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In proton-proton and heavy-ion collisions, the study of charm hadrons plays a pivotal role in un-
derstanding the QCD medium and provides an undisputed testing ground for the theory of strong
interaction, as they are mostly produced in the early stages of collisions via hard partonic inter-
actions. The lightest open-charm, D0 meson (cū), can originate from two separate sources. The
prompt D0 originates from direct charm production or decay of excited open charm states, and the
nonprompt stems from the decay of beauty hadrons. In this paper, using different machine learning
(ML) algorithms such as XGBoost, CatBoost, and Random Forest, an attempt has been made to
segregate the prompt and nonprompt production modes of D0 meson signal from its background.
The ML models are trained using the invariant mass (MπK) through its hadronic decay channel,
i.e., D0 → π+K−, pseudoproper time (tz), pseudoproper decay length (cτ), and distance of closest
approach of D0 meson, using PYTHIA8 simulated pp collisions at

√
s = 13 TeV. The ML models

used in this analysis are found to retain the pseudorapidity, transverse momentum, and collision
energy dependence. In addition, we report the ratio of nonprompt to prompt D0 yield, the self-
normalized yield of prompt and nonprompt D0 and explore the charmonium, J/ψ to open-charm,
D0 yield ratio as a function of transverse momenta and normalized multiplicity. The observables
studied in this manuscript are well predicted by all the ML models compared to the simulation.

I. INTRODUCTION

To understand the fundamental nature of our Universe,
accelerator facilities such as the Relativistic Heavy-Ion
Collider (RHIC) and the Large Hadron Collider (LHC)
perform proton-proton (pp) and heavy ion collisions at
ultra-relativistic speeds. These collisions allow us to
explore a unique state of thermalized and deconfined
medium of quarks and gluons, known as the quark-gluon
plasma (QGP). Understanding the QGP medium, which
mimics conditions of the micro-second-old Universe, is
crucial. Furthermore, it sheds light on the phase tran-
sition from the deconfined partonic phase to the color-
neutral hadronic phase, where they are confined within
the hadrons, thereby making a testing ground for QCD
strong interaction dynamics. However, the QGP medium
is extremely transient, having a lifetime of the order of
10−23 s, before the quarks and gluons hadronize into a
color neutral state. As a result, we can only detect the fi-
nal state hadrons after the kinetic freeze-out. Therefore,
precise probes are essential to investigate the character-
istics of this deconfined partonic medium.

One such probe for the study of the deconfined phase
is the heavy quarks (HQs), i.e., charm and beauty. The
HQs are produced in the initial hard scattering. Their
production time is characterized by ∆t > ( 1

2mc,b
); ∼

0.1 fm/c for charm quarks and ∼ 0.01 fm/c for beauty
quarks, which is much shorter than the formation time
(∼ 0.3 fm/c) of the QGP medium [1, 2]. In addition,
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due to their masses being much larger than the tempera-
ture of the QGP medium, the probability of thermal pro-
duction and annihilation of HQs is negligible. The HQs
undergo Brownian motion in the thermalized medium of
lighter quarks (u, d, s) and experience the entire evolution
of the QGP medium. These HQs combine with the light-
flavor quarks at the phase boundary or during the system
evolution to form the open-heavy-flavor hadrons. The
most abundant of them is the D0 meson (cū) due to its
lowest mass among all the heavy-flavor hadrons. Further-
more, theD0 meson originates from two sources following
different topology. First, the prompt D0 mesons, com-
prising of the charm quarks come directly from the ini-
tial hard scatterings and as the feeddown from the higher
excited charm states (D∗ (2007)0,D1(2420)

+). Second,
the nonprompt production in which the charm quarks
are produced through flavor-changing weak decays of
beauty hadrons (B0, B+) [3, 4]. It is essential to separate
the prompt and nonprompt D0 to understand the rela-
tive contribution from the charm and the beauty sector.
This helps in studying the nuclear modification factor
in charm and beauty sector separately, which may shed
light on possible different mechanisms of energy loss in
the QCD medium. Further, this helps in studying differ-
ent phenomena like HQ transport and thermalization in
the medium through anisotropic flow. In addition, the
study of topological production of D0 meson has several
physics implications. Prompt D0 meson can help to un-
derstand QCD medium and can provide a testing ground
for the theory of strong interactions. Various observables
are measured in experiments from the final-state hadrons
to understand the interaction of the charm quarks in the
QGP medium, where a comprehensible insight can be
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FIG. 1. Schematic diagram of D0 meson production and de-
cay topology in hadronic and nuclear collisions.

gained using prompt D0 mesons as a probe. Since the
nonpromptD0 mesons are weak decay products of beauty
hadrons, they are produced at a larger distance from the
primary interaction vertex. Thus, using non-prompt D0

mesons to understand initial partonic interactions may
not be an ideal choice. However, the nonprompt pro-
duction of the D0 mesons can help to unveil the beauty
production in both pp and heavy-ion collision sectors.

Experimentally, the study of heavy-flavor hadrons acts
as a test for the perturbative Quantum Chromodynamics
(pQCD) calculations. Additionally, an indirect analysis
of the beauty sector is done by estimating the production
of nonprompt D mesons [5]. Moreover, the azimuthal
anisotropy in the momentum space of final-state hadrons
is estimated, which acts as an observable to probe the
QGP medium. The elliptic flow coefficient of D meson is
calculated in ALICE, STAR, and CMS experiments [6–
10]. Recently, the elliptic flow of the nonprompt D0 me-
son has been estimated for Pb− Pb collision at CMS and
ALICE [11, 12] to understand the contributions coming
from beauty hadrons. Additionally, the nuclear modifica-
tion factor (RAA) is estimated to explore the energy loss
by the HQs through interaction with the medium, taking
pp collisions as a baseline [2, 13, 14]. With the advance-
ments of Run-3 detector upgrades and higher luminosity
in ALICE, there is a significant opportunity for thorough
and rigorous exploration of the charm and beauty sectors.

