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Abstract: In the context of Monte Carlo (MC) generators with parton showers that

have next-to-leading-logarithmic (NLL) precision, the cutoff Q0 terminating the shower

evolution should be viewed as an infrared factorization scale so that parameters or non-

perturbative effects of the MC generator may have a field theoretic interpretation with a

controllable scheme dependence. This implies that the generator’s parton level should be

carefully defined within QCD perturbation theory with subleading order precision. Fur-

thermore, it entails that the shower cut Q0 is not treated as one of the generator’s tuning

parameters, but that the tuning can be carried out reliably for a range of Q0 values and that

the hadron level description is Q0-invariant. This in turn imposes non-trival constraints

on the behavior of the generator’s hadronization model, so that its parameters can adapt

accordingly when the Q0 value is changed. We investigate these features using the angular

ordered parton shower and the cluster hadronization model implemented in the Herwig 7.2

MC generator focusing in particular on the e+e− 2-jettiness distribution, where the shower

is known to be NLL precise and where QCD factorization imposes stringent constraints

on the hadronization corrections. We show that the Herwig default cluster hadroniza-

tion model does not exhibit these features or consistency with QCD factorization with a

satisfying precision. We design a modification of the cluster hadronization model, where

some dynamical parton shower aspects are added that are missing in the default model.

For this novel dynamical cluster hadronization model these features and consistency with

QCD factorization are realized much more accurately.
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1 Introduction

Multi-purpose Monte Carlo event generators (MCs) are indispensable tools to describe

realistic, fully detailed hadronic final states for essentially all processes at collider experi-

ments. Their underlying structure and components reflect the large hierarchies of energy
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scales involved in these processes. These scale hierarchies are also the basis of numerous

factorization theorems in analytic QCD approaches, which are partly also reflected in the

MC components. After the determination of hard scattering cross sections using matrix

elements obtained from fixed-order perturbation theory, all-order leading contributions

coming from the radiation of soft and collinear partons are resummed by parton shower

algorithms. The latter evolve the incoming and outgoing energetic partons participating in

the hard scattering to lower scales tied to an ordering variable. This evolution terminates

when the ordering variable reaches a cut-off value, which we refer to as Q0, and which

defines a low scale kinematic restriction on the gluon radiation and gluon branching into

quarks. The value of Q0 is typically in the range between 0.5 and 2 GeV. Phenomenological

models of hadronization then describe how hadrons are formed out of the partonic final

states that have emerged from the parton shower. The parameters of these hadronization

models are fixed through the tuning procedure which is based on a fit to a reference data

set. In current state-of-the-art MCs it is common that the shower cutoff Q0 is also treated

as a hadronization parameter. This means that the value of Q0 is fixed by demanding best

agreement with the reference data. In collisions of extended objects, such as protons, also

multi-parton interactions taking place in the initial stages of the collision are simulated.

The modelling of multi-parton interactions is, however, not subject of the present paper.

One of the major recent advances in the development of MCs has been to include

fixed-order (QCD) corrections for the description of the hard scattering process and the

production of additional hard jets through NLO matching and multijet merging algorithms.

These developments need to be complemented by more accurate parton shower algorithms

to improve the description of the resummed higher order corrections arising from the soft

and collinear dynamics. Such improvements for a large class of observables have only

recently received more attention: While, since a long time, parton shower approaches

such as coherent branching can be rigorously (i.e. analytically and numerically) proven

to be accurate at the next-to-leading logarithmic (NLL) level for dijet-based e+e− event-

shape variables such as thrust or other event-shapes related to jet masses in the peak

region [1–4], similar progress for dipole parton showers, which are more convenient for

matching and merging, has only recently been achieved, see e.g. [5–7] for first steps in

this direction. Going even beyond this level of accuracy for the parton shower evolution is

also subject to an active area of research, but the implementation of these developments in

the framework of multi-purpose MCs applicable for experimental analyses may likely still

require significant time.

In the context of these advancements much less work has been invested in the develop-

ments of the MC hadronization models. However, the presence and impact of hadronization

is an essential ingredient for a realistic description of infrared sensitive observables alongside

with improved matching and merging scheme and NLL accurate parton shower algorithms.

This is particularly important when MCs are employed in the context of the determina-

tion of scheme-dependent Lagrangian QCD parameters, where a systematic separation of

perturbative and non-perturbative effects is crucial. This has for example been stressed

since a long time for strong coupling determination analyses from e+e− event-shapes, when

non-perturbative hadronization corrections are determined from MC simulations [8] and
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the associated uncertainties are determined from simulations with different MC settings.

The properties and quality of the MC hadronization models is also essential for the inter-

pretation of the event generator’s top quark mass parameter mMC
t determined in direct top

mass measurements [9, 10], since they directly affect the top quark mass sensitive aspects

of the observables used for the measurements [2].

Inspired by earlier studies of some of the authors in Ref. [11], we argue that accurate

and improved parton shower algorithms to be employed for MC predictions should not

be considered independently of the MC hadronization models. In principle this is already

obvious at the purely practical level in the context of the tuning procedure of an event

generator to a set of reference data, since the tuning traditionally considers a combined

fit of parton shower and hadronization model parameters. However, what we mean is,

that eventually one should go beyond this practical level by demanding in addition that

the combined matrix-element and parton shower partonic description, on one side, and

the effects of the hadronization model on the other, by themselves have a well-defined

field theoretic meaning in the context of QCD with a systematic and controllable scheme-

dependence. It is obvious that this is particularly important when combining hadronization

corrections extracted from MCs with high precision perturbative QCD predictions for the

determination of hadron level eventshape distribution, or for the interpretation of mMC
t

obtained from the direct measurements. This implies that (i) the field theoretic meaning

of the parton level description and the hadronization effects should not depend on any

parameter subject to tuning hadronization effects and (ii) in particular that the parton

shower infrared cutoff Q0 should be considered as a factorization scale. This view has also

been advocated in Ref. [12], where the same reasoning has been applied for the construction

of an algorithm for parton branching at the amplitude level [13] based on an underlying

factorization of jet cross sections. The way how the shower cutoff is implemented defines

a particular scheme of this factorization, and the factorization property ensures that the

hadron level description is scheme-invariant. This in particular implies that, at least within

some limited Q0 interval, the combined partonic and hadron-model prediction for infrared

sensitive quantities should be independent of the Q0 value. As it is probably too ambitious

to demand exact Q0-independence, in practice at least a systematic cancellation between

the dominant linear Q0-dependencies of the parton level predictions and of the associated

hadronization corrections (at the precision level of the parton shower) should be realized.

This Q0-insensitivity with respect to linear Q0 contributions is what we refer to as ’Q0-

independence’ in this article.

Within such a framework the analytic properties of a (NLO matched and) NLL ac-

curate parton shower can be transferred in a fully controllable way to the hadron level

description provided by the MC generator and new avenues to scrutinize the combined

action of parton level and hadron level descriptions provided by the MCs are made pos-

sible. This level of control is also mandatory to study the impact of the shower cutoff

Q0 dependent top quark mass parameter mCB
Q (Q0), which was recently proven to emerge

from using the coherent branching algorithm for massive quark initiated e+e− event-shape

distributions [2], in the context of MC simulations for boosted top pair production.

For state-of-the-art MCs it is largely unknown to which extent their hadronization mod-

– 3 –



els satisfy the factorization criterium formulated above. It is obvious that the paradigm

of parton-shower cutoff scale independence of the hadron level simulations imposes addi-

tional nontrivial constraints on the hadronization models. At least within some limited

range for Q0, they need the flexibility to match with the corresponding evolution of the

parton shower description. Furthermore, the parton shower cutoff Q0 should not be consid-

ered as a non-perturbative parameter, but always in a hierarchy ΛQCD ≪ Q0 ≪ Q, where

Q is the hard scale of the process of interest, and ΛQCD is the intrinsic scale of QCD. Since

typical parton shower cutoff values are around the charm mass scale, this interpretation is

also practically feasible for current state-of-the-art MCs.

In this article we further promote the idea of the shower cutoff Q0 being a factorization

scale by providing an actual implementation of a hadronization model acting in this direc-

tion. This entails that the (linear) evolution in Q0 of the parton level description and the

corresponding hadronization effects individually follow the concrete predictions of QCD

perturbation theory, yielding Q0-independent hadron level descriptions in a controllable

and systematic manner. To be definite, we carry out our considerations in the context

of the angular ordered parton shower and cluster hadronization model as implemented in

the Herwig 7 MC generator. Our new model will become available with an upcoming

Herwig 7.4 release. We focus in particular on the e+e− dijet event-shape distribution

2-jettiness. For the latter it is known since a long time ago [1, 14, 15] that the coherent

branching algorithm, which is the basis of the angular ordered Herwig parton shower, is

NLL precise. For the 2-jettiness distribution the dominant linear shower cut Q0-dependence

of the parton shower description in the dijet limit can also be determined analytically at

NLO (O(αs)) and the Herwig 7.2 parton shower has been shown to be fully consistent with

these analytic results also for quasi-collinear massive quarks in Ref. [2]. Using analytic re-

sults for this linear Q0-dependence and the association of the generator’s parton-to-hadron

level migration matrix T with the dijet shape function Shad appearing in QCD factoriza-

tion and soft-collinear effective theory (SCET) for 2-jettiness in the dijet region [16], we

can derive a QCD constraint concerning the migration matrix T , which can then be tested

in detail. This constraint involves the linear Q0-dependence of the first moment of the

transfer matrix and demands in addition independence concerning the c.m. energy Q.

We find that the default cluster hadronization model of Herwig 7.2 does not satisfy

this QCD constraint in a consistent manner.1 This motivates the construction of a novel

and improved cluster hadronization model, which we call the “dynamical cluster model”.

The dynamical cluster model satisfies the QCD constraints more accurately and leads

to a significantly improved shower cut Q0-independence of the hadron level description

in the physically important shower cutoff interval 1 GeV < Q0 < 2 GeV. While even

the behavior of the new dynamic hadronization model with respect to Q0-variations is

not yet perfect, the results of this article provide first important steps towards giving

the hadronization effects provided by MC simulations a well-defined QCD meaning with

a controllable scheme-dependence, and a stepping stone to achieve hadronization models

fully consistent with QCD factorization, as outlined in [12]. Eventually variations of the

1In this respect, Herwig 7.3, which has been released recently, behaves similar to Herwig 7.2.
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shower cut may also be used as an instrument to quantity the theoretical uncertainty of

event generator predictions in analogy to the canonical renormalization or factorization

scale variations in analytic calculations. In this article we focus on hadronization in the

presence of light quarks, which is a vital step towards understanding the interplay of

the infrared cutoff, hadronization and the shower cutoff dependence of heavy quark mass

parameters in an upcoming paper [17].

The content of this article is a follows: In Sec. 2 we briefly review the basic conceptual

components of the coherent branching algorithm implemented in the Herwig MC. As a

novelty, we describe the access to the parton level involving quarks with current masses

and massless gluons. This “true parton level” (which was already used in Ref. [2]) has not

been directly accessible in earlier Herwig releases, but it is an essential prerequisite for

the analyses in this work, and can also be compared to other approaches as those outlined

in [18]. In Sec. 3 we then recall the general aspects of the factorization between parton

level and hadronization effect for MC simulations from Ref. [12] and the concrete resulting

constraints on their (linear) shower cutoff Q0-dependence for the 2-jettiness distribution in

the dijet region obtained from the Herwig coherent branching implementation. These con-

staints, which are based on QCD factorization and Soft-Collinear Effective Theory (SCET),

can be formulated in the form of RG evolution equations for distribution cumulants and

moments and have been determined previously in Ref. [2]. Here we also discuss the con-

crete relation of the non-perturbative shape function appearing in QCD factorization and

the parton-to-hadron level migration matrix that can be extracted from the MC simula-

tions which plays an essential role for our phenomenological analyses. The structure of the

default cluster hadronization model available in the current Herwig release is explained

in detail in Sec. 4 as a prequisite for the improved dynamical aspects of our novel cluster

hadronization model introduced in Sec. 5. In this article, the consistency with respect to

QCD factorization of the default and the novel dynamical hadronization models is tested

through a number of analyses of the hadronization effects based on tunes for different fixed

shower cutoff Q0 values. These tuning analyses are described in detail in Sec. 6. Here

we also address how to estimate uncertainties in the determination of the hadronization

model tuning parameters, as this becomes relevant in the context of their cutoff scheme-

dependence. Finally, in Sec. 7 we discuss the results of the Q0-dependent tuning analyses

from the phenomenological perspective, demonstrating a substantially better performance

of the novel dynamical hadronization model with respect to the constraints imposed by

QCD factorization. In Sec. 8 we conclude.

The reader not interested in the details concerning the Herwig hadronization models

and our tuning analyses, may skip Secs. 4 and 5 and most of Sec. 6. However, we recommend

to read Sec. 6.3 as it contains useful information for the understanding of the following

phenomenological discussion.
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2 Coherent Branching

2.1 General remarks

Coherent branching is a parton shower algorithm which is based on 1 → 2 parton split-

ting processes incorporating QCD coherence through the ordering in an emission angular

variable q̃, see e.g. the classic articles [1, 19]. In this work we use the implementation of

coherent branching in the Herwig event generator, as previously described and analyzed

in [2, 20]. For global observables in simple 2-jet processes such as event-shapes distributions

in e+e− → hadrons, coherent branching is NLL precise. Here we do not discuss details of

Herwig’s coherent branching algorithm2 but focus on its main features relevant for the

kinematic properties of the emerging partonic final state and its characteristics relevant for

the onset of the simulated hadronization dynamics taking place after the parton shower

has terminated.

The first important aspect related to hadronization is that the coherent branching

algorithm generates colour structures which are largely compatible with the space-time

structure of hadronization in the sense that large-angle soft gluons will be emitted first in

the parton shower evolution. Upon hadronization this effectively isolates the colors of the

outgoing hard partons in the form of jets at the expense of forming a few, soft hadrons

transverse to the hard jet momenta. The latter feature is also the basis of the analytic

factorization methods for large-angle soft and collinear radiation dynamics such as in Soft-

Collinear Effective Theory (SCET) [21]. The second important aspect is the preconfining

property of the coherent QCD evolution. This property requires that, in the large-Nc

limit, color singlets (i.e. colour connected quark-antiquark pairs which form at the end of

the shower through additional g → qq̄ branchings to be discussed in more detail in Sec. 4

and 5) acquire a universal invariant mass spectrum that is peaked at scales similar to the

infrared cutoff Q0 of the shower evolution and falls off exponentially for larger invariant

masses. These ’clusters’, expressing the fact that color correlations are very local in phase

space, can be interpreted as excited hadronic states and form the basic degree of freedom

of the cluster hadronization model.

2.2 Kinematic Reconstruction, Reshuffling and True Parton Level

The coherent branching algorithm proceeds by generating, for each hard jet progenitor

produced in the hard scattering or a decay process, a sequence of evolution variables: the

angular scales q̃, momentum fractions z and azimuthal orientations ϕ of the emissions. The

values of these evolution variables are distributed according to the Sudakov densities and

the splitting functions describing the individual branchings respecting the angular ordering

restrictions already mentioned before [19]. The full kinematics of the emerging partonic

final state is, however, not yet determined during this process. Rather, it is inferred at the

end of the shower evolution, when the sequence of these variables is terminated through

an infrared resolution criterion. For the coherent branching algorithm this criterion is

2We refer the reader to Ref. [2] for a detailed discussion of features in Herwig’s coherent branching

parton sbower relevant for the shower cutoff analyses in this article.
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based on the transverse momentum of the branching (which is a function of q̃ and z) being

larger than a cutoff value Q0. Once the transverse momentum drops below Q0, the parton

shower evolution terminates. At this point a process of kinematic reconstruction takes place

to determine a concrete physical final state with partons having four-momenta satisfying

on-shell conditions and overall momentum conservation. This proceeds in two steps.

