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Abstract – We analyze the static response to kinetic perturbations of nonequilibrium steady
states that can be modeled as diffusions. We demonstrate that kinetic response is purely a
nonequilibirum effect, measuring the degree to which the Fluctuation-Dissipation Theorem is
violated out of equilibrium. For driven diffusions in a flat landscape, we further demonstrate
that such response is constrained by the strength of the nonequilibrium driving via quantitative
inequalities.

Introduction. – The question addressed by linear
response theory is how a system reacts to a small per-
turbation [1, 2]. Traditionally the only perturbation con-
sidered was the application of a small force. The reason
is that around equilibrium steady states, changes in ki-
netic parameters—like the mobility of a colloidal particle
or the energy-barrier along a reaction pathway—are triv-
ial in that they have no effect: the Boltzmann distribution
only depends on the energies of the system’s states. Out
of equilibrium, this is not the case, and kinetic pertur-
bations not only affect the steady-state distribution, but
including their effects are necessary to completely capture
nonequilibrium response.

We are learning now that explicitly analyzing ki-
netic perturbations can lead to quantifiable insight into
nonequilibrium response. Indeed, the extent to which the
Fluctuation-Dissipation Theorem (FDT) is broken out of
equilibrium equals a kinetic response [3, 4]. In addition,
for Markov jump processes [3,5,6], chemical reaction net-
works [7], and one-dimensional diffusions [4], we can put
concrete limits (or bounds) on the kinetic response. It
has not been shown, however, that the response remains
bounded for driven diffusions away from equilibrium in
dimensions higher than one. Here, we first highlight the
fact that kinetic perturbations in arbitrary diffusion pro-
cesses measure the degree to which the FDT is broken.
Then for homogeneous diffusions in a flat landscape we
derive bounds on the kinetic response in terms of the

strength of nonequilibrium driving. These results demon-
strate that at least for this class of diffusions, response
is indeed bounded, and allow us to speculate that similar
limits may hold in general for arbitrary diffusions.

This work complements other approaches to rational-
izing nonequilibrium response. A number of such pre-
dictions have been inspired by the FDT [8, 9], and fo-
cus on linking response to correlation functions with the
nonequilibrium potential [10, 11], stochastic entropy pro-
duction [12], dynamical activity [13], or force [14]. Al-
ternatively, one can analyze the violation of the equilib-
rium FDT by introducing an effective temperature [15–17]
or connecting the violation to entropy production via the
Harada-Sasa equality [18–21]. As bounds, our predictions
allow for simple interpretations at the cost of replacing
equalities with inequalities. From this point of view, our
work fits into a growing literature aiming to understand
nonequilibrium behavior by placing thermodynamic limits
on observable phenomenology [22–34].

Setup. – We have in mind D-dimensional systems
whose configurations evolve with time according to a peri-
odic diffusion process. For this class of systems, their con-
figuration x(t) = (x1(t), . . . xD(t)) at time t takes values
in the torus Ω = [0, L]×⋯× [0, L], and the Fokker-Planck
equation describing the time-evolution of the probability
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density p(x, t) can be parameterized as [35]

∂tp(x, t) = −∇ ⋅ [µ̂(x) ⋅ (−∇U(x) +F(x))p(x, t)]

+∇ ⋅ µ̂(x) ⋅ ∇p(x, t) (1)

≡ Lp(x, t). (2)

Borrowing language from the modeling of a colloidal par-
ticle in a viscous fluid, we have identified in the Fokker-
Planck operator L a positive-definite, mobility matrix
µ̂(x) as well as having split the force into a conservative
part due to a potential U(x) and a nonconservative part
F(x) (∇ × F ≠ 0). We will assume, that the system re-
laxes to a unique steady-state distribution π(x) given as
the solution of Lπ(x) = 0. In general, this steady-state
solution is not known. However, when the nonconserva-
tive force is zero (F = 0), it is straightforward to show
that the steady-state distribution is πeq(x)∝ e−U(x) (with
kBT = 1), which we will identify as an equilibrium distri-
bution.

