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Abstract. We present a uniform approach for solving language inclusion
problems. Our approach relies on a least fixpoint characterization and
a quasiorder to compare words of the “smaller” language, reducing the
inclusion check to a finite number of membership queries in the “larger”
language. We present our approach in detail on the case of inclusion
of a context-free language given by a grammar into a regular language.
We then explore other inclusion problems and discuss how to apply our
approach.
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1 Introduction

We are interested in the classical problem of language inclusion, which given
two language acceptors, asks whether the language of one acceptor is contained
into the language of the other one. This problem is traditionally solved by com-
plementing the “larger” language, intersecting with the “smaller” language and
checking for emptiness. Here, we avoid explicit complementation. We present a
simple and uniform approach for deciding language inclusion problems based on
the use of quasiorder relations on words. In this paper we are interested in the
decidable cases of this problem, where the underlying alphabet of the language is
a finite set of symbols. Even though we focus mainly on words of finite length our
approach also applies to languages of infinite words. At its core, our approach
relies on two notions: a fixpoint characterization of the “smaller” language and
a quasiorder to compare words. Intuitively, the language inclusion algorithms
we derive leverage the fixpoint characterization to compute increasingly many
words of the “smaller” language. After a finite amount of time the computation
is stopped. The algorithm then tests whether each of the computed words of the
“smaller” language also belong to the “larger” one. If one word fails the test, the
inclusion does not hold and we have a counterexample. Whether we can correctly
conclude that inclusion holds depends on whether we have computed “enough”
words. The rôle of the quasiorder is precisely that of detecting when “enough”
words have been computed. It must satisfy two properties: the first one ensures
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that it takes only a finite amount of time to compute “enough” words, and the
second one ensures that if there exists a counterexample to inclusion, then it has
been computed.

We present our approach in detail on the case of inclusion of a context-free
language given by a grammar into a regular language, an EXPTIME-complete
problem [20]. This case is simple yet non-trivial. After presenting our approach
in Section 3, we give distinct quasiorders that can be used in the decision pro-
cedure in Section 4. Section 5 then dives into the algorithmic aspects related to
using the so-called state-based quasiorders. The state-based quasiorders enable
some modifications of the inclusion algorithm ultimately leading to the so-called
antichains algorithms [6,17]. We also show how the saturation approach put for-
ward by Esparza et al. [10] can be leveraged for the particular inclusion problem
of a straight-line program3 into a finite state automaton. In Section 6 we talk
about the other language classes to which our framework can be applied. We re-
visit the case where the two languages are given by finite state automata. Next,
we investigate the case asking whether the trace set of a finite process (which is
a regular language) is contained into the trace set of a Petri net, a case that was
first solved by Esparza et al. [19]. To demonstrate the generality of the approach,
we survey how it can also be leveraged for the case of two languages of infinite
words accepted by Büchi automata. We finish by briefly mentioning a few more
cases that can be tackled using our approach.

This paper works as an overview of our previous work on the topic, providing
a simplified explanation and pointers to the previous papers. In particular, the
section presenting our approach greatly simplifies the framework put forward in
[13].

2 Preliminaries

Well-Quasiorders, Complete Lattices and Kleene Iterates A quasiorder
(qo) on a set E, is a binary relation ⋉ ⊆ E×E that is reflexive and transitive. A
quasiorder ⋉ is a partial order when ⋉ is antisymetric (x⋉y∧y⋉x =⇒ x = y).
A complete lattice is a set E and a partial order ⋉ on E such that every subset
X ⊆ E has a least upper bound (the supremum) in E.

A sequence {sn}n∈N ∈ EN on quasiordered set (E,⋉) is increasing if for every
n ∈ N we have sn⋉ sn+1. For a function f : E → E on a quasiordered set (E,⋉)
and for all n ∈ N, we define the n-th iterate fn : E → E of f inductively as
follows: f0 ≜ λx. x; fn+1 ≜ f ◦ fn. The denumerable sequence of Kleene iterates
of f starting from the bottom value ⊥ ∈ E is given by {fn(⊥)}n∈N. A fixpoint
of f is x such that f(x) = x. The least fixpoint of f is the smallest fixpoint of
f with respect to ⋉, if f has at least one fixpoint; it is denoted lfp f . Recall
that when (E,⋉) is a complete lattice and f : E → E is an monotone function
(i.e. d⋉ d′ =⇒ f(d)⋉ f(d′)) then it follows from the Knaster–Tarski theorem

3 Straight-line program are context-free grammars where at most one word is derived
from each grammar variable.
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that f has a least fixpoint lfp f which, provided f is continuous4, is given by the
supremum of the increasing sequence of Kleene iterates of f .

Given a quasiorder ⋉ on a set E, and X ⊆ E a subset, let ↑⋉X denote
the upward closure of X with respect to ⋉ given by {y ∈ E | ∃x ∈ X.x ⋉ y}.
A quasiorder ⋉ on E is a well-quasiorder (wqo) if for every infinite sequence
{Sn}n∈N ∈ ℘(E)N such that ↑⋉S1 ⊆ ↑⋉S2 ⊆ · · · we have that there exists i ∈ N
such that ↑⋉Si ⊇ ↑⋉Si+1, namely, ⋉ is a wqo iff there is no infinite strictly
increasing chain of upward closed subsets in E.

