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Four center integrals for Coulomb interactions in small molecules

Garry Goldstein
garrygoldsteinwinnipeg@gmail.com

In this work we make some progress on studying four center integrals for the Coulomb energy
for both Hartree Fock (HF) and Density Functional Theory (DFT) calculations for small molecules.
We consider basis wave functions of the form of an arbitrary radial wave function multiplied by
a spherical harmonic and study four center Coulomb integrals for them. We reformulated these
Coulomb four center integrals in terms of some derivatives of integrals of nearly factorable functions
which then depend on the Bessel transform of the radial wave functions considered.

I. INTRODUCTION

Small molecules water, carbon dioxide, ozone, ammo-
nia, methane, ethane, ethene, ethyne to name a few
have tremendous practical industrial applications so it
is paramount that we study their electronic structures
[1–3].To make progress with the many body Schrodinger
equation for a small molecule a variety of different ap-
proximations need to be made. The most common
ones for abinitio studies of electronic structures of small
molecules are Hartree Fock (HF) or Density Functional
Theory (DFT) [1–4] approximations (where DFT is then
further approximated by the Local Density Approxi-
mation (LDA) or Generalized Gradient Approximation
(GGA) [2, 4]). As such it is of paramount importance
to make progress in the study of small molecules both
through Density Functional Theory (DFT) and Hartree
Fock (HF) methods. One of the stumbling blocks towards
implementing DFT or HF calculations on modern com-
puters is the choice of the basis set. Indeed a significant
practical improvement in the efficiency of solution of the
HF equations was given by Roothaan [5] who mapped the
HF integro-differential equations into a system of linear
equations and unknowns using basis sets.Similarly the
Khon Sham (KS) equations are a linear system of equa-
tions when considered within a fixed basis set [2, 4]. Re-
cently substantial progress has been made [6] where it
was argued that it is sufficient to consider basis sets of
the form given by:

ϕα (r) = Ylαmα

(
̂r−Rα

)
Rlα (r−Rα) (1)

Here Ylm’s are spherical harmonics, Rα is the position of
a nucleus of an atom in the molecule and Rl are arbitrary
radial wave functions. In Ref [6] arguments were made as
to the form of the optimal set of Rl’s. Inspired by recent

progress in basis sets for small molecules [6] we study
four center Coulomb integrals for specific types of wave
functions given by Eq. (1) and in particular or those
considered in Ref. [6]. Specifically we are interested in
integrals of the form:

Iabcd =

∫
d3r1

∫
d3r2

1

|r1 − r2|
ϕ∗
a (r1)ϕb (r1)ϕ

∗
c (r2)ϕd (r2)

(2)
which show up in calculations of the Coulomb energy
both in DFT and HF methods. Previously evaluation
of four center integrals was limited to Rl’s being Gaus-
sians [3, 7] which limited accuracy for small basis set sizes
[3]. Evaluating these integrals for a large number of wave
functions, with more complex structure then Gaussian,
needed for an accurate basis is often the bottleneck in ab-
initio molecular electronic structures calculations [1, 3].
In this work we write these integrals in terms of deriva-
tives of an integral in a nearly factorable form. The in-
tegrals depended on the Bessel transform of the radial
wave function given by:

Rl (U) =

∫ ∞

0

π

2U2
drJl (Ur)Rl (r) r

2 (3)

as well as auxiliary integrals. This should lead to further
abinitio studies of small molecules with basis sets more
accurate then Gaussian.

II. MAIN CALCULATION

We now calculate the integral considered in Eq. (2).

A. Fourier transform

We begin by Fourier transforming the integral in Eq. (2). Now we have that

1

|r1 − r2|
=

∫
d3K

(2π)3
4π

K2
exp (iK · (r1 − r2)) (4)

Furthermore we recall that [8]

exp (iKα · r) = exp (iKα ·Rα)
∑

lm

ilJl (|Kα| |r−Rα|)Y
∗
lm

(
K̂α

)
Ylm

(
̂r−Rα

)
(5)
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so that

ϕα (r) = (−i)
lα

∫
d3Kα

(2π)
3
exp (−iKα ·Rα)Ylαmα

(
K̂α

)∫ ∞

0

π |Kα|
2

2
drαJlα (|Kα| rα)Rlα (rα) r

2
α exp (iKα · r) (6)

Here we have used orthogonality of Bessel functions (the Bessel transform [9]).