Linear response. – A central paradigm in statisti-
cal physics is to analyze a system by how steady-state
averages of observables, ⟨Q⟩ = ∫ Q(x)π(x)dx, change in
response to external perturbations.
Response has traditionally been modeled by assuming

that the potential depends on an external parameter λ
via U(x) → U(x) − λV (x), where we call the function
V (x) the conjugate coordinate. In response, averages ⟨Q⟩
change by [2]

RU = ∂λ⟨Q⟩ = ∫ V (z)
δ⟨Q⟩

δU(z)
dz. (3)

For equilibrium systems, where F = 0, the response is
completely captured by how the equilibrium distribution
πeq(x;λ) ∝ e−(U(x)−λV (x)) is modified. The immediate
consequence of this structure is the FDT, relating the
static response of the equilibrium average of the observable
⟨Q⟩eq = ∫ Q(x)π

eq(x)dx to the fluctuations [2]

Req
U = ∫ V (z)

δ⟨Q⟩eq

δU(z)
dz = ⟪Q,V ⟫eq, (4)

where the covariance is ⟪Q,V ⟫eq = ⟨QV ⟩eq − ⟨Q⟩eq⟨V ⟩eq.
Perturbations of the kinetics via the mobility µ̂(x), by
contrast, have no effect as it does not enter the equilibrium
distribution.
Now, our previous analyses [3–5, 7] have revealed that

away from thermodynamic equilibrium it is in fact useful
to consider how observables change in response to pertur-
bations of the kinetics. This is implemented by allowing
the mobility to depend on the external parameter instead,
µ̂(x)→ µ̂(x)(1 − λV (x)),

Rµ = ∫ V (z)
N

∑
i,j=1

δ⟨Q⟩

δ lnµij(z)
dz. (5)

Applying this perturbation in an experimental setting,
where µ̂ is the only system parameter varied, is likely

challenging but may be possible. For example, the mobil-
ity of a colloidal particle depends on the viscosity of the
surrounding fluid via the Stokes-Einstein relation. One
could then imagine varying the mobility by mixing fluids
of differing viscosities. Nevertheless, kinetic perturbations
serve as an important intermediary in our analysis of en-
ergy perturbations (4) away from equilibrium. Here, they
serve as a measure of the violation of the FDT [36,37]

Rµ = RU − ⟪Q,V ⟫, (6)

with ⟪Q,V ⟫ the nonequilibrium covariance. Now, RU and
⟪Q,V ⟫ are commonly measured in experiments. Their
difference is a purely nonequilibrium effect captured by
the kinetic response.

One might then surmise that a larger kinetic response
requires stronger nonequilibrium driving. Indeed, our pre-
vious work has shown that there are such quantitative
trade-offs, at least for one-dimensional diffusions on the
circle. In this case, the only nontrivial form for the non-
conservative force is a constant f . Then we have shown
that when V (x) = δ(a,b)(x) is an indicator function on the
range x ∈ (a, b) and choosing Q(x) ∈ [0,1] for ease of pre-
sentation, the response to a kinetic perturbation can be
bounded by the strength of the nonequilibrium driving [4]

∣∫

b

a

δ⟨Q⟩

δ lnµ(z)
dz∣ ≤ ⟨Q⟩(1 − ⟨Q⟩) tanh(∣f ∣L/4). (7)

The product ⟨Q⟩(1 − ⟨Q⟩) represents the maximum vari-
ance in the observable possible with fixed mean via the
Bahtia-Davis inequality ⟪Q2⟫ ≤ ⟨Q⟩(1 − ⟨Q⟩) [38]. Thus,
(7) can be viewed as a trade-off between the response,
fluctuations, and thermodynamic driving. Viewed another
way, (7) is the maximum of the kinetic response over the
system parameters, µ(x) and U(x), holding fixed the ther-
modynamic driving f and the observable’s average ⟨Q⟩.