There are other equivalent definitions for wqo but the one using upward
closed sets is the most convenient for our purpose. One property of wqo we
will leverage throughout the paper is that the component wise lifting of a wqo
remains a wqo, namely, given n ∈ N, if ⋉ is a wqo then so is ⋉n.

Finally, we introduce the lifting of the qo ⋉ to sets by defining ⊑⋉ ⊆ ℘(E)×
℘(E) as follows:

X ⊑⋉ Y
△⇐⇒ ∀x ∈ X,∃y ∈ Y, y ⋉ x .

It is routine to check that ⊑⋉ is a quasiorder as well and also that X ⊑⋉ Y iff
↑⋉X ⊆ ↑⋉Y . Given the previous equivalence, the rationale to introduce ⊑⋉ is
algorithmic since ⊑⋉ is straightforward to implement for finite sets X,Y given a
decision procedure for ⋉; whereas ↑⋉X ⊆ ↑⋉Y does not give a straightforward
implementation even when X and Y are finite and ⋉ is decidable.

Alphabets, Words and Languages An alphabet is a nonempty finite set of
symbols, generally denoted by Σ. A word is a sequence of symbols over the
alphabet Σ. The set of finite words and the set of infinite words over Σ are
denoted by Σ∗ and Σω respectively. We denote by ε the empty word and define
Σ+ ≜ Σ∗\{ε}. A language of finite words over Σ is a subset of Σ∗. A language
of infinite words or ω-language over Σ is a subset of Σω.

Finite Automata A finite automaton (FA) on an alphabet Σ is a tuple A =
(Q, δ, qI , F ) where Q is a finite set of states including an initial state qI ∈ Q,
δ : Q×Σ → ℘(Q) is a transition function, and F ⊆ Q is a subset of final states.
Let q a→ q′ denote a transition q′ ∈ δ(q, a) that we lift to finite words by transitive
and reflexive closure, thus writing q

u−→∗q′ with u ∈ Σ∗. The language of finite
words accepted by A is L∗(A) ≜ {u ∈ Σ∗ | ∃q ∈ F.qI

u−→ ∗q}. An accepting
trace of A on an infinite word w = a0a1 · · · ∈ Σω is an infinite sequence q0

a0→
q1

a1→ q2 · · · such that q0 = qI and qj ∈ F for infinitely many j’s. The ω-language
accepted by A is Lω(A) ≜ {ξ ∈ Σω | there is an accepting trace of A on ξ}. We
call A a Büchi automaton (BA) when we consider it as an acceptor of infinite
words. A language L ⊆ Σω is ω-regular if L = Lω(A) for some BA A.

Context-free Grammars A context-free grammar (CFG) or simply grammar
on Σ is a tuple G = (V, P ) where V = {X1, . . . , Xn} is the finite set of variables,
4 f is continuous iff f preserves least upper bounds of nonempty increasing chains.
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and P is the finite set of production rules Xi → β where β ∈ (V ∪ Σ)∗. Given
α, α′ ∈ (V ∪Σ)∗, we write α ⇒ α′ if there exists γ, δ ∈ (V ∪Σ)∗ and Xi → β ∈ P
such that α = γXiδ and α′ = γβδ. The reflexive and transitive closure of ⇒ is
written ⇒∗. For i ∈ [1, n], let Li(G) = {w ∈ Σ∗ | Xi ⇒∗ w}. When we omit
the subscript i it is meant to be 1, hence we define the language accepted by G
as L(G), that is L1(G) given by {w ∈ Σ∗ | X1 ⇒∗ w}. A CFG is in Chomsky
normal form (CNF) if all of its production rules are of the form Xj → Xk Xl,
Xj → a, or X1 → ε where Xj , Xk, Xl ∈ V and a ∈ Σ.

Example 1. Let G′ = (V ′, P ′) be the CFG on Σ = {a, b} given by V ′ = {X1}
and P ′ = {X1 → ε,X1 → aX1 b}. Notice that this grammar is not in CNF. The
language L(G′) is {anbn | n ≥ 0}. We can define a grammar G = (V, P ) in CNF
such that L(G) = L(G′). Let V = {X1, X2, X3, X4} and P be the rules

X1 → ε X2 → a X1 → X2 X3

X4 → b X3 → X1 X4 .

3 Algorithm

In this section we outline the quasiorder-based approach to solving the inclusion
problem of a context-free language into a regular language, which reduces the
problem to finitely many membership queries. A membership query is a check of
whether a given word belongs to a given language. More precisely, we consider
the inclusion problem L(G) ⊆ M where G is a CFG and M is a regular language.
To solve the inclusion problem, we select a subset S of words of L(G) such that (i)
S is finite, (ii) S is effectively computable, and (iii) S contains a counterexample
to L(G) ⊆ M if the inclusion does not hold. Upon computing such a set S the
inclusion check L(G) into M reduces to finitely many membership queries of the
words of S into M .

