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Abstract

This paper focuses on inverse problems arising in studying multi-population aggregations.
The goal is to reconstruct the diffusion coefficient, advection coefficient, and interaction ker-
nels of the aggregation system, which characterize the dynamics of different populations.
In the theoretical analysis of the physical setup, it is crucial to ensure non-negativity of
solutions. To address this, we employ the high-order variation method and introduce mod-
ifications to the systems. Additionally, we propose a novel approach called transformative
asymptotic technique that enables the recovery of the diffusion coefficient preceding the
Laplace operator, presenting a pioneering method for this type of problems. Through these
techniques, we offer comprehensive insights into the unique identifiability aspect of inverse
problems associated with multi-population aggregation models.
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1 INTRODUCTION

1.1 Problem setup and background

In the natural world, we often use collective nouns to depict the characteristics of groups formed
by different species. For instance, when referring to hyenas, we use the term ‘a clan of hyenas’.
Similarly, we describe sharks as ‘a school of sharks’. Likewise, we use ‘a herd of cattle’ instead
of ‘a swarm of cattle’ and ‘a sloth of bears’ rather than ‘a flock of bears’. It is interesting to
note that all of these animals mentioned above exhibit gregarious behavior, where the ability
to aggregate is both important and habitual. This raises intriguing questions: Do different
social animals share common traits? Why do we employ various quantifiers to describe them
(cf. [55, 1212, 1313, 2020, 3636])? Interestingly, this phenomenon extends to the microscopic level as well;
see e.g [88,99,4141] and the references cited therein. A cell may pass information to another through
direct physical contact of the specialised molecules on its surface, or modify its motility based
on the molecular signals released by another cell.

Organisms, whether animals, plants, or microorganisms, exhibit two distinct types of behav-
iors related to aggregative and movement: aggregation and movement in response to external
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environmental factors such as chemicals, and aggregation and movement resulting from interac-
tions with individuals of the same species (self-organizing behaviors) [1313]. This study specifically
focuses on analyzing self-organizing behaviors, which encompass a fascinating array of processes
wherein complex patterns and structures arise from the interactions among individual compo-
nents or agents. In mathematical biology, this refers to the spontaneous formation of spatial
patterns, collective behavior, or functional organization without the need for external control
or central coordination [4545,4646,4848]. Instead, these patterns and behaviors arise from local inter-
actions and feedback mechanisms among the system’s components. This concept mirrors the
self-organizing behaviors observed in nature, where intricate structures and dynamics emerge
from the interactions of simple entities.

Up to now, there are several mathematical models proposed to study this self-organizing phe-
nomena, providing a means to describe and analyze the complex dynamics of biological systems,
capturing the interplay between various factors such as diffusion, advection, reaction kinetics,
and feedback loops. These models often take the form of partial differential equations, stochastic
processes, or agent-based simulations. Moreover, since repulsion act over shot distances while
attraction act over large spatial distances, many mathematical models depicting self-organizing
biological aggregations are non-local [1313].

In the study of self-organizing phenomena, non-local advection-diffusion equations have, in
particular, proven to be a valuable tool for gaining insights and understanding. These equations
incorporate both advection, representing the movement of substances or agents, and diffusion,
accounting for their spreading or dispersal. The inclusion of non-local terms allows for the
modeling of long-range interactions and memory effects, capturing the influence of distant points
on the current state of the system. One classic advection-diffusion equation is of the following
form:

∂tu(x, t) = ∇ · [D∇u(x, t)− au(x, t)], (1.1)

where u(x, t) represents the density of some population at position x ∈ Ω ⊂ Rn and t ∈ [0,∞).
D is the diffusive component of movement, and a is an n−dimensional vector measuring the
advective component of movement. The region Ω defines the region in which the population
species moves.

The classic model (1.11.1) serves as a foundation for deriving different models that describe
various scenarios. In the case of cellular systems, it is necessary to construct models which
incorporate adhesion, which is the fundamental mechanism by which cells attach to and interact
with their surrounding environment. These models often originate from a random walk de-
scription of movement [22, 2121] or are proposed based on empirical observations [1818]. In contrast,
animals exhibit social interactions that lead to aggregation. At the most basic level, social inter-
actions among animals can influence their spatial distribution, causing them to concentrate in
specific areas rather than dispersing throughout the entire available space [44,66,4747]. For example,
penguins exhibit social interactions within their colonies, forming dense aggregations in particu-
lar regions. These colonies provide protection, warmth, and opportunities for mating and raising
offspring. The social interactions among penguins result in a concentrated distribution within
the colony, rather than dispersing across the entire available habitat [11,5151]. By forming specific
areas of concentration, animals can benefit from cooperative behaviors, enhanced protection,
and efficient resource utilization within the social group.

In this context, a question arises: as the specific area is fixed and various species lived there,
an interaction range is generated, enabling individuals to sense multiple neighbours at the same
time. Therefore, it is reasonable to infer that the movement of the individual will rely on an
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integrated response, specifically aligned with the distribution of the population (or populations)
within its range of interaction. Non-local PDE formulations play a significant role in studying
such phenomena and we consider the following pair of models to reflect such behavior:

∂tu = d∆u− µ∇ · [ukR ∗ f ], kR ∗ f(x, t) =
∫
Tn

kR(x, y)f(u(y, t))dy, (1.2)

∂tu = d∆u− ν∇ · [u∇(wR ∗ g)], wR ∗ g(x, t) =
∫
Tn

wR(x, y)g(u(y, t))dy. (1.3)

For the first model (1.21.2), the non-local advection term is based on the principle that the
population at location y affects the population movement at location x. The integral kernel kR

is parametrised according to a sampling radius R, which represents the interaction range. Here,
R is a vector which not only specifies the distance from y to x, but also determines the direction
of interaction. f(x, t) depicts the dependence on the population size at y. The physical meaning
of (1.21.2) can be interpreted in the sense of forces and energies. From a cellular perspective,
(1.21.2) arises from the delicate interplay between adhesion and repulsion forces acting on the cell
surface. The interaction between cells, centered at x and y, gives rise to localized forces. The
net force experienced by the cell is determined by the convolution kR ∗ f . On the other hand,
in the context of animal studies, (1.21.2) has been developed to describe observed swarming-like
behavior [2222,3737,3838].

For the second model (1.31.3), the function wR(x, y) and integral wR ∗ g are now scalar-valued,
but the phenomenological motivation is similar to that of (1.21.2). Here, d ∈ R+ is the diffusion
rate, and ν ∈ R represents the advection coefficient. Equation (1.31.3) can be interpreted as a
model that describes the movement of a population influenced by the gradient of its non-local
measure. Following the least energy principle, wR∗g represents the energy density, and∇(wR∗g)
signifies the movement based on the energy gradient. When ν > 0, this reduces to the energy
minimization problem [77].

Both models (1.21.2) and (1.31.3) have played a crucial role in the realm of ecological systems since
the 1970s (see [1717, 2222, 3939]), and in the domain of cellular systems since the 1990s (see [1515, 4444]).
These models, commonly referred to as aggregation equations, hold immense value due to their
ability to capture self-organizing phenomena. By modeling the process of self-attraction among
individuals, these equations enable dispersed groups to spontaneously organize into one or more
aggregated groups.

It is important to highlight that these equations are not limited in their applications. They
can also account for repulsive interactions, which promote enhanced dispersal. Furthermore, they
can be employed to describe heterogeneous populations, where interactions between different
populations vary. In such cases, these equations can be combined with more intricate models to
capture the complexity of the system. As a result, there have been multi-species adaptations of
both (1.21.2) and (1.31.3) to cater to these diverse scenarios.

The multi-species models are given as follows: Let x ∈ Tn denote the state variable, t ∈ [0,∞)
denote the time variable, and Tn = [−L1, L1]× [−L2, L2]× · · · × [−Ln, Ln] be the n-torus with
periodic boundaries. The N -species non-local population models we are interested in take the
forms:

∂tui = di∆ui −
N∑
j=1

µij∇ · (uikij ∗ fij), kij ∗ fij =
∫
Tn

kij(x, y)fij(u(y, t))dy, (1.4)
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∂tui = di∆ui −
N∑
j=1

νij∇ · [ui∇(wij ∗ gij)], wij ∗ gij
∫
Tn

wij(x, y)gij(u(y, t))dy, (1.5)

where i = 1, . . . , N, u(x, t) =
(
u1(x, t), u2(x, t), . . . , uN (x, t)

)
, ui denotes the density distribution

of i-th population. di represents the diffusion coefficient and µij , νij are the advection coefficients.
The generalization of biological models to accomodate for multiple species offers a broader

perspective and a more comprehensive understanding of ecological and cellular systems. By
transforming (1.21.2) and (1.31.3) into (1.41.4) and (1.51.5), researchers can explore the intricate dynamics
and interactions between different populations. From a biological perspective, the advantage of
such multi-species consideration is twofold. Firstly, it allows for the examination of inter-species
relationships and their impact on the overall system behavior [4949]. This includes studying
predator-prey interactions, competition for resources, symbiotic relationships, and other forms
of ecological or cellular interactions. By considering multiple species, the models can capture
the complexity and interdependence of these relationships, providing insights into the stability,
coexistence, or potential disruptions within the system. Secondly, the generalization to multi-
species enables the exploration of emergent properties and collective behaviors that arise from
interactions between different species [33, 1414]. These emergent properties may include pattern
formation, spatial organization, synchronization, or cooperative behaviors. By incorporating
multiple species, the models can capture the synergistic effects and feedback mechanisms that
give rise to these emergent phenomena.