The derivation of (7) relied on having a closed-form an-
alytic solution for the steady-state distribution in one di-
mension for arbitrary system parameters. Such a method
does not translate to diffusions in higher dimensions where
no such solution is known. This naturally raises the ques-
tion of whether thermodynamic force is a constraint on the
kinetic response for diffusions in higher dimensions, or if
unbounded response is possible? We address this question
in the next section.

Bounds on kinetic response. – Without a closed-
form solution to the Fokker-Planck equation (1) in dimen-
sions higher than one, we make progress by focusing on
a simpler class of models: homogenous driven diffusions
in a flat landscape. Specifically, for the remainder of this
article we specialize to the case where the mobility matrix
is constant and diagonal, µ̂(x) = µ̂ with diagonal elements
{µ1, . . . , µD}; there is no potential U(x) = 0; and the non-
conservative driving is uniform F(x) = f = (f1, . . . , fD). In
this case, the dynamics of the probability distribution is
determined by the Fokker-Planck operator (2)

L = −∇ ⋅ µ̂ ⋅ f +∇ ⋅ µ̂ ⋅ ∇, (8)
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with constant coefficients. The translational-symmetry
implies that the steady-state solution is uniform, π(x) =
1/∣Ω∣, which can also be verified by direct substitution.
Despite the simplicity of the steady-state distribution,
spatially-dependent perturbations of the mobility can still
lead to complicated changes in the steady-state distribu-
tion. It is these responses that we aim to constrain.

For kinetic perturbations of driven diffusions in a flat
landscape, we have derived three thermodynamic limits.
In contrast to our previous work [4], we cannot optimize
over all system parameters, as they are fixed. Instead,
we maximize the response over the observable Q(x) and
conjugate coordinate V (x). To have a well-posed problem,
though, we need to constrain Q(x) and V (x) in some way.
In light of our previous results (7) and taking inspiration
from the FDT, we fix their fluctuations via their variances,
⟪Q2⟫ and ⟪V 2⟫.

Our first main result is the bound

∣Rµ∣ ≤

¿
Á
ÁÀ ⟪Q2⟫⟪V 2⟫

1 + (2π/F)2
, (9)

where F =maxj ∣fj ∣L quantifies how far the system is out
of equilibrium. As a sanity check, when F = 0, the system
is at equilibrium, and the bound is zero, meaning there
is no violation of FDT (cf. (6)). We find that equality
is reached when Q and V are given by sine waves in one
direction (shifted by a phase), and uniform in the orthog-
onal directions. One example of such an optimal choice is
illustrated in Figs. 1(b) and (c) for two dimensions. Thus,
the system appears most sensitive to slowly varying per-
turbations that align with the thermodynamic driving.

In our second main result, we specialize to a situation
where both observable and conjugate coordinate are the
same, Q = V . In this case, we have shown that the re-
sponse satisfies the tighter inequality

∣Rµ∣ ≤
⟪Q2⟫

1 + (2π/F)2
. (10)

The improvement comes from the denominator being 1 +
(2π/F)2 ≥

√
1 + (2π/F)2. This is plausible considering

that the observable and conjugate coordinate are more
constrained. Despite this improvement, the most sensitive
response is again reached for low wave number sine waves.

The third main result is for an even further restricted
situation where Q and V are indicator functions. It
should be stressed that the explicit form, presented be-
low, is based solely on numerical observations for which
we have no analytic proof. To be specific, we require
Q(x) = V (x) = δS(x), where δS(x) takes the value one
for x ∈ S ⊆ Ω and zero otherwise. In this case, we ob-
served that

∣Rµ∣ ≤ ⟪δ
2
S⟫[1 −

4

F
tanh(

F

4
)] . (11)

This upper bound corresponds to the response in the case
where half of the region Ω is perturbed (in a way speci-
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Fig. 1: Illustration of the general bound (9): (a) Random sam-
ples of the response ∣Rµ∣ plotted as a function of the force F .
Samples are generated by choosing f uniformly on [0,50]D,
µ̂ uniformly on [0,1]D, and the Fourier coefficients of V and
Q for all allowed modes uniformly on [0,1], while maintain-
ing proper parity so that the corresponding V and Q are real.
These samples are then normalized to keep ⟪Q2

⟫ = ⟪V 2
⟫ = 1.