Typically, D0 meson is reconstructed through its
hadronic decay channel D0 → π+K−. The inclusive D0

is dominated by prompt D0 contributions, with only a
small fraction is nonprompt D0. Figure 1 provides a
schematic diagram of D0 production and D0 → π+K−

decay topology. The decay length represents the distance
between the D0 decay vertex and the primary vertex.
The distance of the closest approach of the D0 meson
(DCAD0) is measured by taking the distance between
the primary vertex and the reconstructed D0 momentum
vector p⃗D0 . The beauty hadrons undergo a weak decay
into a D0 meson, which further decays into a π+K− pair,
whereas the promptD0 mesons are produced much closer
to the primary vertex. The involvement of the weak in-
teraction in the decay topology of the nonprompt D0

meson increases the distance between the primary vertex
and D0 decay vertex. Consequently, the DCAD0 for the
nonprompt D0 mesons is higher than the prompt coun-
terparts.
In this study, we take advantage of the machine learn-

ing (ML) techniques to separate the contribution from
the charm and beauty sector by classifying the prompt
and nonprompt D0 mesons using final-state observables
as input features. The ML algorithms, with proper train-
ing, are able to map a correlation between the input fea-
tures and output. This is achieved through building a
classification model from sample inputs, which allows the
machine to learn independently and build a correlation
between the inputs and outputs. Machine learning al-
gorithms are categorized into supervised, unsupervised,
semi-supervised, and reinforcement learning, each having
its unique approach and application. In the case of ex-
perimental high-energy physics, the potential of machine
learning lies in its ability to discover correlations in large
datasets. ML techniques have been in use in the field of
high-energy for the last few decades [15–17]. It is suc-
cessfully deployed for studies like jet mesurements [18–
21], particle identification [22–24], impact parameter es-
timation [17, 25, 26], flow coefficient measurements [27–
29]. Recently, classification problems, such as classifying
prompt and nonprompt J/ψ in forward rapidity [30] and
segregating electrons coming from different sources [31]
are addressed successfully. For our study of prompt and
nonprompt classification of D0, we simulate pp collisions
at

√
s = 13 TeV using PYTHIA8 and train three dif-

ferent ML algorithms, namely XGBoost, CatBoost, and
Random Forest. On successful training, we use our ML
models to predict the production of prompt and non-
prompt D0 mesons for pp collisions at

√
s = 5.02 TeV

and 900 GeV. The novelty of the work is reflected in
the model’s robustness in distinguishing between prompt
and nonprompt D0 particles throughout the entire en-
ergy range of the LHC. On separating the prompt and
nonprompt D0 mesons, we attempt to understand their
production dynamics with respect to the production of
charged particles and charmonium state (J/ψ).
The remainder of the paper is organized as follows:

in Section II, we briefly discuss the methodology of the
work. Section III starts with a discussion of the training
and evaluation of the models. Followed by the results
and discussion in Section IV. Finally, we summarize and
conclude our findings in Section V.

II. METHODOLOGY

In this section, we present a brief introduction to
event generation using PYTHIA8, followed by machine-
learning algorithms. Additionally, the production cross-
sections of prompt and nonprompt D0 meson obtained
from simulation are compared to published measure-
ments from ALICE to quality check the tunes and set-
tings used in PYTHIA8.
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A. PYTHIA8

Event generators are used to simulate hadronic and
heavy-ion collisions with greater control over the evolu-
tion stages and to test various phenomenological mod-
els. These generators use Monte Carlo simulation tech-
niques to mimic the actual collisions involving a variety of
physics processes. PYTHIA8, a Monte Carlo event gener-
ator, is commonly employed to simulate ultra-relativistic
hadronic, leptonic, as well as heavy-ion collisions across
a wide range of energy. It provides a comprehensive
explanation of the pQCD-based particle production, in-
cluding charm and beauty production. In this study, we
use PYTHIA8 to simulate events for the training of ma-
chine learning algorithms to distinguish prompt and non-
prompt particles.
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FIG. 2. Upper panel shows the prompt and nonprompt
D0 meson production cross-section in pp collisions at

√
s =

13 TeV generated with PYTHIA8, compared with ALICE
data [36, 38]. The lower panel depicts the PYTHIA8 to AL-
ICE data ratio.

PYTHIA8 consists of particle production mechanisms
involving soft and hard processes, initial and final
state parton shower, string fragmentation, hadronic
rescattering and decay, color reconnection, beam rem-
nants, and multiple parton interactions (MPI). This
is an improved version of PYTHIA6 that incorporates
a scenario based on MPI. In this scenario, 2 → 2
hard processes have the potential to generate heavy
quarks such as charm and beauty. For this study,
we have used PYTHIA 8.308, with 4C tune [34]
(tune : pp = 5) and considering only inelastic and non-
diffractive components (HardQCD : all = on), to gener-
ate 2 billion minimum bias events for pp collisions at√
s = 13 TeV. Furthermore, we generate 1 billion min-

imum bias events for pp collisions at
√
s = 5.02 TeV

and 900 GeV each. To prevent the divergence of QCD
processes, which can happen when transverse momen-
tum, pT → 0, we implement a pT cutoff of 0.5 GeV/c
(PhaseSpace : pTHatMinDiverge = 0.5). The data have

