
ar
X

iv
:2

40
4.

09
87

3v
1

 [
cs

.L
O

]
 1

5
A

pr
 2

02
4

Complete Game Logic with Sabotage

Noah Abou El Wafa
noah.abouelwafa@kit.edu

Karlsruhe Institute of Technology

Karlsruhe, Germany

Carnegie Mellon University

Pittsburgh, USA

André Platzer
platzer@kit.edu

Karlsruhe Institute of Technology

Karlsruhe, Germany

Carnegie Mellon University

Pittsburgh, USA

ABSTRACT

We introduce Sabotage Game Logic (GLs), a simple and natural ex-

tension of Parikh’s Game Logic with a single additional primitive,

which allows players to lay traps for the opponent to avoid. GLs
can be used to model infinite sabotage games, in which players

can change the rules during game play. In contrast to Game Logic,

which is strictly less expressive, GLs is exactly as expressive as the

modal `-calculus. This reveals a close connection between the en-

tangled nested recursion inherent in modal fixpoint logics and ad-

versarial dynamic rule changes characteristic for sabotage games.

Additionally we present a natural Hilbert-style proof calculus

forGLs and prove completeness. The completeness of an extension

of Parikh’s calculus for Game Logic follows.

CCS CONCEPTS

• Theory of computation → Logic; Proof theory;Modal and

temporal logics.

KEYWORDS

game logic, `-calculus, proof theory, completeness, expressiveness,

sabotage games

1 INTRODUCTION

Games such as the Ehrenfeucht-Fraïssé game are invaluable tools

in the study of logic [19] and some deep results about logic can

be proved with the help of games [1, 27]. Logic can even be given

meaning via games in the form of game-theoretical semantics [28].

On the contrary, logical methods are frequently used to study

games [15]. Logic and games meet most directly in logics specif-

ically designed for the study of games, such as Game Logic (GL)

due to Parikh [36], which allows reasoning about the existence

of winning strategies in a game. This requires giving exact mean-

ing to general games, a nontrivial task, except for games that are

limited to a fixed number of rounds. Nested alternating least and

greatest fixpoints can provide the correct denotational semantics

for games, when they are used to reflect the alternating respon-

sibilities of the respective players at their decision points in the

dynamic games [36].

Fixpoints generally play an important role in logic, for example

in modal fixpoint logics such as the modal `-calculus (L`). L` is

where logic, games and fixpoints begin to converge. In fact Game

Logic can be expressed in the modal `-calculus using alternating

fixpoint formulas to directly capture the semantics of alternating

game play.However this first encounter is imperfect. After 25 years

it was shown that GL is in fact strictly less expressive than L` [8].

The purpose of this paper is to remedy this situation by unify-

ing the three fundamental concepts of logic, games, and fixpoints

in a small and natural extension of Game Logic, which is shown to

be equivalent to the fixpoint logic L` and to have a complete proof

calculus. This identification of fixpoints with games eliminates the

difference between interactive game play and alternating fixpoints.

The key insight behind this paper is that because Game Logic can

already express sufficient adversarial dynamics to express the alter-

nating fixpoints of L` and is merely lacking a suitable way of refer-

ring to fixpoints by their respective fixpoint variables, this can be

alleviated in a parsimonious and purely game-theoretic way. This

is done in Sabotage Game Logic (GLs), a new extension of GL. In

sabotage game logic reference can be expressed, not through the

unstructured use of fixpoint variables as is done in the modal `-

calculus, but by using a simple game operator ∼0 that changes the
rules of subsequent game play. Playing the game ∼0 has the ef-

fect that the game 0 is reserved exclusively for the Angel player

in the future. This can be used to change the rules of a game dy-

namically according to rules that are explicit in the original game.

This simple and natural mechanism of imperative game play is ex-

pressively equivalent to the functional mechanism of unstructured

nested named recursion with the fixpoint variables in the alternat-

ing fixpoints of L` . The role the sabotage ∼0 plays in establishing

the equiexpressiveness reveals an interesting connection between

games with sabotage and the nesting of fixpoints in the modal `-

calculus which have previously been studied separately.

Formulas of the modal `-calculus are frequently easiest to un-

derstand through their corresponding validity or model-checking

parity games [35]. This is complicated by the unstructured goto-

like action a fixpoint variable induces. Sabotage game logic avoids

this problem, as GLs formulas describe two-player games built up

from simple connectives and, instead of fixpoint variables, players

only need to consider the previously committed acts of sabotage,

making sabotage game logic a very intuitive logic with very high

expressive power. By the equivalence of L` and GLs, many desir-

able properties of the modal `-calculus, such as decidability and

small model property, can be transferred to sabotage game logic

for free. Moreover completeness of an axiomatization of GLs can

be obtained through the translation. This is in contrast to the orig-

inal axiomatization for game logic, for which completeness is still

open after four decades [30]. GLs promises to be a useful tool for

understanding GL. This is evidenced by the completeness of an ex-

tension of Parikh’s axiomatization for GL obtained from the com-

plete proof calculus for GLs. To the best of our knowledge this

is the only complete proof calculus for game logic to date. The

embedding from sabotage game logic to the modal `-calculus also

suggests the possibility that the same property can be expressed

1

http://arxiv.org/abs/2404.09873v1
https://orcid.org/0000-0002-3987-9919
https://orcid.org/0000-0001-7238-5710

Noah Abou El Wafa and André Platzer

significantly more concisely in sabotage game logic than in the

modal `-calculus.

In summary, the contributions of this paper are threefold. Firstly,

GLs , a new minimal, natural, concise and intuitive extension of

game logic well-suited to logically studying sabotage games, is in-

troduced. Secondly, it is shown that GLs is expressively exactly as

powerful as the modal `-calculus and, consequently, many desir-

able logical properties of L` transfer toGLs. Thirdly, a sound proof

calculus forGLs is presented, proved complete and completeness is

transferred to obtain a complete extension of Parikh’s GL calculus.