An interesting observation to note is that the diffusion coefficient d in equations (1.41.4) and
(1.51.5) can represent two distinct scenarios: a single diffusion rate for all species (d = (d, . . . , d))
or different diffusion rates assigned to each species (d = (d1, . . . , dN )). Both of these settings
have their own physical interpretations. For instance, consider several bird species in a forest
with similar flying capabilities and habitats. They may have comparable diffusion rates, leading
to similar movements, dispersal patterns, and coverage of distances and areas over time. On the
other hand, a fast-swimming fish and a slow-moving crustacean living in the same ocean area
have different diffusion rates, reflecting their distinct abilities to disperse and occupy different
areas within their marine environment.

Therefore, the use of multi-species generalization in biological models enhances our under-
standing of the intricate dynamics and interactions within ecological and cellular systems. It
allows for a more realistic representation of the natural world, providing valuable insights into
the stability, coexistence, and emergent properties of diverse species within these systems. In
this paper, we mainly consider the inverse problems of determining the diffusion coefficients
d(x) := {d1(x), d2(x), . . . , dN (x)} and integral interaction kernels k(x) := {kij(x)},w(x) :=
{wij(x)}, all depending only on x and independent of t, in models based on (1.41.4) and (1.51.5),
which are of the following forms:∂tui = di∆ui +∇ ·

(
h(ui)

N∑
j=1

µij(kij ∗ uj)
)
, in Q,

ui(x, 0) = fi(x), in Tn,

(1.6)

where kij ∗ uj =
∫
Tn kij(x− y)uj(y)dy, and∂tui = di∆ui +∇ ·

(
h(ui)

N∑
j=1

νij∇(wij ∗ uj)
)
, in Q,

ui(x, 0) = fi(x), in Tn,

(1.7)
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where wij ∗ uj(x) =
∫
Tn wij(x− y)uj(y)dy.

The different species are represented by i = 1, 2, . . . , N , and the function h(ui) = ui if ui ≥ 0
and h(ui) = 0 if ui < 0 is essential to ensure that the model is physically meaningful, as we will
discuss in Section 1.21.2. The interaction kernel kij describes the non-local sensing of species j by
species i and is differentiable, and the interaction potential wij describes the non-local sensing of
species j by species i and is a twice-differentiable function such that wij ≥ 0 is a non-increasing
function of |x| with ∇wij bounded.

To recover the unknown coefficients, we assume that we can measure u(x, T ) as well as u(x, t)
in an accessible region x ∈ ω ⋐ Tn for all possible initial configurations u(x, 0), that is, we have
data from the maps:

M+
d

(
u(x, 0)

)
= u(x, t), x ∈ ω ⋐ Tn, t ∈ (0, T ) (1.8)

and
M+

µµµ,k

(
u(x, 0)

)
= u(x, T ), M+

ννν,w

(
u(x, 0)

)
= u(x, T ), (1.9)

where the sign ‘+’ signifies that the data are associated with the non-negative solutions of the
models (1.61.6) and (1.71.7).

Here are the questions we are interested in:
Case 1. Let M+

d1 and M+
d2 be the measurement maps corresponding to the unknown coeffi-

cients d1, d2 in (1.61.6) or (1.71.7) respectively. If M+
d1 = M+

d2 holds under appropriate assumptions,
can we establish the unique identifiability conclusion d1 = d2?

Case 2. Let M+
µµµ1,k1 and M+

µµµ2,k2 be the measurement maps corresponding to the unknown

coefficients (µµµ1,k1) and (µµµ2,k2) in (1.61.6) respectively. If M+
µµµ1,k1 = M+

µµµ2,k2 holds under ap-
propriate assumptions, can we establish the unique identifiability conclusion for the advection
coefficients µµµ1 = µµµ2? Can we give the same conclusion for the integral interaction kernels k1

and k2?
Case 3. Let M+

ννν1,w1 and M+
ννν2,w2 be the measurement maps corresponding to the unknown

coefficients (ννν1,w1) and (ννν2,w2) in (1.71.7) respectively. If M+
ννν1,w1 = M+

ννν2,w2 holds under ap-
propriate assumptions, can we establish the unique identifiability conclusion for the advection
coefficients ννν1 = ννν2? Can we establish the same conclusion for the integral interaction kernels
w1 = w2?

One will see later that the mission for recovering diffusion rate d are alike in both models,
so we summarize them together in the first case. We also focus on the unique identifiability
issues for each model respectively, specifically, whether we can recover the advection coefficient
µµµ or the integral kernel k in (1.61.6), and whether we can recover the advection coefficient ννν or the
integral kernel w in (1.71.7). The main results will be given in detail in Section 2.32.3.

1.2 Technical developments

Inverse problems related to parabolic and hyperbolic equations have garnered significant at-
tention in recent years, as evidenced by notable works such as [1919, 3030, 4242] in the context of
parabolic-type equations, and [2626, 2929, 5050] in the realm of hyperbolic-type equations. Given the
diverse range of physical systems that can be described by nonlinear PDEs, it is pertinent to
consider the inverse problems associated with these applications. One prominent example of
such applications is in mean field game theory [1010,2323,2424,3232,3434,4343], which has a distinct physical
context but involves coupled nonlinear PDEs that bear resemblance to the ones encountered
in mathematical biology models. Unique identifiability results are established for either the
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running cost or the terminal cost based on knowledge of the total cost in [1010,3232], assuming the
Lagrangian represents the kinetic energy. Inverse boundary problems for the mean field game
system are also considered in [3434,3535].

Another field in which inverse problems find extensive application is population ecology,
where numerous parabolic PDE systems are employed to explain various phenomena in nature.
The first such work was [3131], wherein the authors considered the non-negativity of solutions for
the biological inverse problem, using a linearization method called high-order variation. Under
the same restriction, [1111] proposed and studied several inverse problems for identifying unknown
coefficients in a class of biological models, by making use of averaged-out boundary data. Later,
in [2727], the authors investigated the inverse problem of determining the coefficients of interaction
terms within Lotka-Volterra models, with support from boundary observations of non-negative
solutions. The results extend to Holling-Tanner type models as well as models reflecting the
hydra effect. Additionally, [2828] presents an attempt to address chemotaxis models within the
context of inverse problems.

For these biological applications, the assurance of the non-negativity constraint is crucial,
since species populations or cellular densities cannot be negative. And the high-order variation
method, which is first introduced in [3131,3434], has been widely used in recent works to guarantee
that this constraint is fulfilled. The main idea of this method relies on a special setting for
Taylor expansion,

u(x; ε) =
∞∑
l=1

εlfl on Tn for f1 ≥ 0, (1.10)

where ε is a small positive variable, and the dominant term f1 determines and ensures the non-
negativity of u(x; ε). No restrictions for the positivity of fi, i ≥ 2 are required. Similar to [3131],
we will carry out the linearization around 0 in the recovery of the advection coefficients and the
integral interaction kernels. More details will be given in Section 33.

Moreover, in order to make our model more versatile, we modify the model slightly in the
form of (1.61.6) and (1.71.7), while accounting for the non-negativity constraint. We have included a
function h(·), which plays a role in avoiding the possibility of a negative solution for the models,
in the form of

∂tui = di∆ui+∇·
(
h(ui)

N∑
j=1

µij(kij ∗uj)
)
, ∂tui = di∆ui+∇·

(
h(ui)

N∑
j=1

νij∇(wij ∗uj)
)
, in Q.

When the solutions are non-negative, h(u) = u, and the models (1.61.6) and (1.71.7) reduce to

∂tui = di∆ui +∇ ·
(
ui

N∑
j=1

µij(kij ∗ uj)
)
, (1.11)

∂tui = di∆ui +∇ ·
(
ui

N∑
j=1

νij∇(wij ∗ uj)
)
, (1.12)

which are of similar forms as (1.41.4) and (1.51.5). When u < 0, h(u) = 0 and the main parts of the
models vanish, reducing to the simple classic heat equation

∂tui = di∆ui.
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For these biological models, we are mainly concerned with the issue of unique identifiability
of the associated inverse problems, as discussed in the previous subsection. In terms of unique
identifiability, recovering the diffusion coefficient d poses different challenges compared to recov-
ering the advection coefficients and integral interaction kernels. In wave equations, the unique
identifiability of the coefficient preceding the Laplace operator, which represents the wave speed
in a medium, has been extensively studied. In these case, the Laplace transform is commonly
applied to the entire equation to solve the problem [3333]. This transform results in a Helmholtz
equation, which has well-known solutions allowing for the unique determination and recovery of
the wave speed. However, this direct approach does not work for the equations (1.61.6) and (1.71.7).
Furthermore, the standard method for elliptic operators using the Liouville transform is also
not applicable to parabolic operators due to the absence of easy cancellation of factors after the
transformation, particularly involving the time derivative term.

In this regard, the method proposed in [1616] offers us a new idea, where the nonlinear coef-
ficient inverse problem is found to be equivalent to solving a linear Fredholm integral equation
of the first kind. Building upon this idea, in this work, we develop a groundbreaking technique,
which we call the transformative asymptotic method, to address this problem. This method offers
a fresh and innovative perspective on solving the problem and is capable of recovering scenarios
with uniform diffusion rates for all species (d = (d, . . . , d)) or varying diffusion rates for each
species (d = (d1, . . . , dN )). It is important to note, however, that this method is specifically
applicable only in two-dimensional spaces. Nevertheless, our technique can be easily extended
to encompass a broader range of operators, including operators in divergence form, through a
straightforward expansion of the operator.

Simultaneously, it is important to acknowledge that our work aims to recover functions k
and w that are involved in complex convolution and difference operators. Furthermore, the
main part of the models is also of second-order. These unique forms introduce disturbances and
set our models apart from those discussed in [2727, 2828, 3434]. However, by leveraging the properties
of convolution in our proof, we are able to effectively address this challenge.