More concretely, the computation of S will be guided by a quasiorder ⋉ on
words. The set S of words is such that, as per the quasiorder ⋉, the following
holds: S ⊆ L(G) and L(G) ⊑⋉ S. 5 In that setting, for S to satisfy (i), we will
require (1) ⋉ to be a well-quasi order. Moreover for S to comply with (ii), we
will require (2) ⋉ to be decidable but also “monotonic” (it will become clear
what it means and why we need this condition later). Finally, for S to comply
with (iii), we first formalize the requirement:

L(G) ⊆ M ⇐⇒ ∀u ∈ S, u ∈ M . (⋆)

Intuitively, it means that whatever set S we select needs to be included in M
if the inclusion L(G) ⊆ M holds and otherwise the set S needs to contain at
least one counterexample to the inclusion. To achieve this, we will require (3)
⋉ to be M -preserving: A quasiorder ⋉ ⊆ Σ∗ ×Σ∗ is said to be M -preserving
when for every u, v ∈ Σ∗ if u ∈ M and u ⋉ v then v ∈ M6. To see how ⋉
5 We can even relax the inclusion S ⊆ L(G) to the weaker condition S ⊑⋉ L(G).
6 This is equivalent to saying that M is upward-closed w.r.t. the quasiorder ⋉.
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being M -preserving enforces (⋆) let us first assume that L(G) ⊆ M holds. Since
S ⊆ L(G) and L(G) ⊆ M , the direction ⇒ of Equation (⋆) holds. This still holds
if we have the weaker condition S ⊑⋉ L(G). In this case, for every s ∈ S there
exists u ∈ L(G) such that u⋉ s, hence the assumption L(G) ⊆ M together with
the M -preservation show that s ∈ M . Now assume that the right-hand side of
(⋆) holds and let u ∈ L(G). Since L(G) ⊑⋉ S there is s ∈ S such that s ⋉ u.
Since s ∈ M , s⋉ u and ⋉ is M -preserving we have u ∈ M .

To compute S we leverage a fixpoint characterization of L(G). Then we ef-
fectively compute the set S by computing finitely many Kleene iterates of the
fixpoint characterization of L(G) so as to obtain a set S such that L(G) ⊑⋉ S. In
order to decide we have computed enough Kleene iterates we rely on ⊑⋉ (which
is why we need ⋉ to be decidable). We also need ⋉ to satisfy a so-called mono-
tonicity condition for otherwise we cannot guarantee that S satisfies L(G) ⊑⋉ S.

Let us now turn to the characterization of L(G) as the least fixpoint of a
function. Fix a grammar G in CNF and M a regular language. Our algorithms
also work when the grammar G is not given in CNF, we assume CNF for the
simplicity of the presentation.

Least Fixpoint Characterization. To compute our finite set S we use a
characterization of L(G) as the least fixpoint of a function, and show that we
can iteratively compute the function’s Kleene iterates until we compute a set S
such that L(G) ⊑⋉ S.

Example 2. Take the grammar G of Example 1 such that L(G) = {anbn | n ≥ 0}.
We define the function FG : ℘(Σ

∗)4 → ℘(Σ∗)4 where (L1, L2, L3, L4) ∈ ℘(Σ∗)4

is a vector of languages of finite words as follows:

FG : (L1, L2, L3, L4) 7→ (L2L3 ∪ {ε}, {a}, L1L4, {b}) .

If we apply FG to the empty vector (∅, ∅, ∅, ∅) ∈ ℘(Σ∗)4, we get the vector of
languages ({ε}, {a}, ∅, {b}) (recall that L∅ = ∅ and ∅L = ∅ for any language L).
Applying FG to this last vector we obtain ({ε}, {a}, {b}, {b}), i.e. F 2

G(∅, ∅, ∅, ∅) =
({ε}, {a}, {b}, {b}). We give a list of the first few repeated applications of FG to
the empty vector.

FG(∅) = ({ε}, {a}, ∅, {b})
F 2
G(∅) = ({ε}, {a}, {b}, {b})

F 3
G(∅) = ({ab, ε}, {a}, {b}, {b})

F 4
G(∅) = ({ab, ε}, {a}, {ab2, b}, {b})

F 5
G(∅) = ({a2b2, ab, ε}, {a}, {ab2, b}, {b})

F 6
G(∅) = ({a2b2, ab, ε}, {a}, {a2b3, ab2, b}, {b})

F 7
G(∅) = ({a3b3, a2b2, ab, ε}, {a}, {a2b3, ab2, b}, {b}) .

It is not hard to see that for all words anbn ∈ L(G), there exists an i such that
anbn appears in the first component of F i

G(∅). In fact i = 2n+ 1.
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We now formally define the function FG over ℘(Σ∗)n, i.e. over n-vectors of lan-
guages of finite words over Σ, where n is the number of variables of our grammar
G. Let L = (L1, . . . , Ln) ∈ ℘(Σ∗)n be an n-vector of languages L1, . . . , Ln. For
each j ∈ [1, n], the j-th component of FG(L), denoted FG(L)j , is defined as:

FG(L)j ≜
⋃

Xj→Xk Xk′∈P

Lk Lk′ ∪
⋃

a∈Σ∪{ε}, Xj→a∈P

{a} .

We have the following least fixpoint characterization for G.

Proposition 3 (Least fixpoint characterization). For all i ∈ {1, . . . , n} we
have Li(G) = (lfpFG)i.