The colors label the highest Fourier mode NF possible in any
direction, while the shapes label the dimension D. Each com-
bination of color and shape contains 1000 data points. (b) &
(c): Example of the optimal V and Q that saturate the bound
(9) for D = 2, with f = (fx, fy), ∣fx∣ > ∣fy ∣.

fied below). That there is a tighter inequality is reason-
able, since we are focusing on a more restricted scenario.
Numerical evidence of this improvement will be provided
below.

In Fig. 1, we numerically verify inequality (9) for one,
two, and three dimensional driven diffusions in a flat land-
scape. To numerically determine the response, we exploit
the translational invariance of the problem to calculate
the response of the steady-state distribution in Fourier
space, δπm with m ∈ ZD, and then estimate the response
from the sum over Fourier coefficients Rµ = ∑m δπmQ−m
(see the discussion leading to (18) below). As this is
done numerically, the number of Fourier modes that we
can keep in this analysis is finite. We implement this re-
striction by keeping only modes with m below a cut-off
maxj ∣mj ∣ ≤ NF, which in this study we take to be one,
two or three. Then, for each combination of NF and D, we
generate 1000 random samples by varying the system pa-
rameters. We observe that in Fig. 1 the bound is saturable
for every value of driving force. Moreover, we observe that
potential optima are confined to the lowest space of modes
with NF = 1, where both observable Q and the conjugate
coordinate V are sine waves. This is why we tend to only
observe saturation of the inequality when we restrict our
sampling to NF = 1, and why our samples fall away from
the optimal curve for higher values of NF.
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Fig. 2: Illustration of the bound (10): Random samples of the
response ∣Rµ∣ plotted as a function of the force F . Samples
are generated in the same manner as Fig. 1 except further
restricting V = Q and normalizing ⟪Q2

⟫ = 1. The colors label
the highest Fourier mode NF possible in any direction, while
the shapes label the dimension D. Each combination of color
and shape contains 1000 data points.

Our second inequality (10) is numerically verified in
Fig. 2, again in one, two, and three dimensions. Sam-
pling is the same as described for Fig. 1, except for fixing
V = Q. All points fall below the predicted limit (10) given
by the black line.
Limits to the response when the observable and con-

jugate coordinate are indicator functions are studied nu-
merically in Fig. 3. To numerically specify the region S
of the indicator function we divide the entire space Ω into
ND

B equally sized cubic regions we call blocks, with NB

the number blocks along each linear dimension. We can
then form a region S by combining together a collection
of these blocks, setting the observable to one on the se-
lected blocks. For each combination of D = {1,2,3} and
NB = {2,6,10}, we generate 1000 random samples, choos-
ing f and µ̂ as before. The perturbation region S is built
up by randomly adding each block to S with probability
1/2. The response-ratio ∣Rµ∣/⟪δ

2
S⟫ is then determined nu-

merically with NF = 20 in order to have a Fourier scale
finer than the smallest block size. The data is plotted in
Fig. 3(a) as a function of force F . WhenD = 1 andNB = 6,
there are visible line structures in the plot. This is because
there is a small number of different ways of choosing the
blocks, which fall on a single line. As NB increases, these
structures remain but are hard to dinstiguish visually. For
D ≥ 2, each F corresponds to infinitely many f so the lines
disappear.
The red line is the analytic bound predicted in (10).