First, the momenta of the final state partons emerging from each progenitor are calcu-

lated from the sequence of evolution variables q̃, z, ϕ according to the progenitor (forward)

and partner (backward) direction associated to the evolving jet. At this point the four-

momenta of all partons do not yet satisfy overall energy-momentum conservation since the

total four-momenta of the partons emerging from each progenitor acquire invariant masses

larger than the original progenitor masses. We call these invariant masses also progenitor

virtualities below. Then, as the second step, a reshuffling algorithm is employed to balance

the resulting jets against each other, maintaining overall energy-momentum conservation.

In this algorithm the spatial momenta of all emitted final state partons in their common

center-of-mass frame are rescaled by a global factor such that overall energy-momentum

conservation is satisfied.

The (on-shell) masses of the final state partons emerging from the kinematic recon-

struction procedure are in principle free parameters. In the context of processes involving

only massless quarks and gluons, one would expect them to be zero. This is what we refer

to as the true parton level, which can also be related to massless parton final states in

standard computations in perturbative QCD. In general the true parton level is associated

to the quarks having current quark masses m̂i.
3 However, the initial steps to interface the

parton level to the cluster hadronization model requires (much larger) constituent quark

masses mi for all final state quarks. These constituent quark masses are parameters of the

hadronization model and are constrained such that a cluster is kinematically allowed to

decay at least into a pair of the lightest hadrons. Furthermore, the cluster hadronization

model involves a branching of each gluon into qq̄ pairs as the basis to form the initial clus-

ters. The model thus assigns the gluons a mass mg, such that this g → qq̄ splitting process

is kinematically allowed at least for the lightest quarks with respect to their constituent

masses.4

For practical purposes, the previous default implementations of the parton shower in

the Herwig event generator have only been providing a ’constituent’ parton level with the

previously mentioned constituent quark and gluon masses. So the kinematic reconstruction

and reshuffling procedures have been directly accounting for these masses, so that there

has not been any direct access to the true parton level. In other words, the Herwig’s

default parton level has already incorporated some aspects of hadronization. As long as

the true parton level is of no relevance in the simulation, for example when the main

focus is to describe experimental data, this is not an issue. However, for analyses (such as

3This true final state parton level has been employed and analyzed in detail already in our previous

work [2]. In practice, for a lght quarks a mass of 10 keV is adopted. In that previous work we have also

analyzed in depth how the parton shower algorithm affects the interpretation of the mass parameter for

heavy quarks in relation to mass renormalization schemes.
4Below we also refer to the gluon mass mg as a constituent mass for simplicity.
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those carried out in this work) where the effects of hadronization need to be cleanly and

accurately distinguished from the perturbative dynamics, it is. In particular, for events

with large gluon multiplicities, the mass related kinematic effects can be quite significant

given that tunes to data yield gluon mass values typically of the order of 1 GeV.

In order to have access to the true parton level so that the effects of the hadronization

model can be cleanly separated and quantified on an event-by-event basis, we have therefore

extended Herwig’s functionality to perform the kinematic reconstruction and reshuffling

(as described above) based on massless gluons and current quark masses m̂i. Subsequently,

as the first part in the implementation of the hadronization model an additional reshuffling

procedure is carried out which changes current quark masses m̂i to constituent masses

mi and provides the mass mg to the gluon. This reshuffling procedure is quite similar

to the reshuffling carried out for the true parton level. First all final state partons are

assigned their new mass (mi or mg) and then again a global spatial momentum rescaling

is carried out in the final state partons’ center-of-mass frame to ensure yet again overall

energy-momentum conservation. The resulting partonic final state with quark constituent

and gluon masses is not identical with, but very close to the constituent parton level of the

default implementation. This procedure ensures that the process where the partons acquire

quark constituent and gluon masses is separated completely from the shower evolution, so

that it can be cleanly considered as a part of the hadronization model. This is vital to

extract event-by-event migration matrices which describe how a parton level observable

value correlates with a hadron level observable in a single event and enables us to calculate

binned migration matrices for any observable by reading out two-dimensional histograms,

see Sec. 6.3.

3 Expectations and Constraints on Hadronization

The default cluster hadronization model has predominantly been motivated by the pre-

confinement property of coherent QCD evolution, and was otherwise driven by minimal

assumptions e.g. using only information on phase space and available quantum numbers

as well as simple power laws for the dynamics within the model.5 The parton shower

evolution provides kinematic and color connection information to the hadronization model

that depends on the value of the scale Q0, where the partonic evolution terminates. The

value of the shower cut Q0 has then typically been inferred through the tuning procedure,

where also all parameters of the hadronization model (including also the quark constituent

and gluon masses) are fixed in a fit to a set of reference data. This has assigned the

shower cut effectively the role of an additional hadronization parameter even though its

value affects the properties of the final states that emerge from the parton shower. Differ-

ent hadronization models, while technically inter-operable among different types of parton

showers and applicable for different values of the shower cut, have thus always shown

an implicit dependence on Q0 through the tuning procedure. However, this dependence

has not been systemtically studied, neither to design and improve hadronization models,

nor for systematic investigations of the uncertainty in the hadronization modeling or the

5A detailed description of the cluster model will follow in Sec. 4.

– 8 –



size of the hadronization corrections. Nevertheless, it has been common practice to adopt

hadronization effects extracted from MC simulations, through parton-to-hadron level mi-

gration matrices or by taking hadron-parton level ratios, as estimates for hadronization

corrections for high-precision and potentially resummed perturbative QCD calculations,

where for the latter the limit of a vanishing infrared regulator has been applied. A pop-

ular application of this kind is constituted by the previously mentioned strong coupling

determinations from e+e− event-shape distributions or jet rates [22].

In recent works [2, 12], however, we have been pointing out that the role of the parton

shower cutoff Q0 should be understood in the sense of an infrared factorization scale. This

implies that the value of Q0 and the way how the shower cut is implemented define a

particular scheme how the partonic and the non-perturbative dynamics are separated and

that the hadron level descriptions should exhibit some invariance under variations of Q0.

This factorization scale invariance would ensure that the hadronization model does not

modify the infrared structure provided by perturbative QCD in an uncontrolled manner.

In other words the shower evolution and the hadronization model should match at this

scale, in the sense that the partonic final state provided by the parton shower at the scale

Q0 provides the starting point of the evolution of the hadronization model towards even

lower scales where the non-perturbative dynamics at the scales of individual hadrons sets in.

Thus at least within some limited range, the evolution of the hadronization model should

be driven by the perturbative dynamics encoded also in the parton shower evolution. In

Ref. [2] we studied the parton shower evolution with Q0 for Herwig’s coherent branching

parton shower in detail for massless and massive quark e+e− event shape distributions.

We showed that the evolution is dominated by effects linear in Q0 which can be quantified

accurately through RG-evolution equations that can be calculated at NLO either from the

coherent branching algorithm itself or from a common diagrammatic computation. This

R-evolution equation is reviewed below in Sec. 3.2.

3.1 General Formulation

Schematically, our starting point can be summarized either as a factorisation at the level of

the cross section or at the level of the colour density operator [12], by studying a convolution

of partonic and hadronic cross sections as

dσH
dw

=
∑
n,m,c

∫ ∫
dϕm(p1, ..., pm|Q)

dσP,n,c(q1, .., qn|Q;Q0)Smn,c(p1, ..., pm|q1, ..., qn;Q0)δ (w −W (p1, ..., pm)) . (3.1)

Here dϕm(p1, ..., pm|Q) is the integration measure of the final-state hadron momenta and

the term dσP,n,c(q1, .., qn|Q;Q0) stands for the partonic cross section, including the partonic

phase space integration of total momentum Q and a certain colour-flow c. The term

Smn,c(p1, ..., pm|q1, ..., qn;Q0) represents the action of the hadronization model in converting

n partons into m hadrons subject to a given model and momentum mapping inherent to it.

W (p1..., pm) in turn is the observable’s definition at hadron level. In practice for an event

generator we have m > n. We also stress the fact that such a probabilistic factorization
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is merely possible in presence of the large-N limit and more generally would involve the

presence of a colour flow in the parton level amplitude and its conjugate, see [12] for

more details. In the above form it is clear that the demand of Q0-independence implies

sets of evolution equations for both the partonic and hadronic factor, which mix different

partonic multiplicities, a generic feature which a hadronization model consistent with Q0

independence must respect. To this end, we can use the evolution of the parton shower,

which we can schematically write for a gluon exchange or emission with momentum qn in

terms of a virtual Vc(q1, .., qn) and real emission contributon Rc,c′(q1, .., qn) as

∂

∂Q0
dσP,n,c(q1, ..., qn|Q;Q0) =

∫
(Vc(q1, .., qn)dσP,n,c(q1, ..., qn|Q;Q0)

−
∑
c′

Rc,c′(q1, .., qn)dσP,n−1,c′(q1, ..., qn−1|Q;Q0)

)
ddqn , (3.2)

where V and R include the definition of some momentum mapping, and can eventually

be expressed in terms of splitting functions. Demanding that the hadronic cross section

is independent of Q0, one can then derive an evolution equation for Smn [12]. For the

present purpose we note that Eq. (3.1) is an accurate analytic model of an event generator,

and Eq. (3.2) one of parton shower evolution. We can also ask the question how such a

factorization then gives rise to observable-specific hadronization corrections, which can be

extracted in a MC sense by snapshots of events at the parton level and at the level of

the final hadronic states. For e+e− event-shapes this is discussed in the next subsection.

Furthermore, we are naturally led to conclude that Q0 should not be a tuning parameter

and that we should investigate the Q0 dependence of Smn, for example, by studying the

dependence of the tuned hadronization model parameters on variations of Q0. As already

mentioned in the introduction, the least we need to demand from an improved Smn is

a smooth change across multiplicities in the sense that higher partonic multiplicities at

lower Q0 lead to comparable effect as smaller multiplicities at higher Q0 do: the dynamics

governing Smn near the infrared cutoff need to be the same as that of the shower close to

the infrared cutoff. This puts severe constraints on the onset of the hadronization model,

to be discussed in Sec. 4 and Sec. 5. Using the evolution equations implied for Smn for the

construction of an evolving model is subject of additional ongoing work.

3.2 Thrust Distribution, Factorization and R-Evolution

The concrete observable we consider in most detail in this work is the 2-jettiness τ event-

shape variable in e+e− collisions, defined by

τ =
1

Q
min
n⃗t

∑
i

(Ei − |n⃗t · p⃗i|) , (3.3)

where Q is the e+e− c.m. energy, and the sum runs over all final state particles with

momenta p⃗i. The maximum defines the thrust axis n⃗t. In the limit of vanishing hadron

masses τ is identical to thrust. The difference is very small and does not play any role in

the context of our studies. We therefore call τ also thrust sometimes in the rest of this
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article. Thrust is an IR safe and global shape variable and in the limit of small τ , referred

to as the dijet region, the events are characterized by two energetic back-to-back jets along

the thrust axis. In this section we render factorization aspects of the coherent branching

shower cutoff Q0 and the resulting RG equation explicit for the thrust distribution in the

dijet region. This RG equation serves as the basis of the concrete numerical studies we

carry out in Secs. 7 for the default and our novel dynamical hadronization model.

Using the notations of Ref. [23] the hadron level thrust distribution in the dijet region

can be written in the factorized form

dσ

dτ
(τ,Q) =

Qτ∫
0

dℓ
dσ̂

dτ

(
τ − ℓ

Q
,Q
)
Shad(ℓ) (3.4)

=

τ∫
0

dτ̂
dσ̂

dτ̂
(τ̂ , Q) QShad(Q(τ − τ̂))

where dσ̂/dτ̂(τ̂ , Q) is the parton level distribution containing the resummed partonic QCD

corrections. In the standard analytic QCD approach these computations are carried out

in the limit of a vanishing IR cutoff, so that these perturbative QCD corrections encode

terms of the form αn
s δ(τ̂) and plus-distributions of the form αn

s [lnk(τ̂)/τ̂ ]+) to all orders

of perturbation theory and potentially additional fixed-order corrections to improve the

descriptions when τ increases. In this context dσ̂/dτ̂(τ̂ , Q) has been determined up to

N3LL+O(α3
s) order [23, 24]. The exact form of the parton level distribution, which is

based on an additional perturbative factorization between large-angle soft and energetic

collinear radiation, is not relevant for the studies in this article. The relevant aspect is that

the factorized form of Eq. (3.4) applies for any scheme to regulate the IR momenta in the

partonic distribution dσ̂/dτ̂(τ̂ , Q).

The function Shad(ℓ) is the shape function that describes the leading hadronization

effects. For thrust in the dijet region it arises from the non-perturbative dynamics of

the large-angle soft radiation in the vicinity of the hemisphere plane perpendicular to the

thrust axis. Hadronization effects also exist for the energetic collinear radiation, but these

are strongly suppressed and negligible.6 The shape function satisfies the normalization

condition ∫
dℓ Shad(ℓ) = 1 . (3.5)

It has an unambiguous definition related to vacuum-to-hadrons matrix elements of soft

gluon Wilson lines. The scale ℓ is the non-perturbative light-cone momentum associated to

coherent large-angle soft radiation respecting the thrust hemisphere constraint related to

the thrust axis [25, 26]. The shape function is known to be universal for many event-shape

distributions associated to the thrust axis hemisphere definition [27]. In the canonical

6While large-angle soft dynamics is linearly sensitive to non-perturbative scales, the collinear dynamics

is only quadratically sensitive and furthermore is associated to momentum fluctuations at higher scales of

order Q
√
τ compared to the soft scales that are of order Qτ .

– 11 –



approach for analytic (and numerical) perturbative QCD computations the partonic dis-

tribution dσ̂/dτ̂(τ̂ , Q) and thus also the shape function are defined in the scheme of a

vanishing IR cutoff. The shape function Shad(ℓ) exhibits a peaked behavior for ℓ values

around 1 GeV and is strongly falling to zero for larger ℓ. Due to the smearing effects

induced by convolution over the shape function in Eq. (3.4) the peak of the hadron level

τ distribution is shifted from the parton level threshold at τ̂ = 0 to positive values by an

amount of order Λ/Q, where Λ is in the range of 1 to 2 GeV. It is this peak region, which

we focus on in our studies.

The point essential for our study is that the form of Eq. (3.4), which factorizes parton

level and hadronization effects, is an umambiguous property of QCD independent of the

scheme that is adopted to regulate IR momenta in the partonic distribution. In Ref. [2] the

NLL partonic thrust distribution was analyzed from the perspective of using the transverse

momentum cut Q0 that is employed in Herwig’s angular ordered parton shower to regulate

IR momenta and keeping track of the dominant linear dependence on Q0.
7 It was found

that only the large-angle soft radiation can cause a linear Q0 sensitivity and that the

partonic distribution dσ̂/dτ̂(τ̂ , Q,Q0) in the presence of a finite value of Q0 can be written

as

dσ̂

dτ̂
(τ̂ , Q,Q0) =

dσ̂

dτ̂
(τ̂ , Q) +

1

Q
∆soft(Q0)

d2σ̂

dτ̂2
(τ̂ , Q) (3.6)

=
dσ̂

dτ̂

(
τ̂ +

1

Q
∆soft(Q0), Q

)
with the gap function

∆soft(Q0) = 16Q0
αs(Q0)CF

4π
+ O(α2

s(Q0)) (3.7)

and where dσ̂/dτ̂(τ̂ , Q) is the partonic thrust distribution for a vanishing IR cutoff shown in

Eq. (3.4). Note that the simple form of Eq. (3.7) arises from a multipole expansion keeping

the dominant linear dependence on Q0 of the full result (which is also given in Ref. [2]).