Proof. The function FG is increasing and the supremum of the increasing se-
quence of its Kleene iterates starting at the bottom value (∅, . . . , ∅) ∈ ℘(Σ∗)n is
the vector equal to {u ∈ Σ∗ | Xj ⇒∗ u} for each j ∈ [1, n]. Therefore, by the
Knaster–Tarski theorem applied to the complete lattice (℘(Σ∗)n,⊆n) and FG ,
lfpFG = ({u ∈ Σ∗ | Xj ⇒∗ u})j∈[1,n]. Thus, (lfpFG)i = Li(G). ⊓⊔

Remark 4. The function definition uses the fact that G is given in CNF, notably
that its rules are of the form Xj → XkXk′ . However a function F ′

G can be defined
for a grammar G in any form such that (lfpF ′

G) = (L1(G), . . . , Ln(G)) and if G is
in CNF then F ′

G and FG coincide, see [12, Definition 2.9.1 and Theorem 2.9.3].

The ordering ⊑⋉n is used to compare the Kleene iterates of the function
FG . For it to be apt to detect convergence, hence when the algorithm should
stop, the quasiorder ⋉ needs to be monotonic. A quasiorder is monotonic if it is
right-monotonic and left-monotonic. A quasiorder ⋉ on Σ∗ is right-monotonic
(respectively left-monotonic) if for all u, v ∈ Σ∗, for all a ∈ Σ, u ⋉ v implies
ua⋉ va (respectively u⋉ v implies au⋉ av).

Proposition 5 (⊑⋉ monotonicity). Let ⋉ be a monotonic quasiorder on Σ∗.
If Y ⊑⋉n S then FG(Y ) ⊑⋉n FG(S).

Proof. Fix j ∈ [1, n]. We want to show that for all y ∈ FG(Y )j there exists
s ∈ FG(S)j such that s ⋉ y. Let y ∈ FG(Y )j . If there is an a ∈ Σ ∪ {ε} such
that Xj → a ∈ P and y = a, then y is also in FG(S)j by definition. Since
⋉ is a quasiorder it is reflexive, so y ⋉ y. Otherwise, by definition of FG(Y )j ,
there exist yk ∈ Yk, yk′ ∈ Yk′ such that Xj → XkXk′ ∈ P and y = ykyk′ .
Since Y ⊑⋉n S, there exist sk ∈ Sk, sk′ ∈ Sk′ such that sk ⋉ yk and sk′ ⋉ yk′ .
Using Xj → XkXk′ ∈ P and the definition of FG(S)j , we have sksk′ ∈ FG(S)j .
By right-monotonicity of our quasiorder, sksk′ ⋉ yksk′ . By left-monotonicity,
yksk′ ⋉ ykyk′ . Since quasiorders are transitive, we obtain sksk′ ⋉ ykyk′ . We thus
conclude from the above that FG(S)j ⊑⋉ FG(Y )j , hence it is easy to see that
FG(S) ⊑⋉n FG(Y ). ⊓⊔

Under the assumption of monotonicity on our M -preserving well-quasiorder
we can iteratively compute a finite set S such that L(G) ⊑⋉ S using the function
FG as shown by the next proposition.
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Proposition 6 (Stabilization). Let ⋉ be a wqo on Σ∗. There is an m ≥ 0 such
that FG

m+1(∅) ⊑⋉n FG
m(∅); and if ⋉ is monotonic then lfpFG ⊑⋉n FG

m(∅).

Proof. For simplicity, we write this proof for the case where n, the number of
variables in G, is equal to 1. It holds also for n > 1 by reasoning component-
wise. Since ⋉ is a wqo on Σ∗, the set of upward closed sets of ℘(Σ∗) ordered
by inclusion has the ascending chain condition [5, Theorem 1.1], meaning there
is no infinite strictly increasing sequence of upward closed sets. It is routine to
check by induction using Proposition 5 that FG

i(∅) ⊑⋉ FG
i+1(∅) for all i ≥ 0.

Therefore also ↑⋉FG
i(∅) ⊆ ↑⋉FG

i+1(∅) for all i ≥ 0. By the ascending chain
condition, there exists a positive integer m such that ↑⋉FG

m+1(∅) ⊆ ↑⋉FG
m(∅),

which is equivalent to FG
m+1(∅) ⊑⋉ FG

m(∅).
Assume that ⋉ is monotonic. An induction using Proposition 5 and the

above shows that for every k ≥ m, FG
k+1(∅) ⊑⋉ FG

k(∅). Hence, by transitivity
of ⊑⋉ we deduce that for every k ≥ m, FG

k(∅) ⊑⋉ FG
m(∅). Recall that lfpFG

is the supremum of the sequence of Kleene iterates of FG , i.e. of {Fn
G (∅)}n∈N.

In the complete lattice (℘(Σ∗)n,⊆n), the supremum of {Fn
G (∅)}n∈N is equal to⋃

n∈N Fn
G (∅). Thus lfpFG ⊑⋉ FG

m(∅). ⊓⊔

Algorithm. Given a regular language M ⊆ Σ∗ we say that a quasiorder ⋉ ⊆
Σ∗ ×Σ∗ is M -suitable if it is 1) a wqo, 2) M -preserving, 3) monotonic and 4)
decidable i.e., given two words u and v we can decide whether u⋉ v. Intuitively
a quasiorder is M -suitable if it can be used in our quasiorder-based framework
to decide the inclusion problem L(G) ⊆ M .