Outline. The required preliminaries are recalled in Section 2. Sec-

tion 3 introduces sabotage game logic (GLs) and another extension

recursive game logic (RGL) of game logic that will play an interme-

diary role in translating between the modal `-calculus and sabo-

tage game logic. In essence RGL adds completely recursive games

to game logic by naively importing the notion of fixpoint variable

reference from modal `-calculus. Section 4 briefly recalls the defi-

nitions of some modal fixpoint logics such as the modal `-calculus

formally. In Section 5 the expressive power of fragments of recur-

sive game logic is compared tomodal fixpoint logics. Subsequently,

proof calculi for sabotage game logic and the fragment right-linear

game logic of recursive game logic are introduced and complete-

ness for right-linear game logic is proved in Section 6. Finally in

Section 7 equiexpressiveness of sabotage game logic and themodal

`-calculus is established and completeness of the proof calculus for

GLs is proved. Completeness of an extension of Parikh’s calculus

for GL is obtained as a corollary. All proofs are in Appendix D.

Related Work. Sabotage games have been considered to model

algorithms under adversarial conditions and in learning [26, 44].

Previous work on using modal logic for the sabotage game using

Sabotage Modal Logic (SML) [6, 44] differs from sabotage game

logic. Unlike in GLs , where obstruction is modelled as changing

the meaning of the game described syntactically, in SML sabotage

is described as changing the structure of interpretation. The sab-

otage `-calculus was investigated for modelling infinite sabotage

games [41]. In contrast to GLs of the model changing nature satis-

fiability problem for SML is undecidable and lacks the finite model

property [32].

For examples of applications of Game Logic see [37, 38]. The re-

lation of the games, game logic, fixpoints and modal `-calculus has

been considered in [8, 10, 17, 20, 25, 29, 35, 36, 42]. Equiexpressive-

ness and relative completeness of game logic and modal `-calculus

in the first-order case was shown in [45]. The modal `-calculus

and its relation to model checking is well-studied [11, 12, 21, 39].

Completeness for game logic was conjectured [36]. A complete-

ness proof based on a cut-free complete calculus for L` [2] was

suggested [23]. It was recently shown not to work [30].

2 PRELIMINARIES

Effectivity Function. An effectivity function [22] is a monotone

function F : P(-) → P(-). It will be used for the denotational

semantics of a game, whereF (.) denotes the set of all states (win-
ning region) from which a given player can win into the region

. ⊆ - . These are naturally monotone, as any point in the winning

region for a set � ⊆ � is also in the winning region for the larger

goal �. Let W(-) be the set of such effectivity functions ordered

by point-wise inclusion, i.e. F ⊆ D ifF (�) ⊆ D (�) for all � ⊆ - .

Definition 2.1. (1) Given a set � ⊆ - the intersection effec-

tivity function is�? (�) = �∩� and the constant effectivity

function �(�) = �.

(2) For an effectivity function F ∈ W(-) its dual is Fd (�) =
- \F (- \�).

(3) An effectivity function F ∈ W(-) is relational if there is
a relation ' ⊆ - × - such that

F (�) = ' ◦� = {A : ∃∃B ∈ � A'B}

(4) ForF ∈ W(-) let

`�.F (�) =
⋂

{� ∈ P(-) : F (�) ⊆ �}

(5) For a function Δ : W(-) → W(-) let

`F.Δ(F) =
⋂

{? ∈ W(-) : Δ(F) ⊆ F}

be the least fixpoint as usual.

As usual `�.F (�) and `@.Δ(@) are the least fixpoints of F and

Δ respectively, provided Δ is monotone [4]. In the sequel it will

be necessary to work with both fixpoints of monotone functions

on a power set and fixpoints of monotone functions on the set of

monotone functions on a power set. Under some conditions the

latter can be viewed pointwise as the former.

Lemma 2.2. Suppose Δ : W(-) → W(-) is monotone and

Δ(F)(�) = Δ(F (�))(�) for allF ∈ W(-) and all � ∈ P(-).

(1) (`D.Δ(D))(�) = `�.(Δ(�)(�))

(2) (aD.Δ(D))(�) = a�.(Δ(�)(�))

See proof on page 16.

Neighbourhood and Kripke Structures. Both game logic and the

modal `-calculus can be interpreted over arbitrary coalgebraic struc-

tures [16]. While the modal `-calculus is commonly interpreted

over Kripke structures, game logic was originally interpreted over

the more general class of neighbourhood models [34]. The results

in this paper hold for both classes of models equally.

Definition 2.3. A monotone neighbourhood structure is a triple

N = (|N |, EN , dN) consisting of a set |N | and functions

EN : A→ P(|N |) dN : G→ W(|N |)

assigning a valuation to atomic propositions fromG and a effectiv-

ity function to atomic games from G. The structure N is a Kripke

structure if each dN (0) is relational.

3 EXTENSIONS OF GAME LOGIC

Throughout the paper fix a countably infinite set A of proposi-

tional constants, a countably infinite set V of fixpoint variables

and a countably infinite set G of atomic games.

3.1 Sabotage Game Logic

Sabotage game logic (GLs) is an extension of game logic defined by

adding the atomic games ∼0. Formulas and games ofGLs are given

2

Complete Game Logic with Sabotage

by the following grammar:

i ::= % | ¬i | i ∨k | 〈U〉i

U ::= 0 | ∼0 | ?i | U ∪ V | U ; V | U∗ | Ud

The formula 〈U〉i expresses that player Angel has a winning

strategy in the game U to reach one of the states in which i is true.

The test game ?i is lost prematurely by Angel unless the formula

i is true in the current state. The choice game U ∪ V allows Angel

to choose between playing U or V . To play the sequential game

U ; V is to play V after U unless one of the players has already lost

while playing U . The repetition game U∗ allows Angel to decide

after each round of U whether she wants to stop playing or repeat

U unless one of the two players has already lost. The dual operator
d switches the roles of the players. Any decision or test within the

scope of a dual operator is not taken by Angel, but her opponent

Demon.