However, it is nowhere saturated. Instead all sampled
responses appear to share a tighter, saturable bound, de-
picted by the black line. We visually inspected the sam-
ples that appear optimal, like the starred data point in
Fig. 3(a), and noticed that they consistently all had a
perturbation region that occupied half of the full space Ω:
for example, the perturbation region for the starred data
point is depicted in Fig. 3(b). Moreover, we observed that
the maxima reached for all the responses is the same for
every dimension tested, including 1D. This suggested to
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Fig. 3: Illustration of the bound in (11): (a) Random sam-
pling of µ̂, f and perturbation region S. Each combination of
color and shape contains 1000 samples, excluding trivial ones
for which ∣Rµ∣ = ⟪δ

2
S⟫ = 0. We divide Ω into ND

B blocks and
randomly select each block with probability 0.5 as the pertur-
bation region. The smaller ND

B , the more probable it is to
form an optimal perturbation region to saturate the numerical
bound. (b) The perturbation region (blue) that saturates the
bound, corresponding to the data point labeled by the star in
(a).

us that we could predict the maximum response possible
just from the analytic solution for the 1D ring with per-
turbation region S = [0,1/2],

∣Rring∣ ≡ 1 −
4

F
tanh(

F

4
) , (12)

which is in fact the black line.

Discussion. – We analyzed three different kinetic
perturbation schemes of the mobility for homogeneous
nonequilibrium diffusions. For this class of models, we
found that the response is not unlimited: it must smoothly
approach zero as we near equilibrium and has a maximum
arbitrarily far from equilibrium constrained by the size of
the fluctuations of the observable and the perturbation’s
conjugate coordinate.

Natural extensions would be to have a nonuniform or
nondiagonal mobility matrix, or to allow for a anisotropic
perturbation. Going further and considering arbitrary po-
tentials with a uniform nonconservative force, −∇U(x)+f ,
remain out of reach with the current method, as the
Fokker-Planck operator L is not diagonal in the Fourier
basis. Moreover, any bounds for these more general setups
would likely take a different form. Indeed, we have verified
that our bounds can be violated in 1D in the presence of a
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nonuniform potential. Thus new tools are needed, though
the current results suggest progress can be made. One
potential avenue is the recently developed linear-algebraic
technique proposed in [6] to tackle single edge perturba-
tions for finite-state Markov chains. An extension to diffu-
sion processes would be intriguing, but is far from trivial.
Even when allowing for multi-edge perturbations, taking
the diffusive limit presents challenges [4].

Derivation of general variance bound. – In this
section, we derive the bound on response in terms of vari-
ances (9). Without loss of generality, we set the length in
each dimension to L = 1,to simplify the presentation.
To proceed, we explicitly allow the Fokker-Planck oper-

ator to depend on the small external parameter via

Lλ = −∇ ⋅ µ̂(1 − λV (x)) ⋅ f +∇ ⋅ µ̂(1 − λV (x)) ⋅ ∇ (13)

≡ L + λδL. (14)

with the accompanying steady-state solution πλ satisfying
Lλπλ = 0. Since the unperturbed steady-state distribution
π is uniform, πλ = π + λδπ is nearly uniform with δπ =
∂λπλ∣λ=0. With this notation, the response at λ = 0 can
be expressed as

Rµ = ∫ Q(z)δπ(z)dz. (15)

This expression transfers the problem to determining how
the steady-state distribution responds, δπ. A convenient
way to obtain this steady-state response is to differentiate
the Fokker-Planck equation at λ = 0,

Lδπ = −δLπ = −∇V (r) ⋅ µ̂ ⋅ f , (16)

after using π = 1 is uniform. This is a partial differential
equation for δπ [5, 6, 39], which we now proceed to solve.