Algorithm 1: Algorithm for deciding L(G) ⊆ M

Data: G = (V, P ) CFG with n variables.
Data: M -suitable quasiorder ⋉.
Data: Procedure deciding u ∈ M given u.

1 cur := ∅;
2 repeat
3 prev := cur;
4 cur := FG(prev);
5 until cur ⊑⋉n prev;
6 foreach u ∈ (prev)1 do
7 if u /∈ M then return false;
8 return true;

Theorem 7. Algorithm 1 decides the inclusion problem L(G) ⊆ M .

Proof. As established by Proposition 6, given a monotonic decidable wqo ⋉,
lines 2 to 5 of Algorithm 1 compute, in finite time, a finite set equal to FG

m(∅)
for some m such that lfpFG ⊑⋉n FG

m(∅). Moreover, since FG
m(∅) ⊆ lfpFG , we
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find that FG
m(∅) ⊑⋉ lfpFG . Since ⋉ is M -preserving, Equation (⋆) holds for

FG
m(∅)1, i.e.

L(G) ⊆ M ⇐⇒ ∀u ∈ FG
m(∅)1, u ∈ M .

Thus the algorithm is correct, and it terminates because there are only finitely
many membership checks u ∈ M in the for-loop at lines 6 and 7. ⊓⊔

Remark 8. The loop at lines 2 to 5 of the algorithm iteratively computes a vector
of sets of words cur, updating its value to FG(prev) at line 4. The algorithm
remains correct if we remove some words from prev before each new update, as
long as the resulting vector prev is included in cur with respect to ⊑⋉ (intuitively
this ensures we do not lose any counter-examples). That is, we can replace the
assignment line 3 by prev := cur’ for any cur’ ⊆ cur such that cur ⊑⋉ cur’; the
correctness follows from Proposition 5.

4 Quasiorder Instantiation

We instantiate the algorithm with a quasiorder and give an example run. We
then discuss other quasiorders with which the algorithm can be instantiated.

4.1 A State-based Quasiorder

We present an M -suitable quasiorder to instantiate Algorithm 1. The quasiorder
is derived from a finite automaton with language M . Given an automaton A =
(Q, qI , δ, F ) with L(A) = M and a word u ∈ Σ∗, we define the context set of u

ctxA(u) ≜ {(q, q′) ∈ Q2 | q u−→∗q′} .

We derive the following quasiorder on Σ∗:

u ≤A
ctx v

△⇐⇒ ctxA(u) ⊆ ctxA(v) .

Proposition 9. The quasiorder ≤A
ctx is M -suitable.

Proof. The result [13, Lemma 7.8] shows that ≤A
ctx is a M -preserving, monotonic

wqo. Since for every u ∈ Σ∗ we can compute the finite set ctxA(u), we deduce
that given two words u and v we can decide u ≤A

ctx v. Thus, ≤A
ctx is M -suitable.

⊓⊔

Let M be the regular language a∗b∗. Consider the automaton A depicted in
Fig. 1. It has two states p, q and accepts M , i.e. L(A) = M . We give an execution
of our algorithm instantiated with ≤A

ctx to decide L ⊆ M , where L is the language
recognized by the grammar G of Example 1, that is L = L(G) = {anbn | n ≥ 0}.
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p qb

a b

Fig. 1. Finite automaton A recognizing language a∗b∗.

We compute the contexts of the words appearing in the first iterations of FG , as
computed in Example 2.

ctxA(ε) = {(p, p), (q, q)} ctxA(b) = {(p, q), (q, q)}
ctxA(a) = {(p, p)} ctxA(w) = {(p, q)}, ∀w ∈ a+b+ .

The algorithm computes the first four iterations of FG and then stops. We have
F 5
G(∅, ∅, ∅, ∅)1 = {a2b2, ab, ε}, F 4

G(∅, ∅, ∅, ∅)1 = {ab, ε}, and the languages of the
other component are the same. Since ab ≤A

ctx a2b2, we have that F 5
G(∅, ∅, ∅, ∅) ⊑(≤A

ctx)
4

F 4
G(∅, ∅, ∅, ∅), hence lfpFG ⊑(≤A

ctx)
4 F 4

G(∅, ∅, ∅, ∅). For each u ∈ F 4
G(∅, ∅, ∅, ∅)1 we

check if u ∈ a∗b∗. This is the case, and the algorithm returns true.

4.2 Other Quasiorders

The first kind of quasiorder we presented was a state-based quasiorder derived
from a finite automaton for the language M . Here we present a syntactic qua-
siorder based on the syntactic structure of the language M . Given a word u ∈ Σ∗,
we define the set

ctxM (u) ≜ {(w,w′) ∈ Σ∗ ×Σ∗ | wuw′ ∈ M} .

We derive the following quasiorder on Σ∗:

u ≤M
ctx v

△⇐⇒ ctxM (u) ⊆ ctxM (v) .

Following [5], we call this the Myhill order.