Another point worth mentioning is that our work is the first research addressing the unique
identifiability issues for inverse problems of mathematical biology models based on multi-
population systems, for any finite number of populations. This aligns more closely with the
physical background of complex ecosystems which are composed of numerous species. For in-
stance, ecosystems such as rainforests, deserts, and snow-capped mountains composed of multiple
populations intricately interacting together, and it is impossible and physically meaningless to
isolate and study individual organisms or pairs of organisms within these environments.

In summary, we outline the major contributions of this work:

(1) Firstly, we considered the inverse problem for a complex high order multi-population aggre-
gation system, which has numerous applications in biological ecosystems. Furthermore, the
model involves a function h(u) which ensures non-negativity of the solutions.

(2) Secondly, we derived the unique identifiability result for the diffusion coefficients in the
model, using a completely novel method known as the transformative asymptotic technique.
To the best of our knowledge, this is the first work that attempts to recover the diffusion
coefficient in parabolic-type equations with periodic boundary conditions.

(3) Thirdly, we obtained uniqueness results for the advection coefficients and interaction terms,
which are involved in the higher order part of the operator. We made use of the high-order
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variation method, which has only been introduced recently, to ensure the non-negativity of
the solutions, thereby maintaining that our results are physically realistic.

The remaining sections of the paper are structured as follows. Section 22 provides an intro-
duction to the notation used, presents preliminary results related to the forward problems, and
states the main results of the paper. In Section 33, we offer a concise overview of the high-order
variation method. The recovery of the diffusion coefficient d is addressed in Section 44, while the
recovery for the advection coefficients and integral interaction kernels are presented in Section 55
and Section 66, respectively for the models (1.61.6) and (1.71.7), as well as their respective applications.

2 PRELIMINARIES AND STATEMENT OF MAIN
RESULTS

2.1 Notations and basic settings

We consider the multi-population mathematical biology models on the n-dimensional torus Tn,
whereon any function defined should be (1, 1, . . . , 1)-periodic with respect to x. To be specific,
for each xi (i = 1, 2, . . . , n), the function would be 1-periodic.

Let N be the set of all non-negative integers. For a n-dimensional multi-index α =
(α1, . . . , αn) ∈ Nn and x = (x1, . . . , xn) ∈ Rn, we have the following notations:

Dα = ∂α1
x1
∂α2
x2

· · · ∂αn
xn

, α! = α1!α2! · · ·αn!, |α| =
n∑

i=1

αi.

Then for k ∈ N and α ∈ (0, 1), we define the Hölder space Ck+α(Tn) as the subspace of
Ck(Tn), in which the function has k derivatives which are α-Hölder continuous for all |α| ≤ k.
The norm is defined as

∥u∥Ck+α(Tn) :=
∑
|α|≤k

∥Dαu∥L∞(Tn) +
∑
|α|=k

sup
x ̸=y

|Dαu(x)−Dαu(y)|
|x− y|α

. (2.1)

For functions depending on both the time and space variables, we define its space as

Ck+α, k+α
2 (Tn). Denote Q := Tn × [0, T ], we say that a function u ∈ Ck+α, k+α

2 (Q) if Dα∂j
t u

exists and is d-Hölder continuous with exponent α in the space variable and exponent k+α
2 in

the time variable for all α ∈ Nn, j ∈ N, with |α|+ 2j ≤ k. The norm of Ck+α, k+α
2 (Q) is defined

as

∥u∥
Ck+α, k+α

2 (Q)
:=

∑
|α+2j|≤k

∥Dα∂j
t u∥L∞(Q) +

∑
|α|+2j=k

sup
(x,t)̸=(y,s)

|u(x, t)− u(y, s)|
|x− y|α + |t− s|

α
2

. (2.2)

Since the functions we will be treating are vector-valued in multi-population systems, the
Hölder norm of u = (u1, u2, . . . , uN ) is defined as

∥u∥Ck+α(Tn) :=
N∑
i=1

∥ui∥Ck+α(Tn),

∥u∥
Ck+α, k+α

2 (Q)
:=

N∑
i=1

∥ui∥
Ck+α, k+α

2 (Q)
.

(2.3)
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2.2 Well-posedness of the forward problem

This subsection aims to discuss the well-posedness of multiple initial-boundary value problems
for semi-linear parabolic equations. First, we present a well-posed situation for (1.61.6).

Lemma 2.1 (Theorem 5.1 of [4040]). Consider the system{
∂tu = d∆u−∇ ·

(
µµµu
(

x
|x|K(x) ∗ u(x, t)

))
, in Q,

u(x, 0) = f(x), in Tn,
(2.4)

where d = dIN for constant d and N ×N -identity matrix IN . Assume:
(L1) for p ≥ 1, let fi(x) ∈ Xp := C0(Tn) ∩ L∞(Tn) ∩ Lp(Tn) be non-negative for f =

(f1, . . . , fN );
(L2) K ∈ L1(Tn), K ≥ 0.

Then there exists a unique, classical, global solution u = (u1, . . . , uN ) such that, for all i =
1, . . . , N ,

ui ∈ C0([0,∞);Xp) ∩ C2,1(BR(0)× (0,∞)),

for a small ball BR(0) about the origin.

We observe that the assumptions and model stated here are slightly different from those
given in [4040], where the authors consider a semilinear function g(u) in the convolution product,
which is approximately linear up to a certain bounded density and becomes zero beyond which.
This condition finds its roots in the biological context, where it signifies the spatial limitations
or saturation of receptors. It aligns with our natural expectations, as physical or biological
constraints would naturally give rise to a bound. However, in this work, we only consider the
solutions u near 0, as seen from the method of higher order variation. Therefore, it suffices for
us to consider a specific case of the result of [4040], taking u directly in (2.42.4) instead of using g(u).

Practically, this model is usually used to describe the cell–cell adhesion. The conditions
outlined in Lemma 2.12.1 capture the phenomenon wherein cells within a certain proximity exhibit
strong adhesive forces, while cells beyond this range experience minimal adhesion. This model is
particularly valuable for simulating scenarios where cell adhesion is confined to specific physical
boundaries or contact regions.

Similarly, there is a well-posedness result for the case of (1.71.7).

Lemma 2.2 (Corollary 5.1 of [4040]). Consider the model{
∂tu = d∆u+∇ · (u∇ννν(W ∗ u)), in Q,

u(x, 0) = f(x), in Tn,
(2.5)

where ννν > 0, d satisfies the same conditions as Lemma 2.12.1, and the potential W (|r|) is a function
of the distance of the interaction |r| = |y − x|.

Assume for all i = 1, . . . , N :
(I1) for p ≥ 1, let fi(x) ∈ Xp := C0(Tn) ∩ L∞(Tn) ∩ Lp(Tn) ∩ C2+α(Tn) be non-negative;
(I2) Wi(|r|) ∈ L∞ and Wi(|r|) has compact support inside a ball BR(0);
(I3) There exists a scalar function wi(|r|) such that ∇Wi(|r|) = r

|r|wi(|r|) where wi(|r|) ∈
L1(Tn) and wi(|r|) ≥ 0.
Then there exists a unique, classical, global solution u = (u1, . . . , uN ) such that, for each ui,

ui ∈ C0([0,∞);Xp) ∩ C2,1(Br(0)× (0,∞)).
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It is apparent that Lemma 2.22.2 can be easily derived from Lemma 2.12.1 by substituting r
|r|K(r)

with ∇W. This substitution leads to the emergence of condition (I3), which is notably more
restrictive. This condition mandates that the drift is consistently directed towards the origin,
with the origin representing the position of the probing individual. Consequently, the forces
within a group are consistently attractive, giving rise to the observable phenomena exhibited
by social animals. For example, hyenas within a clan tend to exhibit cohesive behavior, with
individuals often staying close together and coordinating their actions. When hunting, hyenas
work together in a coordinated manner to pursue and capture prey by communicating with
vocalizations and visual signals. Under this arrangement, they enhance their hunting success,
protect their territory, and strengthen their overall social structure.

Remark 2.3. It is challenging to arrive at a general conclusion regarding the well-posedness
of the models (1.61.6) and (1.71.7), and it is apparent that the aforementioned two lemmas represent
two specific instances for them respectively. However, we are aware that solutions must exist
for (1.61.6) and (1.71.7) based on their physical significance. In subsection 2.32.3, we will make direct
assumptions for these models and present our main theorems. Lemma 2.12.1 and Lemma 2.22.2 are
treated as distinct applications of the unique identifiability problem, and their proofs are included
at the end of the respective proofs for the two main models.

2.3 Statement of main results

Having discussed the associated forward problems, in this section, we present our main results
for the inverse problems, which demonstrates that under generic conditions, we can uniquely
recover the diffusion coefficients d from the measurement map M+

d for systems (1.61.6) and (1.71.7).
Additionally, for the system (1.61.6), we can recover the advection coefficient µµµ and the normaliza-
tion constant of the integral kernel k from the measurement map M+

µµµ,k. On the other hand, for
the system (1.71.7), we are able to obtain a stronger result and establish the unique identifiabil-
ity of the advection coefficient ννν and the integral kernel w from the measurement map M+

ννν,w.
Finally, we apply these results to verify the uniqueness of systems (2.42.4) and (2.52.5) at the end of
this subsection.

We start by restating the nonlinear system of equations of (1.61.6) and (1.71.7) for l = 1, 2 as:∂tu
l
i = dli∆uli +∇ ·

(
h(uli)

N∑
j=1

µl
ij(k

l
ij ∗ ulj)

)
, in Q,

uli(x, 0) = f l
i (x), in Tn,

(2.6)

and ∂tu
l
i = dli∆uli +∇ ·

(
h(uli)

N∑
j=1

νlij∇(wl
ij ∗ ulj)

)
, in Q,

uli(x, 0) = f l
i (x), in Tn.