The additional primitive ∼0 is the trap-setting game. When ∼0
is played, Angel lays a trap at 0. It has the effect that should Demon,

anytime in the subsequent play, try to play 0 (by reaching 0d), he

falls into the trap and loses the game prematurely. The trap stays

in effect throughout the formula until it is turned into a trap for

Demon by playing ∼0d according to the rules of the game. How-

ever once a trap has been set for an atomic game it can only change

hands, but will not be played normally again.

Viewed differently, if a player plays ∼0 the player claims the

atomic game 0 for herself. The opponent is not allowed to play it

and forfeits the game by trying. Formally ∼0 means that the game

0 belongs to Angel until the next time the game∼0d is played. Play-

ing ∼0d duallymeans the game 0 belongs to Demon until it returns

to Angel. The effect of the claim is that the rules for playing 0 and

0d in the future change as in Table 1.

Table 1: Effect of Rule Changes

Owner of 0 Rules for 0 Rules for 0d

Neither ∅ 0 played normally 0d played normally

Angel ⋄ 0 skipped Angel wins 0d

Demon ⋄ Demon wins 0 0d skipped

Abbreviations and Conventions. As in game logic define the dual

game connectives for demons choice, test, or repetition. That is let

U ∩ V abbreviate (Ud ∪ Vd)d . This leaves the choice of whether to
play U or V to Angel’s opponent. Analogously let !i stand for the

tests Demon needs to pass (?i)d and U× for demonic repetition

(Ud
∗
)d. The propositional connectives ∧,→,↔ and ⊤,⊥ are de-

fined as usual. Sequential composition ; binds stronger than choice

∪,∩ and conjunction and disjunction bind stronger than implica-

tion.

Infinite Plays. A subtlety in Game Logic is that it is possible for

the two players to play indefinitely. For example Angel could po-

tentially choose to repeat a (?⊤)∗; ?⊥ game indefinitely, instead of

choosing to stop the repetition and thereby losing prematurely due

to the rules of the ? game. This is desirable as it allows modelling

infinite games. Intuitively the semantics will be defined so that the

player who causes the game to be infinite (by repeating a subgame

infinitely often that is not contained in another subgame that is

repeated infinitely often) loses.

Game Logic. Syntactically Parikh’s Game logic (GL) [36] is the

fragment of GLs without games of the form ∼0 and ∼0d. The se-

mantics of sabotage game logic will be defined so that they agree

with the usual semantics. Hence sabotage game logic is a genuine

extension of game logic.

Examples. To illustrate the role of the trap-setting game con-

sider the following two games

(∼0 ∩ ∼0d); 0 (∼0 ∪ ∼0d); 0; !⊥

Demon has awinning strategy in the first game. He simply chooses

to play the game ∼0d first, thereby laying a trap for Angel at 0.

Subsequently Angel will need to try to play 0. However the trap

Demon set causes her to lose at this point. In the second game

in contrast, Angel has a winning strategy. If Angel chooses first to

play ∼0, she sets a trap for Demon at 0. This also means that Angel

can skip the following game of 0 and go straight to playing !⊥. At
this point Demon loses the game, since he can not pass the test ⊥.

Example: The Poison Game in GLs. The poison game is a graph

game introduced [18] to capture the notion of a perfect kernel. To

begin the game Angel picks a vertex on the graph. The players

alternate to choose adjacent vertices, tracing a path through the

graph. However Demon poisons every vertex he chooses to move

to. Angel loses if she chooses to go to a poisoned vertex, but Demon

is immune to the poison he leaves behind. It is Angel’s objective to

survive and Demon’s to poison Angel. The value of the game lies

in the fact that Angel has a winning strategy in the poison game

played on a progressively and outwardly finite directed graph iff

the graph has a local kernel [18].

Various approaches to capture the poison game in modal logic

have been suggested [6, 9]. However the previously considered

logics have undecidable satisfiability problems. In GLs, instead of

viewing the poisoning as a model change, which is difficult to cap-

ture by a well-behaved logic [3], poisoning can be understood as a

describable rule change.

Formally we list the vertices of the graph as 01, . . . , 0= and view

them simultaneously as atomic games to be interpreted as moving

to the vertex of the same name. Now consider the games U⋄ ≡ 01∪

. . .∪0= andU ⋄ ≡ ((01;∼01)∪. . .∪(0=;∼0=))
d . InU⋄ Angel chooses

which vertex to go to next. (The semantics enforce that she loses

should she try to go to a non-adjacent vertex.) Analogously U ⋄
allowsDemon tomake amove, which is followed by him poisoning

the vertex he goes to. The two players now play the game

i ≡ 〈(U ⋄;U⋄)
×〉⊤.

interpreted over an =-element graph (,, �) viewed as a Kripke

frame K with states |K| =, and the reachability relations

G'F8~ if (G,~) ∈ � and ~ = F8 .

In words, the formula 〈08〉⊤ holds in exactly those states from

which vertex F8 is reachable along an �-edge. The formula i in-

terpreted in this way describes the poison game, as i is satisfiable

in this structure (so there is a state from which Angel can win the

3

Noah Abou El Wafa and André Platzer

game (U ⋄;U⋄)
×) iff Angel has a winning strategy in the original

poison game.