Proposition 10. The quasiorder ≤M
ctx is M -suitable. Moreover, it is the coarsest

among the M -suitable quasiorders.

Proof. Since M is a regular language, by Lemma 7.6 (a) in [13] ≤A
ctx is M -

suitable. By Lemma 7.6 (b) if ⋉ is a M -suitable quasiorder then for every u ∈ Σ∗

we have ↑⋉{u} ⊆ ↑≤M
ctx

{u}, in other words u ⋉ v implies u ≤M
ctx v. Hence, ≤M

ctx
is coarser than any M -suitable quasiorder. ⊓⊔

Notice that given two words u and v deciding u ≤M
ctx v reduces to an inclusion

between two regular languages, it is therefore PSPACE-complete to decide it.
On the other hand deciding u ≤A

ctx v is PTIME.
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5 Algorithmic Aspects

In Section 4.1 we considered the so-called state-based quasiorders for Algo-
rithm 1. We can leverage state-based quasiorders even further and modify the
algorithm to drop words entirely and replace them by their context. As we will
see, contexts (that is sets of pairs of states) carry sufficient information to per-
form all the tasks required by the algorithm (namely comparison between words,
updates via word concatenation and word membership tests).

5.1 A State-Based Variant

As a first step, consider a variant of Algorithm 1 where words are stored to-
gether with their context: instead of w we will store (w, ctxA(w)). This change
preserves the logic of the algorithm, hence its correctness. Observe that because
the contexts are readily available they can be used directly for comparisons:
instead of computing contexts each time two words need to be compared, the al-
gorithm compares the already-computed contexts. Furthermore, and this is key,
contexts can be updated during computations because they can be characterized
inductively. Indeed, given ctxA(w) and ctxA(w′), ctxA(ww′) can be computed
as follows:

ctxA(ww′) = {(p, q) | ∃p′ : (p, p′) ∈ ctxA(w) ∧ (p′, q) ∈ ctxA(w′)} .

In addition, membership queries in M = L(A) have an equivalent counterpart
on contexts: w ∈ M iff ctxA(w) ∩ ({qI} × F ) ̸= ∅. As a consequence of the
above, Algorithm 1 can drop words entirely and focus exclusively on contexts.
We call this algorithm the antichains algorithm following a prolific history of
such algorithms like [17] (for the CFG into REG case) and starting with [6] (for
the REG into REG case).

Next, we will see a data-structure for contexts tailored to the case where L(G)
is a singleton. This data-structure, which leverages the automaton structure of
regular languages, has been studied by Esparza, Rossmanith and Schwoon in a
paper from 2000 [10]. Their paper list several potential use of the data-structure
but not the one we are giving next.

5.2 A Data-Structure for the Case of Straight Line Programs

In 2000 Esparza, Rossmanith and Schwoon published a paper [10] in the EATCS
bulletin where they give an algorithm which allows to solve a number of elemen-
tary problems on context-free grammars including identifying useless variables,
and deciding emptiness or finiteness. The algorithm is a “saturation” algorithm
that takes as input a finite state automaton A = (Q, δ, qI , F ) and a context-free
grammar G = (V, P ) on an alphabet Σ. It adds transitions to A so that, upon
saturation, its resulting language corresponds to the following set of words on
alphabet (V ∪Σ):

{α ∈ (V ∪Σ)∗ | ∃w ∈ L(A) : α ⇒∗ w} .
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This set, which they denote as pre∗(L(A)), comprises the sentences of the gram-
mar G which, upon application of zero or more production rules, becomes a word
in L(A). At the logical level, the algorithm consists of one saturation rule and
nothing more which states that if X → β ∈ P and q

β−→∗q′ then add a transition
q

X→ q′ to A.
We show that this approach is relevant to our problem. Let us consider

the inclusion problem CFG into REG where we have the restriction that for
every i ∈ [1, n] we have that L(G)i is either a singleton word or it is empty:
L(G)i ̸= ∅ =⇒ L(G)i ∈ Σ∗. Such grammars are called straight line programs
(SLP) in the literature. As we have shown in the past [14], the inclusion problem
for straight line programs has direct applications in regular expression matching
for text compressed using grammar-based techniques. Intuitively, the regular
expression is translated into L(A) and the compressed text is given by L(G).
Then we have that the regular expression has a match in the decompressed text
iff L(G) ⊆ L(A).

In the context of our inclusion algorithm, the assumption that G is a straight
line program ensures that, for every m, each entry in the vector Fm

G (∅) is either
the empty set or a singleton word. Now consider the state-based variant of Al-
gorithm 1 discussed above where words are replaced by their contexts. Because
of the SLP assumption we have that each entry of the cur and prev vectors in
Algorithm 1 stores a set of pairs of states: each entry is given by a set P ⊆ Q2

as opposed to P ⊆ ℘(Q2) when G need not be a SLP.
A possible data-structure to store such a set P is a graph where nodes are

given by Q and whose edges coincides with the pairs of states of P . Add labels
on edges and you can encode a vector of sets like P , namely an edge from q to q′