been simulated with color reconnection taken into con-
sideration (ColourReconnection : reconnect = on). Ad-
ditionally, we have utilized the mode-2 for color reconnec-
tion, indicated by ColourReconnection : mode = 2. This
mode refers to the gluon-move model, where the glu-
ons are moved (or flipped) from one point to another
such that the string length is minimized [33]. For
the production of prompt and nonprompt D0 mesons,
we have enabled all the charmonium and bottomo-
nium production processes via Charmonium : all = on
and Bottomonium : all = on. A detailed description
of the physics processes and their implementation in
PYTHIA8 are provided in Ref. [32, 33].
To mimic the real-world experiments, we enable the

spread of the primary interaction vertex following a
Gaussian distribution (Beams : allowVertexSpread = on)
as also done in Ref. [30]. The mean and sigma of the
distribution in the cartesian coordinate are taken from
Ref. [35]. Following the experimental methods, we have
also taken a cutoff at the z component of the interaction
vertex, i.e., |Vz| < 10 cm. We have allowed the decay of
D0 through all the possible decay modes. In PYTHIA8,
we examine the mother of the reconstructed D0 meson
to classify it into prompt or nonprompt D0. In Fig. 2, we
compare the PYTHIA8 generated pT spectra with recent
ALICE results [36, 38]. It is noteworthy that the CMS
and LHCb experiments have measured only prompt D0

in pp collisions, and their kinematic ranges are different
[39, 40]. One can readily observe that the normalized
yield of the prompt D0 is around 10 times higher than
the production of nonprompt D0. The similar difference
is continued up to the high-pT range of around 12 GeV/c.
PYTHIA8 underestimates the ALICE data, and hence, a
factor of 2.0 and 2.8 is multiplied by the prompt and non-
prompt yield, respectively to match the spectral shape.
The trend of the pT spectra shown by PYTHIA8, with all
the above-mentioned tunes, is comparable with ALICE
data as seen from the lower ratio plot. However, for the
rest of the results, we do not apply any scaling factor to
the PYTHIA8-generated spectra.

B. Machine Learning Algorithms

With the introduction of machine learning tools, draw-
ing significant conclusions from a large set of experi-
mental data has become easier and more reliable. This
is achieved by properly taking care of the correlations
among the input features. In experimental high-energy
physics, one of the most complex problems is understand-
ing the underlying physical processes in particle produc-
tion in the subatomic realm. With the detected final
state particles, one can use their four-momenta as in-
put features to the machine learning algorithm. In this
study, we use three machine-learning algorithms, namely,
CatBoost (v1.2), Random Forest (v1.3.0), and XGBoost
(v1.7.3). These ML techniques are very efficient for clas-
sification problems, each with its own unique strength.
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For instance, CatBoost is designed to handle categorical
variables and does not require extensive data preprocess-
ing like one-hot encoding. It also implements ordered
boosting, a permutation-driven alternative to the classi-
cal algorithm, which improves the model prediction. On
the other hand, Random Forest is an ensemble learn-
ing method that operates by constructing multiple deci-
sion trees during training and outputting the class that
is the mode of classes of individual trees. It is highly
flexible and efficient, even without hyper-parameter tun-
ing. Lastly, XGBoost is a gradient-boosting framework
that uses boosted decision trees. It implements parallel
processing, which makes it fastest among all sequential
gradient boosting techniques. It also includes parame-
ter regularization to prevent overtraining, which is not
available in most of the other algorithms.

These three models are often preferred over others due
to their robustness, efficiency, and the fact that they can
easily handle a variety of data types. They also have the
ability to model complex nonlinear correlations, which
adds to their versatility and utility in many real-world
applications [37]. For training and prediction, we use
Python 3.11 as well as computing and plotting the con-
fusion matrix, importance score, and learning curve.

1. CatBoost

CatBoost stands for Categorical Boosting. It is a high-
performance ML algorithm that has gained popularity
due to its ability to handle categorical data directly, with
no need for manual one-hot encoding [41, 42]. It’s an
implementation of gradient boosting designed to com-
bat the problem of overfitting by implementing a novel
algorithm for calculating leaf values. CatBoost also sup-
ports GPU acceleration, which can significantly speed up
the training process. It provides a wide range of hyper-
parameters that can be fine-tuned to improve the model’s
performance.

2. Random Forest

Random Forest is a versatile and widely used ML al-
gorithm that operates by constructing multiple decision
trees during training. It gives the output as the class,
i.e., the mode of the classes for classification or mean
prediction for regression tasks [43]. One of the key ad-
vantages of Random Forest is that it can be used for
both regression and classification tasks. It provides a
good indicator of the feature’s importance, handles high-
dimensional spaces well, and can deal with unbalanced
datasets. Random forest is also less likely to overfit than
individual decision trees.

3. XGBoost

XGBoost (XGB), which stands for Extreme Gradient
Boosting, is a highly regarded and extensively utilized
ML algorithm [44, 45]. It is particularly effective in deal-
ing with large datasets and excels in both classification
and regression tasks. XGB is an advanced version of
Gradient-Boosting Decision Trees (GBDT) and includes
several improvements, such as parallel computing and
tree pruning. These enhancements expedite the train-
ing process, enabling XGB to manage large datasets ef-
ficiently. Furthermore, XGB offers a broad range of hy-
perparameters that can be fine-tuned to enhance the per-
formance of the model.

III. TRAINING AND EVALUATION

In this section, the topological features used as inputs
for the ML models are defined, followed by data pre-
processing and model training. Finally, a few quality
assurance plots are presented to demonstrate the classi-
fication accuracy of the ML models.