Upon convolution with the shape function this multipole expansion provides an excellent

approximation to the full result. The strong coupling in the gap function ∆soft(Q0) is

evaluated at the renormalization scale µ = Q0 since the gap function quantifies the effects

of the unresolved (large-angle) soft radiation below the scale Q0, which can only depend

on the scale Q0 in perturbation theory. The NLL precision of the coherent branching

algorithm ensures that this Q0 dependence is also realized by the Herwig simulation

parton level results. The O(α2
s) term indicated in Eq. (3.7) can only be specified once the

cutoff prescription in the context of a more precise NNLL order shower evolution has been

defined. Such a prescription is currently unknown and we therefore drop these higher order

contributions from now on. The result for the gap function ∆soft(Q0) implies it satisfies

7In Ref. [2] the analysis was carried out for the coherent branching algorithm as well in soft-collinear

effective theory (SCET). The exact relation of NLL precision for the angular ordered parton shower and

terms in the NLL+O(αs) order counting in SCET was specified as well.
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the renormalization group equation

R
d

dR
∆soft(R) = 16R

αs(R)CF

4π
. (3.8)

This evolution equation describes a linear scale dependence and has been called R-evolution

in Refs. [28–30].8 The NLL partonic thrust distribution at two different shower cutoff values

Q0 and Q′
0 are therefore related by the equality

dσ̂

dτ̂
(τ̂ , Q,Q0) =

dσ̂

dτ̂

(
τ̂ +

1

Q
∆soft(Q0, Q

′
0), Q,Q′

0

)
, (3.9)

where

∆soft(Q0, Q
′
0) = 16

Q0∫
Q′

0

dR
[ αs(R)CF

4π

]
. (3.10)

We emphasize again that the NLL precision of the parton shower (for the thrust distri-

bution) is essential, since otherwise Eqs. (3.6) and (3.9) and the evolution equation in

Eq. (3.10), which can be computed in a straightforward way in analytic QCD computa-

tions, may not be realized by the parton level MC simulations.

Since factorization of the partonic thrust distribution and the non-perturbative shape

function also applies in the context of a finite transverse momentum cutoff Q0,

dσ

dτ
(τ,Q) =

τ∫
0

dτ̂
dσ̂

dτ̂
(τ̂ , Q,Q0) QShad(Q(τ − τ̂), Q0) , (3.11)

we can also derive the relation of the shape functions for two different cutoff values Q0 and

Q′
0:

Shad(ℓ,Q′
0) = Shad(ℓ− ∆soft(Q

′
0, Q0), Q0) . (3.12)

Here we remind the reader that this relation is exact at the level of terms linear in the

cutoff Q0. Equalities (3.9) and (3.12) are concrete realizations of the more general and

generic relations quoted in Sec. 3.1.

The quantity that conveniently quantifies the shape function’s linear dependence on

Q0 is the shape functions first moment9

Ω1(Q0) ≡ 1

2

∫
dℓ ℓ Shad(ℓ,Q0) , (3.13)

which leads to the relation

Ω1(Q0′) =
1

2
∆soft(Q

′
0, Q0) + Ω1(Q0) . (3.14)

8The point of the R-evolution is that the perturbation series for ∆soft(R) contains an O(ΛQCD) IR

renormalon, but that Eqs. (3.8) and (3.9) are renormalon-free.
9The weight factor 1/2 in the definition of the first moment is motivated by the fact that 2-jettiness

is related to the sum of the two squared hemisphere (jet) masses in the small τ dijet region. The factor

normalizes back to quantify the hadronization effects of a single jet.
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All other higher order cumulant moments do not have any linear cutoff dependence. The

relation of the shape function’s first moment for different parton shower cutoff values

shown in Eq. (3.14) is an essential prediction of QCD and plays an important role in our

subsequent analysis of Herwig’s hadronization models.

3.3 Shower Cutoff Dependence for Thrust and Migration Matrix

At this point it is highly instructive to cross check the level of validity of relation (3.9)

for the implementation of the angular-ordered parton shower in Herwig. As we already

mentioned, Herwig’s angular-ordered parton shower is NLL precise for e+e− event-shapes

in the dijet limit. Even though the NLL precision is guaranteed conceptually, it is certainly

useful to examine it for the practical implementation of the Herwig event generator. To

this end, we consider the shower-cutoff dependence of the 2-jettiness cumulant

Σ̂(τ̂ , Q,Q0) ≡
τ̂∫

0

dτ̄
dσ̂

dτ̄
(τ̄ , Q,Q0) . (3.15)

Using Eq. (3.9) it is straightforward to derive the partonic cumulant difference relation

Q
Σ̂(τ̂ , Q,Q0) − Σ̂(τ̂ , Q,Q′

0)
dσ̂
dτ̂ (τ̂ , Q,Q′

0)
= ∆soft(Q0, Q

′
0) , (3.16)

where the normalization condition
∫

dℓShad(ℓ,Q0) = 1 applies. We make the important

observation that the RHS of Eq. (3.16) is independent of τ̂ and the hard scale Q. As

long as the soft-collinear approximations associated to the dijet region are valid, which

are the basis of the factorization theorem in Eq. (3.4) and the shift relation in Eq. (3.6),

this universality should hold to a good approximation. The range of thrust values where

relation (3.16) is realized for Herwig’s angular ordered parton shower also indicates the

expected range of validity of the factorization formula (3.11) and the relation of the shape

function’s first moment for different cutoff values shown in Eq. (3.14) that tests consistency

with QCD.

In Fig. 1 we have displayed the cumulant difference of Eq. (3.16) for Q0 = 1.0 (blue),

1.25 (orange), 1.5 (green) and 1.75 GeV (red) with respect to the reference result for

Q′
0 = 1.25 GeV for the hard scales Q = 45, 91.2 and 200 GeV. We have employed bins

of size ∆τ̂ = 0.02, and each bin value is determined from the average of the cumulant

at the respective upper and lower bin boundaries divided by the differential cross section

of the bin. To visualize the impact of matching corrections which affect the 2-jettiness

distribution outside the dijet region, four different Herwig matching settings have been

used. The four different intensities for the same color correspond to (from darkest to the

brightest color): (i) leading-order matrix element with matrix-element (ME) correction for

hard QCD radiation (which is Herwig’s default); (ii) the same without ME correction;

(iii) NLO matrix elements with multiplicative (POWHEG-type) matching and (iv) additive

(MC@NLO-type) NLO matching, as available from the Matchbox framework [31]. The

dotted horizontal lines correspond do ∆soft(Q0, Q
′
0), where we use the strong coupling

in the MS scheme extracted from Herwig to solve the RG equation of Eq. (3.10). As
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Figure 1: Binned cumulant differences of the parton level thrust distribution defined in

Eq. (3.16) generated by the Herwig 7.2 angular ordered parton shower for Q = 45 GeV

(left panel), 91.2 GeV (middle panel) and 200 GeV (right panel) and shower cutoff values

Q0 = 1 GeV (blue) 1.5 GeV (green) and 1.75 GeV (red) with respect to the reference cutoff

Q0,ref = 1.25 GeV.

expected, the impact of the matching and matrix element corrections increases for larger

τ̂ values since the soft-collinear approximations in the coherent branching algorithms work

more efficiently in the dijet region where τ̂ is small. We also see that the region in τ̂ , where

the matching corrections become sizeable, increases toward smaller τ̂ ranges for increasing

c.m. energy Q. This indicates that the dijet 2-jettiness region around τ̂ = 0 decreases when

the hard scattering scale gets larger and is consistent with the fact that the peak location

and peak width scale with Λ/Q.

We see that, except for the very first τ̂ bin, where the no-radiation events and the

implementation dependent details of the shower-cutoff dependence are still being resolved

(and therefore not relevant for testing Eq. (3.16)), the partonic cumulant differences ob-

tained from Herwig’s angular ordered shower are nicely compatible with the QCD value of

∆soft(Q0, Q
′
0) for τ̂ up to about 0.2. The visible discrepancies are related to quadratic and

higher order effects in Q0 which the linear approximation used in Ref. [2] and expressed in

Eq. (3.6) does not capture. Overall, we can conclude that the factorization formula (3.4)

should be applicable for 2-jettiness values τ̂ up to around 0.2 which well includes the peak

region and a large fraction of 2-jettiness distribution tail.

Given that the angular ordered parton shower of Herwig exhibits the correct NLL

shower cutoff Q0 dependence, the hadronization model must have at an associated inverse

Q0 dependence so that the hadron level description is Q0 independent and the shower cut

Q0 can be interpreted as an IR factorization scale. For the thrust distribution the effect

of the hadronization in the MC generator appears in terms of a parton-to-hadron level

migration matrix function T connecting bins in the partonic thrust τ̂ to the hadron level

thrust τ . Writing the expression for binned distributions for simplicity in integral form,
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the generator’s hadron level thrust distribution can be written as

dσ

dτ
(τ,Q) =

∫
dτ̂

dσ̂

dτ̂
(τ̂ , Q,Q0) T (τ, τ̂ , {Q,Q0})) . (3.17)

The transfer matrix T is determined by reading out, for each event, the thrust values at

the true parton level (τ̂) and at the hadron level (τ) and by determining the resulting

2-dimensional histrogram. Unitarity ensures that
∫

dτ T (τ, τ̂ , {Q,Q0}) = 1 for each parton

level τ̂ . Comparing to the factorization analogue in Eq. (3.11) we see the close relation be-

tween the shape function QShad(Q(τ − τ̂), Q0), which satisfies the analogous normalization

condition, and the migration matrix T (τ, τ̂ , {Q,Q0}). Changing variables to k = Qτ and

k̂ = Qτ̂ we define the rescaled MC parton-to-hadron level migration matrix function

S̃MC(k, k̂, {Q,Q0}) ≡ 1

Q
T

(
k

Q
,
k̂

Q
, {Q,Q0}

)
. (3.18)

which is precisely the MC analogue to the shape function Shad(k − k̂, Q0).

To visualize the correspondence to the shape function Shad(ℓ,Q0) more directly we can

also consider the rescaled MC parton-to-hadron level migration function as a function of

ℓ = k − k̂ for given values of k̂, Q and Q0. We therefore define a shifted version of the

rescaled migration matrix as a function of ℓ,

SMC(ℓ, {k̂, Q,Q0}) ≡ S̃MC(ℓ + k̂, k̂, {Q,Q0}) . (3.19)

Its first moment, defined in analogy to Eq. (3.13), should thus also satisfy the QCD con-

straint (3.14). Apart from the dependence on the shower cutoff scale Q0, it is the additional

potential dependence on the partonic momentum variable k̂ and the hard scattering scale

Q, which is not contained in the shape function Shad(ℓ,Q0), that we will discuss in the phe-

nomenological analyses in the later sections of this article. Details on how the hadronization

model migration matrix function S̃MC is extracted in Herwig are provided in Sec. 6.3. Ex-

amples for the migration matrix functions S̃MC (left panels) and SMC (right panels) are

displayed in Fig. 10 for the default Herwig hadronization model and in Fig. 11 for the

novel dynamical model.

The reader mostly interested in the phenomenology of the default and the novel dy-

namic hadronization models may now directly jump to Sec. 6.3.

4 The Default Cluster Hadronization Model

The cluster hadronization model is motivated by the preconfinement property of coherent

QCD cascades. As we already briefly mentioned in Sec. 2, in the first step, gluons are split

into quark-antiquark pairs such that (in the large-Nc limit), colour-neutral qq̄ systems, the

’clusters’, emerge. These clusters are interpreted as highly excited hadronic systems, and

successively fission into lighter clusters, which, once below a certain threshold, decay into

pairs of hadrons. Within our novel dynamical hadronization model the implementation of

this final hadron decay process is the same as for the default model. So here we are mainly

concerned with the gluon splitting, cluster formation and cluster fission processes, which
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we briefly review in this section focusing on the default Herwig implementation. These

three processes are the important steps relevant for the matching to the Q0-dependent

infrared regime of the parton shower. For many of the details including a comprehensive

description of the default implementation, we refer the reader to Ref. [32].

4.1 Low-scale Gluon Splitting and Cluster Formation

After the parton shower has terminated, the final state consists of quarks and gluons. All

gluons present thus need to undergo a branching into quark-antiquark pairs such that the

colour neutral (mesonic quark-antiquark) clusters can be determined by the colour connec-

tions which the parton shower has produced. In the Herwig default hadronization model

every gluon is assigned the same fixed constituent mass mg, while for the novel dynamical

model this gluon mass is generated dynamically, as explained in Sec. 5.1. As already men-

tioned in Sec. 2.2, in the existing default hadronization model implementation the gluon

mass mg and the constituent quark masses mi have been implemented by a reshuffling

procedure directly after the kinematic reconstruction, so that the true parton level (with

current quarks and massless gluons) has not been accessible. For the hadronization model

implementations used in this article we added access to the true parton level by first im-

plementing current quarks and massless gluons (within the kinematic reconstruction and

reshuffling at the end of the parton shower) and a separate subsequent reshuffling to con-

stituent quarks and massive gluons. The latter ’constituent’ parton level constitutes the

first step of the cluster hadronization model.

The gluon constituent mass mg of the default hadronization model is one of its parame-

ters subject to the tuning procedure. In principle the same applies to the quark constituent

masses mi. However, for the cluster model they are highly constrained such that enough

energy is available for a cluster to produce at least the lightest pairs of hadrons in its final

decay. In practice the quark constituent quark masses are therefore fixed parameters of

the default model, see Ref. [32], as well as for our novel dynamical model.

After the reshuffling to the constituent parton level has been performed, each (now

massive) gluon is forced to split into a light quark-antiquark pair. This decay is isotropic

in the gluon rest frame, and the flavor of the emerging light quark-antiquark pairs are

assigned randomly, see Sec. 7.1 in Ref. [32] for details. The associated probabilities are

also tuning parameters, but they are not expected to carry any shower cutoff dependence

and therefore fixed to the default in all our following analyses.

4.2 Cluster Fission

After the forced gluon splitting, the final state consists only of quarks and antiquarks having

constituent quark masses mi. The color connected quark-antiquark pairs are now combined

into the clusters. For each cluster we have full information about its flavor content and the

4-momenta of its two constituents, which define the cluster’s mass M . The step that now

follows in the hadronization is the cluster fission. Each cluster that fulfills the relation

MClpow ≥ Clmax
Clpow + (m1 + m2)

Clpow , (4.1)
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where the mi are the masses of the clusters’s constituents, is considered “heavy” and will

undergo fission. Otherwise it is called “light”. Cluster fission is a 1 → 2 process, where one

parent cluster is split into two daughter clusters. To do so a qq̄ pair is popped from the

vacuum, and together with the already two existing constituent quarks form two new color

singlet clusters. If a daughter cluster is again “heavy” according to Eq. (4.1), it will itself

undergo another fission, and so on, until all clusters are “light”. These final light clusters

then decay into the pair of hadrons we already mentioned in Sec. 2.2. Depending on the type

of cluster fission implementation (see below) and on the values of the parameters Clmax and

Clpow, it can happen that also a cluster that is considered “heavy” according to Eq. (4.1)

cannot undergo fission anymore because it is impossible to produce two physical daughter

clusters which would be able to decay into hadrons individually. Also these clusters then

decay directly into hadrons. The parameters Clmax and Clpow are tuning parameters that

govern how long the cluster fission proceeds and how heavy the clusters can be when they

finally decay into hadrons. There are separate Clmax and Clpow parameters for clusters

containing charm and bottom quarks, but we have identified them in our analysis. The

cluster fission condition (4.1) and the parameters Clmax and Clpow are implemented for the

default and our novel dynamic hadronization model. The difference is the dynamics of how

the qq̄ pair is produced from the vacuum.