3.2 Recursive Game Logic

We introduce a second extension, recursive game logic (RGL), of

game logic that allows arbitrary recursive games. This large in-

crease in expressive power allows RGL to serve as the essential

technical intermediary connectingGLs to themodal `-calculus. Re-

cursive Game Logic (RGL) is defined by the grammar

i ::= % | ¬i | i ∨k | 〈U〉i

U ::= 0 | G | Ud | ?i | U ∪ V | U ; V | rG.U

where % ∈ A, 0 ∈ G, G ∈ V. The additional restriction is that vari-

ables G are not free in games ?i and can only be bound by rG.U if G

appears only in the scope of an even number of d inU . Syntactically

the only difference between recursive game logic and game logic is

that repetition games U∗ have been replaced by named subgames

of the form rG.U and games G to recursively call these named sub-

games have been added. The ordinary repetition game U∗ can be

viewed as an abbreviation for rG.(U ; G ∪ ?⊤)
Intuitively a recursive game rG.U is played just like U until the

variable G is encountered. In this case the game is interrupted and

the players will begin another subgame of rG.U . At some stage the

players may finish playing this subgame. They then continue in the

state they reached to play the original game that was interrupted

previously.

The abbreviations for the usual propositional symbols and the

demonic connectives are defined just as in GLs. Additionally the

dual version of a named subgame is defined as rG.U tomean (rG.Ud)d.
This game is played similarly to rG.i . The only difference is which

of the players is held responsible if the game is played infinitely

long. If the largest subgame repeated infinitely often during a play

in a game of the form rG.U , then Angel loses the game. If the largest

such game is of the form rG.U , Demon loses.

3.2.1 Examples. An example of a fully recursive game is rG.(?⊤∪
0;G ;1). Angel can win this game relative to the winning condition

that some formulai holds in the final state exactly if there is some

= such that after = rounds of playing 0 she can win a game of =

consecutive rounds of 1 into i . This game can not be described in

game logic, which lacks facilities to retain the number of games 1

that still have to be played after Angel chooses the left side in her

choice once.

3.3 Semantics of Game Logics

A denotational semantics for recursive game logic and sabotage

game logic can be defined in a simple and compositional way. Su-

perficially both semantics are quite different from the usual seman-

tics of game logic. However it will be shown that for GL formulas

the semantics of RGL and GLs agree with the original semantics

of GL.

3.3.1 Semantics of Recursive Game Logic. Because recursive game

logic contains games of the form rG.0; (G ∪ 2);1 unlike in game

logic the semantics of such a game can no longer be defined as the

fixpoint of a function between power sets, as the play of 2 that will

take place after Angel chooses to play 1 for the first time must be

taken into account.

Formally the semantics of recursive game logic with respect to

both a monotone neighbourhood structure and a valuation. A val-

uation is a function � : V → W(|N |) assigning an interpretation

to every variable G . Given a valuation � a variable G ∈ V and a

F ∈ W(|N |) let � [G ↦→ F] denote the valuation that agrees with � ,
except that � [G ↦→ F] (G) = F .

Definition 3.1. For any monotone neighbourhood structure N
and any valuation � define the semantics NÈiÉ� ∈ P(|N |) and
NÈUÉ� ∈ W(|N |) by mutual induction on RGL formulas i and

RGL games U :

NÈ%É� = EN (%) NÈ¬iÉ� = |N | \ NÈiÉ�

NÈi ∨kÉ� = NÈiÉ� ∪NÈkÉ� NÈ〈U〉iÉ� = NÈUÉ� (NÈiÉ�)

NÈ0É� = dN (0) NÈGÉ� = � (G)

NÈ?iÉ� (�) = NÈiÉ� ∩� NÈU ; VÉ� = NÈUÉ� ◦ NÈVÉ�

NÈrG.UÉ� = `D.NÈUÉ� [G ↦→D] NÈU ∪ VÉ� = NÈUÉ� ∪NÈVÉ�

NÈUdÉ� = (NÈUÉ�)
d

For closed formulas the superscript � is dropped. As usual the

notation N � i means that NÈiÉ� = |N | for all valuations � .
Moreover write � i if N � i for all monotone neighbourhood

structures N , and � i if N � i for all Kripke structures N .

The semantics of named subgames arewell-defined and themean-

ing of games rG.U can be seen to be extremal fixpoints by mono-

tonicity of the functionD ↦→ NÈUÉ� [G ↦→D] . The proof is postponed
to Lemma 3.6.

3.3.2 Semantics of Sabotage Game Logic. The semantics of a game

of sabotage game logic depends on the traps that players have al-

ready laid in the run of the game so far. To keep track of these,

games and formulas of sabotage game logic must be evaluated in

a context. A context is a function 2 : G → {∅, ⋄, ⋄} indicating

which player has previously laid a trap (see Table 1). All contexts

are assumed to have finite support, that is 2 (0) = ∅ for all but

finitely many 0. Let C be the set of all contexts and let 2∅ (0) = ∅
for all 0 be the constant context without any traps laid. For any set

* ⊆ |N | × C and any context 2 ∈ C let * ↾2 = {l : (l,2) ∈ * } be
the projection on |N |.

To interpret an atomic game 0 it is necessary to consider the

context in which it is played. If one of the players has already laid

a trap the normal rules no longer apply. Formally any effectivity

function F : G → W(|N |) is lifted to F̂ (0) ∈ W(|N | × C) by
defining (l, 2) ∈ F̂ (0)(*) iff

(1) 2 (0) = ∅ and l ∈ F (0)(* ↾2) or
(2) 2 (0) = ⋄ and (l, 2) ∈ *

Hence Angel can win the game 0 from a position l in context 2 ,

into the set* if 0 is not claimed (i.e. 2 (0) = ∅) and additionally she
can win a game of 0 played according to the usual rules into * ↾2 .

If 0 belongs to Angel (i.e. 2 (0) = ⋄), she can also win if the current

state l and context 2 are already in * . However if 0 belongs to

Demon (i.e. 2 (0) = ⋄), Angel has already lost. This formalizes the

effects of the rule changes as described in Table 1. For any context

2 write 2 for the dual context where angelic traps become demonic

4

Complete Game Logic with Sabotage

traps and vice versa:

2 (0) =

∅ if 2 (0) = ∅

⋄ if 2 (0) = ⋄

⋄ if 2 (0) = ⋄

For a set � ⊆ , × C write �C = {(l,2) : (l, 2) ∉ �}. For a
functionF ∈ W(, × C) define the sabotage dual

FD (�) = F (�C)
C
.