A. Input to the machine

In this study, a few topological features are selected
as the inputs to the ML models. Our goal is to utilize
such features that can identify the topological production
dynamics of prompt and nonprompt D0 meson. First,
the inclusive D0 meson signal has to be identified over its
background, followed by the identification of the prompt
and nonprompt production modes. One can identify the
inclusive D0 meson signal from the background with the
help of its invariant mass (mπK), where a peak in the
mπK distribution is observed around the D0 mass. The
identification of prompt and nonprompt D0 can then be
performed by looking at the variables sensitive to their
decay topology. For example, as the prompt D0 mesons
are produced closer to the primary vertex as compared
to the nonprompt case, this eventually leads to a larger
decay length for the D0 mesons coming from the decay
of beauty hadrons. The topological variables associated
with the displaced production vertex of the D0 mesons
are the pseudoproper time (tz) [46], the pseudoproper
decay length (cτ) [47], and the angle (θ) between the D0

momentum vector and the vector joining the D0 decay
vertex to the primary vertex [48]. The pseudoproper time
is defined as [46],

tz =
(zD0 − zPV)×mD0

pz
(1)

where zD0 and zPV are the coordinates of the D0 decay
vertex and primary vertex along the beam direction (z-
axis), mD0 ≃ 1865 MeV is the mass of the D0 meson
taken from Particle Data Group [49], and pz is the mo-
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mentum in the z-direction. The decay topology of the
D0 meson in the longitudinal direction is quantified by
tz, where tz is expected to have a higher value for the
nonprompt D0 mesons as compared to the prompt D0

mesons that are produced closer to the primary vertex.

Similarly, one can also quantify the decay topology of
the particles in the transverse plane using pseudoproper
decay length (cτ). One can write the pseudoproper decay
length as [47],

cτ =
c mD0L⃗.p⃗T

|pT |2
(2)

where, L⃗ is a vector pointing from the primary vertex

towards the D0 decay vertex, i.e. L⃗ = V⃗ − S⃗. Here,

V⃗ = (Vx, Vy, Vz) is the position of primary vertex and

S⃗ = (Sx, Sy, Sz) is the position of D0 meson decay ver-
tex with respect to the global origin, i.e., (0, 0, 0). As
already mentioned in Sec. II A, we have used a Gaussian
profile to randomize the position of the primary vertex in
three dimensions to be consistent with experimental sce-
nario. In experiments, we can reconstruct the D0 decay
vertex as the middle point on the distance of closest ap-
proach between the candidate pion and kaon trajectories.
However, in PYTHIA8, this is not trivial, and therefore,

we need to estimate the D0 decay vertex (S⃗). One can
calculate the same as using the following expression [30].

Si =
(t1 + di,1m1/pi,1)− (t2 + di,2m2/pi,2)

m1/pi,1 −m2/pi,2
(3)

where i = x, y, z is the spatial index, and m1 and m2

are the masses of the two decay products of the D0 me-
son. di,1 and di,2 are the distances covered by the decay
products in time t1 and t2 with momentum pi,1 and pi,2,

respectively. Thus, using V⃗ , and S⃗, one can obtain the

value of L⃗ and consequently estimate the value of cτ .

Finally, we use DCAD0 , which is well estimated in ex-
periments, as another topological input variable to the
machine-learning models. DCAD0 is defined in terms of

the decay length and sine of the angle between L⃗ and the
D0 momentum vector p⃗D0 as [48],

DCAD0 = |L⃗| × sin θ. (4)

As discussed earlier, due to the difference in the de-
cay topology of prompt and nonprompt D0 mesons, we
can expect larger DCAD0 for the nonprompt D0 meson.
Thus, we proceed to train the machine-learning models
with mπK , and the above discussed topological variables
such as tz, cτ and DCAD0 of the reconstructed π+K−

pairs as the input variables to the machine. The training
is performed using 600 million minimum bias pp collisions
at

√
s = 13 TeV.

B. Pre-processing and training

The task of the ML models is to classify the prompt
and nonprompt D0 mesons from the background us-
ing the topological features of the reconstructed π+K−

pairs. However, the number of prompt π+K− pairs is
naturally smaller than the number of uncorrelated back-
ground pairs. Similarly, the π+K− pairs coming from
nonprompt D0 meson is even smaller as compared to
the prompt pairs owing to the smaller production cross-
section of charm quarks from beauty decays than the di-
rect charm production as shown in Fig. 2. Hence, an ML
model trained with such a dataset shows a bias towards
the most populated class, in our case, the background
class. Hence, the trained model will show a higher de-
gree of inaccuracy by frequently predicting the most pop-
ulated class when applied to a testing set. This is known
as the class imbalance problem. Thus, the pre-processing
of the input dataset becomes essential to avoid this class
imbalance problem, which also enhances the quality of
the training data. This leads to an unbiased training that
improves the classification accuracy of the ML models.
The class imbalance problem is often addressed via

sampling techniques. We could use different sampling
techniques to pre-process our training data, such as the
oversampling or undersampling methods. Undersam-
pling involves reducing the number of samples from the
majority class to balance the number on instances from
each class in the dataset. But this has a serious down-
side as it can discard potentially useful data during the
process by reducing the training statistics. Oversam-
pling, on the other hand, involves increasing the sam-
ples in the minority class. This is achieved by duplicat-
ing the samples in the minority class. However, creat-
ing duplicate copies of the data may sometimes lead to
overfitting. In this study, we use the Synthetic Minority
Over-sampling Technique (SMOTE) to create new sam-
ples for the minority classes [50]. SMOTE creates syn-
thetic samples from the minority class instead of creating
copies. By doing this, SMOTE provides better informa-
tion to the model about the minority class. Before over-
sampling, the ratio background:prompt:nonprompt was
50:20:1, and the ratio changed to 15:5:1 after oversam-
pling using SMOTE. Moreover, for training, testing, and
validation purposes, we split our input data into 8:1:1
(train:test:validation) set.
With this pre-processed data and class imbalance chal-