In the default cluster fission the process is entirely one-dimensional in the sense that

the momenta of the produced qq̄ pair are directed along the axis defined by the cluster’s

constituent 3-momenta in the cluster rest frame prior to the fission and that the direction of

the 3-momenta of the original constituents remains unchanged. The only free parameters

in this simplistic process are the masses of the two daughter clusters, M1 and M2. Only

light flavored qq̄ pairs can be popped from the vacuum and their flavor is picked randomly,

with constant probabilities which are tuning parameters. The daughter cluster masses M1

and M2 are picked from a probability distribution that is a function of the parent’s mass

M , the masses of the original constituents m1 and m2, the mass mq of the quarks popped

from the vacuum and one or more tuning parameters λ⃗:

d2P

dM1dM2
= f

(
M,m1,m2,mq, λ⃗

)
. (4.2)

These general properties of the cluster fission are very similar for the default and the novel

dynamical model. They differ in the way how the probability distribution in Eq. (4.2) is

obtained. We note that these probability distributions are independent components and

in principle not tied to how the forced gluon splitting discussed in Sec. 4.1 is handled. In

order to better understand the novel aspects in the cluster fission of the dynamical model,

we now describe briefly how the probability function is determined for the default cluster

fission.

For the default fission the daughter cluster masses Mi for each fission process are

generated from the equation

Mi = mi + (M −mi −mq) × r
1/PSplit
i i = 1, 2 . (4.3)
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Here, ri is a random variable drawn from a uniform distribution unif(0, 1). Additionally,

it is also required that the kinematic constraints

Mi ≥ mi + mq , M1 + M2 ≤ M . (4.4)

are fulfilled. The parameter PSplit is the only tuning parameter for the cluster mass

distribution of the default fission, i.e. λ⃗ = (PSplit). There are separate parameters for

clusters containing charm and bottom quarks. The resulting double M1 ↔ M2 symmetric

differential mass distribution generated from Eqs. (4.3) and (4.4) reads

d2P

dM1dM2
∝ Θ

(
M0 −M1 −M2

)
× g(M1) × g(M2) , (4.5)

with

g(Mi) =
Θ
(
mi + mq < Mi < M0 −mq

)
M0 −m1 −mq

[
Mi −mi

M0 −mq −mi

]−1+PSplit

, (4.6)

and where we suppressed the normalization factor. Integrating let’s say over mass M2 we

can also write down the single differential mass distribution of the default cluster fission:

dP

dM1
∝Θ

(
m1 + mq < M1 < M0 −m2 −mq

)
M1 −m1

[
M1 −m1(

M0 −m1 −mq

)(
M0 −m2 −mq

)]PSplit

×
[(

M0 −M1 −m2

)PSplit
−mPSplit

q

]
, (4.7)

The smallest possible mass that a cluster generated in the fission can have is mi + mq.

Therefore the lower bound on the mass of a cluster that can still undergo fission (i.e. being

classified as “heavy” by Eq. (4.1)) is

Mmin = m1 + m2 + 2mq . (4.8)

Neglecting for simplicity the quark constituent masses, the single differential cluster mass

distribution in Eq. (4.7) reduces to the expression

dP

dMi
≈ Θ

(
M0 −Mi

)
M0

(Mi

M0

)PSplit−1(
1 − Mi

M0

)PSplit
. (4.9)

We remind the reader that the result in Eq. (4.9) provides the daughter cluster mass

distribution for a single cluster fission process. The final resulting cluster mass distribution,

at the point when the cluster fission processes of a single event have terminated, is more

involved and also depends on the tuning parameters Clpow and Clmax due to the heavy

cluster condition in Eq. (4.1).

5 Dynamical Cluster Hadronization Model

Within Herwig’s cluster hadronization model implementation the two essential features

that influence to which extend the hadronization model dynamics can properly match
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the infrared features of the parton shower are the gluon mass mg, the kinematics of the

subsequent forced gluon splitting in the first step of the hadronization process, and the

dynamics behind the cluster fission. For a fixed gluon mass value the problematic aspect

is that the gluon splitting process carried out by the parton shower entails in contrast

a nontrivial distribution of invariant masses of the g → qq̄ process. This distribution

depends on the value of shower cut Q0. But it is also clear that a fixed gluon mass value

can only mimic some averaged features of the parton shower splitting, and this prohibits an

exact matching to the parton shower. For the cluster fission process, where an additional

light quark-anti-quark pair is produced from the vacuum, the parton shower analogue

is a radiated gluon which afterwords branches into the light quark-antiquark pair. For

the default cluster fission process, the dynamical aspects encoded in these parton shower

processes are missing. It can therefore not be expected that fixing the parameters mg,

Clmax, Clpow and PSplit from the tuning procedure should result in an exact matching to

the parton shower.

The motivation for the construction of the dynamical cluster hadronization model

is to add these parton shower aspects back to the model implementation such that the

ultraviolet aspects of the hadronization modelling have an improved compatibility to the

infrared behavior of the parton shower. The essential novel aspects are (i) a dynamically

generated distribution for the gluon mass mg and parton-shower-like kinematics for the

forced splitting in the initial stage of the hadronization and (ii) the implementation of a

parton-shower-like dynamics behind the cluster fission process. These are explained in the

following two subsections.

5.1 Dynamic Gluon Mass Distribution

The idea of the dynamic gluon mass distribution is to adopt essential features of the

perturbative parton shower gluon splitting also for the non-perturbative gluon splitting

in the hadronization model. In the parton shower, if a gluon branches into a quark-

antiquark pair that will then be part of the final state (i.e. these quarks do not split any

further and their momenta are set on-shell with current quark masses in the kinematic

reconstruction process), the gluon adopts a finite virtuality associated to the quarks’ 4-

momenta. The probability distribution of this gluon virtuality follows from the form of the

splitting function and the implementation of the splitting algorithm.

For the construction a dynamical non-perturbative gluon splitting at scales lower than

those probed by the parton shower, we implement important elements of this partonic

branching by using the same splitting function with some modifications. The first obvious

modification is that the splitting function implementation does not have the infrared Q0-

dependent cutoff of the parton shower and the second modification is to adopt a constituent

mass mq for the produced quark pair (which automatically regulates the splitting function

by the kinematic constraint p2g > 4m2
q). Furthermore, since we cannot use the perturbative

QCD strong coupling αs(µ) for renormalization scales µ well below 1 GeV, we adopt the

frozen strong coupling value αs(µ0) at the scale µ0 = 1 GeV for scales µ < 1 GeV. As an

additional feature we also account for the Sudakov form factor ∆(Q̃2
g, q̃

2) to quantify a non-

splitting probability between some scale Q̃g from which we start our “non-pert. shower” to
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the scale q̃ where the gluon splitting takes place. The scale Q̃g is a new tuning parameter

of this gluon mass model (replacing the fixed gluon constituent mass mg appearing for the

default version).

To keep things analytically trackable we approximate the Sudakov form factor with a

Theta-function, because the scale hierarchies considered here are not large:

∆(Q̃2
g, q̃

2) ≈ Θ(Q̃2
g − q̃2) . (5.1)

A similar approximation can also been used for the analytic Laplace space solution of the

coherent branching algorithm in Refs. [1, 2], see e.g. Eq. (4.11) in Ref. [2]. Substituting

m2
g = z(1 − z)q̃2 for the gluon’s virtuality generated by the splitting, which we identify

now with the gluon’s constituent mass mg, the splitting probability for linear momentum

fraction z and gluon constituent mass mg for a single quark species is given by the expression

dP ∝ ∆
(
Q̃2

g,
m2

g

z(1 − z)

)
dPg→qq̄

( m2
g

z(1 − z)
, z,Q0 = 0

)
=

dm2
g

m2
g

dz
αs(m

2
g)TF

2π

(
1 − 2z(1 − z) +

2m2
q

m2
g

)
× Θ(4m2

q < m2
g < z(1 − z)Q̃2

g) Θ
(
z−
(mq

mg

)
< z < z+

(mq

mg

))
(5.2)

with

z±(x) ≡ 1

2

(
1 ±

√
1 − 4x2

)
. (5.3)

The restrictions on z in the second line arise from the kinematics of the splitting process:

0 < p2⊥ = z(1 − z)m2
g −m2

q ⇒ 2mq < mg and z−
(mg

mq

)
< z < z+

(mg

mq

)
. (5.4)

Integrating over z we can then obtain the probability distribution for the dynamic gluon

mass,

dP

dmg
∝

αs(m
2
g)

mg

[
Θ
(

2mq < mg <

√
mqQ̃g

)√
1 −

4m2
q

m2
g

(
1 +

2m2
q

m2
g

)
+ Θ

(√
mqQ̃g < mg <

Q̃g

2

)√
1 −

4m2
g

Q̃2
g

(
1 +

3m2
q

m2
g

−
m2

g

Q̃2
g

)]
. (5.5)

The resulting dynamic gluon mass distribution is shown as the red curve in Fig. 2 for the

values Q̃g = 6 GeV (which is the typical value we obtain from the tuning analyses discussed

later in Sec. 6) and the constituent quark mass mq = 350 MeV for the quark generated

from the splitting. The gluon mass value for the standard tune of Herwig’s default forced

gluon splitting, mg,default = 950 MeV, is also indicated by the blue vertical line.

For the implementation of the dynamic forced gluon splitting a value mg is drawn from

the probability distribution in Eq. (5.5), that is then used for this gluon for the (second)

reshuffling to constituent masses. After this reshuffling, each gluon with its dynamic gluon

mass is now split into a light quark-antiquark pair in order to allow for clusters to be formed.
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Figure 2: Dynamic gluon mass distribution for given Q̃g = 6 GeV and mq = 350 MeV

(red curve) compared to the fixed default model gluon mass mg,default = 950 MeV (blue

vertical line).

While for the default implementation an isotropic quark-antiquark pair production process

in the gluon rest frame has been used, for the novel dynamical model a process more closely

resembling the parton shower dynamics is adopted. So the kinematics of the dynamical

forced gluon splitting depends on the longitudinal momentum fraction z and the azimuthal

angle ϕ of the emission. While the latter azimuthal angle is uniformly distributed, the

value z is drawn from the distribution

dP

dz
∝
(

1 − 2z(1 − z) +
2m2

q

m2
g

)[
Θ
(
2mq < mg <

√
mqQ̃g

)
Θ
(
z−
(mq

mg

)
< z < z+

(mq

mg

))
+ Θ

(√
mqQ̃g < mg <

Q̃g

2

)
Θ
(
z−
(mg

Q̃g

)
< z < z+

(mg

Q̃g

))]
, (5.6)

which is just the z-dependent part of Eq. (5.2).

Using the standard decomposition into forward, backward and transverse momenta,

the concrete expression for the quark momentum reads

Pµ
q = zPµ

g +
m2

q − (zPg + q⊥)2

2z Pg · n̄
n̄µ + qµ⊥ . (5.7)

The dependence on the azimuthal angle ϕ is contained in the transverse momentum com-

ponent q⊥ with respect to the axis n̄, which has the concrete form

qµ⊥ =
√
−q2⊥

(
cos(ϕ)nµ

⊥,1 + sin(ϕ)nµ
⊥,2

)
, (5.8)

where

Pg · n⊥,i = 0 , n̄ · n⊥,i = 0 , n⊥,1 · n⊥,2 = 0 , n2
⊥,i = −1 . (5.9)
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Using in addition the relations

P 2
g = m2

g , −q2⊥ = z(1 − z)m2
g −m2

q , (5.10)

we finally arrive at

Pµ
q = zPµ

g +
m2

g(1 − 2z) − 2Pg · q⊥
2Pg · n̄

n̄µ + qµ⊥ . (5.11)

For the antiquark momentum we have Pµ
q̄ = Pµ

g − Pµ
q , which just corresponds to the

replacements z → (1 − z) and qµ⊥ → −qµ⊥.

At this point we still need to provide a concrete expression for the backwards light-like

direction n̄. In the parton shower the direction n̄ is uniquely defined as the backwards

direction to the momentum of the progenitor of the branching tree. However, for the

forced gluon splitting this information is not available any more, and in principle there

is no unique “correct” way assigning the direction of n̄ so that we need to decide on

a prescription. However, all choices should be close (or collinear) with the progenitor’s

backward direction. To determine n̄ we define a “new progenitor” momentum P , from

which we obtain the light-like backwards direction as

n̄µ =

(
1
−P⃗
|P⃗ |

)
. (5.12)

To do this we first identify the momenta Pi of the two (large-Nc) color connected final state

partons of the splitted gluon, which either are a quark and antiquark, a quark and a gluon

or an antiquark and a gluon. For our implementation we adopt one of these partons as the

“new progenitor”, choosing the one whose direction of motion leads to a smaller transverse

momentum of the gluon. With this choice for n̄ together with the values for mg, z and ϕ

we have now fully determined the quark momentum in Eq. (5.11).

Since the gluon splitting function is symmetric in z around z = 1/2, the quarks and

antiquarks generated in the splitting have the same probability for both going in the di-

rection of their respective color partner (with that they will then form a cluster) as for

both going in the opposite direction of their color partner. There is in principle nothing

wrong with that since this also happens in the parton shower. However, since one can

argue that the non-perturbative splitting considered here is already the first step of the

cluster formation, it is more “natural” that the quarks are predominantly emitted in the

direction of their color partner.10 We therefore restrict the range of z for the emitted quark

to z < 1/2 when the progenitor is the color connected quark and to z > 1/2 when the

progenitor is the antiquark.

So far we have discussed only one quark flavor of mass mq being produced in the

splitting process. The gluon splitting, however, generates all three light flavors. In the

default model implementation there have been fixed (tuned) probabilities pi for the three

possible flavors i = u, d, s to be chosen when the gluon is split. In the dynamic gluon

10In fact, colour reconnection models [33, 34] would prefer to align the colour connections in such a way

as to minimize the cluster masses.
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splitting we go a different way. Writing the (not normalized) gluon mass distribution for

light flavor q in Eq. (5.5) as dP (mg, Q̃g,mq), the full gluon mass distribution dP (mg, Q̃g)

is obtained from the sum over all light quark flavors

dP (mg, Q̃g)

dmg
∝

∑
i=u,d,s

dP (mg, Q̃g,mi)

dmg
. (5.13)

We draw the gluon masses from this distribution and then do the reshuffling from the true

to the constituent parton level. When coming do the point where we have to split the

gluon, we have to decide for one light flavor. This is done randomly where the gluon mass

dependent probability for flavor i reads

pi =
dP (mg, Q̃g,mi)

dmg
×
( ∑

j=u,d,s

dP (mg, Q̃g,mj)

dmg

)−1

. (5.14)

This ensures that
∑

i=u,d,s pi = 1 and that pi = 0 if 2mi > mg. We note that this im-

plementation provides an exact treatment of the flavor-dependent gluon mass distribution

dP (mg, Q̃g,mq) adapted to the basic setup of the cluster hadronization where the gluon

splitting in the light quark-antiquark pairs takes place after the reshuffling to the con-

stituent parton level.

5.2 Embedding Gluon Branching into Cluster Fission

The idea behind the novel dynamical cluster fission is, similar as for the dynamic gluon

mass distribution, to implement a fission process that mimics important aspects of the

parton shower dynamics. To illustrate our implementation let us have a look on the generic

aspects of the process of cluster formation and cluster fission for the case of a simple quark-

antiquark system, once in the presence of a (soft) gluon that was radiated in the parton

shower and once without any perturbative radiation, see Fig. 3. If a gluon has been radiated

by the parton shower (upper path in Fig. 3), in the first step of the hadronization model

all particle momenta are reshuffled to their constituent masses and the gluon is forced to

split into a quark-antiquark pair as we have discussed in Secs. 4.1 and 5.1. In the next step

the color-connected quarks and antiquarks are combined into two clusters. At this point

the final state consists of two clusters. If instead no gluon has been radiated in the parton

shower (lower path in Fig. 3), we start the hadronization with only the quark-antiquark

pair. In the first step of the hadronization, the two quarks’ momenta are reshuffled to

their constituent masses, and subsequently combined into one single primary cluster. If

this cluster is heavy, it undergoes cluster fission and splits into two lighter clusters. At this

point the final state consists of two clusters as well.