(2.7)

First, we present the result for the diffusion coefficient d.

Theorem 2.4. Suppose n = 2. Assume that the system (2.62.6) has a solution uli ∈ C1+α
2
,2+α(Q)

for i = 1, . . . , N for l = 1, 2 respectively. Let M+
dl be the associated measurement map for l = 1, 2

as defined in (1.81.8). If for any f l ∈ C2+α(T2), one has M+
d1(f

1) = M+
d2(f

2), then it holds that
d1(x) = d2(x) for x ∈ ω ⋐ T2.
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Similarly, if the system (2.72.7) has a solution uli ∈ C1+α
2
,2+α(Q) and M+

dl is the associated

measurement map for l = 1, 2, and for any f l ∈ C2+α(T2), one has M+
d1(f

1) = M+
d2(f

2), then
it holds that d1(x) = d2(x) for x ∈ ω ⋐ T2.

A natural corollary for this result is the following:

Corollary 2.5. Suppose n = 2. Assume that the system (2.62.6) has a solution uli ∈ C1+α
2
,2+α(Q)

for i = 1, . . . , N for l = 1, 2 respectively. Let M+
dl be the associated measurement map for l = 1, 2

as defined in (1.81.8). If for any f l ∈ C2+α(T2) and dl analytic in x, one has M+
d1(f

1) = M+
d2(f

2),
then it holds that d1(x) = d2(x) for x ∈ T2.

Similarly, if the system (2.72.7) has a solution ul ∈ C1+α
2
,2+α(Q) and M+

dl is the associated

measurement map for l = 1, 2, and for any f l ∈ C2+α(T2) and dl analytic in x, one has
M+

d1(f
1) = M+

d2(f
2), then it holds that d1(x) = d2(x) for x ∈ T2.

Next, for any n ∈ N, we give the unique identifiability conclusion for the advection coefficient
µµµ and the normalization constant k:

Theorem 2.6. Suppose that the system (2.62.6) has a solution uli ∈ C1+α
2
,2+α(Q) for i = 1, . . . , N .

Let M+
µµµl,kl be the measurement map associated for l = 1, 2 as defined in (1.91.9).

For any f l ∈ C2+α(Tn), if M+
µµµ1,k

(f1) = M+
µµµ2,k

(f2), then µµµ1 = µµµ2, assuming that the normal-
ization constant of k is known and non-zero and d is independent of x.

Conversely, suppose d is independent of x. If we have knowledge of the non-zero µµµ, then
for any f l ∈ C2+α(Tn), M+

µµµ1,k1(f
1) = M+

µµµ2,k2(f
2) implies that the normalization constants of k1

and k2 are the same, i.e.,

n∑
j=1

∫
Tn

d

dxj
k1
pq,j(x− y)dy =

n∑
j=1

∫
Tn

d

dxj
k2
pq,j(x− y)dy, ∀p, q = 1, . . . , N, in Q.

Similarly, we have the unique identifiability conclusion for the advection coefficient ννν and
the integral kernel w:

Theorem 2.7. Suppose that the system (2.72.7) has a solution uli ∈ C1+α
2
,2+α(Q) for i = 1, . . . , N .

Let M+
νννl,wl be the measurement map associated for l = 1, 2 as defined in (1.91.9).

Then, for any f l ∈ C2+α(Tn), M+
ννν1,w1(f

1) = M+
ννν2w2(f

2) implies that ννν1 = ννν2, assuming that
w is known and non-trivial.

Conversely, if we have knowledge of ννν, then for any f l ∈ C2+α(Tn), M+
ννν1,w1(f

1) =

M+
ννν2,w2(f

2) implies that w1 = w2 in Q.

Remark 2.8. It is important to note that symmetry is not required for µµµ,ννν,k or w. Also, the
recovery of µµµ and k, and ννν and w are not simultaneous.

Moreover, in the specific cases outlined in Lemma 2.12.1 and Lemma 2.22.2 where well-posedness
holds, the above theorems hold, and we have the following results:

Corollary 2.9. Consider the system{
∂tu

l = dl∆ul −∇ ·
(
µµµlul

(
x
|x|K

l(x) ∗ ul(x, t)
))

, in Q,

ul(x, 0) = f l(x), in Tn,
(2.8)
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for l = 1, 2 which satisfy the conditions (L1,L2).
Let M+

dl and M+
µµµl,Kl be the measurement maps associated to (2.82.8) for l = 1, 2 respectively.

The unique identifiability conclusions are as follows:
(I) If M+

d1(f
1) = M+

d2(f
2), then d1 = d2.

(II) Given that the normalization constant for K is known and non-zero, if M+
µµµ1,K1(f

1) =

M+
µµµ2,K2(f

2), then it holds that µµµ1 = µµµ2.

(III) Given an advection coefficient µµµ, if M+
µµµ1,K1(f

1) = M+
µµµ2,K2(f

2), then it holds that the

normalization constants for K1 and K2 are identical.

Corollary 2.10. Suppose Wl (l = 1, 2) satisfy (I2, I3). Consider the systems{
∂tu

l = dl∆ul +∇ · (ul∇νννl(Wl ∗ ul)), in Q,

ul(x, 0) = f l(x), in Tn,
(2.9)

where f l satisfies (I1). Let M+
dl and M+

νννl,Wl be the measurement maps associated to (2.92.9) for
l = 1, 2 respectively. The unique identifiability conclusions are as follows:
(I) If M+

d1(f
1) = M+

d2(f
2), then it follows that d1 = d2.

(II) Given the knowledge of the non-trivial function W, if M+
ννν1,W1(f

1) = M+
ννν2,W2(f

2), then it

holds that ννν1 = ννν2.
(III) Given a non-zero advection coefficient ννν, if M+

ννν1,W1(f
1) = M+

ννν2,W2(f
2), then it holds that

W1 = W2.

3 HIGH-ORDER VARIATION METHOD

In this section, we discuss the high-variation method to address the positivity constraint
on the biology models. As we will see later from the proofs of the theorems, we only need to
execute the linearization process to the second-order in order to uniquely recover the integral
kernels k and w. Furthermore, the high-order variation method is a relatively novel approach
aimed at guaranteeing non-negativity in physical models and simplifying nonlinear models into
linear forms. This work represents the first attempt in employing the multi-variation technique
for interacting population systems, to our best knowledge. An intriguing aspect is that the
incorporation of the function h(u) provides an alternative means of preserving the non-negativity
of the solutions, while also allowing for the direct application of the multi-variation technique
in the models.

Consider the systems (1.61.6) and (1.71.7). For any known solution u0, consider a small-enough
positive constant ε. Then, we can expand the function f(x, t; ε) as:

f(x; ε) = u0 + εf1(x) +
1

2
ε2f2(x) + f̃(x; ε), (3.1)

where f1, f2 ∈ [C2+α(Tn)]N , and f̃(x; ϵ) satisfies

1

|ε|3
∥f̃(x; ϵ)∥[C2+α(Tn)]N =

1

|ε|3
∥f(x; ε)− u0 − εf1(x)−

1

2
ε2f2(x)∥[C2+α(Tn)]N → 0

uniformly in ε. When u0 = 0, we ask f1 ≥ 0, thus f maintains non-negativity as ε → 0.

12



Now, we define the first-order variation form for each i = 1, . . . , N . Let S be the solution
operator of (1.61.6) or (1.71.7) with respect to f . We assume that there exists a bounded linear
operator A from C2+α(Tn) to [C1+α

2
,2+α(Q)]N such that

lim
∥f∥C2+α(Tn)→0

∥S(f)− S(u0)−A(f)∥
[C1+α

2 ,2+α(Q)]N

∥f∥C2+α(Ω)
= 0. (3.2)

Then for fixed f1, A(f)|ε=0 is the solution map for the first-order variation system:{
∂tu

(I)
i − di∆u

(I)
i = 0, in Q,

u
(I)
i (x, 0) = fi,1(x), in Tn,

(3.3)

where i = 1, 2, . . . , N , for both (1.61.6) and (1.71.7). Here, we define

u(I)(x, t) = (u
(I)
1 (x, t), . . . , u

(I)
N (x, t)) := A(f)|ε=0. (3.4)

For notational simplicity, we write

u
(I)
i (x, t) := ∂εui(x, t; ε)|ε=0. (3.5)

These first order linearization equations allow us to recover the unknown diffusion coefficients
d, by examining the corresponding systems for each species independently.

Next, we define the second-order variation for u = (u1, . . . , uN ) as:

u
(II)
i := ∂2

εui|ε=0 for i = 1, . . . , N. (3.6)

And the second-order variation system of (1.61.6) is:∂tu
(II)
i = di∆u

(II)
i −∇ ·

[
u
(I)
i

N∑
j=1

µij(kij ∗ u(I)j )

]
, in Q,

u
(II)
i (x, 0) = 2fi,2(x), in Tn,

(3.7)

for i = 1, 2, . . . , N.
Meanwhile, we have the second-order variation system of (1.71.7) as:∂tu

(II)
i = di∆u

(II)
i −∇ ·

[
u
(I)
i

N∑
j=1

νij∇(wij ∗ u(I)j )

]
, in Q,

u
(II)
i (x, 0) = 2fi,2(x), in Tn,

(3.8)

for i = 1, 2, . . . , N.
Using the second-order variation system for each ui(x, t), we can address the issue of identifia-

bility for the advection coefficients µij , νij , the normalization constants
n∑

j=1

∫
Tn

d
dxj

kpq,j(x−y)dy,

and integral kernel wij individually.
In (3.73.7) and (3.83.8), f2 is given arbitrarily no matter what the initial value u0 is, since the

positivity of u is guaranteed by the positivity of f1. Moreover, we shall see that the nonlinear
terms in the above two systems depend only on the solution of the first order linearization system
(3.33.3).
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Remark 3.1. Our method is more versatile than the method of high-order linearization used
in [3232], where an input of the form

g(x; ε) =
m∑
j=1

εjgj(x)

is considered. Indeed, firstly, our method ensures the non-negativity of the solutions by taking
f1 ≥ 0 if u0 = 0. Secondly, our method only gives rise to one system of equations at each
order of linearization, which is much simpler than the m!