lenge out of sight, we proceed to train the machine learn-
ing algorithms. The optimum hyperparameters related to
the XGBoost, CatBoost, and Random Forest models are
listed in Table I, II, and III, respectively and are briefly
discussed in the next paragraph.
In XGBoost, the booster decides the type of model

that runs at each iteration. The gbtree booster uses tree-
based models. The learning rate is a configurable hy-
perparameter that determines how much the weights in
the model are adjusted during training. A higher learn-
ing rate means the model learns faster, which could lead
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XGBoost (XGB)

Parameter Value

booster gbtree

learning rate 0.3

n estimators 20

subsample 1

max depth 3

objective multi:softmax

eval metric mlogloss

TABLE I. XGBoost hyperparameters

CatBoost (CB)

Parameter Value

learning rate 0.3

iterations 30

depth 5

loss function MultiClass

eval metric MultiClass

TABLE II. CatBoost hyperparameters

to overshooting the optimal solution. Conversely, a lower
learning rate means the model learns slower, which could
lead to a more precise solution but at the cost of more
CPU time. The n estimators parameter refers to the
number of gradient-boosted trees that are used in the
model. The subsample parameter is used to control the
fraction of the total training data that the model will
use before it starts building trees. However, in our case
the subsample parameter is set to 1, allowing the model
to use all the training data. The max depth parame-
ter decides the maximum depth of the tree. Increasing
this parameter will make the model more complex and
may lead to overfitting. The objective parameter speci-
fies the learning task and the corresponding learning ob-
jective. Setting the objective as multi:softmax tells the
model that it is a multi-class classification problem. The
softmax function is used to convert the output of the
model into probability distributions over the classes. In
XGBoost, the eval metric parameter is utilized to define
the evaluation metrics for the validation data. The choice
of the evaluation metric heavily influences how the per-
formance of a model is measured and compared. Here,
mlogloss refers to multi-class logarithmic loss, a loss func-
tion employed for multiclass classification problems. It is
a negative logarithm of the predicted probability of the
true class, the closer the probability is to 1, the smaller
the output of the mlogloss. Conversely, if the predicted
probability of the true class is small (i.e., the prediction is
likely to be incorrect), the mlogloss value would be large.

In CatBoost, the first hyperparameter is the learning
rate, which we have kept at a value of 0.3. The second
hyperparameter, iteration, is used to control the num-

Random Forest (RF)

Parameter Value

n estimators 30

max-depth 5

TABLE III. Random Forest hyperparameters

ber of trees to be built. Each iteration corresponds to a
new tree being added to the model. Here, depth corre-
sponds to the maximum depth of the trees the algorithm
is allowed to build. The loss function and eval metric
are both taken as MultiClass. This is the metric usually
used for the training and evaluation of the model for a
multi-class classification problem.

In a Random Forest model, the n estimators param-
eter determines the count of trees in the forest. The
model’s final prediction is derived by taking the aver-
age of the predictions from each tree. Although increas-
ing the tree count can enhance the model’s effectiveness,
it may also escalate the computational demand of the
model. The max depth serves the similar purpose of de-
ciding the maximum depth of the trees in the model. All
other hyperparameters that are not mentioned here are
kept at their default values.

C. Quality assurance

After training the models, we proceed to evaluate them
on a testing data set to check their classification accuracy.
This tells us whether we can rely upon the trained models
or not. For this classification problem, we use the confu-
sion matrix to benchmark the ML models. In addition,
a plot with the importance score of each input feature is
shown for the three ML models, which depicts the rela-
tive importance of an input feature for the classification
task. The relative importance of an input feature may
vary from one model to the other.

In Figure 3, the confusion matrix for target classes,
such as prompt, nonprompt, and background, for differ-
ent ML algorithms used in this study are shown. The
confusion matrix, or error matrix, is an essential bench-
mark in understanding the model performance. We plot
the fraction of true pair counts from PYTHIA8 in the
Y -axis and the fraction of predicted pair counts from
ML models in the X-axis. The numbers shown inside
the boxes represent the corresponding fraction of πK
pairs. All three ML models are found to separate the
background pairs with an accuracy of 100%. However,
while separating prompt D0 from the nonprompt ones,
the XGBoost and CatBoost model have a better accu-
racy of 99% as compared to the Random Forest model,
which has an accuracy of 97%. This means that the XG-
Boost and CatBoost models tag 1% of the nonprompt D0

mesons as prompt D0 while this is 3% in the Random
Forest model. However, due to the imbalance between
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FIG. 3. Confusion matrix for XGBoost (upper), CatBoost
(middle), and Random Forest (lower), respectively. It repre-
sents the accuracy and discrepancy of the machine-learning
models to predict the target classes.

prompt and nonprompt classes, 1% of nonprompt D0

do not make a significant contribution to the prompt D0

meson counts. The magnitude of this mis-classification is
not prominent, and we expect to accurately extract other
physics variables of the predicted prompt and nonprompt
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FIG. 4. Comparison of Importance Score for the input vari-
ables, invariant mass (mπK), pseudoproper time (tz), pseu-
doproper decay length (cτ), and distance of closest approach
(DCAD0) for three different machine-learning algorithms.