Let us now assume that the perturbative radiation of the gluon in the shower in the

upper path of Fig. 3 happens at a very low sale just slightly above the cutoff scale Q0. So

the upper path in Fig. 3 (perturbative gluon radiation, formation of two primary clusters)

and the lower path in Fig. 3 (no perturbative radiation, with one primary cluster that

undergoes cluster fission) are only separated by an very small shift of the cutoff Q0 that

either allows or vetoes the soft gluon radiation in the shower. In both cases one ends up
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Figure 3: Cluster formation and fission for the simple case of a quark-antiquark final state

system produced by the hard scattering process. The upper path shows the process in the

presence of a soft gluon that was just barely radiated perturbatively in the parton shower,

which then splits into a quark-antiquark pair. The lower path shows the same system

without any perturbative branching. After the formation of the first two primary clusters

in the upper path, and the fission of the primary cluster into two secondary clusters in the

lower path, the final state consists in both cases of two clusters. The further hadronization

steps (more fission processes, cluster decay, hadron decays) are identical for the two paths.

with two separate clusters in the final state (that can then either decay directly to hadrons

if they are light, or undergo further fission processes if they are heavy, and eventually

decay into hadrons). We see that a smooth transition between the perturbative and the

non-perturbative dynamics at the cutoff scale requires that the cluster fission in the lower

path mimics the dynamics of the parton shower’s gluon radiation and gluon splitting. The

idea behind the novel dynamical cluster fission model is therefore a generalization of the

parton-shower-like gluon splitting dynamics we have adopted for the forced gluon splitting

and dynamic gluon mass distribution described in Sec. 5.1 to a constituent quark q → qg

(or antiquark q̄ → q̄g) branching as the basis of the cluster fission. In the following we will

explain some technical details of the implementation.

The dynamical cluster fission starts from a primary cluster made of a color-connected

quark-antiquark pair emerging from the forced gluon splitting of Sec. 5.1. We consider the

cluster’s rest frame, where the quark and antiquark, which we call constituents, are back-to-

back. It is now randomly chosen (with equal probability) from which of the two constituents

the intermediate gluon is being radiated. Let us call the momentum of the constituent from

which the gluon is radiated Pµ
1 , and the momentum of the other constituent Pµ

2 . Both

momenta are on-shell with respect to their constituents’ masses, i.e. P 2
i = m2

i . We now

define the like-light backwards direction n̄µ to parametrize the branching process from the

backward direction of radiating constituent, i.e.

n̄µ ≡ (1,−P⃗1/|P⃗1|) . (5.15)
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The momenta kµ of the (anti)quark and gµ of the gluon that emerge from the branching

are

kµ = zPµ
1 +

m2
1 + p2⊥ − z2m2

1

z(n̄ · P1)
× n̄µ

2
+ qµ⊥ , (5.16)

gµ = (1 − z)Pµ
1 +

m2
g + p2⊥ − (1 − z)2m2

1

(1 − z)(n̄ · P1)
× n̄µ

2
− qµ⊥ , (5.17)

where p2⊥ = −q2⊥. The gluon mass mg is the virtuality the gluon acquires from its splitting

into a q′q̄′ pair following the algorithm already described in Sec. 5.1. The invariant mass

the radiating constituent acquires due to this ’mini-shower’, i.e. the q → qg (or q̄ → q̄g)

and the g → q′q̄′ branching, reads

M2
1 = (kµ + gµ)2 =

m2
1

z
+

m2
g

1 − z
+

p2⊥
z(1 − z)

. (5.18)

Expressing the perp momentum in terms of the evolution variable for the gluon emission

branching

p2⊥ = (1 − z)2(z2q̃2 −m2
1) , (5.19)

the invariant mass M1 can also written as

M2
1 = m2

1 +
m2

g

1 − z
+ z(1 − z)q̃2 . (5.20)

At this point we need to restore energy-momentum conservation and modify the 3-

momentum of constituents 1 and 2. We thus solve the equation

Mcl =
√

|p̃|2 + M2
1 +

√
|p̃|2 + m2

2 , (5.21)

which yields

P̃µ
1 = (

√
|p̃|2 + M2

1 , |p̃| × P⃗1/|P⃗1|) , (5.22)

P̃µ
2 = (

√
|p̃|2 + m2

2, −|p̃| × P⃗1/|P⃗1|) . (5.23)

with |p̃| = 1
2Mcl

λ1/2(M2
cl,M

2
1 ,m

2
2) for the new 3-momentum of the two constituents. The

concrete expressions for the momenta of the quark (or antiquark) and the gluon emerging

from the branching of constituent 1 read

k̃µ = zP̃µ
1 +

m2
1 + p2⊥ − z2M2

1

z(n̄ · P̃1)
× n̄µ

2
+ qµ⊥

= zP̃µ
1 +

(
2(1 − z)m2

1 −
z

1 − z
m2

g + (1 − z)z(1 − 2z)q̃2
)
× n̄µ

2(n̄ · P̃1)
+ qµ⊥ , (5.24)

g̃µ = (1 − z)P̃µ
1 +

m2
g + p2⊥ − (1 − z)2M2

1

(1 − z)(n̄ · P̃1)
× n̄µ

2
− qµ⊥

= (1 − z)P̃µ
1 −

(
2(1 − z)m2

1 −
z

1 − z
m2

g + (1 − z)z(1 − 2z)q̃2
)
× n̄µ

2(n̄ · P̃1)
− qµ⊥ .

(5.25)
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The momenta k̃µ, g̃µ and the momentum P̃µ
2 of constituent 2 are now parametrized

in terms of the splitting variables z and q̃ that are determined from the Pq→qg splitting

function, and the gluon mass mg that we have to draw from the dynamic gluon mass

distribution as described in Sec. 5.1. The splitting variables q̃ and z are drawn from the

probability distribution given by the q → qg splitting function (including a flat distribution

of azimuthal angles)

dPq→qg ∝ dq̃2

q̃2
dz

1 − z
αs

(
z2(1 − z)2q̃2

)[
1 + z2 − m2

1

zq̃2

]
Θ(z2q̃2 −m2

1) , (5.26)

where the quark mass m1 should always be understood to be the constituent mass of the

branching quark, times the Sudakov form factor, that we approximate again via a Theta-

function,

∆(Q̃2
q , q̃

2) ≈ Θ(Q̃2
q − q̃2) . (5.27)

The scale Q̃q, which is the quark analogue of the scale Q̃g for the gluon splitting in Eq. (5.1),

is one of the new tuning parameters of the dynamic model, and sets the starting scale of

the shower evolution for the non-perturbative (anti)quark branching in the cluster fission

process.

The gluon with momentum g̃µ now splits into a q′q̄′ pair following the description of

the forced gluon splitting in Sec. 5.1. However, the backwards direction n̄µ is given in

Eq. (5.15). Furthermore, the analogue of the scale Q̃g (shown in Eq. (5.1)) which here

we denote by Q̃
(f)
g is related to the splitting variables z and q̃ by the angular ordering

relation11

Q̃(f)
g = (1 − z)q̃ . (5.28)

We emphasize that this means that the gluon splitting scale Q̃g in the forced gluon splitting

and Q̃
(f)
g in the cluster fission are unrelated, hence the superscript (f) for ’fission’. Finally,

the color-connected quarks and antiquarks (one being a constituent and the other being

either q′ or q̄′) are paired into the two new clusters.

The resulting distribution for the daughter cluster masses M are shown in Fig. 4 for

the examples of a parent cluster mass M0 = 91.2 GeV (left panel) and M0 = 10 GeV (right

panel). The solid lines show the novel dynamical mass distribution for Q̃q = 5 GeV (red)

and 10 GeV (blue). The dashed colored lines show the mass distribution for the default

cluster fission for PSplit = 0.5 (red) and 1 (blue). The values for Q̃ and PSplit are within

the typical ranges obtained in our tuning analyses. All constituent quark masses are set to

mq = 0.35 GeV. We see that the novel dynamical cluster fission yields a substantially richer

structure of the daughter cluster mass distribution than the default model, which is merely

assuming a power law behavior supplemented by constraints from the phase space limits.

In contrast, the dynamical model naturally implements phase space constraints through the

11We note that there is also the option to use Q̃
(f)
g as an additional tuning parameter that sets the scale

of the gluon splitting in the fission independent of the (anti)quark branching. We have, however, not used

this option in our analyses.
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Figure 4: Distribution of the daughter cluster masses M in the fission for a parent cluster

with mass M0 = 91.2 GeV (left panel) and M0 = 10 GeV (right panel). The solid lines

show the distribution for the dynamical cluster fission for Q̃q = 5 GeV (red) and 10 GeV

(blue). The dashed lines show the default mass distribution for PSplit = 0.5 (red) and 1

(blue)..

kinematics of the fission process and therefore incorporates physical thresholds where both

light, but also very asymmetric heavy/light cluster configurations are allowed. This can

be seen from the peak structures exhibited by the solid lines. It is typical that two peaks

appear. The lighter peak corresponds to the cluster that is formed from the constituent

quark of the parent cluster from which the gluon was radiated and the color connected

quark generated from the gluon splitting. Since the gluon and the quark pair emerging

from its splitting are radiated predominantly into the direction of that constituent quark,

this cluster is typically light. The heavier peak then corresponds to the cluster that contains

the other constituent quark. Furthermore, in the dynamical model there is always a smooth

and fast suppression in the limit of vanishing cluster masses which is more physical than the

sharp cutoff resulting from the simply power law mass distribution of the default model.

6 Description of the Shower Cutoff Dependent Tuning Analyses

6.1 Tuning Procedure and Reference Tune

The goal of our numerical analysis is to investigate the Q0-dependence of hadronization

tuning parameters and observables generated by Herwig. The hadronization parameters

are determined by tuning Herwig to reference data. To obtain this reference data we em-

ploy observables generated by Herwig itself for the shower cut Q0,ref . The corresponding

tune, which we call the reference tune, is obtained from a regular tune to experimental e+e−

data obtained at the Z-pole for Q = 91.2 GeV from the different LEP collaborations, which

include event-shapes, particle multiplicities and jet rates at Q = 91.2 GeV. This amounts

to 3180 observable bins for which official Rivet [35] analysis code implementations are

available.

The tuning procedure is performed with the software library Apprentice [36]. For

the determination of the reference tune we convert the experimental data bins, which are

provided in form of Yoda files, to a reference data file by using the Apprentice Python
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script “app-datadirtojson”. The second input required by Apprentice are Herwig sam-

ples for the corresponding observable bins generated from the Rivet analysis code related

to the experimental data evaluated at different values of the tuning parameters within the

parameter ranges. The Apprentice script “app-build” determines a polynomial interpo-

lation from these samples for both height fMC,k({pi}) and statistical error12 ∆fMC,k({pi})

of each bin k separately. The tunes are then produced by using the Apprentice script

“app-tune2” which performs a weighted χ2 minimization by evaluating these interpolations.

The goodness of fit function that Apprentice minimizes is

GOF({pi}) =
∑
k

w2
k

(fMC,k({pi}) − fref,k)2

(∆fMC,k({pi}))2 + (∆fref,k)2
, (6.1)

where fref,k and ∆fref,k are the height and the corresponding statistical error of bin k of the

reference histogram, respectively. In our analysis the weights wk are chosen to be common

for bins belonging to the same observable.

For the reference data of the Q0-dependent tuning analysis we include the 3180 ob-

servable bins related to LEP measurements at Q = 91.2 GeV which already enter the

reference tune using the official Rivet analysis code for the data generation at the refer-

ence cutoff Q0,ref . This means that for these observables all bins from the entire spectra

are included. Additionally, we add 14 equidistant bins of the 2-jettiness observable with

1.2 GeV ≤ Qτ < 6.8 GeV. This range covers the peak region and some part of the tail. For

the implementation of 2-jettiness we employ a custom, in-house Rivet analysis code. This

additional partial 2-jettiness distribution does not contribute to the determination of the

reference tune, but it is included in the reference data of the Q0-dependent tune analyses,

since it is the 2-jettiness distribution for which we analyze the properties of the transfer

function. Note that the 2-jettiness and the classic thrust observables are very similar at

the c.m. energies Q we consider, and we have checked that the outcome for using either

2-jettiness or classic thrust for the additional partial distribution are fully equivalent. For

the GOF function the relative weights w2
k from the 3180 observable bins related to the LEP

measurements at Q = 91.2 GeV that are used for the determination of the reference data

remain unchanged and the overall contribution of the additional 2-jettiness distribution in

terms of total bin weights is set to 8%. In all other aspects the Q0-dependent tunes in our

analysis are produced in a way very similar to the out-of-the-box Herwig tune, so that

they also provide compatible realistic simulations.

For our Q0-dependent tuning analysis we create tunes at fixed values of Q0. To track

the details of Q0-dependence we adopt Q0 values between 0.75 GeV and 2.00 GeV in steps

of 0.05 GeV. This constitutes 26 different Q0 values. The lower and upper bounds are

motivated by Q0 being at low-energy scale close to the hadronization scale, but still within

the realm of perturbation theory. At Q0 = 0.75 GeV we do not expect perturbation theory

(and the parton-shower description) to work very well, but we include scales below 1 GeV

as a monitoring tool to visualize the expected breakdown of the perturbative description.

Scales above 2 GeV are not considered since we cannot expect that a hadronization model

12We have fixed a bug in Apprentice which led to wrong values in the error interpolation.
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could (and actually should) provide a description of parton branching at high scales. So

the level of agreement (or disagreement) of the properties of the hadronization corrections

with QCD factorization in the range 1 GeV < Q0 < 2 GeV will be our analysis instrument

to quantify the quality and consistency of the hadronization model.

In the Herwig input files, which describe the settings for each sample run, we choose

the built-in leading order e+e− → qq̄ matrix element (5 flavours d, u, s, c, b) and we turn

off QED radiation. We specify the hadronization model (default or dynamical) and set the

corresponding tuning parameters. These are sampled uniformly within a hyperrectangle.

We include the shower cutoff parameter Q0 as one of the interpolation variables so that

we can use the same interpolation for the determination of the reference tune and the

corresponding reference data at Q0,ref as well as for the subsequent Q0-dependent tuning

analyses. We made sure that the region around the minimal GOF value parametrized by

Q0 is fully contained within the sampled hyperrectangle, while at the same time keeping

the hypervolume small enough to ensure a good Apprentice interpolation quality. Note

that we produce two reference tunes, one for the default hadronization model and one for

the novel dynamical hadronization model, so that our tuning analyses are self-consistent.

We pick Q0,ref = 1.25 GeV as the reference shower cut value since it is close to the value

obtained from the global minimum tune, see also our discussion in Sec. 7.2. We emphasize

that we have checked that the simulations based on the reference tunes for both the default

and novel dynamical hadronization models are very close to the Herwig’s out-of-the-box

default e+e− tune and thus provide the same realistic overall data description. We refer the

interested reader to the webpages https://herwig.hepforge.org/ or http://mcplots.cern.ch/,

where the data description of standard Herwig tunes (and for other MCs) are collected.

In order to have a means to cross check that stability of interpolation procedure we

carry out two independent analyses for the “app-build” interpolations, one using cubic

and one using quartic polynomial orders (which yields 120 and 330 polynomial coefficients,

respectively, for seven parameters). We use the more precise quartic interpolation as our

default interpolation and the less precise cubic one as a reference for the stability checks.

