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ABSTRACT. We show that the bigraded quasi-isomorphism type of the bigraded, bidifferential alge-
bra of forms on a compact Kähler manifold generally contains more information than the de Rham
cohomology algebra with its real Hodge structure. More precisely, on any closed Riemann surface
of genus at least two, there is a nontrivial ABC-Massey product. Furthermore, starting from dimen-
sion three, there are simply connected projective manifolds with a nonzero ABC-Massey product of
three divisor classes. In particular, compact Kähler manifolds are generally not formal in the sense
of pluripotential homotopy theory.

1. INTRODUCTION

For manifolds, the quasi-isomorphism class of the commutative differential graded algebra
(cdga) of differential forms provides a much finer algebraic invariant than the de Rham cohomol-
ogy algebra. For instance, one may compute from it certain topological higher operations called
Massey products and, under assumptions of finite type and nilpotent π1, the ranks of the higher
homotopy groups [16].

One of the early highlights of Sullivan’s approach to rational homotopy theory is the theorem of
[4] that any compact Kähler manifold is (de Rham) formal: The cdga of forms can be connected
by a chain of quasi-isomorphisms to the de Rham cohomology algebra, considered as a cdga with
trivial differential. In other words, the quasi-isomorphism class of the differential forms is encoded
in the de Rham cohomology and hence the former does not contain more information than the latter.
In particular, on compact Kähler manifolds all Massey products need to vanish.

For complex manifolds, the splitting d = ∂ + ∂̄ equips the complex-valued differential forms
with the enriched structure of a commutative bigraded, bidifferential algebra (cbba). We consider
cbbas up to bigraded, or pluripotential, quasi-isomorphisms, cf. [15], meaning maps of cbbas
which induce an isomorphism in the Bott-Chern and Aeppli cohomologies

HBC =
ker ∂ ∩ ker ∂̄

im ∂∂̄
and HA =

ker ∂∂̄

im ∂ + im ∂̄
.

This notion of quasi-isomorphism is in a certain sense universal [15, Thm C]. In particular, it is
stronger than requiring the map to induce an isomorphism in de Rham or Dolbeault cohomology.
A complex manifold is called strongly formal if its cbba of forms is connected by a chain of bi-
graded quasi-isomorphisms to a cbba with trivial differentials [10]. Hermitian symmetric spaces,
all compact Kähler solvmanifolds, and all compact Kähler manifolds of dimension ≥ 2 with co-
homology of complete intersection type (the Kähler class generates all cohomology below middle
degree) are strongly formal [10], [14], [15].
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The goal of this paper is to show that, nevertheless, compact Kähler manifolds are generally not
strongly formal. I.e., the bigraded quasi-isomorphism class of the cbba of forms contains more
information than the de Rham cohomology algebra with its real Hodge structure. To prove this,
we consider a secondary variant of Massey products, called Aeppli-Bott-Chern-Massey products
(ABC-Massey products), introduced in [1]. They are defined like ordinary Massey products, re-
placing d by i∂∂̄. We recall their precise definition in Section 2. Schematically, they yield a
partially defined map of bidegree (−1,−1)

⟨·, ·, ·⟩ABC : H⊗3
BC(X) // HA(X) .

For compact Kähler manifolds, the natural maps HBC(X) → HdR(X) → HA(X) are isomor-
phisms. Therefore, one might view ⟨·, ·, ·⟩ABC as a partially defined operation of degree −2 in de
Rham cohomology. As with de Rham formality and ordinary Massey products, on any strongly
formal manifold, all ABC-Massey products are trivial [10].

Theorem A. On any closed Riemann surface of genus at least two there is a nontrivial ABC-
Massey product.

As a consequence, on any compact Kähler manifold with a surjective map to a curve of genus
at least two there is a nontrivial ABC-Massey product, Corollary 3. On the other hand, simply
connectedness and nilpotency play a large role in rational homotopy theory. It is thus natural to
ask whether simply connected compact Kähler manifolds which are not strongly formal exist as
well. Simply connected compact complex surfaces have cohomology of complete intersection type
and hence are strongly formal. Therefore, the minimal dimension where this could occur is 3. In
that regard our main result is:

Theorem B. There is a finite sequence of blow-ups in points and lines of CP3 such that on the
resulting space there is a nontrivial ABC-Massey product.

