edge, and pu, dq is not an edge.

‚ Concerning u, v and e, since pe, vq in an edge by Lemma 49, there are 3 possible cases:
– Neither pu, vq nor pe, uq is an edge.
– pu, vq is an edge and pe, uq is not an edge.
– pe, uq is an edge and pu, vq is not an edge.

The case where both pu, vq and pe, uq is an edge is impossible, because otherwise ta, e, u, vu would
induce a K4, contradicting Lemma 43.

We conclude that, up to isomorphism, all the sporadic 7-cores belong to the list of the 3 ˆ 3 ˆ 3 “ 27
graphs presented in Figures 6, 7 and 8.

Corollary 50. All the sporadic 7-cores are contained in the graphs allowed in Figure 5.
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