(m−k)!k! equations at the k-th order of
linearization for the high-order linearization method.

4 RECOVERY OF DIFFUSION COEFFICIENTS d in
THEOREM 2.42.4

In this section, we present the proof of Theorem 2.42.4. We will apply a transformative asymp-
totic technique for the recovery of d. This approach is novel and pioneering, and, to the best of
our knowledge, our work is the first research that attempts to recover the diffusion coefficient
for parabolic systems with periodic boundary conditions.

We begin by recalling the high order variation method from the previous section, and apply-
ing it to our models. We first observe that u = 0 a trivial solution to (1.61.6) and (1.71.7). Therefore,
we have the following expansion of u(x, t; ε) for l = 1, 2:

ul(x, t; ε) = εul(I)(x, t) +
1

2
ε2ul(II)(x, t) + ũl(x, t; ε), (4.1)

where we have omitted the higher-order terms for simplicity. Here, ũl(x, t; ϵ) satisfies

1

|ε|3
∥ũl(x, t; ϵ)∥

[C1+α
2 ,2+α(Q)]N

=
1

|ε|3
∥ul(x, t; ε)− εul(I)(x, t)− 1

2
ε2ul(II)(x, t)∥

[C1+α
2 ,2+α(Q)]N

→ 0

uniformly in ε. By asking f1 ≥ 0, the systems (1.61.6) and (1.71.7) are reduced to∂tu
l
i = dli∆uli +∇ ·

(
uli

N∑
j=1

µl
ij(k

l
ij ∗ ulj)

)
, in Q,

uli(x, 0) = f l
i (x), in Tn,

(4.2)

∂tu
l
i = dli∆uli +∇ ·

(
uli

N∑
j=1

νlij∇(wl
ij ∗ ulj)

)
, in Q,

uli(x, 0) = f l
i (x), in Tn,

(4.3)

with

kl
ij ∗ ulj =

∫
Tn

kl
ij(x− y)ulj(y)dy,

wl
ij ∗ ulj(x) =

∫
Tn

wl
ij(x− y)ulj(y)dy,

respectively for l = 1, 2, and i = 1, 2, . . . , N . Through this setting, we can always ensure the
non-negativity for u.
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We implement the first-order multi-variation to (4.24.2) and obtain an initial value problem of
the type (3.33.3) for each i ∈ {1, . . . , N}. For simplicity, we omit the subscripts i denoting each
species, since the proof processes are similar. From the first order linearization, we obtain{

∂tu
(I) − d∆u(I) = 0, in Q,

u(I)(x, 0) = f1(x), in Tn.
(4.4)

To recover the unknown coefficients d, we transform (4.44.4) into an equivalent system of unique
solvable linear integral equation for it. We will prove the uniqueness of d for n = 2.

For p ∈ C+, we denote ũ(x, p) =
∫∞
0 u(x, t)e−ptdt as the Laplace transform of u(x, t) for any

p. Then (4.44.4) implies that(
p

d(x)
− p

)
ũ(x, p) + pũ(x, p)−∆ũ(x, p) = f1(x), in Q. (4.5)

It is known that the Green’s function for the Laplace operator −∆+ p is given, in R2, by

G(x, r, p) =
1

2π
K0(

√
p|x− r|), | arg p| < π, (4.6)

where K0(z) is the Macdonald function, which has the representation

K0(
√
p|x− r|) = 1

2
ln p+ γ + ln

|x− r|
2

+
|x− r|2

8
p ln p+

|x− r|2

4
p ln

|x− r|
2

+
(γ − 1)|x− r|2

4
p

K0(z) = −
(
ln

z

2
+

z2

4
ln

z

2
+ γ +

(γ − 1)z2

4

)
+O(|z|3) (4.7)

as z → 0, where γ = 0.5772 . . . is the Euler-Mascheroni constant. Then, we can rewrite (4.54.5)
into:

ũ(x, p) =

∫
T2

G(x, r, p)f1(r) dr − p

∫
T2

G(x, r, p)ũ(r, p)

(
1

d(r)
− 1

)
dr. (4.8)

Let Sρ be a circle such that T2 ⊂ Sρ. Then

ũ(x, p) + p

∫
Sρ

G(x, r, p)ũ(r, p)

(
1

d(r)
− 1

)
dr =

∫
Sρ

G(x, r, p)fi,1(r) dr. (4.9)

Since p is arbitrary, we can take p ∈ S+
ε where S+

ε = {p ∈ C : |p| ≤ ε,Re p > 0} for any
ε < 1. Then we divide both sides of (4.94.9) by ln p. Denoting ṽ(x, p) = (ln p)−1ũ(x, p), we obtain
the following equation:

ṽ(x, p) + p

∫
Sρ

G(x, r, p)ṽ(r, p)

(
1

d(r)
− 1

)
dr =

1

ln p

∫
Sρ

G(x, r, p)f1(r) dr. (4.10)

We introduce the operator Bp : L
2(Sρ) → L2(Sρ),

(Bpw)(x) =

∫
Sρ

pG(x, r, p)

(
1− 1

d(r)

)
w(r) dr, (4.11)
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where x ∈ Sρ, p ∈ S+
ε . By the continuity of d, we know that Bp is completely continuous for all

p ∈ S+
ε and ∥Bp∥ = O(|p|| ln p|) for all small enough ε. Moreover, ∥Bp∥ < 1. Viewing the left

hand side of (4.94.9) as (I −Bp)ũ, we can obtain

ṽ(x, p) = (I −Bp)
−1g(x, p) = (I +Bp +B2

p + · · · )g(x, p), (4.12)

where

g(x, p) = − 1

2π

∫
Sρ

[
1

2
+

γ

ln p
+

1

ln p
ln

|x− r|
2

+
|x− r|2

8
p+

|x− r|2

4

p

ln p
ln

|x− r|
2

+
(γ − 1)|x− r|2

4

p

ln p

]
f1(r) dr +O(|p|3/2 ln−1 p)

=: g0(x, p) +O(|p|3/2 ln−1 p)

using the representation (4.74.7).
Therefore, we can represent

ṽ(x, p) = g0(x, p) +
p ln p

4π2

(
1

2
+

γ

ln p

)2 ∫
T2

(
1− 1

d(r)

)
dr

∫
T2

f1(s) ds

+
p

4π2

(
1

2
+

γ

ln p

)∫
T2

ln
|x− r|

2

(
1− 1

d(r)

)
dr

∫
T2

f1(s) ds

+
p

4π2

(
1

2
ln p+ γ

)
1

ln p

∫
T2

∫
T2

(
1− 1

d(r)

)
ln

|r − s|
2

f1(s) dr ds

+
p

4π2 ln p

∫
T2

∫
T2

ln
|x− r|

2

(
1− 1

d(r)

)
ln

|r − s|
2

f1(s) dr ds+O(|p|3/2 ln−1 p)

Assuming that ϵ < exp(−2γ), we can divide both sides by p ln p
4π2

(
1
2 + γ

ln p

)2
, and conduct a

power series expansion in terms of the small parameter (ln p+ 2γ)−1 to obtain

h(x, p) =
ṽ(x, p)− g0(x, p)

p ln p
4π2

(
1
2 + γ

ln p

)2
=

∫
T2

(
1− 1

d(r)

)
dr

∫
T2

f1(s) ds

+
2

ln p+ 2γ

∫
T2

ln
|x− r|

2

(
1− 1

d(r)

)
dr

∫
T2

f1(s) ds

+
2

ln p+ 2γ

∫
T2

∫
T2

(
1− 1

d(r)

)
ln

|r − s|
2

f1(s) dr ds

+
4

(ln p+ 2γ)2

∫
T2

∫
T2

ln
|x− r|

2

(
1− 1

D(r)

)
ln

|r − s|
2

f1(s) dr ds+O(|p|1/2).

(4.13)

By letting p → 0, we obtain a linear Fredholm integral equation of the first kind, for deter-
mining d(x):

H2(x) = lim
p→0

(ln p+ 2γ)2
[
h(x, p)−H0(x, p)−

H1(x, p)

ln p+ 2γ

]
= 4

∫
T2

∫
T2

ln
|x− r|

2

(
1− 1

d(r)

)
ln

|r − s|
2

f1(s) dr ds,

(4.14)
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where

H0(x, p) = lim
p→0

h(x, p) =

∫
T2

(
1− 1

d(r)

)
dr

∫
T2

f1(s) ds (4.15)

and

H1(x, p) = lim
p→0

(ln p+ 2γ) [h(x, p)−H0(x, p)]

= 2

∫
T2

∫
T2

(
1− 1

d(r)

)[
ln

|x− r|
2

f1(s) ds+ ln
|r − s|

2
f1(s) ds

]
dr.