with label m encodes that the pair (q, q′) belongs to the mth component of the
vector. Next, observe that the updates to be carried out on the vectors cur and
prev via FG as prescribed by Algorithm 1 can be implemented via the saturation
rule described above. For instance, assume FG requires to update the m-th entry
of cur following the production rule Xm → Xk Xk′ . The corresponding update
to the graph-based data structure adds an edge labelled m between states (q, q′)
if there exists a node q′′ such that (q, q′′) and (q′′, q′) are two edges respectively
labelled by k and k′. It is worth pointing that this update rule coincides with the
above saturation rule for the rule Xm → Xk Xk′ . Therefore the saturation rule
together with the underlying graph data-structure leveraging the automaton A
enable a state-based implementation of Algorithm 1 tailored to the case SLP
into REG. It is worth pointing out that Esparza et al. [10] work out the precise
time and space complexity of implementing the saturation rule. Ultimately, we
obtain an algorithm in PTIME for the SLP into REG inclusion problem. A more
detailed complexity analysis can be found in Valero’s PhD thesis [22, Chapter 5].

6 Other Language Inclusion Problems

In this section we talk about the other language classes to which our framework
can be applied.
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6.1 REG ⊆ REG

We consider the case where G is a right regular grammar i.e. a grammar in which
all production rules are of the form Xj → Xk a, Xj → a, or Xj → ε where Xj and
Xk are variables and a ∈ Σ. The function FG of the least fixpoint characterization
of L(G) is now defined as follows. Let L = (L1, . . . , Ln) ∈ ℘(Σ∗)n define:

FG(L)j ≜
⋃

Xj→Xk a∈P

Lk{a} ∪
⋃

a∈Σ∪{ε}, Xj→a∈P

{a} .

The same algorithm with this new FG is also correct. Notice however that for
Proposition 5 and Proposition 6 to be correct it is now sufficient for ⋉ to only
be right-monotonic. This is because the new FG only uses right-concatenations
in its production rules. As a consequence of this, we can relax ≤A

ctx into the
coarser quasiorder ≤A

post where, we just replace the context ctx of a word u by
the set post containing all the states reachable with the word u from the initial
state of A, that is, {q | qI

u−→∗q′}. Similarly, we can relax ≤M
ctx into the Nerode

quasiorder of M . In the Nerode quasiorder, a word u subsumes v if, for every
w ∈ Σ∗, uw ∈ M implies vw ∈ M .

6.2 REG ⊆ Petri Net Traces

In 1999 Petr Jančar, Javier Esparza and Faron Moller [19] published a paper
which solved several language inclusion problems including the problem asking
whether the trace set of a finite-state labelled transition system is included in the
trace set of a Petri net (which defines a labelled transition system with possibly
infinitely many states). In this section we give a decision procedure following the
framework we put in place in the previous sections. As we will see our decision
procedure is very close yet slightly different from the one they proposed.

It is worth pointing that their exposition favors a process theory viewpoint
rather than an automata theory viewpoint which is why they talk about trace
sets and labelled transition systems (or processes) instead of languages and ac-
ceptors. With this view in mind, the notion of alphabet Σ becomes a set of
actions in which they include a distinguished silent action τ . The τ resembles
the ε symbol used in the automata theoretic setting. In their paper, they define
and prove correct an algorithm to decide whether the trace set given by a finite-
state labelled transition system is included into the trace set given by a Petri
net.

Our first step is to extract from their paper an ordering on words that is
M -suitable. In our setting, M is the trace set given by a Petri net. The ordering
is a “state-based” ordering defined upon the underlying Petri net. The definition
relies on the notion of ω-markings which, intuitively, are vectors with as many
entries as there are places in the Petri net and such that each entry takes its
value in N∪{ω}. Let P be the set of places of the Petri net, then NP

ω denote the
set of ω-markings thereof. Given two ω-markings M̂ and M̂ ′ they define (p. 481)
an ordering ⩽ between them such that M̂ ⩽ M̂ ′ if M̂(p) ⩽ M̂ ′(p) for all p ∈ P
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such that ω is greater than every natural. They then lift the ordering ⩽ to sets of
ω-markings as follows. Given two sets M,M′ ⊆ NP

ω define M ⩽ M′ iff for each
M ∈ M there exists M ′ ∈ M′ such that M ⩽ M ′. This relation is a quasiorder
on sets of ω-marking which becomes a well-quasiorder when restricted to the
finite sets of ω-markings. That is ⩽ is a wqo on ℘fin(NP

ω ) (their Corollary 2.17).
We are now in position to define our ordering on words (what they call

traces). Let u, v ∈ (Σ \ {τ})∗ define

u⋖ v iff max(C( u⇒({M0}))) ⩽ max(C( v⇒({M0}))) .

Let us discuss this definition starting with the expressions max(C( u⇒({M0})))
which denote finite sets of ω-markings (i.e. max(C( u⇒({M0}))) ∈ ℘fin(NP

ω ) so
that the ordering ⩽ is the well-quasiorder described above). The details of the
definition max(C( u⇒({M0}))) would take too much space to include here but
intuitively the finite set of ω-markings is a finite description of the possibly
infinitely many markings (which are ω-markings with no entry set to ω) the Petri
net can reach guided by the sequence of actions in u from its initial marking M0

(the C and the max operator turn a possibly infinite sets of markings into a finite
set of ω-markings).