As a consequence of Theorem B, every complex manifold of dimension ≥ 4 is bimeromorphic
to one on which there is a nontrivial ABC-Massey product, Corollary 8.

The ABC-Massey product in Theorem A takes combinations of holomorphic and antiholomor-
phic 1-forms as input. In Theorem B, one takes divisor classes as inputs and the output is related
to the cross ratio of four points on a line in CP3. In particular, in the latter example varying the
positions of the centers of the blow-ups yields diffeomorphic manifolds which are, as complex
manifolds, distinguished by their nontrivial ABC-Massey product, Corollary 9.

Related work. The nonformality of Kähler manifolds in pluripotential homotopy theory should
be compared with the fact that in Dolbeault homotopy theory [11], where one considers forms up
to Dolbeault quasi-isomorphism, compact Kähler manifolds are still formal, with the same proof as
in [4]. The Dolbeault homotopy type can be obtained from the pluripotential homotopy type. On
general compact complex manifolds there are many higher operations encoded in the pluripotential
homotopy type which are, generally speaking, not encoded by Dolbeault or de Rham homotopy
theory [6], [10], [17]. An important indication that such operations may also be interesting on
compact Kähler manifolds was given by [13] who exhibited a (non Kähler) manifold satisfying the
∂∂̄-Lemma with a nontrivial ABC-Massey product. This is relevant as the proof of formality of
compact Kähler manifolds in the de Rham and Dolbeault settings depends only on the ∂∂̄-Lemma.
On the other hand, taking into account rational structures, [2] exhibit an example which shows that
the rational Mixed Hodge Structure on homotopy groups is generally not a formal consequence of
the rational Hodge Structure on the cohomology ring.
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2. PRELIMINARIES AND NOTATION

2.1. Gradings. Given any bigraded vector space H•,•, a single superscript denotes the associated
singly graded space with total grading H• =

⊕
p+q=•H

p,q. When we talk about the total space, we
omit the grading completely H =

⊕
p,q H

p,q and for an element h ∈ H we denote its (bi)degree
by |h|.

2.2. Forms, currents and fundamental classes. For any manifold X , we write A•(X) for its
graded-commutative differential graded algebra of C-valued smooth differential forms and D(X)
for the space of currents, i.e. Dk(X) is the topological dual of the space of compactly supported
(dim(X)− k)-forms. We write d for the exterior differential and we will usually omit the wedge
product α ∧ β = αβ.

Let us now assume X is a complex manifold. Then A(X) (and D(X)) carry a bigrading by
type, refining the single grading and making it into a graded-commutative, bigraded, bidifferential
algebra (resp. a bigraded, bidifferential module over AX). We write ∂ and ∂̄ for the components
of bidegree (1, 0), respectively (0, 1), of the exterior derivative d = ∂ + ∂̄. For X compact,
the map A(X) → D(X), ω 7→

∫
(−1)|ω|−1ω ∧ is a bigraded quasi-isomorphism, see [12], [15,

Lem. 1.27]. In particular one can (and we will) represent cohomology classes both by forms and
by currents. As the most relevant example for us, any complex submanifold Z ⊆ X of complex
codimension p, or any formal linear combination of such, gives rise to a current of integration
[Z] := (ω 7→

∫
Z
ω|Z) ∈ Dp,p(X). This current is ∂ and ∂̄-closed and therefore defines a class in

Hp,p
BC(X) which, by abuse of notation, we also denote by [Z]. It is called the fundamental class, or

Thom class, of Z. If Z is of complex codimension 1, i.e. a divisor, the Lelong-Poincaré formula
yields form representatives for [Z] ∈ HBC(X) as follows: Let O(Z) be the associated line bundle,
s a meromorphic section of O(Z) with divisor of zero and poles (s) = Z and h a Hermitian
metric on O(Z). Further, let ch1(Z) be the form representative for c1(O(Z)) ∈ H1,1

BC(X) built as
the curvature of the Chern connection with respect to h. Concretely, if locally h = e−φ∥ ∥2, then
ch1(Z) = i

2π
∂∂̄φ. Now log |s|h is a locally integrable function and hence integration against it

defines a current in D0,0(X). The Lelong-Poincaré formula is

(1)
i

π
∂∂̄ log |s|h = [Z]− ch1(Z).

We refer to [5] for further details.

2.3. Massey products.

Definition 1 ([8],[9]). Let X be a manifold and [α] ∈ Hk1
dR(X), [β] ∈ Hk2

dR(X), [γ] ∈ Hk3
dR(X) s.t.