(4.16)

Since these limits exist and can be computed from the data without knowing d(x) for given
inputs f1(x), we can determine d(x) from (4.144.14)–(4.164.16), from the measurement of u ∈ ω ⋐ T2.
In the particular case when we can choose f1(x) to be the delta function δ(x − q) for some
q ∈ T2, (4.144.14) becomes

H2(x) = 4

∫
T2

ln
|x− r|

2

(
1− 1

d(r)

)
ln

|r − q|
2

dr. (4.17)

Then, since the terms ln |x−r|
2 , ln |x−r|

2 are harmonic functions, by the density of the harmonic
functions, we uniquely determine 1 − 1

d(x) , and therefore uniquely determine d(x) for h(x, p)

known by measurement for x ∈ ω ⋐ T2. This applies to every species i for i = 1, . . . , N .
The remainder of the proof for d follows by noting that the first-order variation system of

(4.34.3) is identical to (4.44.4). Therefore, we can repeat the above proof for the recovery of d in
(4.34.3).
Remark 4.1. It should be noted that one is unable to uniquely determine d(x) from (4.144.14)–(4.164.16)
for general f1(x). For more details, refer to Theorem 2 of [2525].

Remark 4.2. Note that it is possible to add and subtract terms of the form pkũ(x, p) in (4.54.5)
for any k ≥ 1. In particular, one can take k = 2 to obtain an expansion similar to that of [1616].

Remark 4.3. It is important to note that our proof allows for more general parabolic-type
operators even with higher order terms, as in [1616] for the case of the wave equation. Yet, an
intriguing aspect to note is this transformative asymptotic technique only works in the case of
n = 2, since it relies on the asymptotic expansion of the Green’s function for −∆+ p in R2, so
that the operator norm of Bp is small for small p. This does not hold in dimensions n ≥ 3, and
the inverse problem of recovery of the diffusion coefficient remains open, even in the simple case
of the heat equation.

Finally, we prove the simple extension in Corollary 2.52.5 where we are able to recover d in the
entire domain T2.

Proof of Corollary 2.52.5. The corollary follows easily by the analyticity of dl, by extending the
result from the uniqueness of d in open compact subsets ω ⋐ T2.

5 RECOVERY OF THE ADVECTION COEFFICIENT µµµ
AND THE NORMALIZATION CONSTANT OF k IN

THEOREM 2.62.6 AND COROLLARY 2.92.9

In this section, we recover the advection coefficient µµµ and the normalization constant of k in
(1.61.6), using the higher-order variations. We will consider the general case of n-dimensions.

17



5.1 Unique recovery for the Theorem 2.62.6

First, we consider the first-order variation system for l = 1, 2 and i = 1, . . . , N .{
∂tu

l(I)
i − di∆u

l(I)
i = 0, in Q,

u
l(I)
i (x, 0) = f l

i,1(x), in Tn.
(5.1)

Let ū
(I)
i = u

1(I)
i − u

2(I)
i . When M+

µµµ1,k1(f
1) = M+

µµµ2,k2(f
2), we obtain{

∂tū
(I)
i − di∆ū

(I)
i = 0, in Q,

ū
(I)
i (x, 0) = 0, in Tn.

(5.2)

By the uniqueness of solution of the heat equation, (5.25.2) only has the trivial solution. Thus we
have

u1(I)(x, t) = u2(I)(x, t) =: u(I)(x, t). (5.3)

Next, we give the second-order variation system for (4.24.2):∂tu
l(II)
i = di∆u

l(II)
i −∇ ·

[
u
(I)
i

N∑
j=1

µl
ij(k

l
ij ∗ u

(I)
j )

]
, in Q,

u
l(II)
i (x, 0) = 2f l

i,2(x), in Tn.

(5.4)

Recovery of the advection coefficient µµµ Assume that the normalization constant of
the integral kernel k is given and non-zero. To begin, we first recover the advection coefficients
µ11, µ22, . . . , µNN . Using different inputs of f1 for each coefficient µii, we select a suitable u(I)

such that u(I)(x, t) = (0, . . . , 1, . . . , 0) is non-trivial only for the i-th species. Here, we take the
scenario where i = 1 as an example, and the remaining µii (i = 2, . . . , N) can be identified using
a similar approach.

Let û
(II)
1 = u

1(II)
1 − u

2(II)
1 , µ̂11 = µ1

11 − µ2
11. Taking u(I)(x, t) = (1, 0, . . . , 0), we obtain from

(5.45.4) that û
(II)
1 satisfies{

∂tû
(II)
1 = d1∆û

(II)
1 −∇ ·

[
µ̂11

∫
Tn k11(x− y)dy

]
, in Q,

û
(II)
1 (x, 0) = 0, in Tn,

(5.5)

if M+
µµµ1,k1(f

1) = M+
µµµ2,k2(f

2). One may see the term
N∑
j=1

µl
1j(k1j ∗ u(I)j ) only leaves µl

11(k11 ∗ u(I)1 )

as u
(I)
j = 0 for j = 2, . . . , N . Substituting u

(I)
1 = 1 to the convolution gives the equation in (5.55.5).

Let ω1 be the solution of −∂tω1 − d1∆ω1 = 0 in Q, multiply it on both sides of (5.55.5) and
apply integration by parts, yielding:∫

Q
−∇ ·

[
µ̂11

∫
Tn

k11(x− y)dy

]
ω1dxdt = 0. (5.6)

Substituting the CGO solution of ω1 = e
−|ξ1|2t− i√

d1
ξ1·x

into (5.65.6), we have∫
Tn

−∇ ·
[
µ̂11

∫
Tn

k11(x− y)dy

]
e
− i√

d1
ξ1·x

dx = 0. (5.7)
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By viewing the left hand side of (5.75.7) as the Fourier transform in x, to ensure (5.75.7), ∇ ·
[µ̂11

∫
Tn k11(x− y)dy] must be zero, which implies that

n∑
j=1

µ̂11

∫
Tn

d

dxj
k11,j(x− y)dy = 0. (5.8)

Since the normalization constant of k11 is assumed to be non-zero, we have µ̂11 = 0, that is

µ1
11 = µ2

11. (5.9)

Next, we recover the remaining advection coefficients µij for i ̸= j. We will show the case
when i = 1 and j = 2, and the other cases follow similarly. This time, we choose f1 such that
u(I)(x, t) = (1, 1, 0, . . . , 0), which is non-trivial only at the first and second positions. With this

configuration, the term
N∑
j=1

µl
1j(k1j ∗ u(I)j ) now simplifies to µ11(k11 ∗ u(I)1 ) + µl

12(k12 ∗ u(I)2 ). By

substituting u
(I)
1 = 1 and u

(I)
2 = 1 into the convolution, we obtain:{

∂tû
(II)
1 = d1∆û

(II)
1 −∇ · [µ̂11

∫
Tn k11(x− y)dy + µ̂12

∫
Tn k12(x− y)dy], in Q,

û
(II)
1 (x, 0) = 0, in Tn,

(5.10)

where û
(II)
1 = u

1(II)
1 −u

2(II)
1 once again, while µ̂ij = µ1

ij −µ2
ij for i = 1, j = 1, 2, if M+

µµµ1,k1(f
1) =

M+
µµµ2,k2(f

2).

Recall that we have already obtained the conclusion µ̂11 = 0 from the previous step in (5.95.9).
To proceed, we multiply the same ω1 from the previous step on both sides of (5.105.10) and apply
integration by parts, and similarly get∫

Q
−∇ ·

[
µ̂12

∫
Tn

k12(x− y)dy

]
ω1dxdt = 0. (5.11)

By substituting the CGO solution of ω1 to (5.115.11) and separating variables, we derive the
following equation: ∫

Tn

−∇ ·
[
µ̂12

∫
Tn

k12(x− y)dy

]
e
− i√

d1
ξ1·x

dx = 0. (5.12)

Once again, identifying the left hand side (5.125.12) with the Fourier transform in x, (5.125.12) is
equivalent to ∇ · [µ̂12

∫
Tn k12(x− y)dy] = 0. Since the normalization constant of k12 is non-zero,

we can conclude that µ̂12 = 0, which is

µ1
12 = µ2

12.

By considering u(I)(x, t) = (1, 0, . . . , 1, . . . , 0), which is non-trivial only at the first and j-th
(j = 3, 4, . . . , N) positions, we can repeat the aforementioned procedure and identify µ1j (j =
3, 4, . . . , N). Similarly, by choosing the initial value of u(I) such that u(I)(x, t) = (0, . . . , 1, . . . , 0),
which is non-trivial only at the i-th position, we can recover µii by repeating the first part of
this proof, with a different CGO solution of (−∂t − di∆)ωi = 0. Additionally, by modifying
u(I)(x, t) = (0, . . . , 1, . . . , 1, . . . , 0) to be non-trivial at the i-th (i = 2, 3, . . . , N) and the j-
th (j ̸= i) positions, we can recover µij (including µ21 when i = 2 and j = 1 which is not
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necessarily equal to µ12) making use of the CGO solution of ωi. By repeating this process, all
the advection coefficients µij (i, j = 1, . . . , N) can be uniquely identified. This leads us to the
conclusion

µµµ1 = µµµ2 (5.13)

when M+
µµµ1,k1(f

1) = M+
µµµ2,k2(f

2).
Recovery of the normalization constants k In this part, we consider the case where

all the advection coefficients µµµ are known and non-zero. We begin by focusing on the recovery
of kl

11 (l = 1, 2). By carefully selecting the input initial value function, we can choose u(I) as
(1, 0, . . . , 0), which is non-trivial only at the first position. Consequently, (5.45.4) can be expressed
as: {

∂tu
l(II)
1 = d1∆u

l(II)
1 −∇ · [µ11

∫
Tn k

l
11(x− y)dy], in Q,

u
l(II)
1 (x, 0) = 2f l

1,2(x), in Tn.
(5.14)

Let ū(II) = u1(II) − u2(II), k̄11 = k1
11 − k2

11. Meanwhile, from the given condition M+
µµµ1,k1 =

M+
µµµ2,k2 , we now obtain{

∂tū
(II)
1 = d1∆ū

(II)
1 −∇ · [µ11

∫
Tn k̄11(x− y)dy], in Q,

ū
(II)
1 (x, 0) = 0, in Tn.