D0 mesons, which are further discussed in Section IV.
The importance score, or feature importance, is a score

assigned to each input feature based on how useful they
are in making a model prediction. It depends on the
number of times the input feature is used in splitting a
node. By looking at the importance score, one can figure
out the most and least relevant features of the dataset for
a particular ML model. In Figure 4, we show the impor-
tance score of the input features, mπK , tz, DCAD0 , and
cτ . For all the three ML models, the input features mπK

and DCAD0possess the highest importance score. This
signifies that these two input features carry the max-
imum information used in separating the background,
prompt, and nonprompt classes. However, one can ob-
serve that the XGBoost model learns only frommπK and
DCAD0explicitly. In contrast, the Random Forest model
learns mostly from DCAD0 , but also gives significant im-
portance to mπK and tz. The CatBoost model learns
mostly from mπK and DCAD0 ; however, still uses input
from tz and cτ for splitting the nodes.

IV. RESULTS AND DISCUSSION

A. Transverse momentum and rapidity spectra

Figure 5 shows the pT-differential yield of prompt and
nonprompt D0 meson in midrapidity, |y| < 0.5, in pp
collisions at three different center-of-mass energies, i.e.,√
s = 13 TeV (upper),

√
s = 5.02 TeV (middle), and√

s = 900 GeV (lower). We reconstruct D0 meson
through its hadronic decay channel, i.e., D0 → K−π+.
The plots include the predictions from XGBoost (left),
CatBoost (center), and Random Forest (right). The
PYTHIA8 generated spectra for the respective energies
are also shown. All three ML models are trained with a
minimum bias dataset of pp collisions at

√
s = 13 TeV

simulated with PYTHIA8 and then applied to pp colli-
sions at lower collision energies. One can observe that the
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FIG. 5. Transverse momentum spectra of prompt and nonprompt D0 meson at three different energies predicted by three
different machine-learning algorithms. The first row depicts the normalized prompt and nonprompt D0 yields in pp collisions
at

√
s = 13 TeV. The second row presents the normalized yield at

√
s = 5.02 TeV, and the third row illustrates the normalized

yield at
√
s = 900 GeV.

yield of nonprompt D0 is significantly less in the whole
pT region, owing to the smaller production probability
of beauty hadrons due to their higher masses. However,
as one moves towards a higher pT region, it can be seen
that the pT-spectra curves from prompt and nonprompt
D0 mesons slightly approach each other. This indicates
that the yield of nonprompt D0 relative to the prompt
D0 meson increases with increase in pT. All three models
are found to predict the normalized D0 yield for energies√
s = 5.02 TeV and

√
s = 900 GeV reasonably well. It

is observed that the ML models are quite successful in
predicting the pT-differential yield at different collision
energies. Thus, they appear to retain the collision energy
dependence. The ability of the models to learn and pre-
serve the energy dependence of prompt and nonprompt
D0 production highlights their robustness and accuracy.
This is primarily due to their learning is largely influ-
enced by two factors, the invariant mass (mπK) and the
distance of the closest approach (DCAD0), which are in-
dependent of

√
s.

Figure 6 shows the rapidity spectra of prompt and non-
promptD0 reconstructed from candidates with pT > 0.15
GeV/c in minimum bias pp collisions at

√
s = 13 TeV

(upper),
√
s = 5.02 TeV (middle), and

√
s = 900 GeV

(lower). The results from PYTHIA8, XGBoost, Cat-

Boost, and Random Forest are shown. The energy depen-
dence of the width of the rapidity spectra is noticeable,
and the differences can be clearly observed comparing
the highest and lowest center-of-mass energies. In ad-
dition, the width of the rapidity spectra of the prompt
D0 meson is always greater than that of the nonprompt
case at any given energy. For

√
s = 13 TeV, the midra-

pidity region for the prompt D0 seems flat in log-scale
in the range, |y| ≲ 3; however, this flat region for the
prompt D0 decreases with decreasing the collision en-
ergy. For

√
s = 5.02 TeV, the flat region confides in a

slightly smaller rapidity range of |y| ≲ 2. This region
shrinks even more for

√
s = 900 GeV where a smaller

plateau exists only within |y| ≲ 1. Moreover, this flat
midrapidity plateau is much smaller for the nonprompt
D0 meson, as evident from the plots. The flat region is
almost non-existent for

√
s = 900 GeV. However, it ex-

tends to a range of |y| ≲ 2 for
√
s = 13 TeV. From Figs. 5

and 6, we notice that all the three ML models predict a
similar level of accuracy in the yield of D0 meson as a
function of transverse momentum and rapidity. Conse-
quently, beyond this point in text, for the sake of clarity
in the plots, we will be only focusing on the predictions
from the XGBoost model and compare it with PYTHIA8
results, since the XGBoost model shows the highest de-
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FIG. 6. Rapidity spectra of prompt and nonprompt D0 meson at different energies predicted by three different machine-
learning algorithms. The first row shows the normalized prompt and nonprompt D0 yield in pp collisions at center-of-mass
energy,

√
s = 13 TeV. The second row displays the normalized yield at

√
s = 5.02 TeV, while the third row represents the

normalized yield at
√
s = 900 GeV.
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FIG. 7. Nonprompt to prompt D0 meson ratio in minimum
bias pp collisions at

√
s = 5.02 TeV from PYTHIA8 compared

with ALICE results and predictions from XGBoost [51].

gree of accuracy compared to the Random Forest model
in this scenario.
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FIG. 8. Nonprompt to prompt D0 meson ratio for three dif-
ferent center-of-mass energies from PYTHIA8 compared with
the predictions from XGBoost in minimum bias pp collisions.