[α][β] = [β][γ] = 0. The triple Massey product of these classes is the class

⟨α, β, γ⟩ := ⟨(−1)|α|αy − xγ⟩ ∈ Hk1+k2+k3−1
dR (X)/([α]HdR(X) +HdR(X)[γ]),

where αβ = dx and βγ = dy for some x ∈ Ak1+k2−1(X) and y ∈ Ak2+k3−1(X).
3



Definition 2 ([1]). Let X be a complex manifold and [α] ∈ Hk1
BC(X), [β] ∈ Hk2

BC(X), [γ] ∈
Hk3

BC(X) be s.t. [α][β] = [β][γ] = 0. The triple Aeppli-Bott-Chern Massey product of these classes
is the class

⟨α, β, γ⟩ABC := [αy − xγ] ∈ Hk1+k2+k3−2
A (X)/([α]HA(X) +HA(X)[γ]),

where αβ = i∂∂̄x and βγ = i∂∂̄y for some x ∈ Ak1+k2−2 and y ∈ Ak2+k3−2.

These definitions depend only on the cohomology classes and not on the choices of represen-
tatives or primitives made. Our conventions differ slightly from the references given in order to
have less signs and be defined over the reals in the sense that if all three inputs are conjugation
invariant classes, then so is the output. The ABC-Massey products are invariants of the (bigraded)
quasi-isomorphism type of A(X), [10, Proposition 4.4].

There are natural maps HA → HBC induced by dc = 1
2
(∂̄ − ∂) as well as natural maps

(2) HBC(X) → HdR(X) → HA(X)

induced by the identity. With these maps understood, the ABC-Massey products are secondary
variants of the ordinary Massey products in the sense that one has the following relation in HdR(X):

(3) dc⟨α, β, γ⟩ABC = ⟨α, β, γ⟩,
up to a universal sign depending on one’s convention for the ordinary triple Massey products.

One says that X satisfies the ∂∂̄-Lemma if the natural maps (2) are isomorphisms. As is well-
known [4], compact Kähler (and hence projective) manifolds satisfy the ∂∂̄-Lemma. For this
reason, we will mostly not distinguish these three cohomologies and instead simply write H(X).

3. RIEMANN SURFACES

Let Σ be any compact Riemann surface. Recall (see e.g. [7]) there is a positive definite sesquilin-
ear form

⟨ , ⟩D : A1,0 × A1,0 −→ C

(α, β) 7−→ ⟨α, β⟩D := i ·
∫
Σ

α ∧ β .

Proof of Theorem A. Let Σ be a Riemann surface of genus at least two and let us fix some point
x ∈ Σ. Let ω1, ω2 ∈ A1,0(Σ) be two nonzero holomorphic one-forms such that ⟨ω1, ω2⟩D =
i
∫
Σ
ω1 ∧ ω̄2 = 0. Then, there exists a unique function F s.t. F (x) = 0 and i∂∂̄F = ω1 ∧ ω̄2. Note

that locally ωi has the form fidz for some holomorphic function fi and therefore a local expression
for ω1 ∧ ω̄2 is given by f1f̄2dzdz̄ which can not vanish identically by the identity principle. Now
we distinguish two cases: First, let us assume that ω1 ∧ ω̄2 is real. In this case, also F will be a real
function, since i∂∂̄ is a real operator. Then we claim that

0 ̸= ⟨ω1, ω1, ω̄2⟩ABC = [Fω1] ∈ H1,0(Σ)/ ([ω1])

To see this, we pair the representative with ω̄2, which pairs trivially with the indeterminacy and
therefore gives a well-defined element in top degree. Then we compute∫

Σ

Fω1 ∧ ω̄2 = i

∫
Σ

F ∧ ∂∂̄F = −i

∫
Σ

∂F ∧ ∂̄F = −i

∫
Σ

∂F ∧ ∂F = −⟨∂F, ∂F ⟩D ̸= 0

because F is real and not constant.
4



Next, if ω1 ∧ ω̄2 has nontrivial imaginary part, set αi = ωi + ω̄i. In this case, α1 ∧ α2 has
the local expression 2iIm(f1f̄2)dzdz̄, which is nonzero by assumption and therefore there exists a
nonconstant real function u with i∂∂̄u = α1 ∧ α2 (in fact, up to a constant, we may take Re(F )).
Then, we have

0 ̸= ⟨α1, α1, α2⟩ABC = [uα1] ∈ H1(Σ)/([α1], [α2])

In fact, since [α1 ∧ α2] = 0 = [α2 ∧ α2] this follows as before from∫
Σ

uα1 ∧ α2 = −⟨∂u, ∂u⟩D ̸= 0

□

Corollary 3. Any compact Kähler manifold which admits a nonconstant holomorphic map to a
closed Riemann surface of genus g ≥ 2 admits a nontrivial ABC-Massey product.