The sabotage dual extends the notion of the ordinary dual to sabo-

tage games. In particular (l, 2) ∈ F̂ (0)D (*) iff

(1) 2 (0) = ∅ and l ∈ F (0)d ({a : (a, 2) ∈ * }) or
(2) 2 (0) = ⋄ or
(3) 2 (0) = ⋄ and (l, 2) ∈ *

The semantics of formulas and games of recursive game logic

with respect to a monotone neighbourhood structure is defined by

mutual induction.

Definition 3.2. For GLs formulas and any monotone neighbour-

hood structureN the semantics is defined as a setNÈiÉs ∈ P(|N |×
C) as follows

NÈ%És = EN (%) × C NÈ〈U〉iÉs = NÈUÉs (NÈiÉs)

NÈ¬iÉs = NÈiÉs
C NÈi ∨kÉs = NÈiÉs ∪ NÈkÉs

The semantics of games U is defined as an effectivity functionNÈUÉs ∈
W(|N | × C) by

NÈ0És = d̂N (0)

NÈ∼0És(�) = {(l,2) : (l, 2 ⋄0) ∈ �}

NÈ?iÉs (�) = NÈiÉs ∩ �

NÈU ∪ VÉs = NÈUÉs ∪NÈVÉs

NÈU∗És (�) = `�.� ∪ NÈUÉs (�)

NÈU ; VÉs = NÈUÉs ◦ NÈVÉs

NÈUdÉs = NÈUÉs
D

The semantics of ∼0 illustrates the role of the context. Playing

the game ∼0 changes the context and assigns ⋄ the game 0 to keep

track of the trap Angel has laid there.

Unlike for sabotage modal logic [5] the semantics is not defined

in terms of a changing model. Instead the state space is enlarged to

contain the states of the structure and independently keep track of

the acts of model change or, here, traps laid. The definition is sim-

ilar in spirit to the modified semantics for the sabotage `-calculus

[5]. Unlike in the definition of the modal `-calculus augmented

with sabotage [41] the traps set will persist throughout multiple

repetitions of a game U∗ instead of being reset without cause.

3.3.3 Dual Normal Form. For some proofs it is important that nega-

tion is only applied to propositional atoms and the duality operator

is only applied to atomic games and free variables. Formulas and

games that satisfy this condition are said to be in normal form.

Definition 3.3. By mutual recursion onGLs formulas and games

define the syntactic complement i of a sabotage game logic formula

and the syntactic dual Ud of a sabotage game logic game as follows:

% = ¬% ¬% = %

i ∧k = i ∨k i ∨k = i ∧k

〈U〉i = 〈Ud〉i (U ; V)d = Ud; Vd

(0)d = 0d (0d)
d
= 0

(∼0)d = ∼0d (∼0d)
d
= ∼0

(?i)d = !i (!i)d = ?i

(U ∪ V)d = Ud ∩ Vd (U ∩ V)d = Ud ∪ Vd

(U∗)d = (Ud)
×

(U×)
d
= (Ud)

∗

The syntactic complement and dual semantically correspond to

set complements and dual functions:

Lemma 3.4 (Duality). NÈiÉs = NÈiÉs
C for any GLs formula

i and NÈUdÉs = NÈUÉs
D for any game U .

See proof on page 16.

By inductively replacing negations in ¬i by i and duals Ud by

Ud any GLs formula and any game can be transformed into an

equivalent formula or game in normal form.

Definition 3.3 can be easily modified for formulas of recursive

game logic by defining

(G)d = G (Gd)
d
= G (rG.U)d =

rG.(U)d (rG.U)d = rG.(U)d

Again the syntactic complement and dual semantically correspond

to set complements and dual functions.

Lemma 3.5. NÈiÉ� = |N | \NÈiÉ�
d
for any RGL formula i and

NÈUdÉ� = (NÈUÉ�
d
)
d
for any RGL game U .

See proof on page 16.

As was the case forGLs , through inductively replacing negation

¬i and dualityUd by their syntactic versionsi and (U)d every RGL
formula and every RGL game can be turned into an equivalent for-

mula or game in normal form respectively, since bound variables

appear only within the scope of an even number of d operators.

In the sequel we assume all formulas and games of GLs and RGL

are in normal form. Because every formula is equivalent to one

in normal form this does not restrict the generality.

3.3.4 Semantic Compatibility. Using the normal form, observe that

the semantics of named games are indeed extremal fixpoint. This

relies on the monotonicity:

Lemma 3.6. If rG.U is a game of recursive game logic, then � :

@ ↦→ NÈUÉ� [G ↦→@] is monotone.

Proof. The game U is equivalent to a formula in normal form,

in which Gd does not appear, since it must be in the scope of an

even number of d operators in U . Monotonicity of � follows by

induction on such a U . �

Unlike for game logic the semantics of repetition games above

was not defined as the fixpoint of a set operator. However Defini-

tion 3.1 agrees with the definition of the standard semantics for

game logic for all GL games.

Lemma 3.7. If U is a GL game then

NÈU∗É� (�) = `�.� ∪NÈUÉ� (�)

5

Noah Abou El Wafa and André Platzer

For a proof see Lemma B.2 in Appendix B.

Although Definitions 3.1 and 3.2 are quite different the seman-

tics of recursive game logic and of sabotage game logic agree on

their common fragment, GL.

Proposition 3.8. If i is a formula and U a game of GL then

NÈiÉ = NÈiÉs↾2∅ NÈUÉ(* ↾2∅) = NÈUÉs (*)↾2∅ .