(5.15)

Once again, suppose ω1 is the solution of −∂tω1 − d1∆ω1 = 0 in Q. Multiply both sides of
(5.155.15) by ω1 and perform integration by parts, resulting in:∫

Q
−∇ ·

[
µ11

∫
Tn

k̄11(x− y)dy

]
ω1dxdt = 0. (5.16)

We once again consider the CGO solution e
−|ξ1|2t− i√

d1
ξ1·x

for ω1. By substituting this solution
into (5.165.16), we can transform it into the following expression:∫

Tn

−∇ ·
[
µ11

∫
Tn

k̄11(x− y)dy

]
e
− i√

d1
ξ1·x

dx = 0. (5.17)

Denote (A) := ∇ · [µ11

∫
Tn k̄11(x − y)dy]. To ensure (5.175.17), (A) should equal to 0, which

indicates
n∑

j=1

µ11

∫
Tn

d

dxj
k̄11,j(x− y)dy = 0. (5.18)

The conclusion becomes evident. As the advection coefficient µ11 is known and non-zero,
the normalization constant of k̄11 must be zero. Consequently, we arrive at the following result:

n∑
j=1

∫
Tn

d

dxj
k1
11,j(x− y)dy =

n∑
j=1

∫
Tn

d

dxj
k2
11,j(x− y)dy. (5.19)

By employing a similar approach, we can also establish the uniqueness of the normalization
constants for k22,k33, . . . ,kNN in this way.

Next, by choosing u(I)(x, t) = (1, 1, 0, . . . , 0), which is non-trivial only on the first and second

places, we have the following equation for ū
(II)
1 and k̄12 := k1

12 − k2
12:{

∂tū
(II)
1 = d1∆ū

(II)
1 −∇ · [µ11

∫
Tn k̄11(x− y)dy + µ12

∫
Tn k̄12(x− y)dy], in Q,

ū
(II)
1 (x, 0) = 0, in Tn.

(5.20)
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Once more, we multiply both sides of (5.205.20) by the solution ω1 of (−∂t − d1∆)ω1 = 0 and
perform integration by parts. By substituting the CGO solution of ω1 and separating variables
for the integrals, we obtain the following equation:∫

Tn

−∇ ·
[
µ11

∫
Tn

k̄11(x− y)dy + µ12

∫
Tn

k̄12(x− y)dy

]
e
− i√

d1
ξ1·x

dx = 0. (5.21)

Denote (B) := ∇ · [µ11

∫
Tn k̄11(x − y)dy + µ12

∫
Tn k̄12(x − y)dy]. In order to satisfy (5.215.21),

the condition (B) = 0 must hold, indicating

n∑
j=1

µ11

∫
Tn

d

dxj
k̄11,j(x− y)dy +

n∑
j=1

µ12

∫
Tn

d

dxj
k̄12,j(x− y)dy = 0. (5.22)

Since we have already verified that the normalization constant of k̄11 is zero, and µ11 and
µ12 are given constants, (5.225.22) only involves the normalization constant for k̄12. Hence, it is
evident that

n∑
j=1

∫
Tn

d

dxj
k1
12,j(x− y)dy =

n∑
j=1

∫
Tn

d

dxj
k2
12,j(x− y)dy. (5.23)

Thus, we have successfully identified the normalization constant of k12. Following the re-
covery conclusion of k11, one can select u(I)(x, t) = (1, 0, . . . , 1, . . . , 0), which is non-trivial only
at the first and j-th (i = 3, 4, . . . , N) positions, to recover the normalization constant of k1j .

Similarly, considering the equation for u
(II)
i , it becomes evident that we can recover any kij

(i = 2, . . . , N ; j = 1, . . . , N) once we have recovered kii using the first part of this proof for k.
Thus, the identifiability process is complete.

5.2 Application to the case of Corollary 2.92.9

Corollary 2.92.9 can be directly derived from Theorem 2.42.4 and 2.62.6. Indeed,

Proof of Corollary 2.92.9. Based on Lemma 2.12.1, the system (2.82.8) possesses a unique, global, and
non-negative solution. Consequently, for any initial function satisfying (L1), the condition
M+

d1(f) = M+
d2(f) leads to d1 = d2. Moreover, for any f l that satisfies (L1) and has a known

non-zero normalization constant for K, the conditions specified in Corollary 2.92.9 align with the
prerequisites of Theorem 2.62.6. Then if M+

µµµ1,K1(f
1) = M+

µµµ2,K2(f
2), we can conclude that µµµ1 = µµµ2.

Conversely, if we know the non-zero advection coefficient µµµ and M+
µµµ1,K1(f

1) = M+
µµµ2,K2(f

2), then

the normalization constants for K1 and K2 are identical.

6 RECOVERY OF THE ADVECTION COEFFICIENT ννν
AND THE INTEGRAL KERNEL w IN THEOREM 2.72.7

AND COROLLARY 2.102.10

In this section, we will give the recovery of the advection coefficient ννν and the integral kernel w.
The proofs are similar to those in Section 55. We also verify the proof in the space Tn. Before
we begin, we give a crucial auxiliary lemma.
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Lemma 6.1. Consider
∂tu(x, t)− p∆u(x, t) = 0, in Q, (6.1)

where p = (p1, . . . , pN ) for constants pi, i = 1, . . . , N . Then there exists a sequence of periodic
solutions ui(x, t) to the system (6.16.1) such that ui(x, t) = eλitUi(x;λi) for some non-trivial λi ∈
Rn and Ui(x;λi) ∈ C2(Tn). In particular, Ui(x;λi) = eiξ·x with |ξ|2 = λi

pi
is not necessarily a

trivial function, and λi
pi

is its corresponding eigenvalue. Furthermore, there does not exist an
open subset T of Tn such that ∇Ui(x;λi) = 0 in T.

Proof. Let λi
pi

be an eigenvalue of the periodic Laplacian and Ui(x;λi) be its eigenfunction.
Then, Ui(x;λi) satisfies the equation

−∆Ui(x;λi) =
λi

pi
Ui(x;λi), in Q, (6.2)

It is obvious to see that ui(x, t) = eλitUi(x;λi) is a solution of (6.16.1). Furthermore, if we suppose
that there is an open subset T of Tn such that ∇Ui(x;λi) = 0 in T , then Ui(x, λi) is a constant
in T. Since Ui(x, λi) is any eigenfunction of ∆, we have a contradiction.

The proof is complete.

6.1 Unique recovery for the Theorem 2.72.7

With this lemma in hand, we can now proceed with the proof of Theorem 2.72.7. We observe
that the first order variation of (4.34.3) is in the form (5.15.1), and therefore, as in Section 5.15.1,
u1(I)(x, t) = u2(I)(x, t) =: u(I)(x, t) when M+

ννν1,w1(f
1) = M+

ννν2w2(f
2). By assuming each element

of ddd = (d1, d2, . . . , dN ) is a constant, it is apparent that the expression of u(I) in (5.25.2) satisfies
an equation of the form (6.16.1). Therefore, based on Lemma 6.16.1, there exist

λλλ = (λ1, λ2, . . . , λN ) ∈ Rn, U(x) =
(
U1(x), U2(x), . . . , UN (x)

)
∈ C2(Tn)

such that eλλλtU(x) satisfies equations for u(I)(x, t) in (5.15.1). And each u
(I)
i satisfies:

u
(I)
i (x, t) = eλitUi(x). (6.3)

In order to recover the advection coefficient ννν and the integral kernel w, it is necessary to
consider the following second-order variation system for (4.34.3):∂tu

l(II)
i = di∆u

l(II)
i −∇ ·

[
u
(I)
i

N∑
j=1

νlij∇(wl
ij ∗ u

(I)
j )

]
, in Q,

u
l(II)
i (x, 0) = 2f l

i,2(x), in Tn.

(6.4)

Recovery of the advection coefficient ννν The recovery process begins with the advection
coefficients on the diagonal {ν11, ν22, . . . , νNN}. Assuming that the integral kernel w is a known
non-trivial function, we can manipulate the input f1 such that u(I)(x, t) = (eλ1tU1(x), 0, . . . , 0),
where λ1 is a non-zero constant and U1(x) satisfies the Lemma 6.16.1. This choice results in the term
N∑
j=1

νl1j∇(w1j ∗ u(I)j ) simplifying to νl11∇(w11 ∗ u(I)1 ) as u
(I)
j = 0 for j = 2, . . . , N . Consequently,

(6.46.4) can be expressed as{
∂tu

l(II)
1 = d1∆u

l(II)
1 −∇ · [νl11u

(I)
1 ∇(w11 ∗ u(I)1 )], in Q,

u
l(II)
1 (x, 0) = 2f l

1,2(x), in Tn.
(6.5)
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Let û
(II)
1 = u

1(II)
1 −u

2(II)
1 , ν̂11 = ν111− ν211. Taking the difference of the equations for l = 1, 2

of (6.56.5), we obtain{
∂tû

(II)
1 = d1∆û

(II)
1 −∇ · [ν̂11u(I)1 ∇(w11 ∗ u(I)1 )], in Q,

û
(II)
1 (x, 0) = 0, in Tn.

(6.6)

Due to the property of convolution, we have

∇(w11 ∗ u(I)1 ) = w11 ∗ (∇u
(I)
1 ).