For the cubic and quartic interpolations we generate 105 and 106 events per parameter

space point, respectively, to obtain the binned distributions. These leads to statistical

errors that are, for both interpolations, approximately of the same size as our estimate for

the interpolation uncertainties which are described in more detail below. The latter can be

kept small by providing a sufficiently large oversampling factor compared to the number

of coefficients of the polynomial interpolation. The number of sampled parameter space

points are (hadronization model: interpolation order, number): (dynamic: cubic, 493),

(dynamic: quartic, 2257), (default: cubic, 484), (default: quartic, 5380). This corresponds

to at least a four-fold oversampling.

The “app-tune2” minimization script is run with the following options: The minimiza-

tion algorithm is set to the truncated Newton (TNC) algorithm, where the starting point

for the minimization is obtained by taking the point with the minimum GOF-function value

out of 100 randomly sampled points. The full minimization is then repeated 10 times to

reliably find the global minimum. After determining the reference tune, the “app-tune2”

script also automatically saves prediction histograms for all observables in an output file
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called “predictions tnc 100 10.yoda”13. It obtains these predictions by evaluating the Ap-

prentice interpolation at the parameter values given by the reference tune. We convert

this Yoda file to a reference data file by using the “app-datadirtojson” script again. This

standard reference file provides the reference data for the Q0-dependent analysis.

6.2 Treatment of the Hadronization Model Parameters

Tuning Parameters

The default and the novel dynamical cluster hadronization models both feature a number

of tuning parameters. In our tuning studies we do not consider all of them as floating

parameters to be determined by the tuning fits. Rather we consider those as floating which

are associated with the ’hard scale’ for the hadronization dynamics (i.e. they should show

some correlation to the parton shower’s IR cutoff Q0) and on which the event-shapes, jet

rates and charged particle multiplicities that we account for in the reference data depend

in a significant way. Furthermore, we also include parameter which are related to low-

scale hadron-specific processes unrelated to that ’hard scale’ which, from the physical

perspective, should be rather Q0-independent. Overall, for the default and for the novel

dynamical hadronization models each, 6 parameters are treated as floating parameters in

the fits to the reference data. We also refer to them as pi (i = 1, . . . 6) below. In this section

we discuss the concrete features of these parameters in more detail. All other parameters,

which are common to both hadronization models, are set to their default values.

The only hadron-specific hadronization model parameters we consider as floating tun-

ing parameters are PwtSquark and PwtDIquark. They control for example the strangeness

and Baryon production rates and thus directly impact the charged particle multiplici-

ties. Since hadron production takes place after the cluster fission process, PwtSquark and

PwtDIquark appear for the default as well as for the novel dynamical hadronization model.

Among all the hadron-specific parameters of the hadronization model it is important to in-

clude at least these two as floating parameters in the tuning analyses to maintain a realistic

correlation between various parameters that affect the charged particle multiplicities, but

in the end also have an impact on other observables. We also note that several of the cluster

fission parameters are flavour dependent, in order to allow them to account for effects of

the heavy quark masses. Sensitivity to those can only be gained by explicitly considering

flavour dependent observables, but otherwise their role is no different from their light-quark

counterparts. Since we are not specifically addressing heavy quark fragmentation in our

analysis, we choose to identify those heavy flavor specific parameters with their light quark

counterparts for the studies in this article.

Apart from the two hadron-specific parameters PwtSquark and PwtDIquark just ex-

plained, there are two additional hadronization model parameters which we treat as floating

tuning parameters and which are common to both hadronization models. These are the pa-

rameters Clmax and Clpow. They appear in the “heavy” cluster condition of Eq. (4.1) which

determines whether the fission of a (heavy) cluster into two lighter clusters takes place

or whether that cluster is already considered light and decays into hadrons, see Sec. 4.2.

13We have fixed a bug in Apprentice which led to wrong values in this prediction file.
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While Clmax (which has dimension of mass) sets the overall scale of the heavy cluster fis-

sion threshold, the dimension-less parameter Clpow essentially quantifies a smearing of the

threshold that also depends on the masses of the cluster’s constituents.

The two remaining hadronization parameters we consider in our Q0-dependent tuning

analyses differ for the two hadronization models. For the default hadronization model these

are the gluon constituent mass mg and the dimension-less parameter PSplit. The gluon

constituent mass mg is important for the kinematics of the forced gluon splitting taking

place at the initial states of the hadronization process, see Sec. 4.1. For the novel dynamical

hadronization model the fixed gluon mass mg is replaced by a gluon mass distribution. The

parameter PSplit governs the shape and steepness of the daughter cluster mass distribution

according to Eq. (4.3) in the cluster fission algorithm described in Sec. 4.2. It has no

counterpart in the novel dynamical model, where the daughter cluster mass distribution

is generated from a splitting process. We refer to our discussion of Fig. 4. For the novel

dynamical hadronization model the two remaining hadronization parameters are Q̃g and Q̃q

both which have dimension of energy. The scale Q̃g is the ‘hard energy scale’ of the g → qq̄

branching process that is the basis of the forced gluon splitting in the dynamical model,

see Sec. 5.1. The scale Q̃q is the ‘hard energy scale’ of the q → qg (or q̄ → q̄g) branching

process that governs the cluster fission process in the dynamical model, see Sec. 5.2.

Since Q̃g and Q̃q represent the scales where the non-perturbative splitting and fission

processes start we can expect some linear dependence of their fitted values on the value of

the parton shower cutoff Q0, if a proper matching of the dynamical hadronization to the

parton shower is realized through the tuning to the reference data. Furthermore, in this

case, the other four parameters of the dynamical hadronization model should be rather

insensitive to the shower cutoff value since they govern dynamical aspects that are only

of non-perturbative nature taking place at scales below the hard scales Q̃g and Q̃q. On

the other hand, for the default hadronization model, which is not designed to provide any

systematic matching and where Q0 essentially plays the role of just another hadronization

parameter, such behavior cannot be naturally expected. To which extent these expectations

are actually met by the outcome of our tuning analyses is subject to our phenomenological

discussion in Sec. 7.2.

Error Estimate

The description up to this point is complete with regards to the determination of the

central values pi,cent (i = 1, . . . 6) of the hadronization tuning parameters. Interestingly,

at this time there is no general canonical approach to estimate the uncertainties of MC

hadronization model tuning parameters. However, in the context of having hadronization

effects being defined in a particular scheme, it is also relevant to quantify an uncertainty

on its parameters. In the following we explain the prescription we adopt for an uncertainty

estimate of the tuning parameter we treat as floating in our tuning fits. As there is no

canonical approach, our prescription is to some extent ad-hoc and only provides a first

step towards are systematic treatment of the tuning parameter uncertainties. However,

we believe that viewed together with the differences obtained from the cubic and quartic

interpolations it provides a sufficiently fair treatment at this point.
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There are two sources of uncertainties we consider. The first is the statistical uncer-

tainty related to the number of events in our MC simulations. The second is an estimate

for the “app-build” interpolation error. The statistical error is determined from the inverse

of the Hessian matrix Hij ≡ ∂2(GOF)/(∂pi∂pj) of the fit at the best fit point multiplied

with a heuristic rescaling factor associated to the effective degrees of freedom induced by

the weights wk:

∆pi,stat(Q0) =

√√√√2 ∗ (H−1)i,i(Q0) ∗
(∑

k

w2
k

)2/(∑
k

wk

)2

. (6.2)

To estimate the interpolation uncertainty we analyze the difference for the tuning parameter

obtained from the reference data (that is based on the Apprentice interpolation) versus

data generated from a full Herwig simulation run, which we call exact Herwig data.

Given the central values for the hadronization parameters pi,cent(Q0) obtained at cutoff Q0,

we can carry out a second tuning fit for the cutoff Q0 with the reference data being replaced

by exact data obtained from a Herwig run using the tuning parameters pi,cent(Q0). This

yields a new set of best tuning parameter values which we call pi,refH[Q0](Q0), where the

subscript refH[Q0] stands for the shower cutoff where the exact data is generated and the

argument (Q0) for the cutoff where the tuning fit is carried out. The difference between

these two sets of tuning parameters ∆pi(Q0) = pi,refH[Q0](Q0) − pi,cent(Q0) is an estimate

for the Apprentice interpolation errors at the cutoff Q0 since, for a perfect interpolation

and in the absence of statistical errors, we would have ∆pi(Q0) = 0. This approach also

allows to quantify the interpolation uncertainty at the reference cutoff Q0,ref itself.

To reduce computational cost of this uncertainty estimation method, we carry out this

procedure only for the six equidistant cutoff values QH
0,m ∈ {0.75, 1.00, ..., 2.00}GeV. To

obtain an uncertainty estimate for all Q0 values we consider, we apply the following aver-

aging procedure. Since the minimization procedure itself is actually not computationally

expensive we can evaluate pi,refH[QH
0,m](Q0) for the m = 1, . . . , 6 exact Herwig data sets for

all Q0 values. We then estimate the final interpolation uncertainty of the hadronization

parameters by adopting a distance based average,

∆pi,inter(Q0) =

√√√√ 6∑
m=1

26∑
n=1

w(Q0, Q′
0,n, Q

H
0,m)

[
pi,refH[QH

0,m](Q
′
0,n) − pi(Q0)

]2
, (6.3)

where the weights are given by

w(Q0, Q
′
0,n, Q

H
0,m) ∝ e−[σ−2

c (QH
0,m−Q′

0,n)
2+σ−2

s (Q′
0,n−Q0)2]/2, (6.4)

with the sum normalized to one
∑

m,nw(Q0, Q
′
0,n, Q

H
0,m) = 1. The correlation width σc =

1/32 GeV in the first exponential ensures that the exact Herwig data tunes at QH
0,m closest

to Q0 contribute most. The smoothing width σs = 1/16 GeV in the second exponential

ensures that for Q0 values in the middle between two QH
0 values we obtain about the

average of the interpolation uncertainties at these QH
0 values.
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6.3 Extraction of Migration Matrix Functions

The technical implementation of the migration matrix extraction relies on the true par-

ton level state, in the form of the complete description of all particles in that state, in

the HepMC event record for each event that Herwig produces. Before we continue the

description we remind the reader about the standard framework that is used to generate

observable histograms from MC generator runs: A MC generates each event sequentially.

For each event it produces an event record in the HepMC format that also includes all

particles in the final state, which are marked by the “final-state” status code (which is just

the number 1). Each particle entry [X, (pE , px, py, pz)] specifies the particle species X and

its four-vector pµ. This HepMC event record is read by the analysis framework Rivet.

Analyses written for Rivet first carry out a final-state projection which gives the set of

all final-state particle four-momenta of the event, {pµi }. This set is then converted to an

observable value by an observable projection τ = O({pµi }). For each event this observable

value is filled into a histogram to produce the final binned distribution dσ/dτ .

In the Herwig code that we use in our analyses we include in addition the true parton

level state as defined in Sec. 2.2 in the HepMC event record for each event, with parton

level particles marked by a fixed status code, which lies in the value range that a MC can

freely use for internal purposes. This allows us to not only do a final-state, i.e. hadron

level, projection but also a true parton level one to obtain the parton level four-vectors

{p̂µi }, denoted with a hat. This functionality does not only allow for the evaluation of

parton level observables, such as τ̂ = O({p̂µi }) and dσ/dτ̂ , analogous to the hadron level

ones, but also for the extraction of the combined set ({p̂µi }, {pνj }) obtained for each event.

This provides access to a fully differential probability distribution P (({p̂µi }, {pνj }) in the

combined parton-hadron level space. We can therefore also extract any parton-hadron

level correlation function corr[O1({p̂µi }),O2({pνj })] or any migration function (or matrix)

given by the conditional probability distribution P (O({pνj }) | O({p̂µi })). This allows us

to extract the probability of having a hadron level observable value τ for a given parton

level value τ̂ . In our phenomenological studies we analyze the behaviour of the migration

matrix function of the 2-jettiness observable (τ̂ , τ) and the first moment of the probability

distribution P (τ | τ̂) in τ − τ̂ . In practice these probability distributions are of course

lists or matrices of probabilities as we consider observable bins. There are two approaches

to saving the necessary data using Rivet. The first is to fill a very finely binned 2-D

histogram in the (τ̂ , τ) variables. The second option is to save the tuple (w, τ̂ , τ) for each

event, i.e. unbinned data. The event weight w can in general differ from 1, in particular

for NLO-matched MC simulations. We adopted the second method since it allows us to

generate any histograms with arbitrary binning specifications and to calculate any average

exactly without the potential need to rerun the MC simulation.

Accounting for the additional dependence on the shower cutoff scale Q0 and the hard

scattering scale Q in our subsequent analyses, we refer to the probability distribution

P (τ | τ̂) as T (τ, τ̂ , {Q,Q0})), which we already introduced in Sec. 3.3. To be more spe-

cific, we concretely study the quantitative behavior of the rescaled transfer functions

S̃MC(k, k̂, {Q,Q0}) and SMC(ℓ, {k̂, Q,Q0}) which are derived from T (τ, τ̂ , {Q,Q0})) in
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Figure 5: Upper panels: Shower cutoff Q0-dependence of the Herwig hadron level 2-

jettiness distribution in the peak region for the c.m. energies Q = 45 (left panels), 91.2 GeV

(middle panels) and Q = 200 GeV (right panels) for the default hadronization model. Lower

panels: ratio of the 2-jettiness distributions with respect to the reference Q0,ref = 1.25 GeV

tune.

Eqs. (3.18) and (3.19). We remind the reader that SMC(ℓ, {k̂, Q,Q0}) is the exact MC

analogue of the shape function Shad(ℓ,Q0) appearing in the analytic QCD factorization.

7 Phemomenology of the New Model

Finally, in this section we analyze quantitatively the properties of Herwig‘s default and

new dynamic hadronization models from the perspective of (i) the shower cut Q0 taking

the role of an IR factorization scale and (ii) the Q0 scheme dependence of the hadronization

migration matrix function SMC(ℓ, k̂, {Q,Q0}) in the 2-jettiness dijet region demanded from

the QCD factorization, where the hadronization effects are expressed in terms of a shape

function. We remind the reader that unless stated otherwise we always use the more precise

quartic interpolations for the results that are discussed.

7.1 Shower Cutoff Independence of Hadron Level Observables

We start by considering the simulation results for the hadron level 2-jettiness distribution

for the different Q0-dependent tunes in the default and new dynamic hadronization model.

In Figs. 5 and 6 the 2-jettiness τ distributions are shown for the default and the dynamic

models, respectively, for c.m. energies Q = 45 GeV (left panels), 91.2 GeV (middle panels)

and 200 GeV (right panels) and for the shower cutoff values Q0 = 1 (blue), 1.25 (orange),

1.5 (green) and 1.75 GeV (red). The respective lower panels show the ratio of the differential

cross section values with respect to the reference scale Q0,ref = 1.25 GeV. While the Q0-

dependence for the default model yields variations in the simulated cross section in the

range between 5 and 10% for the peak and the tail region, the corresponding variations

for the dynamic model are generally at the level of a few percent, except for Q = 45 GeV,

where they can reach 5% in the distribution tail for τ values above the peak. We can also
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Figure 6: Upper panels: Shower cutoff Q0-dependence of the Herwig hadron level 2-

jettiness distribution in the peak region for the c.m. energies Q = 45 (left panels), 91.2 GeV

(middle panels) and Q = 200 GeV (right panels) for the novel dynamical hadronization

model. Lower panels: ratio of the 2-jettiness distributions with respect to the reference

Q0,ref = 1.25 GeV tune.

observe a significantly smaller Q0-dependence for the dynamical hadronization model for

τ values below the peak. Overall, it is clearly visible that the Q0-independence is realized

significantly better in the dynamical model than in the default model.