B. Fourier transformed integral

As such we have that:

Iabcd =

∫
d3r1

∫
d3r2

∫
d3K

(2π)
3

d3Ka

(2π)
3

d3Kb

(2π)
3

d3Kc

(2π)
3

d3Kd

(2π)
3
×

×
4π

K2
exp (i (Kb −Ka +K) · r1) exp (i (Kd −Kc −K) · r2)×

× (−i)
lb+ld ila+lc exp (i [Ka ·Ra +Kc ·Rc −Kb ·Rb −Kd ·Rd])×

× Y ∗
lama

(
K̂a

)
Y ∗
lcmc

(
K̂c

)
Ylbmb

(
K̂b

)
Yldmd

(
K̂d

)
×

×

∫ ∞

0

dra
π |Ka|

2

2
Jla (|Ka| ra)Rla (ra) r

2
a ×

∫ ∞

0

drb
π |Kb|

2

2
Jlb (|Kb| rb)Rlb (rb) r

2
b×

×

∫ ∞

0

drc
π |Kc|

2

2
Jlc (|Kc| rc)Rlc (rc) r

2
c ×

∫ ∞

0

drd
π |Kd|

2

2
Jld (|Kd| ra)Rld (rd) rd (7)

We now perform the integrals
∫
d3r1

∫
d3r2 to obtain some delta functions that simplify the integrations:

Iabcd = (−i)
lb+ld ila+lc

∫
d3K

(2π)
3

d3Ka

(2π)
3

d3Kc

(2π)
3
×

×
4π

K2
exp (i [Ka · [Ra −Rb] +Kc · [Rc −Rd] +K · [Rb −Rd]])×

× Y ∗
lama

(
K̂a

)
Y ∗
lcmc

(
K̂c

)
Ylbmb

(
̂Ka −K

)
Yldmd

(
̂Kc +K

)
×

×

∫ ∞

0

dra
π |Ka|

2

2
Jla (|Ka| ra)Rla (ra) r

2
a ×

∫ ∞

0

drb
π |Kb|

2

2
Jlb (|Ka −K| rb)Rlb (rb) r

2
b×

×

∫ ∞

0

drc
π |Kc|

2

2
Jlc (|Kc| rc)Rlc (rc) r

2
c ×

∫ ∞

0

drd
π |Kd|

2

2
Jld (|Kb +K| ra)Rld (rd) r

2
d (8)

Now we let

Fα (K) =

∫ ∞

0

drαK
2Jlα (Krα)Rlα (rα) r

2
α (9)

so that

Iabcd = (−i)
lb+ld ila+lc

∫
d3K

(2π)
3

d3Ka

(2π)
3

d3Kc

(2π)
3

4π

K2
exp (i [Ka · [Ra −Rb] +Kc · [Rc −Rd] +K · [Rb −Rd]])×

× Y ∗
lama

(
K̂a

)
Y ∗
lcmc

(
K̂c

)
Ylbmb

(
̂Ka −K

)
Yldmd

(
̂Kc +K

)
× Fa (|Ka|)Fc (|Kc|)Fb (|Ka −K|)Fd (|Kb +K|)

(10)

C. Expansion in terms of derivatives

Now we write

Fα (K) =
Fα (K)

K lα
(11)
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So that:

Iabcd = (−i)
lb+ld ila+lc

∫
d3K

(2π)
3

d3Ka

(2π)
3

d3Kc

(2π)
3

4π

K2
exp (i [Ka · [Ra −Rb] +Kc · [Rc −Rd] +K · [Rb −Rd]])

× |Ka|
la Ylama

(
K̂a

)
|Kc|

lx Ylcmc

(
K̂c

)
|Ka −K|

lb Y ∗
lbmb

(
̂Ka −K

)
|Kc +K|

lc Y ∗
ldmd

(
̂Kc +K

)
×

×Fa (|Ka|)Fc (|Kc|)Fb (|Ka −K|)Fd (|Kc +K|) (12)

Furthermore:

Iabcd = (−i)
lb+ld ila+lc

∫
d3K

(2π)
3

d3Ka

(2π)
3

d3Kc

(2π)
3

4π

K2
exp (i [Ka · [Ra −Rb] +Kc · [Rc −Rd] +K · [Rb −Rd]])×

×
∑

C
m,n,p,q
abcd K

mx

ax K
my

ay K
mz

az K
nx

cxK
ny

cyK
mz

cz (Ka −K)
px

x (Ka −K)
py

y (Ka −K)
pz

z (Kc +K)
qx
x (Kc +K)

qy
y (Kc +K)

qz
z ×

×Fa (|Ka|)Fc (|Kc|)Fb (|Ka −K|)Fd (|Kc +K|) (13)