Proof. Use Lemma 3.7 for the case of fixpoints in a mutual in-

duction on formulas and games of game logic. �

Write N � i to abbreviate NÈiÉs ⊇ |N | × {2∅}. This captures
the intended semantics ofi as being evaluated when no traps have

been set initially, by requiring the formula to hold in every state in

the special context 2∅ in which no game has been claimed. More-

over write � i ifN � i for allmonotone neighbourhood structures

N and � i ifN � i for allKripke structuresN . This overloading

of notation for game logic formulas is justified by Proposition 3.8.

4 MODAL FIXPOINT LOGICS

The Modal `-Calculus. This section recalls two modal fixpoint

logics. Of particular interest is the modal `-calculus (L`) [11], be-

cause of its desirable logical properties. It has decidable satisfiabil-

ity and model checking problems, the finite model property and

comes with a natural complete proof calculus. The syntax of L` is

given by the following grammar:

i ::= % | ¬% | G | 〈0〉i | [0]i | i ∨k | i ∧k | `G.i | aG.i

for % ∈ A, 0 ∈ G, G ∈ V. The modal `-calculus extends basic

(multi)-modal logic with fixpoint operators `G.i and aG.i . These

denote the least and greatest fixpoints ofi in the sense that `G.i (G)
is equivalent to i (`G.i). The syntax enforces that fixpoint vari-

ables G can appear only positively in order to ensure that the se-

mantics of fixpoint operators `G.i denote the desired extremal fix-

points.

Fixpoint Logic with Chop. An interesting extension of the modal

`-calculus is fixpoint logic with chop [33]. Although it lacks some

of the nice properties of modal `-calculus, its high expressiveness

is useful to establish a close correspondence with the game logics

from the previous section via a natural translation. The syntax of

fixpoint logic with chop (FLC) [33] is given by the following gram-

mar:

i ::= id | % | ¬% | G | 〈0〉i | [0]i | i∨k | i∧k | i◦k | `G.i | aG.i

for % ∈ A, 0 ∈ G, G ∈ V. Fixpoint logic with chop is conceptu-

ally close to the modal `-calculus. However fixpoint variables do

not range over predicates (elements of P(|N |)) anymore, but over

predicate transformers (monotone functions in W(|N |)) instead.
Consequently formulas denote predicate transformers which ad-

mit a natural notion of concatenation ◦ and identity transforma-

tion id. As in the modal `-calculus the definition syntactically re-

stricts to positive appearances of G , to ensure the well-definedness

of the semantics of the fixpoint operator.

Semantics of Fixpoint Logic with Chop. The semantics of fixpoint

logic with chop is defined with respect to monotone neighbour-

hood structures and a valuation � : V → W(|N |). By structural

induction on formulas i define the set NÈiÉ� ∈ W(|N |)

NÈidÉ� = id NÈGÉ� = � (G)

NÈ¬%É� = |N | \ EN (%) NÈ%É� = EN (%)

NÈi ∨kÉ� = NÈiÉ� ∪NÈkÉ� NÈi ∧kÉ� = NÈiÉ� ∩ NÈkÉ�

NÈ〈0〉iÉ� = dN (0) ◦ NÈiÉ� NÈ[0]iÉ� = dN (0)d ◦ NÈiÉ�

NÈ`G.iÉ� = `@.NÈiÉ� [G ↦→@] NÈaG.iÉ� = a@.NÈiÉ� [G ↦→@]

NÈi ◦kÉ� = NÈiÉ� ◦ NÈkÉ�

The semantics of ` and a formulas denotes extremal fixpoints, since

the semantics are monotone:

Lemma 4.1. The function � : @ ↦→ NÈiÉ� [G ↦→@] is monotone.

Proof. Monotonicity holds, because by definition of the syntax

¬G can not appear in a formula. �

The semantics of a formula of fixpoint logic with chop is de-

fined as a monotone function. To assign a truth value the func-

tion can be evaluated at ∅. Write N � i if NÈiÉ� (∅) = |N | for
all � . By monotonicity of the semantics this ensures thatN � i iff

NÈiÉ� (*) = |N | for all � and all * ⊆ |N |. Moreover write � i if

N � i for all monotone neighbourhood structures N and � i if

N � i for all Kripke structures N .

The semantics of L` formulas with respect to the FLC seman-

tics coincide with the usual semantics of modal `-calculus. (See

Lemma B.1 in Appendix B.)

Negation in Fixpoint Logic with Chop. The negation of a formula

of fixpoint logic with chop is defined syntactically as usual:

% = ¬% 〈0〉i = [0]i i ∨k = i ∧k `G.i = aG.i

¬% = % [0]i = 〈0〉i i ∧k = i ∨k aG.i = `G.i

G = G

The syntactic definition of negation corresponds semantically

to complementation:

Lemma 4.2. NÈiÉ� (∅) = |N | \NÈiÉ�
c
(∅) for all L` formulas i ,

where � c is the pointwise complement of � .

Proof. By a straightforward induction on formulas. �

The Modal ∗-Calculus. Restricting the fixpoints in FLC to struc-

tured ones as they appear in game logic yields a logic we call the

modal ∗-calculus, which is the exact modal fixpoint logic equiva-

lent of game logic. The syntax of modal ∗-calculus (L∗) is defined
as

i ::= id | % | ¬i | i ∨k | 〈0〉i | i ◦k | i∗

This can be viewed as a fragment of FLC by interpreting ¬i as i

and i∗ as an abbreviation for `G.id ∨ i ◦ G where G is some fresh

variable. Disjunctions i ∨ k do not strictly need to be added as

primitives, since they are definable in L∗ as (i ◦ ⊥)∗ ◦k .

6

Complete Game Logic with Sabotage

5 EXPRESSIVENESS

The semantics of game logic and modal `-calculus are in many

ways similar and game logic can express large parts of the modal

`-calculus. In particular it spans the entire fixpoint alternation hi-

erarchy of the modal `-calculus [7]. Nevertheless, game logic is

less expressive than modal `-calculus [8]. This section introduces

natural translations to show that at the level of fixpoint logic with

chop and recursive game logic, modal fixpoint logics and game log-

ics can be identified completely. As a consequence the exact modal

fixpoint logic corresponding to game logic and the fragment of re-

cursive game logic corresponding to modal `-calculus can be de-

termined.