Because the operator L is linear in the Fourier basis, a
compact solution to (16) can be found by Fourier trans-
form. To this end, let us denote the Fourier basis as
em(r) = ei2πm⋅r for m ∈ ZD. Because they form an or-
thonormal basis, ⟨em, en⟩ = ∫ em(z)e

∗
n(z)dz = δmn, any

periodic function G(r) can be expanded as

G(r) =∑
m

Gmem(r), Gm = ∫
Ω
G(r)e∗m(r)dr. (17)

Furthermore, for realG, the coefficients satisfyG∗m = G−m.
This construction is convenient, because once we have de-
termined the Fourier coefficients of the steady-state re-
sponse δπm, the Fourier expansions in (17) can be substi-
tuted into (15) to obtain the response formula

Rµ =∑
m

δπmQ−m. (18)

Now to solve (16), we expand both sides in the Fourier
basis

∑
m

δπmLem(r) = −∑
m

(δLπ)mem(r), (19)

We first note that in this basis the Fokker-Planck operator
is diagonal,

Lem(r) = lmem(r), (20)

with eigenvalues lm = −4π
2(m ⋅ µ̂ ⋅m) − 2πim ⋅ µ̂ ⋅ f . Next,

we evaluate the right hand side using (16), which reads

(δLπ)m = −∫
Ω
[∇V (r) ⋅ µ̂ ⋅ f]e∗m(r)dr, (21)

= −2πiVm(m ⋅ µ̂ ⋅ f), (22)

Combining these observations with the orthogonality of
the Fourier basis leads to a series of uncoupled linear equa-
tions for δπm, which can be solved

δπm = −
1

lm
(δLπ)m =

2πiVm(m ⋅ µ̂ ⋅ f)

−4π2(m ⋅ µ̂ ⋅m) − 2πim ⋅ µ̂ ⋅ f
(23)

for m ≠ 0 with δπ0 = 0 due to probability conservation.
Now substituting this solution into (18) leads to our de-
sired starting point for deriving bounds,

Rµ = − ∑
m≠0

λmVmQ−m, (24)

with

λm =
m ⋅ µ̂ ⋅ f

m ⋅ µ̂ ⋅ f − 2πim ⋅ µ̂ ⋅m
. (25)

We now bound the maximum of (24) over all Vm and
Qm, with their variances constrained,

⟪V 2
⟫ = ∑

m≠0
∣Vm∣

2, ⟪Q2
⟫ = ∑

m≠0
∣Qm∣

2. (26)

To proceed, we introduce re-weighted Fourier coefficients
Ṽm =

√
λmVm and Q̃m =

√
λ−mQm, allowing us to apply

the Cauchy-Scwharz inequality to (24):

∣Rµ∣ = ∣∑
m≠0

ṼmQ̃∗m∣ (27)

≤

¿
Á
ÁÀ(∑

m≠0
∣λm∣∣Vm∣

2)(∑
m≠0
∣λm∣∣Qm∣

2) (28)

≤max
m≠0
∣λm∣
√
⟪V 2⟫⟪Q2⟫ (29)

All that is left is to bound the magnitude of λm. Let
the real and imaginary parts of λm be ρm and σm: λm =

ρm+ iσm. Then the squared magnitude of λm, which here
equals its real part ρm, can be written as

∣λm∣
2
= ρ2m + σ

2
m = ρm =

1

1 + 4π2 (
m⋅µ̂⋅m
m⋅µ̂⋅f )

2
. (30)

To bound ∣λm∣
2, we study the quantity in the denominator

Ym = ∣
m ⋅ µ̂ ⋅ f

m ⋅ µ̂ ⋅m
∣ =

RRRRRRRRRRRR

∑
i∣mi≠0

wi
fi
mi

RRRRRRRRRRRR

, (31)
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where wi are non-negative weights

wi =
µim

2
i

∑i∣mi≠0 µim2
i

(32)

satisfying ∑i∣mi≠0wi = 1, with the sum extending over all
i such that mi ≠ 0. By introducing the weights wi, we can
treat Ym as the absolute value of the average of fi/mi.
Now, by varying m, holding µ̂ and F fixed, we can vary
the wi in order to find the largest attainable value of Ym.
But as an average, that value can be no larger than the
the maximal fi/mi, which is F . With Ym bounded by F ,
we deduce

∣λm∣
2
= ρm ≤

1

1 + (2π/F)2
. (33)

Substitution of this bound into (29), we arrive at the de-
sired result (9).
To reach our bound we have two inequalities to saturate.