It is highly instructive to see that this improvement does not only happen for the

simulation at Q = 91.2 GeV, where the tuning procedure is carried out, but also for other

hard scattering energies. This is highly rewarding as it shows that the design of the novel

dynamical hadronization model properly extrapolates the correct Q0 dependence to other

energies, that are not controlled directly through the tuning. This property is crucial for

the interpretation of the shower cut being an IR factorization scale and the consistency of

the hadronization model’s dynamical behavior in the context of QCD.

We have checked that these features are not only realized for 2-jettiness and event-

shapes, on which most of our analytic insights concerning the NLL precision of Herwig’s

angular ordered parton shower and of the partonic shower cut Q0 dependence are based on,

but actually for all jet and event-shape related observables that have been measured in e+e−

collisions in the past. In Figs. 16 and 17 shown in App. A this is demonstrated displaying

the simulations results obtained for the default and the novel dynamical hadronization

model, respectively, again for the shower cutoff values Q0 = 1, 1.25, 1.5 and 1.75 GeV

for a number of selected observables for in comparison with actual LEP data gathered

at Q = 44, Q = 91 and Q = 133 GeV. We have displayed the results for a number of

other event-shapes (thrust, heavy jet mass), jet resolution rates as well as charged particle

multiplicities measured at the JADE, ALEPH, DELPHI and OPAL experiments [37–42]

The respective Rivet analyses codes used for the generation of each of the histograms is

quoted at the bottom of each panel. The lower sections of the individual panels show ratios

with respect to the MC reference simulation results for Q0,ref = 1.25 GeV. The improved

shower cutoff Q0-independence for the dynamical model in comparison to the default model
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Figure 7: Minimal GOF values normalized to the sum of squared weights (
∑

k w
2
k) ob-

tained from the tuning procedures for the default (blue dots) and the novel dynamical

hadronization model (orange dots) as a function of the shower cutoff Q0. The left panel

shows the results for the cubic (o3) and right panel the results for the quartic (o4) inter-

polations. The colored triangles represent the normalized minimal GOF values obtained

from using actual LEP data as the reference date, once for treating Q0 as a floating fit

parameter and once for using the reference value Q0,ref = 1.25 GeV.

for all observables is clearly visible. We emphasize again that we have checked that the

results shown in Figs. 16 and 17 are representative for all available e+e− Rivet analyses.

We also stress that, overall, the quality of the description of the data provided by all the

tunes we obtained for the novel dynamical hadronization model is the same as that of the

standard Herwig release tune.

7.2 Tuning Quality and Cutoff Dependence of the Tuning Parameters

Let us now have a closer look on the quality of the fitting procedure from which the cutoff

dependent tuning parameters pi,cent(Q0) emerge. In Fig. 7 the minimal GOF function value

of the tune (normalized to the sum of squared bin weights
∑

iw
2
i ) is displayed as a function

of Q0 in the range between 0.75 and 2 GeV for the default (blue dots) and the dynamic

model (orange dots). The left panels show the results for the cubic (o3) interpolations and

the right panels those for the more accurate quartic (o4) interpolations. For the reference

shower cutoff Q0,ref = 1.25 GeV, the GOF values are zero for both hadronization models

as required by consistency. Furthermore, both hadronization model yields very similar

small GOF values for Q0 close to Q0,ref in the range between about 1 and 1.4 GeV, which

is natural due to the small difference to the reference cutoff value. Since cutoff values

Q0 < 1 GeV are not feasible for the interpretation as an infrared factorization scale, it is

the GOF values for the other shower cutoff values above 1.4 GeV that we have to compare

for the two hadronization models. We can clearly see that the default hadronization model

(blue) yields significantly larger minimal GOF values than the dynamical model (orange).
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The overall larger size of the GOF values for the quartic interpolation arises due to the

higher statistics used when generating the interpolation. Thus, since the choice for Q0,ref is

as a matter of principle arbitrary, we can conclude that the quality of the fits is significantly

better for the dynamical model than for the default one in the physically relevant Q0 interval

between 1 and 2 GeV. In the ideal case the minimal GOF value would stay close to zero

for all Q0 values. In this respect the dynamical model does much better than the default

model, but the current version of the dynamical model cannot yet achieve this challenging

goal.

At this point an interesting aspect to be discussed is to which extent the reference

data used for the tuning analyses, which are generated by the MC for the cutoff value

Q0,ref = 1.25 GeV, represent a good proxy for the real LEP data. Furthermore, it should

be also clarified whether the experimental data indeed prefers shower cut values in the

range where perturbation theory is still valid, i.e. in the range between 1 and 2 GeV that

we consider in our discussion. To address these questions we carry out two additional tuning

analyses where instead of the MC generated reference data the LEP data is used that also

enters the regular Herwig release tunes. In one tuning analysis Q0 is treated as a freely

floating tuning parameter and in the other the shower cutoff is fixed to Q0,ref = 1.25 GeV.

The outcome is shown as the colored triangles for the cubic as well as for the quartic

interpolations. The minimal GOF function values for these tuning fits are of course not

zero since the real data always differs from simulations. For the cubic interpolation both

tunes yields practically identical values, with minimal GOF values compatible with the

smaller dynamical model GOF values for Q0 > 1.4 GeV. For the quartic interpolation the

minimal GOF values for the tune with a freely floating shower cutoff yields Q0 values close

to unity, and the minimal GOF values are in the range from 4.2 to 4.6 for the default and

from 3.57 to 3.64 for the dynamical model. The results confirm that the MC reference data

of our shower cutoff dependent tuning analysis is sufficiently close to the experimental LEP

data and, more importantly, that the interval of 1 to 2 GeV, where the shower cut Q0 can

be considered as an infrared factorization scale, is well compatible with the experimental

data.

Let is now have a look at the Q0-dependence of the six hadronization model parameters

which are treated as floating parameters in our tuning analyses in each of the hadronization

models. As we have already mentioned in Sec. 6.2, for the dynamical model a proper

matching to the parton shower (which allows for the shower cutoff Q0 to be interpreted as

an infrared factorization scale) implies a linear Q0-dependence for the “hard” starting scales

Q̃g and Q̃q of the non-perturbative branching processes and an insensitivity to Q0 for the

other hadronization parameters. On the other hand, for the default hadronization model

(where the shower cutoff is merely another hadronization parameter) similar implications

can in principle not necessarily be expected. In Figs. 8 and 9 we show the Q0-dependence

of the six tuning parameters which were treated as floating parameters for the default and

the dynamic models, respectively. We show the results based on the cubic (orange) and

the quartic (blue) interpolations. The dots show the central values pi,cent(Q0) and the

vertical lines stand for the uncertainties which are obtained from the quadratic sum of

the statistical und interpolation uncertainty ∆pi =
√

(∆pi,stat(Q0))2 + (∆pi,inter(Q0))2, as
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Figure 8: Dependence of the tuned parameters on the shower cutoff Q0 for the default

hadronization model. The dots represent the central values and the vertical lines the

combines statistical and interpolation uncertainty. The orange results are based on cubic

and the blue results on the quartic interpolations.
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Figure 9: Dependence of the tuned parameters on the shower cutoff Q0 for the novel

dynamical hadronization model. The dots represent the central values and the vertical

lines the combines statistical and interpolation uncertainty. The orange results are based

on cubic and the blue results on the quartic interpolations.

– 39 –



Figure 10: Rescaled parton-to-hadron migration matrix funtions for the default hadroniza-

tion model for the 2-jettiness distribution for the shower cutoff Q0 = 1.25 GeV extracted

for c.m. energy Q = 91.2 GeV. The left panel shows S̃MC(k, k̂, {Q,Q0}) and the right panel

SMC(ℓ, {k̂, Q,Q0}), which is analogous to the shape function.

described in Sec. 6.2. Overall we see that that tuning results based on the cubic and quartic

interpolations are nicely compatible, even though the error bars do not always overlap.

In Fig. 9 we see that, indeed, the parameters Q̃g and Q̃q exhibit a Q0-dependence

that is quite close to linear. At the same time, in comparison the other four hadronization

parameters (Clmax, Clpow, PwtSquark and PwtDIquark) are, indeed, rather Q0-insensitive.

The behavior is again not perfect, with Clmax and Clpow exhibiting rather large uncertainties,

but it can nevertheless be observed rather clearly. In contrast, we can see a somewhat

larger Q0-dependence of the same four parameters for the default model in Fig. 8. This is

visible most prominently for PwtDIquark. Since these parameters directly affect the Baryon

production and thus the charge particle multiplicities generated in the simulation, we can

conclude that in the default model the shower cutoff value Q0 affects these multiplicities so

that the tuned value of PwtDIquark needs to compensate in a significant way. In the novel

dynamical hadronization model this rather unnatural feature is not visible. Overall, the

results shown in Figs. 8 and 9 again confirm that the novel dynamical hadronization model

achieves a better separation of the low-scale hadronization processes from the parton level

description provided by the parton shower. This separation is essentially the MC simulation

analogue of factorization in analytic QCD studies and an important prerequisite for the

parton shower cutoff to be interpreted as a factorization scale.

7.3 Rescaled Migration Matrix Function

Let us now start the discussion on the MC results for the rescaled migration matrix func-

tions S̃MC(k, k̂, {Q,Q0}) and SMC(ℓ, {k̂, Q,Q0}) defined in Eqs. (3.18) and (3.19), respec-

tively, for the default and the dynamic hadronization models obtained from the 2-jettiness

τ distributions. For a given (true) parton level soft momentum k̂ = Qτ̂ and shower cut-

off Q0, the migration function S̃MC(k, k̂, {Q,Q0}) gives the distribution of hadron level

momenta k = Qτ , while SMC(ℓ, {k̂, Q,Q0}) gives the distribution of the non-perturbative

soft momenta ℓ = k − k̂ that the hadronization adds to the parton level configuration.
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Figure 11: Rescaled parton-to-hadron migration matrix funtions for the novel dynamical

hadronization model for the 2-jettiness distribution for the shower cutoff Q0 = 1.25 GeV

extracted for c.m. energy Q = 91.2 GeV. The left panel shows S̃MC(k, k̂, {Q,Q0}) and the

right panel SMC(ℓ, {k̂, Q,Q0}), which is analogous to the shape function.

We remind the reader that SMC(ℓ, {k̂, Q,Q0}) is the MC analogue of the infrared cutoff-

dependent shape function Shad(ℓ,Q0) in the dijet 2-jettiness QCD factorization formula

discussed in Sec. 3.2. Details concerning the extraction of the migration matrix functions

from the Herwig simulations have been explained in Sec. 6.3.

In the left panel of Fig. 10 the MC migration function S̃MC(k, k̂, {Q,Q0}) is shown for

the Herwig default cluster hadronization model. It has been extracted at the c.m. energy

Q = 91.2 GeV for the reference Q0 = 1.25 GeV tune (explained in more detail in Sec. 6.1)

in the range 0 ≤ k, k̂ ≤ 8 GeV. For Q = 91.2 GeV this corresponds to thrust values

between 0 and 0.088. The corresponding shifted migration function SMC(ℓ, {k̂, Q,Q0}) is

shown in the right panel. In Fig. 11 the analogous migration functions are shown for the

novel dynamical model. The shape and structures shown in both figures are representative

for the migration matrix functions for all cases we obtain in our analyses

We see that for k̂ > 2 GeV the shape of the migration matrix functions for both

hadronization models are very well consistent with the expectations from a shape function,

which states that the migration function SMC(ℓ, {k̂, Q,Q0}) should be independent of the

partonic momentum k̂. We can spot deviations from this expectation for k̂ < 2 GeV

for the default as well as for the novel dynamical hadronization model. While for the

default hadronization model the migration function SMC(ℓ, {k̂, Q,Q0}) for k̂ < 2 GeV is

considerably flatter than for k̂ > 2 GeV, for the dynamic hadronization model it is much

peakier. These features play an essential role in the more important quantitative analyses

we carry out in Sec. 7.4.

Before moving on, let us comment on a general feature of the migration functions. It

concerns that SMC(ℓ, {k̂, Q,Q0}) is finite for ℓ values down to −1 GeV. We can see this

feature clearly in the right panels of Figs. 10 and Fig. 11 for partonic values k̂ > 1 GeV.

Even though the major portion of SMC(ℓ, {k̂, Q,Q0}) is located at positiv ℓ, which means

that the bulk of hadronization corrections shift the thrust distribution towards larger thrust

values, this negative tail shows that hadronization can sometimes also decrease the thrust
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Figure 12: Rescaled parton-to-hadron migration matrix function SMC(ℓ, {k̂, Q,Q0}) as a

function of ℓ for the default hadronization model for Q0 = 1.25 and a number of different

partonic k̂ = τ̂ /Q soft momenta. The upper panels show the results for some k̂ < 2 GeV

and the lower panels for larger k̂ values. The left, middle and right panels have been

extracted from the 2-jettiness distributions for c.m. energies Q = 45, 91.2 and 200 GeV,

respectively.

value. Since this feature arises from the tuning to actual LEP data, it means that at least

for the Herwig simulation implementation this particular feature of the hadronization

corrections is demanded by data. For k̂ ≥ 1.5 GeV this behaviour arises consistently and

becomes independent of the value of k̂ also for other Q and Q0. This feature is per se

not at all problematic and also consistent with a shape function within QCD factorization.

However, for partonic k̂ values below 1.5 GeV the migration function is not capable to

build up such a negative tail, simply because the physical thrust values are restricted

to be positive. This entails that the first ℓ-moment of the rescaled migration function

SMC(ℓ, {k̂, Q,Q0}) (see Eq. (3.13)) for k̂ values below 1.5 GeV is always larger than for

values larger than 2 GeV, where the first moment stabilizes. This feature is absent in the

shape function Shad(ℓ,Q0), which is strictly k̂-independent. We come back to this feature

in our discussion below.

7.4 Shower Cutoff and Energy Dependence of the Migration Matrix Function

Finally, let us now discuss at the more quantitative level the properties of the migration ma-

trix functions SMC(ℓ, {k̂, Q,Q0}) we have obtained from our Q0-dependent tuning analyses

for the Herwig default and the novel dynamical hadronization model.
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Figure 13: Rescaled parton-to-hadron migration matrix function SMC(ℓ, {k̂, Q,Q0}) as a

function of ℓ for the novel dynamical hadronization model for Q0 = 1.25 and a number

of different partonic k̂ = τ̂ /Q soft momenta. The upper panels show the results for some

k̂ < 2 GeV and the lower panels for larger k̂ values. The left, middle and right panels

have been extracted from the 2-jettiness distributions for c.m. energies Q = 45, 91.2 and

200 GeV, respectively.

In Fig. 12 we show SMC(ℓ, {k̂, Q,Q0}) obtained from the default hadronization model

over ℓ for different k̂ for the reference shower cut scale Q0,ref = 1.25 GeV for the hard

scales Q = 45 GeV (left panels), 91.2 GeV (middle panels) and 200 GeV (right panels).

In Fig. 13 the analogous results are displayed obtained from the dynamical hadronization

model. The upper panels show SMC(ℓ, {k̂, Q,Q0}) for several small k̂ values below 2 GeV,

which is the range where SMC is still strongly depending on k̂. The lower panels show

SMC(ℓ, {k̂, Q,Q0}) for larger k̂ values between 5 and 8 GeV where it is rather k̂-independent.