Where we have transformed spherical harmonic into solid harmonics. Then

Iabcd = (−i)
lb+ld ila+lc

∑
D

m,n,p
abcd

∂mx

∂Rx
a

∂my

∂R
y
a

∂mz

∂Rz
a

∂nx

∂Rx
c

∂ny

∂R
y
c

∂nz

∂Rz
c

∂px

∂Rx
b

∂py

∂R
y
b

∂pz

∂Rz
b

×

×

∫
d3K

(2π)
3

d3Ka

(2π)
3

d3Kc

(2π)
3

4π

K2
exp (i [Ka · [Ra −Rb] +Kc · [Rc −Rd] +K · [Rb −Rd]])×

×Fa (|Ka|)Fc (|Kc|)Fb (|Ka −K|)Fd (|Kc +K|) (14)

Where we have used the derivative property of exponentials to pull out the solid harmonics as derivatives. Whereby:

Iabcd = (−i)lb+ld ila+lc
∑

D
m,n,p
abcd

∂mx

∂Rx
a

∂my

∂R
y
a

∂mz

∂Rz
a

∂nx

∂Rx
c

∂ny

∂R
y
c

∂nz

∂Rz
c

∂px

∂Rx
b

∂py

∂R
y
b

∂pz

∂Rz
b

×

×

∫
d3K

(2π)3
d3Ka

(2π)3
d3Kc

(2π)3
4π

K2
exp (i [Ka · [Ra −Rb] +Kc · [Rc −Rd] +K · [Rb −Rd]])×

×Fa (|Ka|)Fc (|Kc|)Fb (|Ka −K|)Fd (|Kc +K|) (15)

D. A Bessel function expansion

Now [8]:

exp (iKa (Ra −Rb)) =
∑

LaMa

iLaJLa
(|Ka| |Ra −Rb|)Y

∗
LaMa

(
K̂α

)
YLaMa

(
̂Ra −Rb

)
(16)

As such:

Iabcd = (−i)
lb+ld ila+lc

∑
D

m,n,p
abcd

∂mx

∂Rx
a

∂my

∂R
y
a

∂mz

∂Rz
a

∂nx

∂Rx
c

∂ny

∂R
y
c

∂nz

∂Rz
c

∂px

∂Rx
b

∂py

∂R
y
b

∂pz

∂Rz
b

×

∑

LaMa

∑

Lc,Mc

∑

L,M

iLaYLaMa

(
̂Ra −Rb

)
iLcYLcMc

(
̂Rc −Rd

)
iLYLM

(
̂Rb −Rd

)

×

∫
d3K

(2π)
3

d3Ka

(2π)
3

d3Kc

(2π)
3

4π

K2
JLa

(|Ka| |Ra −Rb|)JLc
(|Kc| |Rc −Rd|)JL (|K| |Rb −Rd|)

×Fa (|Ka|)Fc (|Kc|)Fb (|Ka −K|)Fd (|Kc +K|) (17)

and

Iabcd = 4π (−i)
lb+ld ila+lc

∑
D

m,n,p
abcd

∂mx

∂Rx
a

∂my

∂R
y
a

∂mz

∂Rz
a

∂nx

∂Rx
c

∂ny

∂R
y
c

∂nz

∂Rz
c

∂px

∂Rx
b

∂py

∂R
y
b

∂pz

∂Rz
b

×

×
∑

LaMa

∑

Lc,Mc

∑

L,M

iLaYLaMa

(
̂Ra −Rb

)
iLcYLcMc

(
̂Rc −Rd

)
iLYLM

(
̂Rb −Rd

)

×

∫
d |K|

2π

d |Ka| dua

(2π)
2

d |Kc| duc

(2π)
2

× JLa
(|Ka| |Ra −Rb|)JLc

(|Kc| |Rc −Rd|)JL (|K| |Rb −Rd|)

× Ga

(
K

2
a

)
Gc

(
K

2
c

)
Gb

(
K

2
a +K

2 − 2 |Ka| |K|ua

)
Gd

(
K

2
c +K

2 − 2 |Kc| |K|uc

)
|Ka|

2
|Kc|

2
(18)
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The extra minus in Gd

(
K

2
c +K

2 − |Kc| |K|uc

)
is because we are integrating uc between [−1, 1]. Where

G
(
K2

)
= F (K) =

Fα (K)

K lα
=

∫∞

0
drαJlα (Krα)Rlα (rα) r

2
α

K lα
(19)

Now we write:

Iabcd = 4π (−i)
lb+ld ila+lc

∑
D

m,n,p
abcd

∂mx

∂Rx
a

∂my

∂R
y
a

∂mz

∂Rz
a

∂nx

∂Rx
c

∂ny

∂R
y
c

∂nz

∂Rz
c

∂px

∂Rx
b

∂py

∂R
y
b

∂pz

∂Rz
b

×

×
∑

LaMa

∑

Lc,Mc

∑

L,M

iLaYLaMa

(
̂Ra −Rb

)
iLcYLcMc

(
̂Rc −Rd

)
iLYLM

(
̂Rb −Rd

)
×

×

∫
d |K|

2π

d |Ka| dua

(2π)
2

d |Kc| duc

(2π)
2

× JLa
(|Ka| |Ra −Rb|)JLc

(|Kc| |Rc −Rd|)JL (|K| |Rb −Rd|)×

×

∫∞

0
draJla (|Ka| ra)Rla (ra) r

2
a

|Ka|
la−2

∫∞

0
drcJlc (|Kc| rc)Rlc (rc) r

2
c

|Kc|
lc−2

×

×

∫∞

0
drbJlb

([
K

2
a +K

2 − 2 |Ka| |K|ua

]1/2
rb

)
Rlb (rb) r

2
b

[K2
a +K2 − 2 |Ka| |K|ua]

lb/2

∫∞

0
drdJld

([
K

2
c +K

2 − 2 |Kc| |K|uc

]1/2
rd

)
Rld (rd) r

2
d

[K2
c +K2 − 2 |Kb| |K|uc]

ld/2

(20)

E. A global co-ordinate change

Now we use the co-ordinates:

Ka = Ka

Kc = Kc

K = K

Ua =
[
K

2
a +K

2 − 2 |Ka| |K|ua

]1/2

Uc =
[
K

2
c +K

2 − 2 |Kc| |K|uc

]1/2
(21)

Now we have that the matrix of the transformation is
upper triangular so the determinant of the Jacobian is
given by:

det (J ) =
K2KaKc

UaUc
(22)

As such we have that:

Iabcd = 4π (−i)lb+ld ila+lc
∑

D
m,n,p
abcd

∂mx

∂Rx
a

∂my

∂R
y
a

∂mz

∂Rz
a

∂nx

∂Rx
c

∂ny

∂R
y
c

∂nz

∂Rz
c

∂px

∂Rx
b

∂py

∂R
y
b

∂pz

∂Rz
b

×

×
∑

LaMa

∑

Lc,Mc

∑

L,M

iLaYLaMa

(
̂Ra −Rb

)
iLcYLcMc

(
̂Rc −Rd

)
iLYLM

(
̂Rb −Rd

)
×

×

∫
1

(2π)
5

UaUc

K2KaKc
× JLa

(Ka |Ra −Rb|)JLc
(Kc |Rc −Rd|)JL (K |Rb −Rd|)×

×

(
2

π

)4
∫∞

0
draJla (Kara)Rla (ra) r

2
a

K la
a

∫∞

0
drcJlc (Kcrc)Rlc (rc) r

2
c

K lc
c

×

×

∫∞

0
drbJlb (Uarb)Rlb (rb) r

2
b

U lb+2
a

∫∞

0
drdJld (Ucrd)Rld (rd) r

2
d

U ld+2
c

(23)
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This factorizes to:

Iabcd = 4π (−i)
lb+ld ila+lc

∑
D

m,n,p
abcd

∂mx

∂Rx
a

∂my

∂R
y
a

∂mz

∂Rz
a

∂nx

∂Rx
c

∂ny

∂R
y
c

∂nz

∂Rz
c

∂px

∂Rx
b

∂py

∂R
y
b

∂pz

∂Rz
b

×

×
∑

LaMa

∑

Lc,Mc

∑

L,M

iLaYLaMa

(
̂Ra −Rb

)
iLcYLcMc

(
̂Rc −Rd

)
iLYLM

(
̂Rb −Rd

)

×

∫
dKa

4

∫∞

0
draJla (Kara)Rla (ra) r

2
a

K la+1
a

JLa
(Ka |Ra −Rb|)

×

∫ ∞

0

dKc

4

∫∞

0
drcJlc (Kcrc)Rlc (rc) r

2
c

K lc+1
c

JLc
(Kc |Rc −Rd|)

×

∫ ∞

0

dK

2π

1

K2
JL (K |Rb −Rd|)

×

∫ Ka+K

|Ka−K|

dUa

4

∫∞

0
drbJlb (Uarb)Rlb (rb) r

2
b

U lb+1
a

×

∫ Kc+K

|Kc−K|

dUc

4

∫∞

0
drdJlb (Ucrd)Rld (rd) r

2
d

U ld+1
c

(24)

This is our main result as it presents the Coulomb four
center integrals in a nearly factorable form.

III. CONCLUSIONS

In this work we have presented some formulas for four
center integrals associated with the Coulomb interaction.

These results are in a nearly factorable form and depend
on the Fourier Bessel transforms of the radial wave func-
tion given in Eq. (3), as well as auxiliary integrals see
Eq. (24). In the future it would be of interest to com-
bine the new basis sets introduced in Ref. [6] where all
basis wave functions are of the form considered in Eq.
(1) to study the electronic structures of small molecules
through either HF or DFT methods.
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