A formula i of RGL is well-named if it does not bind the same

variable twice and no variable appears both free and bound. Every

formula is equivalent to a well-named formula by bound renaming.

5.1 Equiexpressiveness of FLC and RGL

For formulas i,k of fixpoint logic with chop denote by i
k
G the

formula obtained from i by syntactically replacing all free occur-

rences of G in i byk . The same notation is used for syntactic sub-

stitution in formulas and games of game logics.

5.1.1 Translation from fixpoint logic with chop to recursive game

logic. To express any formula i of FLC equivalently in recursive

game logic a translation i♯♯ of any FLC formula i in the form of a

RGL game is defined inductively:

(id)♯♯ = ?⊤ (G)♯♯ = G

(%)♯♯ = ?% ; !⊥ (¬%)♯♯ = ?¬% ; !⊥

(i ∨k)♯♯ = i♯♯ ∪k ♯♯ (i ∧k)♯♯ = i♯♯ ∩k ♯♯

(〈0〉i)♯♯ = 0;i♯♯ ([0]i)♯♯ = 0d;i♯♯

(`G.i)♯♯ = rG.i♯♯ (aG.i)♯♯ =

rG.i♯♯

(i ◦k)♯♯ = i♯♯ ;k ♯♯

The RGL formula corresponding to i is i♯ ≡ 〈i♯♯〉⊥.

Proposition 5.1 (Correct ♯♯). For any FLC formulai the trans-

lation satisfies NÈiÉ� = NÈi♯♯É� . Hence NÈiÉ� (∅) = NÈi♯É� .

Proof. By structural induction on i . �

5.1.2 Translation from recursive game logic to fixpoint logic with

chop. Conversely any formula of recursive game logic can be ex-

pressed equivalently in fixpoint logic with chop. To do this, fix two

fresh variables u, v. Intuitively the purpose of these variables is to

mark the end of the game, so that it can later be replaced by its con-

tinuation. The difference between the two variables is that vmarks

games that end in fixpoint variables, while u marks the end of all

other games. This distinction will only be important later when

considering a particular subclass of formulas.

For any rlGL formula i and any RGL game U define FLC formu-

las i♭ and U♭ by structural induction:

(%)♭ = % (¬%)♭ = ¬%

(i ∨k)♭ = i♭ ∨k♭ (i ∧k)♭ = i♭ ∧k♭

(〈U〉i)♭ = U♭
i♭

u,v

(0)♭ = 〈0〉u (0d)
♭
= [0]u

(?k)♭ = k♭ ∧ u (!k)♭ = ¬(k)♭ ∨ u

(U ∪ V)♭ = U♭ ∨ V♭ (U ∩ V)♭ = U♭ ∧ V♭

(G)♭ = G ◦ v (U ; V)♭ = U♭
V♭

u,v

(rG.U)♭ = (`G.U♭ id
u,v) ◦ u (rG.U)♭ = (aG.U♭ id

u,v) ◦ u

Note that i
k
u,v denotes the formula obtained by replacing all

appearances of u and v in i byk . This is different from successive

substitution i
k
u
k
v . The substitutions here are always admissible,

that is no fixpoint construct captures a free variable. In fact none of

the variables that are substituted (u, v) even appears in the context

of a fixpoint in the translation. (By choice of u, v, the variables do

not appear in the original formula.)

Proposition 5.2 (Correct ♭). For any well-named RGL formula

i and any well-named RGL game U

(1) NÈiÉ� = NÈi♭É� (�) for any � ⊆ |N |

(2) NÈUÉ� ◦F = NÈU♭É� [u,v↦→F]

See proof on page 16.

Corollary 5.3 (Roundtrip). � i ↔ i♯
♭
and � k ↔ k♭♯ for

all well-named FLC formulas i and all well-named RGL formulask

5.2 The Modal `-Calculus as a Game Logic

In this section the precise extension of game logic that corresponds

to modal `-calculus is identified. Although the lack of fixpoint

variables of the modal `-calculus in game logic was remedied by

introducing named subgames, the modal `-calculus can only be

understood as a game logic, in which games are played in a tail-

recursive way. This is required to capture the regularity of the

modal `-calculus in the context of recursive game logic.

A game U of recursive game logic is right-linear if no subgame

V ;W of U has a free fixpoint variable in V . A formula i of recursive

game logic is right-linear if all its subgames are right-linear. The

fragment of recursive game logic consisting only of right-linear

formulas and games is called right-linear game logic (rlGL).

The translation ♯♯ transforms formulas of the modal `-calculus

to right-linear game logic, since the only sequential games U ; V in-

troduced in the translation of U are of the form 0, 0d, ?% or ?% . We

can modify ♭ to ensure that it carries out a converse translation.

For any rlGL formula i and any rlGL game U define L` formulas

i ♭and U ♭by structural induction. The definition of U ♭is identical

to the definition of U♭ , except for the following cases

(G) ♭
= G (U ; V) ♭

= U ♭V ♭
u (rG.U) ♭

= `G.U ♭

7

Noah Abou El Wafa and André Platzer

Note that i ♭is a modal `-calculus formula, as it does not men-

tion ◦. This is a generalization of the translation employed in [23].

Proposition 5.4 (Correct ♭). For any well-named closed right-

linear RGL formulai the L` formulai♭ satisfiesNÈi ♭É = NÈi♭É .

Moreover NÈiÉ = NÈi♭É(∅).

See proof on page 17.

Corollary 5.5 (Eqiexpressiveness for L`). Right-linear game

logic and modal `-calculus are equiexpressive.

Proof. It is easy to see thati♯♯ is a formula of right-linear game

logic if i is a formula in modal `-calculus. This shows that right-

linear game logic is at least as expressive as modal `-calculus. The

converse follows with Proposition 5.4. �

5.3 Game Logic as a Fixpoint Logic

Recall that the modal ∗-calculus is the fragment of the fixpoint

logic with chop, which contains no fixpoints except in the form i∗.