B. Nonprompt to prompt ratio and self-normalized
yield of D0 meson

Figure 7 presents the ratio of nonprompt to prompt
D0 yield, at midrapidity, |y| < 0.5 in minimum bias pp
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collisions at
√
s = 5.02 TeV, as a function of pT. This

ratio essentially tells us about the relative yield of D0

mesons coming from beauty hadrons decays, compared
to the direct charm hadron production. We compare
the XGBoost predictions with the ALICE [51] results.
From the plot, it is observed that PYTHIA8 underes-
timates the experimental results at lower-pT and starts
to approach the experimental results only towards the
higher-pT bins. However, the overall trend of PYTHIA8
is similar to that of the experimental findings. Again, the
nonprompt to prompt D0 yield ratio increases linearly
up to pT = 12 GeV/c. This indicates that the proba-
bility of charm hadron production from beauty decays
increases linearly with pT. However, this linear trend
holds good up to a certain pT range. Similar results are
also reported for charmonium states [30, 47]. However,
the increase in nonprompt charmonium states as a func-
tion of pT is much higher than that of the open-charm
states [30]. Moreover, for pT > 12 GeV/c, the ALICE
data is uncertain with larger error bars, and the trend
appears to become independent of pT. The predictions
from XGBoost are found to be inline both qualitatively
and quantitatively with the PYHTIA8 true values.

Figure 8 shows the nonprompt to prompt D0 ratio
in minimum bias pp collisions at three different center-
of-mass energies, i.e.,

√
s = 13 TeV, 5.02 TeV, and

900 GeV. One can clearly notice the increase in the
ratio with increasing pT across all the collision ener-
gies. However, we observe an energy-dependent hierar-
chy in the ratio, as the charm production from beauty
decays compared to the direct charm production is min-
imum for

√
s = 900 GeV and maximum for the case of√

s = 13 TeV. In addition, towards higher pT, we see
the rise of the ratio, indicating an increase in the beauty
hadron production leading to an enhancement of the non-
prompt yield.

Figure 9 shows the self-normalized pT integrated yield
of prompt and nonprompt D0 meson in midrapidity
(|y| < 0.5) as a function of normalized charged-particle
multiplicity in minimum bias pp collisions at

√
s =

13 TeV (upper),
√
s = 5.02 TeV (middle), and

√
s =

900 GeV (lower). The charged-particle multiplicity is ob-
tained within the ALICE-V0 detector acceptance which
covers the intervals 2.8 < η < 5.1 (V0A) and −3.7 <
η < −1.7 (V0C). The charged-particle multiplicity used
for the normalized yield selection, is the coincidence sig-
nal of V0A and V0C. The selection of D0 meson and
charged particle multiplicity in two different rapidity re-
gions is to reduce the autocorrelation bias. The results
include PYTHIA8 values and the prediction from the
XGBoost model. We observe an almost linear rise for
the prompt D0 meson with respect to the charged parti-
cle multiplicity for all the three collision energies. How-
ever, the self-normalized yield of nonprompt D0 is sig-
nificantly enhanced towards higher collision energy and
follows a faster than linear trend with increasing charged-
particle multiplicity. A similar trend for charmonium
states (i.e. J/ψ) has been reported in the literature us-
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FIG. 9. Self-normalized pT integrated prompt and nonprompt
D0 meson yield at midrapidity (|y| < 0.5) as a function of
normalized charged-particle multiplicity in minimum bias pp
collisions at

√
s = 13 TeV (upper),

√
s = 5.02 TeV (middle),

and
√
s = 900 GeV (lower). The charged-particle multiplicity

is obtained within the ALICE-V0 detector acceptance.

ing PYTHIA8 [30]. For the plots shown here, XGBoost
predictions closely follow the PYTHIA8 curves.

Finally, we study the role of center-of-mass energy in
D0 meson production. We estimate the ratio of D0 yield
in two different energies. In the upper panel of Fig.
10, we plot the ratio of D0 yield in

√
s = 13 TeV to√

s = 5.02 TeV. Here, for the prompt case, we notice a
clear increase in the ratio with an increasing pT. How-
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FIG. 10. Ratio of D0 yield in pp collisions at
√
s = 13 and

5.02 TeV (upper) and at
√
s = 13 TeV and

√
s = 900 GeV

(lower) as a function of pT.

ever, we observe a flat trend throughout the whole pT
range for the nonprompt case. A similar trend has been
observed recently at ALICE [52]. In addition, a higher
value of the nonprompt than prompt ratio shows the
abundant production of beauty hadrons at higher center-
of-mass energy. In the lower panel, we plot the same ratio
between

√
s = 13 TeV and

√
s = 900 GeV. We observe

a similar increasing trend for the prompt case, however,
for the case of nonprompt, because of a significant dif-
ference in collision energy, a rising trend is observed as
a function of transverse momentum. Furthermore, due
to the higher difference in the center-of-mass energy, the
absolute values of the ratio go up (lower panel compared
to the upper panel of Fig. 10). Interestingly, XGBoost
is able to predict the PYTHIA8 trends with very high
accuracy.