Proof. Given such π : Y → X = Σg≥2, the induced map in cohomology is injective [19]. Let
m = ⟨α, β, γ⟩ABC ∈ H1(X)/([α], [γ]) be a nonzero Massey product. Then, we have π∗m =
⟨π∗α, π∗β, π∗γ⟩ABC ̸= 0 ∈ H1(Y )/(π∗[α], π∗[γ]), where we use that in degree 1 the ideal gen-
erated by [π∗α], [π∗γ] equals the image under π∗ of the ideal generated by [α] and [γ], i.e. the
relevant indeterminacy in Y is not bigger than in X . □

Remark 4. The property of admitting a fibration over a curve of genus g ≥ 2 depends only on the
de Rham cohomology ring [3]. So Corollary 3 can be rephrased as follows: No strongly formal
Kähler structure can exist on a manifold X which admits an isotropic subspace U ⊂ H1(X) with
dim(U) ≥ 2.

4. A SIMPLY-CONNECTED EXAMPLE

Let P,Q,R ∈ CP3 and let C be the line through P,Q. Choose distinct points Si ∈ C\{P,Q}
for i = 1, 2 and let Li be the line through R and Si. Now let X be the space obtained from CP3 by
fist blowing up P,Q,R, then blowing up the strict transform of C, and finally blowing up the strict
transforms of the Li. We denote by EP , EQ, . . . the (strict transforms of the) respective exceptional
divisors in X . Let furthermore Ai ⊂ X be the strict transform of a hyperplane containing Li and
intersecting C transversally.

//
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Recall the definition of the cross-ratio of four distinct points Pi ∈ CP1 = C ∪ {∞}:

(4) χ(P1, P2, P3, P4) :=
(P3 − P1)(P4 − P2)

(P3 − P2)(P4 − P1)
,

where one applies the naive calculation rules in case one of the points is ∞, e.g. 0 = 1
∞ . This

quantity is invariant under projective transformations and hence well defined for any 4-tuple of
distinct points on a line. The main objective of this section is to prove

Theorem 5. The map

H2,2(X) −→ C

x 7−→
∫
A1−A2

x

vanishes on the indeterminacy of the Massey product

m = ⟨[EL1 + EL2 + ER], [EP − EQ], [EC − ER]⟩ABC

and ∫
A1−A2

m =
log |χ(P,Q, S1, S2)|

π
.

Let us first check that the Massey product m is indeed defined. The divisors EL1+EL2+ER and
EP − EQ are disjoint so the product on the left hand side of the Massey product is indeed 0. On
the right hand side [EP −EQ] · [EC −ER] = [EC ∩EP −EC ∩EQ], which is the trivial class since
all fibres of EC → C are rationally, and hence homologically, equivalent. To exhibit an explicit
primitive, let us identify C ∼= CP1 = C ∪ {∞} in such a way that P = 0 and Q = ∞. We may
then view the projection f : EC → C as a meromorphic function. Thus, by (1) applied to f and
the trivial line bundle, we have

[EC ∩ EP − EC ∩ EQ] =
i

π
∂∂̄ log |f |

as currents on EC and the push-forward along the inclusion j : EC → X yields the desired
i∂∂̄-primitive p := j∗(

1
π
log |f |) ∈ D1,1(X) certifying triviality of the product of the right hand

cohomology classes in m.

Lemma 6. Let Fi = EC ∩ ELi
⊂ X . With respect to the above coordinates on C one has

1
π
(log |S1|[F1] + log |S2|[F2]) ∈ m.