First, the maximum in (33) is reached whenm ≠ 0 satisfies
the following: for the i ∈ argmaxj ∣fj ∣, mi ∈ {1,0,−1}, and
for the i ∉ argmaxj ∣fj ∣, mi = 0; besides for any i ≠ j,
fifjmimj ≥ 0. Here we have considered the case where ∣fi∣
could be the same as ∣fj ∣. Next, the condition for equality
in the Cauchy-Schwarz inequality is that there is an m-
independent constant c such that

√
λmVm = c

√
λ−mQm.

Substituting in the polar form of λm = rmeiϕm , we see
that equality in our bound requires the observable and
conjugate coordinate to be equal up to a phase-shift and
rescaling

Vm = ce
−iϕmQm. (34)

Derivation Q = V bound. – Since Q = V , the re-
sponse (24) takes the form

Rµ = − ∑
m≠0

ρm∣Qm∣
2, (35)

where we have taken only the real part of (24) as Rµ must
be real. As each term is positive, the absolute value of
this sum can be bounded as

∣Rµ∣ ≤max
m≠0

ρm ∑
m≠0
∣Qm∣

2
=max

m≠0
ρm⟪Q

2
⟫, (36)

which using (33) immediately leads to the desired bound.
The saturation condition immediately follows: Q = V only
have nonzero Fourier components in argmaxmρm.

Maximum response for a flat diffusion in 1D. –
In this section, we calculate the conjectured limit in (11)
depicted as the black line in Fig. 3. This bound is given
by the response of a diffusion process on a unit-length
ring with a constant mobility µ(z) = µ, constant driving
force f > 0, due to a perturbation of the mobility in region
[0,1/2]:

Rµ = ∫

1
2

0
∫

1
2

0

δπring(x)

δ lnµ(z)
dxdz (37)

The closed-form expression for the integrand is given in
[4], which we reproduce here. Defining the functions

S(x′, x) = e−f(x
′−x) [e−fΘ(x − x′) +Θ(x′ − x)] , (38)

N = ∫

1

0
∫

1

0
S(x′, x) dx′dx = (1 − e−f)/f, (39)

where Θ(z) is the Heaviside step function that is one for
z > 0 and zero otherwise, we can write the steady-state
response as

δπring(x)

δ lnµ(z)
= −

1

N
S(z, x) +

1

N
∫

1

0
S(z, y)dy. (40)

This expression can be evaluated analytically, which gives
the bound on the response

∣Rµ∣ ≤
1

4
−
1

f
tanh(

f

4
) . (41)

In this case ⟪δ2S⟫ = 1/4 also reaches its maximum. Thus,
we find the analytical expression of the saturable numeri-
cal bound presented in (11).

∗ ∗ ∗

This material is based upon work supported in part
by the National Science Foundation under Grant No.
2142466 and by the Alfred P. Sloan Foundation under
grant G-2022-19440. H.-M.C. was supported by a KIAS
Individual Grant (PG089401) at Korea Institute for Ad-
vanced Study.

REFERENCES

[1] Kubo R., Toda M. and Hashitsume N., Statis-
tical Physics II: Nonequilibrium Statistical Mechanics
(Springer-Verlag, Berlin) 1985.

[2] Marconi U. M. B., Puglisi A., Rondoni L. andVulpi-
ani A., Physics Reports, 461 (2008) 111.

[3] Owen J. A., Gingrich T. R. and Horowitz J. M.,
Phys. Rev. X, 10 (2020) 011066.

[4] Gao Q., Chun H.-M. and Horowitz J. M., Phys. Rev.
E, 105 (2022) L012102.

[5] Martins G. F. and Horowitz J. M., Phys. Rev. E, 108
(2023) 044113.

[6] Aslyamov T. and Esposito M., Phys. Rev. Lett., 132
(2024) 037101.

[7] Chun H.-M. and Horowitz J. M., J. Chem. Phys., 158
(2023) 174115.