C. Ratio of charmonium to open-charm state

It is interesting to study the production dynamics of
charmonium states relative to open-charm states. In
Fig. 11, on the upper panel, the normalized J/ψ to D0

yield as a function of pT is shown in minimum bias pp
collisions. To understand the contribution coming from
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FIG. 11. Upper: Normalized J/ψ yield to D0 yield ratio as a
function of pT in pp collisions at

√
s = 13 and 5.02 TeV and√

s = 900 GeV. Lower: pT integrated normalized J/ψ yield
to D0 yield ratio as a function of normalized charged-particle
multiplicity estimated within ALICE-V0 acceptance.

the charm and beauty sectors, we estimate the ratio of
prompt J/ψ to prompt D0, as well as the ratio of non-
prompt J/ψ to nonpromptD0. We observe similar trends
for the prompt and nonprompt cases. A rise in the ra-
tio can be seen up to pT ≃ 5 GeV/c and it shows a
flat trend beyond 5 GeV/c. This trend is universal for
all center-of-mass energies. It indicates that the relative
number of J/ψ increases as compared to D0, with an
increase in pT. One can notice that the ratio of non-
prompt J/ψ to nonprompt D0 is higher than one, indi-
cating a higher number of nonprompt J/ψ compared to
nonprompt D0. Assuming that the same beauty hadrons
contribute to the production of nonprompt J/ψ and non-
prompt D0 mesons, ⟨J/ψ⟩/⟨D0⟩ > 1 for nonprompt case
indicates that a beauty hadron would more likely to de-
cay into a J/ψ than to a D0 mesons. In other words, the
branching fraction of beauty hadrons decaying into J/ψ
is higher than their decay to D0. However, as expected,
the ratio of prompt J/ψ to prompt D0 is less than one,
owing to the larger mass of J/ψ. In the lower panel,
we present the ⟨J/ψ⟩/⟨D0⟩ as a function of normalised
charged-particle multiplicity. Here, we observe two dif-
ferent trends for the prompt and nonprompt cases. We
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notice the nonprompt J/ψ to D0 ratio remains almost
independent of normalised charged-particle multiplicity.
However, for the prompt case, we notice a slight increase
and then a flat trend in the ratio with the increase in
the normalised charged-particle multiplicity. Addition-
ally, there is a noticeable ordering in the prompt J/ψ
to D0 ratio, where the ratio increases with a decrease in
collision energy. This trend is consistent throughout all
the charged-particle multiplicities.

V. SUMMARY

In this paper, we present a novel method for track-level
identification and segregation of the prompt and non-
prompt D0 meson from the background pion-kaon pairs
using machine learning algorithms. We use experimen-
tally measurable topological variables as inputs, which
include the invariant mass (mπK), pseudoproper time
(tz), pseudoproper decay length (cτ), and distance of
closest approach (DCAD0). We train the XGBoost, Cat-
Boost, and Random Forest models with data generated
using PYTHIA8 for pp collisions at

√
s = 13 TeV. The

XGBoost and CatBoost models show an accuracy up to
99% in separating prompt and nonprompt D0 mesons;
however, the Random Forest model shows an accuracy
of 97%. The models are efficient and robust enough
to predict the results even at lower collision energies:√
s = 5.02 TeV and

√
s = 900 GeV in the complete

transverse momentum and pseudorapidity region.
Also, to understand the production of prompt and non-

prompt D0 meson, we study the nonprompt to prompt
ratio of D0 yield as a function of transverse momenta.
Furthermore, we study the self-normalized yield of D0

meson, where we observe a nonlinear rising trend for the
nonprompt D0 as a function of normalized charged par-
ticle multiplicity. In addition, we have incorporated pre-
dictions and results from several collision energies, which
not only serve as a benchmark for the predictions from
the machine learning models but also provide a collision
energy dependence study of prompt and nonprompt D0

mesons. Finally, we explore the relative production of
charmonium, J/ψ to open-charm, D0 states as a function
of transverse momenta and charged-particle multiplicity.
In all these studies, the predictions from XGBoost match
the PYTHIA8 values quite well. This method has an ad-
vantage over the conventional methods as it can perform
unbinned measurements for both prompt and nonprompt
D0 by directly tagging the decay daughters.

The ongoing ALICE Run 3 data taking with high lu-
minosity and better detection capabilities would pave
way for several precise measurements for the charm and
beauty sector. The separation of charm hadron topo-
logical production into prompt and nonprompt ones al-
lows us to explore the beauty sector. The ability to sep-
arate the contribution from the beauty sector gives us

a better understanding of the dynamics of the charmed
hadron production, their interaction with the QGP, and
the properties of the QCD medium. The use of machine
learning algorithms can help us replace the traditional
fitting procedures with improved track-level identifica-
tion of the prompt and nonprompt production of charm
hadrons. This study demonstrates the efficiency of using
machine learning techniques in topological separation of
open charm mesons in an experiment-like scenario using
the track-level inputs, the enhancement of which (prompt
open charm) is considered as a signature of QGP. The
production dynamics of prompt vs non-prompt charmo-
nium and open charm at the LHC energies using the AL-
ICE upgarde would provide a test bench for QCD and the
study of multihadron production dynamics extending to
the beauty sector at the subatomic level.
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APPENDIX

For a better understanding of the model training, we
have shown the learning rate of the XGBoost and the
CatBoost model in Fig. 12. It serves as a pivotal tool for
understanding the model’s learning trajectory and per-
formance over the course of training. The learning curves
enable us to diagnose issues of underfitting or overfitting,
hence ensuring the model’s robustness. Moreover, they
assist in the process of hyperparameter tuning, thereby
optimizing the model’s performance. Lastly, they provide
insights into the efficiency of the training process, poten-
tially conserving computational resources. However, the
Random Forest model, being an ensemble of Decision
Trees, does not learn in an iterative manner. Each tree
in the forest is built independently of the others. There-
fore, there is no concept of iterations during which the
model progressively learns and improves. Thus, it is not
possible to plot a learning curve for the random forest
method, unlike for the XGBoost and the CatBoost mod-
els.
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FIG. 12. Learning curve of Catboost and XGBoost.
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