We remind the reader that k̂ = 8 GeV corresponds to partonic 2-jettiness values of τ̂ =

(0.178, 0.088, 0.040) for Q = {45, 91.2, 200}GeV, so all rescaled transfer functions which

are shown are well within the dijet region, see our discssion of Fig. 1. It is one of the

predictions of QCD factorization in the dijet region that the shape function Shad(ℓ,Q0)

is independent of the hard scale Q and the partonic k̂ value. As we can see in the lower

panels of Figs. 12 and 13, this is indeed realized quite well for SMC(ℓ, {k̂, Q,Q0}) obtained

from both hadronization models at large k̂ values. For the dynamic model the shape of

SMC(ℓ, {k̂, Q,Q0}) is somewhat broader than for the default model but for both models

the results are very stable concerning the values of Q and k̂. For small k̂ the situation

is, however, quite different. We see that for the default model the SMC(ℓ, {k̂, Q,Q0})

functions broaden considerably for decreasing k̂. This behavior is also visible in the 3D
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Figure 14: First moment ΩMC
1 (k̂, Q,Q0) of the rescaled parton-to-hadron migration func-

tion over k̂ for the default (left panel) and the novel dynamical hadronization model

(right panel) extracted from the 2-jettiness distribution simulated for shower cutoff Q0 =

1.25 GeV at c.m. energies Q = 45 GeV (blue), 91.2 (orange) and 200 GeV (green dots).

plots of Fig. 10 and furthermore depends significantly on the c.m. energy Q, as can be

seen most clearly from the blue curves for k̂ = 0.025 GeV in the upper panels of Fig. 12.

This feature of the default hadronization model causes very large positive hadronization

corrections for events with no partonic branching or small partonic τ̂ values. Since the

no-branching events still constitute a considerable fraction of the events ((16.1, 6.2, 1.9)%

for Q = (45, 91.2, 200) GeV and Q0 = 1.25 GeV for the Herwig’s shower), this broadening

effect affects the hadron level τ distribution in a notable way. The important aspect of this

effect is, that it is incompatible with QCD factorization. For the dynamical model there

is still a visible dependence on k̂, but it is substantially milder. In particular there is no

broadening for decreasing values of k̂ and the Q dependence is significantly smaller as well,

which can be seen by again comparing the blue curves in the upper panel of Fig. 13 for

k̂ = 0.025 GeV and the three Q values. Instead, decreasing k̂ the shape of SMC(ℓ) in the

dynamical hadronization model becomes more peaky. This behavior is an attempt of the

dynamical hadronization model to compensate for the principle inability to describe the

negative hadronization corrections for k̂ ≤ 1.5 GeV, which we already mentioned in the

previous subsection, while at the same time avoiding the QCD-incompatible broadening

effects of the default model.

To gain a more quantitative insight into the Q0-, k̂- and Q-dependence of the migration

function SMC(ℓ, {k̂, Q,Q0}) it is instructive to have a close look on its first moment defined

by

ΩMC
1 (k̂, Q,Q0) ≡ 1

2

∫
dℓ ℓ SMC(ℓ, {k̂, Q,Q0}) , (7.1)

in analogy to the QCD factorization’s shape function first moment Ω1(Q0) given in Eq. (3.13).

The latter only depends on the shower cut Q0, but is independent of k̂ or Q. In Fig. 14 the

value of ΩMC
1 (k̂, Q,Q0) is displayed for 0 < k̂ < 3 GeV and Q = 45 GeV (blue), 91.2 GeV
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(orange) and 200 GeV (green) for Q0 = 1.25 GeV. The left panel shows ΩMC
1 for the default

hadronization model and the right panel that for the novel dynamical model. For both we

only see a mild Q- and k̂-dependence for k̂ ≳ 1.5 GeV, where the dependence is slightly

smaller for the dynamical model. For small k̂ < 1.5 GeV, however, the dependence on k̂

and Q is enormous for the default model. For the smallest k̂ value we have ΩMC
1 ≈ 2.1 GeV

for all Q values for the dynamical model. On the other hand, ΩMC
1 varies wildly with Q

and even reaches 5.5 GeV for Q = 200 GeV. It is this uncontrolled behavior for the default

hadronization model that is responsible for the stronger Q0 dependence visible in Fig. 5 in

comparison to Fig. 6.

Nevertheless, also for the dynamic model ΩMC
1 (k̂, Q,Q0) still exhibits a visible k̂ depen-

dence for k̂ < 1.5 GeV which is in principle not compatible with the shape functions first

moment. This is again related to the fact already mentioned at the end of Sec. 3.2, namely

that for the Herwig MC setup the hadronization effects can sometimes lead to a decrease

of the hadron level 2-jettiness value τ with respect to its parton level value τ̂ . For values

k̂ ≲ 1 GeV this behavior cannot be realized any longer because the physical 2-jettiness

values cannot become negative. Since the hadronization model’s capability to increase the

hadron level 2-jettiness value remains unchanged for these low k̂ values, this feature leads

to the more peaky shape of the SMC(ℓ, {k̂, Q,Q0}) just mentioned in the discussion of

Fig. 6 above, which unavoidably leads to an increasing first moment for k̂ ≲ 1 GeV.

Finally, let us examine the dependence of ΩMC
1 (k̂, Q,Q0) on the shower cutoff Q0, which

we have not yet covered in our analysis so far. Given the previous observations concerning

the k̂ dependence of ΩMC
1 for k̂ ≲ 1.5 GeV, the consistency of ΩMC

1 (k̂, Q,Q0) for the dynamic

model with the Q0-dependence of the shape function’s first moment Ω1 in Eq. (3.13) should

at least be realized for k̂ > 1 GeV, which corresponds to τ̂ > (0.022, 0.011, 0.005) for

Q = (45, 91.2, 200) GeV. In Fig. 15 the values for ΩMC
1 (k̂, Q,Q0) − ΩMC

1 (k̂, Q,Q0,ref =

1.25 GeV) are displayed for 0 < τ̂ = k̂/Q < 0.15 GeV for Q = 45 GeV (left panels),

91.2 GeV (middle panels) and Q = 200 GeV (right panels), where we have averaged the

corresponding moment results in bins of width ∆τ̂ = 0.01 GeV. The upper panels show the

results for the default hadronization model and the lower panels for the novel dynamical

model. The results for the moment difference are shown for Q0 = 1.0 (blue), 1.25 (orange),

1.5 (green) and 1.75 (red). The horizontal colored dashed lines represent the value of the

corresponding shape function moment differences from Eq. (3.14) as expected from QCD

factorization:

Ω1(Q0) − Ω1(Q0,ref) =
1

2
∆soft(Q0, Q0,ref) , (7.2)

where ∆soft(Q0, Q0,ref) is determined from the R-evolution equation in Eq. (3.10).

We see that for k̂ > 1 GeV the moment difference obtained for the dynamical model

(lower panels) are indeed nicely compatible with Eq. (7.2). The visible small discrepancies

are related to quadratic and higher order effects in Q0 which the linear approximation of

the evolution equation does not capture. They are also compatible with the corresponding

discrepancies concerning the Q0 dependence of the partonic cumulant difference already

discussed in Sec. 3.3 for Fig. 1. In stark contrast, for the default model results (upper

– 45 –



0.00 0.05 0.10 0.15
−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6
Ω

1
(Q

0
)
−

Ω
1
(1
.2

5
G

eV
)

[G
eV

]
default model
Q = 45 GeV

Q0 [GeV]

1.00

1.25

1.50

1.75

0.00 0.05 0.10 0.15
−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6
default model
Q = 91.2 GeV

Q0 [GeV]

1.00

1.25

1.50

1.75

0.00 0.05 0.10 0.15
−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6
default model
Q = 200 GeV

Q0 [GeV]

1.00

1.25

1.50

1.75

0.00 0.05 0.10 0.15

k̂/Q

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Ω
1
(Q

0
)
−

Ω
1
(1
.2

5
G

eV
)

[G
eV

]

dynamical model
Q = 45 GeV

Q0 [GeV]

1.00

1.25

1.50

1.75

0.00 0.05 0.10 0.15

k̂/Q

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6
dynamical model
Q = 91.2 GeV

Q0 [GeV]

1.00

1.25

1.50

1.75

0.00 0.05 0.10 0.15

k̂/Q

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6
dynamical model
Q = 200 GeV

Q0 [GeV]

1.00

1.25

1.50

1.75

Figure 15: First moment difference ΩMC
1 (k̂, Q,Q0) − ΩMC

1 (k̂, Q,Q0,ref = 1.25 GeV) of the

rescaled parton-to-hadron migration matrix function over τ̂ = k̂/Q for the default (upper

panel) and the novel dynamical hadronization model (lower panels) extracted from the 2-

jettiness distribution simulated for shower cutoff Q0 = 1 (blue), 1.25 (orange), 1.5 (green)

and 1.75 GeV (red) at c.m. energies Q = 45 GeV (left), 91.2 (middle) and 200 GeV (right

panels). The dashed lines show the results expected from QCD factorization.

panels) there is no sign of a similar agreement with Eq. (7.2) or of any stability with

respect to the value of τ̂ . We see that for the default model the moment differences are

completely unrelated to the shower cut dependence expected from QCD factorization, and

thus essentially uncontrolled from the QCD perspective. We stress, that this uncontrolled

Q0-dependence of the hadronization corrections from the default hadronization model takes

place even for large k̂ values where the migration function SMC(ℓ, {k̂, Q,Q0}) appears stable

(also with respect to changes of Q) as shown in the lower panels of Fig. 12. There is

furthermore no stability concerning the k̂ dependence of ΩMC
1 (k̂, Q,Q0)−ΩMC

1 (k̂, Q,Q0,ref)

with respect the hard scattering scale Q.

It is instructive to discuss this failure of the default model from a the perspective of

overall size of the hadronization corrections. As we can see from Fig. 14, for Q0,ref = 1.25

we have ΩMC
1 in the range between 1.2 and 1.5 GeV for partonic momenta k̂ > 2 GeV.

This should be compared to the overall variation of ΩMC
1 in the range between Q0 =

1.0 GeV and Q0 = 1.75 GeV predicted by R-evolution equation (3.10) obtained from QCD

factorization. The latter amounts to around 0.5 GeV, as we see in the lower panels of

Fig. 15. Howerver, because the choice of reference shower cut Q0,ref is arbitrary, and we do
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not have any principle means to tell for which value of Q0 the default model may have the

best agreement with the expectations from QCD factorization (which can only be tested

by a Q0-dependence consistent with QCD factorization), this implies that the size of the

hadronization corrections to the (true) partonic thrust distribution that is provided by

the default model is inconsistent with QCD factorization in the range of 40%. This is

substantially worse in comparison to the new default model, where we have consistency at

the level of better than 10%. In the context of the shower cut Q0 adopting the role of an

IR factorization scale, so that the hadronization effects have a well-defined and controlled

scheme dependence so that they can be assigned field theoretic meaning, the default model

thus fails quite badly. In this respect the novel dynamical hadronization model performs

substantially better.

Overall, the new dynamic hadronization model provides a significant improvement

concerning the control of the shower cut Q0 as an IR factorization scale. This feature

is a prerequisite to combine the hadronization corrections implemented and quantified in

the hadronization model with parton level theoretical calculations in a meaningful and

systematic manner.

8 Conclusions and Outlook

In this article we further promote the idea of the parton shower cutoff Q0 for MC sim-

ulations being an infrared factorization scale that separates, in a controlled manner and

compatible with QCD, perturbative and non-perturbative hadronization effects. In this

context, features of the MC’s hadronization model may be given a systematic field the-

oretic meaning and, at the same time, QCD parameters appearing in the parton shower

may be related to their renormalization scheme dependent counter parts appearing in an-

alytic QCD computations. An important prerequisite to achieve this is to have a parton

shower algorithms that has at least NLL precision for the observable considered. However,

the second essential and equally important prerequisite is to have a hadronization model

that can properly match the unavoidable infrared cutoff Q0-dependence of the parton level

description that emerges from the parton shower. This is a highly nontrivial condition on

the hadronization model since it entails that the parton shower cutoff Q0 is not treated

as a tuned hadronization parameter. Rather, the hadron level MC observable description

should be equivalent for different Q0 values, at least within some low energy interval, where

QCD perturbation theory can still be trusted.

In this work we have investigated these features using the angular ordered parton

shower and the cluster hadronization model implemented in the Herwig 7.2 MC event

generator focusing primarily on the 2-jettiness distribution in e+e− annihilation for which

the angular ordered parton shower is NLL precise. In the earlier work [2] some of us

have analyzed the gluon transverse momentum cutoff Q0-dependence that emerges from

the angular order parton shower for the 2-jettiness distribution in detail at the subleading

O(αs) level using QCD factorization in the dijet region. It was also shown that the Herwig

parton shower implementation satisfies the Q0 evolution equation from QCD factorization

very well. In this work we have now extended our investigations concerning the parton
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shower infrared cutoff being a factorization scale from the perspective of the Herwig

cluster hadronization model.

The default cluster hadronization model has not been designed in a way so that it

systematically matches to the parton shower for a range of Q0 values. This is related to

a number of features in the cluster formation and fission dynamics that yield good data

description through the tuning, but are otherwise ad-hoc and not compatible with the

processes that happen in the parton shower evolution close to the cutoff Q0. As a result,

the hadronization effects to the 2-jettiness distribution provided by the default Herwig

cluster model do not satisfy the QCD constraints that emerge from Q0 being promoted to

a factorization scale in a satisfactory manner. We have demonstrated this in a number of

tests based on tuning analyses for different Q0 shower cutoff values where Q0 is treated

as an external scale and not a tuned parameter. These tests involve analyses of the Q0-

dependence of hadron level simulations for 2-jettiness and also other event-shapes and

observables and of the parton-to-hadron migration matrix for 2-jettiness for which QCD

factorization provides nontrivial constraints.

To improve the cluster hadronization model we have added a number of features to

the cluster formation and cluster fission processes that mimic the gluon emission and

splitting dynamics that takes place in the parton shower. These modifications provide a

clearer separation of model parameters that are expected to be correlated to Q0, governing

the ’hard’ aspects of the cluster hadronization dynamics, from those which govern ’soft’

hadron formation aspects that should be rather Q0-independent. In our Q0-dependent

tuning studies we found that this novel dynamical cluster hadronization model performs

substantially better concerning the Q0-invariance of Herwig’s hadron level predictions as

well as concerning the QCD factorization constraints on the 2-jettiness parton-to-hadron

migration matrix. We emphasize that our analyses also involved hard scattering energies

that are not accounted for in the reference data used for the tuning. This shows that the

novel dynamical hadronization model properly scales the consistency to QCD factorization

to other hard scattering energies.

Even though the novel dynamical hadronization model we have designed in this article

is not perfect, its features provide an important step forward in promoting the hadroniza-

tion corrections encoded in MC generators to have a well-defined scheme in the QCD

context, as also discussed previously in Ref. [12]. This is an essential aspect that should be

followed in parallel to the ongoing developments of subleading order precise parton shower

algorithms such that the parameters of the parton shower as well as the hadronization

model can acquire a systematic QCD field theoretic meaning. Beyond a more precise and

consistent description of experimental data, important potential applications of such im-

provements are the determination of QCD parameters directly from MC studies as well as

a systematic quantification of hadronization corrections to analytic QCD calculations from

MC simulations. In an upcoming article we will investigate the former application from

the perspective of the MC top quark mass parameter.
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Figure 16: Selected rivet analyses for e+e− data (black) versus Herwig simulations for

the default hadronization model for shower cutoff values Q0 = 1 (blue), 1.25 (orange), 1.5

(green) and 1.75 GeV (red). The ratios in the lower panel sections are shown w.r. to the

simulations for Q0 = 1.25 GeV.
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Figure 17: Selected rivet analyses for e+e− data (black) versus Herwig simulations for

the novel dynamical hadronization model for shower cutoff values Q0 = 1 (blue), 1.25

(orange), 1.5 (green) and 1.75 GeV (red). The ratios in the lower panel sections are shown

w.r. to the simulations for Q0 = 1.25 GeV.
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