Proof. We set D1 = EL1 + EL2 + ER, D2 = EP − EQ, and D3 = EC − ER. In order to compute
m we choose a defining system of m in A(X). Let O(Di) be the line bundle with section si
corresponding to the divisor Di. Then for any Hermitian metric hi on O(Di) we obtain the Chern
form γi := chi

1 (Di).
Recall from Equation (1) that

i

π
∂∂̄ log |si|hi

= [Di]− γi

so we may take γi as a form representative for [Di]. Since O(Di) is trivial outside Di, one may
always pick hi such that |si| ≡ 1 except on some small neighborhood of Di. Hence we may choose
log |si|hi

and in particular γi to be supported near Di.
6



Due to the supports we have γ1γ2 = 0 and may choose 0 as a i∂∂̄-primitive for the left hand
side of the defining system of m. Let p be the previously constructed i∂∂̄-primitive for [D2 ∩D3].
Then we define

q := p− 1

π
log |s2|h2 [D3]−

1

π
log |s3|h3γ2 ∈ D1,1(X),

where we note that the middle term is a well-defined current since log |s2|h2 restricts to a locally
integrable function on D3. We have i∂∂̄q = γ2γ3. Now we choose another i∂∂̄-primitive r ∈
A1,1(X) for γ2γ3 in such a way that r − q defines a trivial class in HA(X). This completes the
construction of a defining system of m which is represented by [γ1r] ∈ H2,2

A (X). If one allows
current representatives of cohomology classes, one in fact has

[γ1r] = [γ1q] = [γ1p]

where the first equality is due to [r − q] = 0 and for the second equality we use that p − q is
supported away from D1. Now by the definition of p we have γ1p = j∗(

1
π
log |f | ·γ1|EC

). Note that
log |f |·γ1|EC

is supported inside a small open neighbourhood U ⊂ EC of D1∩EC for which [γ1|U ]
and [D1∩EC ] agree in the Bott-Chern cohomology HBC,cpt(U) with compact support. Furthermore
the restriction of log |f | to U defines an element in HA(U) and, using that the pairing

HA(U)⊗HBC,cpt(U) → HA,cpt(U)

is well-defined, we find that [log |f |γ1|EC
] and [log |f |[D1 ∩ EC ]] agree in HA,cpt(U). But then so

do their images in HA(EC) under the pushforward of the inclusion U → EC . This shows that m is
represented by 1

π
log |f |[D1 ∩ EC ] =

1
π
log |f |[F1 + F2]. By its definition f is constant on Fi and

takes the value Si with respect to the initial identification C = C ∪ {∞}. □

To deal with the indeterminacy of m, we will now compute the multiplicative structure of H(X).
Recall the formulae for the blow-up of a submanifold Z ⊆ Y of codimension r:

H(BlZY ) ∼= H(Y )⊕
r−1⊕
i=1

H(Z)Ei
Z

The algebra structure on the right is given as follows (see e.g. [18, Thm. 7.31]): H(Y ) is a subring,
H(Z) is an H(Y )-module via restriction, and Er

Z = (−1)r−1[Z] +
∑r−1

i=1 (−1)r−i+1ci(NZ)E
r−i
Z ,

where NZ is the normal bundle. The isomorphism from right to left is given by pullback on H(Y ),
sends the symbol EZ to [EZ ], and is a map of H(Y )-modules on H(Z).

It follows that H1,1(X) is generated by the pullbacks of the classes of a generic plane G in CP3 as
well as the exceptional divisors EP , EQ, ER, EC , EL1 , and EL2 . Note that the pullback of the Thom
class of a divisor along a blow down is the Thom class of its strict transform. For ease of notation,
in the following we omit square brackets around these divisors when indicating the corresponding
cohomology class in H(X). One obtains that a basis for H2,2(X) is given by G2, E2

P , E2
Q, E2

R,
GEC , GEL1 , and GEL2 , where we have used that G restricts to a generator of H1,1(C), H1,1(L1),
and H1,1(L2). The following table displays the map H1,1(X)⊗H1,1(X) → H2,2(X) in the chosen
bases.