[8] Baiesi M. and Maes C., New J. Phys., 15 (2013) 013004.
[9] Baldovin M., Caprini L., Puglisi A., Sarracino A.

and Vulpiani A., The many faces of the fluctuation-
dissipation relations out of equilibrium in Nonequilibrium
thermodyanmics and fluctuation kinetics. Fundamental
Theories of Physics, edited by Brenig L., Brilliantov
N. and Tlidi M., Vol. 208 (Springer, Cham) 2022 pp.
29–57.

[10] Agarwal G. S., Z. Phys. A, 252 (1972) 25.

p-6



Diffusive kinetic perturbations

[11] Prost J., Joanny J.-F. and Parrondo J. M. R., Phys.
Rev. Lett., 103 (2009) 090601.

[12] Seifert U. and Speck T., Europhys. Lett., 89 (2010)
10007.

[13] Baiesi M., Maes C. and Wynants B., Phys. Rev. Lett.,
103 (2009) 010602.

[14] Caprini L., J. Stat. Mech., 6 (2021) 063202.
[15] Ben-Isaac E., Park Y. K., Popescu G., Brown F.

L. H., Gov N. S. and Shokef Y., Phys. Rev. Lett., 106
(2011) 238103.

[16] Cugliandolo L. F., J. Phys. A: Math. Theor., 44 (2011)
483001.

[17] Dieterich E., Camunas-Soler J., Ribezzi-
Crivellari M., Seifert U. and Ritort F., Nat.
Phys., 11 (2015) 971.

[18] Harada T. and Sasa S.-i., Phys. Rev. Lett., 95 (2005)
130602.

[19] Toyabe S., Okamoto T., Watanabe-Nakayama T.,
Taketani H., Kudo S. and Muneyuki E., Phys. Rev.
Lett., 104 (2010) 198103.

[20] Lippiello E., Baiesi M. and Sarracino A., Phys. Rev.
Lett., 112 (2014) 140602.

[21] Wang S.-W., Kawaguchi K., Sasa S. I. and Tang
L. H., Phys. Rev. Lett., 117 (2016) 070601.

[22] Baiesi M., Maes C. and Wynants B., Proc. R. Soc.
Lond., 467 (2011) 2792.

[23] Barato A. C. and Seifert U., Phys. Rev. Lett., 114
(2015) 158101.

[24] Gingrich T. R., Horowitz J. M., Perunov N. and
England J. L., Phys. Rev. Lett., 116 (2016) 120601.

[25] Barato A. C. and Seifert U., Phys. Rev. E, 95 (2017)
062409.

[26] Uhl M. and Seifert U., J. Phys. A: Math. Theor., 52
(2019) 405002.

[27] Horowitz J. M. and Gingrich T. R., Nat. Phys., 16
(2020) 15.

[28] Dechant A. and Sasa S.-i., Proc. Natl. Acad. Sci. USA,
117 (2020) 6430.

[29] Liang S., De Los Rios P. and Busiello D. M., Uni-
versal thermomdynamic bounds on symmetry breaking in
biochemical systems arXiv:2212.12074.

[30] Oberreiter L., Seifert U. and Barato A. C., Phys.
Rev. E, 106 (2022) 014106.

[31] Owen J. A., Talla P., Biddle J. W. and Gunawar-
dena J., Biophys. J., 122 (2023) 1833.

[32] Liang S. and Pigolotti S., Phys. Rev. E, 108 (2023)
L062101.

[33] Dechant A., Thermodynamic constraints on the
power spectral density in and out of equilibrium
arXiv:2306.00417.

[34] Arunachalam E. and Lin M. M., A thermodynamic
limit on molecular computation arXiv:2311.15378.

[35] Gardiner C. W., Handbook of Stochastic Methods for
Physics, Chemistry and the Natural Sciences 3rd Edition
(Springer-Verlag, New York) 2004.

[36] Graham R., Z. Physik B, 26 (1977) 397.
[37] Chun H.-M., Gao Q. and Horowitz J. M., Phys. Rev.

Research, 3 (2021) 043172.
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