Let us now turn to the M -suitability of ⋖. As we have already shown the
ordering ⋖ is a wqo. Second it is routine to check that monotonicity follows
from their Lemma 2.5(a) and Lemma 2.9 [19]. Indeed Lemma 2.5(a) states that
if M ⩽ M′ then a⇒(M) ⩽

a⇒(M′) for every a ∈ Σ \{τ}; while Lemma 2.9 states
that M ⩽ M′ then max(C(M)) ⩽ max(C(M′)).

Next we show that M -preservation holds by simply observing that w is a
trace of the Petri net iff w⇒({M0}) ̸= ∅, hence that if u⋖ v and u is a trace then
v is a trace by definition of ⋖, their Lemma 2.7(a) showing M ⊆ C(M), and the
definition of max (p. 482).

It remains to show that ⋖ is decidable which is easily established by first
using the result of their Lemma 2.15 stating that we can effectively construct
max(C( a⇒({M})) given a finite set M of ω-markings and an action a ∈ Σ;
and second by using the result of their Lemma 2.14 to lift (inductively) their
effectivity result from actions to finite sequences of actions. Notice that this
effectivity result for finite sequences of actions also gives a decision procedure
for the membership in the trace set of the Petri net.

With all the ingredients in place, we obtain an algorithm deciding whether
the trace set of a finite-state labelled transition system is included into the trace
set of a Petri net. It is worth pointing out that their algorithm [19, Theorem 3.2]
performs less comparisons of finite sets of ω-markings than ours. A tree structure
restricts the comparisons they do during the exploration to pairs of sets of ω-
markings, provided one is the ancestor (w.r.t. tree structure) of the other. Since
our algorithm does not have such a restriction, we claim that we are making
at least as many comparisons as their algorithm. This potentially results in a
shorter execution time and less membership checks in our algorithm.
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6.3 Languages of Infinite Words

In this section we give the idea on how we extended the framework to the inclu-
sion problem between languages of infinite words [9]. In particular we studied the
inclusion between two ω-regular languages and the inclusion of an ω-context-free
language into an ω-regular language.

Consider the inclusion problem Lω(A) ⊆ M where A is a BA and M is
an ω-regular language. The first step is to reduce the inclusion check to the
ultimately periodic words of the languages, as they suffice to decide the inclu-
sion [3]. These are infinite words of the form uvω for u ∈ Σ∗ a finite prefix
and v ∈ Σ+ a finite period. We compare two ultimately periodic words using a
pair of quasiorders ⋉1 and ⋉2 on finite words. The first quasiorder, ⋉1, com-
pares the prefixes of ultimately periodic words, while the second quasiorder, ⋉2,
compares their periods. As expected the quasiorders need to be M -preserving
right-monotonic decidable wqos. In this setting M -preservation means that if
uvω ∈ M and (u, v)⋉1 ×⋉2 (u

′, v′) then u′v′ω ∈ M . For example, by taking ⋉1

to be ≤B
post and ⋉2 to be ≤B

ctx, where B is a BA such that Lω(B) = M , we have
an M -preserving pair of right-monotonic decidable wqos.

An M -preserving pair of wqos ensures the existence of a finite subset S =
S1 × S2 of ultimately periodic words that is sufficient to decide the inclusion.
In order to compute such a subset S we establish a fixpoint characterization for
the sets of prefixes and periods of L. Finally, we decide the inclusion by checking
membership in M for every ultimately periodic word uvω such that (u, v) ∈ S.

In the case where A is a Büchi Pushdown (and therefore where Lω(A) is an
ω-context-free language), the only difference lies in the fixpoint functions which
now use both right and left concatenations. Thus the pair of quasiorders in this
case should be monotonic. For example we can take both orders to be ≤B

ctx.

6.4 Pointers to Other Cases

In our paper [7], the approach is adapted to the inclusion problem between
Visibly Pushdown Languages (VPL) (of finite words) and ω-VPL (of infinite
words), classes of languages defined in [1]. In these cases, defining monotonicity
conditions is challenging.

In the work by Henzinger et al. [16], the authors adapt our framework to
solve their inclusion problem between operator-precedence languages [11]. These
languages fall within a class that is strictly contained in deterministic context-
free languages and, in turn, strictly contains VPL [4].

In [8], we further extend the framework for solving the inclusion Lω(A) ⊆ M ,
for A an BA and M an ω-regular language, using a family of quasiorders instead
of a pair of quasiorders. A family of quasiorders allows more pruning when
searching for a counterexample, thus lesser membership queries at the end.

As we show in [13] it is also possible to define an M -suitable quasiorder
leveraging pre-computed simulation relations on the states of an automaton for
M . This quasiorder might be coarser than the state-based one presented in
Section 4.1.
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Some directions for future work are the inclusion of a context-free language
into a superdeterministic context-free language [15], and the inclusion between
tree automata. It is worth noting that least fixpoint characterizations exist for
a very large number of language classes [18]. Eventually, we want to explore
whether our approach can be adapted to the emptiness problem of alternating
automata for finite and infinite words. The PhD thesis of Nicolas Maquet [21]
suggests it can be done. In [2], Bonchi and Pous compare antichains and bisim-
ulation up-to techniques. We want to extend this comparison, given the novel
insights of our approach.
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