Let ω1 be the solution of −∂tω1 − d1∆ω1 = 0 in Q, if we multiply it on both sides of (6.66.6)
and perform integration by parts, we obtain∫

Q
−∇ · [ν̂11u(I)1 (w11 ∗ ∇u

(I)
1 )]ω1dxdt = 0. (6.7)

By substituting the CGO solution ω1 = e
−|ξ1|2t− i√

d1
ξ1·x

and the specific expression for
U1(x) = eiξ·x, where |ξ|2 = λ1

d1
as given in Lemma 6.16.1, into (6.76.7) and then separating vari-

ables, we obtain ∫
Tn

∫
Tn

∇ · [ν̂11eiξ·x(w11(y)iξe
iξ·(x−y))]e

− i√
d1

ξ1·x
dydx = 0. (6.8)

Expanding, this gives

0 =

∫
Tn

∫
Tn

∇ · [ν̂11eiξ·x(w11(y)iξe
iξ·(x−y))]e

− i√
d1

ξ1·x
dydx

=

∫
Tn

∫
Tn

n∑
j=1

(2iξj) · (iξj)ν̂11w11(y)e
iξ·(2x−y)e

− i√
d1

ξ1·x
dydx

= −2λ1

d1

∫
Tn

∫
Tn

ν̂11w11(y)e
iξ·(2x−y)e

− i√
d1

ξ1·x
dydx.

Separating out the integral in x, (6.86.8) is equal to:

2λ1

d1
ν̂11

∫
Tn

eiξ·(−y)w11(y)dy = 0. (6.9)

Since we know that λ1 is non-zero and w11 is a known non-trivial function, (6.96.9) implies that
ν̂11 = 0. In other words, we have

ν111 = ν211. (6.10)

Moving forward, our objective is to determine ν1j for j = 2, . . . , N . We select f1 such that
u(I)(x, t) = (eλ1tU1(x), . . . , e

λjtUj(x), . . . , 0), where the non-trivial values are only present in the

first and j-th positions. In this case, the term
N∑
j=1

νl1j∇(w1j ∗u(I)j ) simplifies to νl11∇(w11 ∗u(I)1 )+

νl1j∇(w1j ∗ u(I)j ). Consequently, (6.46.4) for l = 1, 2 can be expressed as{
∂tu

l(II)
1 = d1∆u

l(II)
1 −∇ · [νl11u

(I)
1 ∇(w11 ∗ u(I)1 ) + νl1j∇(w1j ∗ u(I)j )], in Q,

u
l(II)
1 (x, 0) = 2f l

1,2(x), in Tn.
(6.11)
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And the equation for û
(II)
1 is:{

∂tû
(II)
1 = d1∆û

(II)
1 −∇ · [ν̂11u(I)1 ∇(w11 ∗ u(I)1 ) + ν̂1ju

(I)
j ∇(w1j ∗ u(I)j )], in Q,

û
(II)
1 (x, 0) = 0, in Tn.

(6.12)

Having established that ν̂11 = 0, we can utilize the CGO solution of ω1 and the particular
solution of Uj to multiply both sides of (6.126.12) and subsequently employ integration by parts.
This leads to ∫

Tn

∫
Tn

∇ · [ν̂1jeiξ·x(w1j(y)iξe
iξ·(x−y))]e

− i√
d1

ξ1·x
dydx = 0. (6.13)

By simplification as done for ν11, this gives

2λj

dj
ν̂1j

∫
Tn

eiξ·(−y)w1j(y)dy = 0. (6.14)

Considering the non-zero value of λj and recognizing w1j as a non-trivial function, equation
(6.146.14) indicates that ν̂1j = 0. In other words, we can conclude that:

ν11j = ν21j , j = 2, . . . , N. (6.15)

So far, we have successfully determined the advection coefficients for ν1j (where j =
1, . . . , N). The remaining advection coefficients νij (where i = 2, . . . , N and j = 1, . . . , N)
can be obtained using a similar approach. We begin by establishing the uniqueness for νii by
selecting f1 such that u(I)(x, t) = (0, . . . , eλitUi(x), . . . , 0), which is non-trivial only at the i-th
position. Then, we modify f1 such that it becomes non-trivial at both the i-th and j-th posi-
tions, with the corresponding first order solutions being eλitUi(x) and eλjtUj(x). Consequently,
we arrive at the conclusion:

ννν1 = ννν2. (6.16)

Recovery of the integral kernel w In this part, we assume that all the advection coeffi-
cients are known and are assumed to be non-zero. Following a similar approach to the recovery
process of ννν, we select f1 such that u(I)(x, t) = (0, . . . , eλitUi(x), . . . , 0) (i = 1, . . . , N), which
is non-trivial only at the i-th position, in order to recover wii. The coefficient λi is a known
constant, and Ui(x) = eiξ·(x), |ξ|2 = λi

di
satisfies Lemma 6.16.1 for the equation (5.15.1). Consequently,

the term
N∑
j=1

νij∇(wl
ij ∗ u

(I)
j ) only retains νii∇(wl

ii ∗ u
(I)
i ), while the remaining terms are zero

since u
(I)
j (x, t) = 0 (j = {1, . . . , N}\{i}). Thus, (6.46.4) can be transformed into{

∂tu
l(II)
i = di∆u

l(II)
i −∇ · [νiiu(I)i ∇(wl

ii ∗ u
(I)
i )], in Q,

u
l(II)
i (x, 0) = 2f l

i,2(x), in Tn.
(6.17)

For simplicity, we show the case for i = 1. Let ū(II) = u1(II) − u2(II), w̄11 = w1
11 − w2

11.

Applying the property of convolution, we have the following equation for ū
(II)
1 :{

∂tū
(II)
1 = d1∆ū

(II)
1 −∇ · [ν11u(I)1 (w̄11 ∗ ∇u

(I)
1 )], in Q,

ū
(II)
1 (x, 0) = 0, in Tn.

(6.18)
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Considering ω1 as the solution of −∂tω − d1∆ω = 0 in Q, if we multiply it on both sides of
(6.186.18) and perform integration by parts, we obtain∫

Q
−∇ · [ν11u(I)1 (w̄11 ∗ ∇u

(I)
1 )]ω1dxdt = 0. (6.19)

By substituting the CGO solution ω1 = e
−|ξ1|2t− i√

d1
ξ1·x

and the specific expression for
U1(x) = eiξ·x, where |ξ|2 = λ1

d1
, into (6.196.19) and then separating variables, we obtain∫

Tn

∫
Tn

∇ · [ν11eiξ·x(w̄11(y)iξe
iξ·(x−y))]e

− i√
d1

ξ1·x
dydx = 0. (6.20)

After simplification as we did for the proof for ν11, (6.206.20) is equal to:

2λ1

d1
ν11

∫
Tn

eiξ·(−y)w̄11(y)dy = 0. (6.21)

As we know λ1 and µ11 are non-zero constants, (6.216.21) indicates that w̄11 = 0, to another
words, we have

w1
11 = w2

11. (6.22)

With this approach, we can recover w11, w22, . . . , wNN . Next, we modify f1 such that it
becomes non-trivial at both the i-th and j-th positions, with the corresponding u(I) being

eλitUi(x) and eλjtUj(x), in order to recover wij . Then, the term
N∑
j=1

νij∇(wl
ij ∗u

(I)
i ) now becomes

νii∇(wl
ii ∗ u

(I)
i ) + νij∇(wl

ij ∗ u
(I)
j ). And (6.46.4) becomes{

∂tu
l(II)
i = di∆u

l(II)
i −∇ · [νiiu(I)i ∇(wl

ii ∗ u
(I)
i ) + νiju

(I)
j ∇(wl

ij ∗ u
(I)
j )], in Q,

u
l(II)
i (x, 0) = 2f l

i,2(x), in Tn.
(6.23)

Notice that we have confirmed w̄ii = 0, thus the equation for ū
(II)
i is:{

∂tū
(II)
i = di∆ū

(II)
i −∇ · [νiju(I)j (w̄ij ∗ ∇u

(I)
j )], in Q,

ū
(II)
i (x, 0) = 0, in Tn,

(6.24)

where w̄ij denotes w1
ij − w2

ij .
For simplicity, we take i = 1. By multiplying both sides of (6.246.24) by the solution ω1 of

(−∂t − d1∆)ω1 = 0 and applying integration by parts, we have∫
Q
−∇ · [ν1ju(I)2 (w̄1j ∗ ∇u

(I)
2 )]ω1dxdt = 0. (6.25)

Once again, we substitute the CGO-form of ω1 and specific expression for Uj(x) = eiξ·x,

where |ξ|2 = λj

dj
, into (6.256.25). This allows us to transform (6.256.25) into∫

Tn

∫
Tn

∇ · [ν1jeiξ·x(w̄1j(y)iξe
iξ·(x−y))]e

− i√
d1

ξ1·x
dydx = 0. (6.26)
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Separating variables, the problem now turns to

2λj

dj
ν1j

∫
Tn

eiξ·(−y)w̄1j(y)dy = 0. (6.27)

Since λj and ν1j are non-zero constants, (6.276.27) tells that w̄1j = 0, to another words, we have

w1
1j = w2

1j , j = {1, . . . , N}\{1}. (6.28)

By sequentially considering i = 1, . . . , N and j = 1, . . . , N , we can fully recover w and reach
the conclusion that w1 = w2. This completes the recovery process.

6.2 Application to the case of Corollary 2.102.10

Similarly, we can apply the conclusion from the Theorem 2.42.4 and 2.72.7 to prove Corollary 2.102.10.

Proof. Based on Lemma 2.22.2, the system (2.92.9) possesses a unique, global, non-negative solution.
Consequently, for any initial function satisfying (I1), the condition M+

d1(f) = M+
d2(f) leads to

d1 = d2. Then, for any f satisfying (I1), if we have knowledge of the integral kernel W and
M+

ννν1,W1(f
1) = M+

ννν2,W2(f
2), we arrive at the conclusion ννν1 = ννν2. Similarly, if the advection

coefficient ννν is given and M+
ννν1,W1(f

1) = M+
ννν2,W2(f

2) is known, we can conclude W1 = W2.
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