The off-diagonal entries can be computed via the transverse intersections of the divisors and the
fact that all fibers in the blowup of a line are rationally equivalent. Regarding the diagonal entries,
only E2

C , E2
L1

, and E2
L2

need justification. We provide the computation for E2
C . The computations

for ELi
are similar and left to the reader. In the above formula for the blowup cohomology we

get E2
C = −C + c1(NC)EC , where the right hand side is to be understood in the blow-up of

7



G EP EQ ER EC EL1 EL2

G G2 0 0 0 GEC GEL1 GEL2

EP 0 E2
P 0 0 GEC 0 0

EQ 0 0 E2
Q 0 GEC 0 0

ER 0 0 0 E2
R 0 GEL1 GEL2

EC GEC GEC GEC 0
−2GEC

−G2 − E2
P − E2

Q
GEL1 GEL2

EL1 GEL1 0 0 GEL1 GEL1

−GEL1

−G2 − E2
R +GEC

0

EL2 GEL2 0 0 GEL2 GEL2 0 −GEL2

−G2 − E2
R +GEC

FIGURE 1. Multiplication table for H(X).

CP3 at the points P,Q,R, say X1, where we are about to blow up C. We determine the class C
in H2,2(X1) by pairing it geometrically with the basis G,EP , EQ, ER of H1,1(X1). We find that
C = G2 + E2

P + E2
Q. We further compute∫

C

c1(NC) =

∫
C

(c1(X1)|C − c1(C)) =

∫
C

(4G− 2EP − 2EQ − 2ER)|C − 2 = −2.

Lemma 7. Let I ⊂ H∗,∗(X) be the submodule generated by EC −ER and ER+EL1 +EL2 . Then
for any representative of an element of I2,2 the integrals over A1 and A2 agree.

Proof. From the multiplication table above one computes that

I2,2 = ⟨GEC , E
2
R, E

2
P + E2

Q, G(EL1 + EL2), G
2⟩.

All intersection numbers between the Ai and the generating cycles of I2,2 can be computed directly
via transverse intersections and agree for i = 1, 2. □

Proof of Theorem 5. By Lemma 7, multiplying with [A1 − A2] sends the indeterminacy ideal I to
0. From the computation in Lemma 6 and since Ai ∩ Fi = {pt}, we deduce that

π ·
∫
A1−A2

m = log |S1| − log |S2| = log

∣∣∣∣S1

S2

∣∣∣∣ .
As P = 0 and Q = ∞ in the chosen coordinate on C, this is indeed log |χ(P,Q, S1, S2)|. □

As an immediate consequence of Theorem 5 we obtain

Corollary 8. For any complex manifold Y of dimension at least 4 there is a finite sequence of blow-
ups of points and lines such that the resulting manifold Ỹ admits a non trivial triple ABC-Massey
product and is thus in particular not strongly formal.

8



Proof. Let Y be a complex manifold of dimension n ≥ 4. After possibly blowing up a point in Y ,
we can assume the existence of an embedding CP3 → Y . Now choose a configuration of points
P,Q,R and lines C,Li inside CP3 and blow up Y along these submanifolds as in the construction
of X . The Massey product

⟨[EL1 + EL2 + ER], [EP − EQ], [EC − ER]⟩ABC

is defined in the resulting space Ỹ . Furthermore there is an embedding X → Ỹ given by the strict
transform of CP3. Cohomologically it maps the class of the (strict transform of the) exceptional
divisors to their respective intersections with X , which are the (strict transforms of the) exceptional
divisors used to define m in Theorem 5. Hence there is an ABC-Massey product m̃ ⊂ HA(Ỹ )
which pulls back to a subset of m ⊂ HA(X) and is thus nontrivial for suitable choices in the
construction. □

Corollary 9. For uncountably many choices of P,Q,R, S1, S2, the resulting manifolds X as in
Theorem 5 are pairwise non-biholomorphic, and distinguished by the ABC-Massey product.

Proof. Consider a biholomorphism φ : X ′ → X between two manifolds corresponding to different
choices, say X = X(P,Q,R, S1, S2) and X ′ = X(P ′, Q′, R′, S ′

1, S
′
2), and the corresponding

pullback H(X) → H(X ′). In X ′, there is at most a countable collection of Massey products with
integral (1, 1)-classes as entries and correspondingly only a countable collection of values when
integrating these Massey products over integral cycles annihilating the indeterminacy. Thus, for
any such φ,

∫
A1−A2

m =
∫
φ−1(A1−A2)

φ∗m must be among these values. □

Remark 10. One may be more precise and show that the automorphism group of H(X) is gener-
ated by the involutions exchanging EP and EQ, resp. EL1 and EL2 . Thus, whenever the values
| log |χ(P,Q, S1, S2)|| and | log |χ(P ′, Q′, S ′

1, S
′
2)|| differ, the manifolds X and X ′ are not biholo-

morphic.
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