Because the fixpoint structure in the modal ∗-calculus mirrors the

structure in game logic, the translations betweenRGL and FLC also

show the equiexpressiveness of the modal ∗-calculus and GL. This
identifies the exact modal fixpoint logic corresponding to Parikh’s

original game logic.

The technical notion of formula separability will be used for the

proof. A formulai of themodal `-calculus is separable if it contains

fixpoints only in the forms `G.(k ∨d) and aG.(k ∧d) where d does

notmentionG andk has no variable other thanG free. Let LB denote

the set of separable formulas of the modal `-calculus.

Lemma 5.6. (1) If i is a L∗ formula, then i♯ is a GL formula.

(2) If i is a well-named GL formula, then i ♭is a LB formula.

(3) Any LB formula is equivalent to a L∗ formula.

See proof on page 17.

Theorem 5.7 (Eqiexpressiveness for GL). Game logic (GL),

the modal ∗-calculus (L∗) and the separable fragment of the modal

`-calculus (LB) are equiexpressive.

The equivalence between the separable fragment of modal `-

calculus and game logic has been shown [14, Theorem 3.3.10]. The-

orem 5.7 adds to this equivalence the modal ∗-calculus. It is still
open whether game logic is equivalent to the two variable frag-

ment.With the above this can be reduced to the question ofwhether

every L` formula is expressible in L∗.

5.4 Summary of Expressiveness

The following illustrates the relations of the logics considered:

FLCL`L∗ LB

RGLrlGLGL

GLs

♯ ♭

♮ 2

♯ ♭
♯

♭

Lemma 5.6
⊂⊂

⊂⊂

The equivalences for sabotage game logic will be proved in the

sequel. All inclusions in the illustration are strict. Game Logic is

strictly less expressive than the modal `-calculus [8], hence it is

also less expressive than right-linear game logic. Fixpoint logic

with chop and thus recursive game logic are strictly more expres-

sive than the modal `-calculus and right-linear game logic [33].

In the definition of RGL and sabotage game logic the games

could contain tests of arbitrary formulas. For example 〈?(〈0〉%)〉%
is a well-formed Game Logic formula. This rich-test version is in

contrast to the poor-test version in which only tests of literals (i.e.

formulas % and ¬%) are allowed.

Corollary 5.8 (Tests). The poor-test versions of game logic,right-

linear game logic and recursive game logic are equiexpressive with

their respective rich-test versions.

Proof. This can be seen by translating into the corresponding

fragment of fixpoint logic with chop via ♭ or ♭, since the backward

translation via ♯ yields an equivalent (Corollary 5.3) poor-test for-

mula, since the translation ♯ only introduces tests of literals. �

6 PROOF CALCULI

This section introduces natural proof calculi for right-linear game

logic and sabotage game logic. We also recall Kozen’s original cal-

culus for themodal `-calculus and itsmonotone variant, since com-

pleteness for the above game logics is obtained from completeness

for the modal `-calculus.

6.1 Proof Calculi for the Modal `-Calculus

Because we consider the modal `-calculus interpreted generally

over neighbourhood structures, we recall the monotone modal `-

calculusmL` [24], the restriction of Kozen’s calculus for the modal

`-calculus for neighbourhood structures. The monotone modal `-

calculus consists of all propositional tautologies together with all

instances of the following axioms:

(fp) i
`G .i
G → `G.i

(U) fG.i ↔ f~.i
~
G (~ fresh, f ∈ {`,a})

The rules of the proof calculus are:

(MP)
i i → k

k
(`)

i
k
G → k

`G.i → k
(M0)

i → k

〈0〉i → 〈0〉k

We write mL` ⊢ i if there is a Hilbert style proof of i in the

monotone modal `-calculus. Note that this is a subset of Kozen’s

proof calculus for the modal `-calculus [31]. Adding the following

axioms yields the full Kozen calculus.

([∧]) [0]i ∧ [0]k ↔ [0] (i ∧k)

(K) [0] (i ∨k) → 〈0〉i ∨ [0]k

([⊤]) [0]⊤

We write L` ⊢ i if there is a Hilbert-style proof in this calculus of

the formula i . Both proof calculi are complete:

8

Complete Game Logic with Sabotage

Proposition 6.1 (Enqvist, Seifan, Venema [24]). The mono-

tone modal `-calculus is sound and complete with respect to mono-

tone neighbourhood structures. That is mL` ⊢ i iff � i for L`
formulas i

Proposition 6.2 (Walukiewicz [46]). Kozen’s calculus is sound

and complete with respect to Kripke structures. That is L` ⊢ i iff

� i for L` formulas i .

6.2 Proof Calculi for Game Logics

Parikh proposed a similar Hilbert-style proof calculus for game

logic [36], which can be extended to right-linear game logic. Con-

sider the axioms

(¬) 〈Ud〉i ↔ ¬〈U〉¬i

(?) 〈?i〉k ↔ i ∧k

(∪) 〈U ∪ V〉i ↔ 〈U〉i ∨ 〈V〉k

(;) 〈U ; V〉i ↔ 〈U〉〈V〉i

(fp�) 〈U
rG.U
G 〉i → 〈rG.U〉i

(U�) 〈fG.U 〉i ↔ 〈f~.U
~
G 〉i (~ fresh, f ∈ {r, r})

and the rules

(MP�)
i i → k

k

(`�)
〈U
V ;?k ;!⊥
G 〉i → 〈V〉k

〈rG.U〉i → 〈V〉k

(M�)
i → k

〈U〉i → 〈U〉k

We write rlGL ⊢ i to mean that there is a Hilbert style proof of

the formula i consisting only of right-linear game logic formulas.

A more general proof calculus for full recursive game logic is of

interest as well. (Note however that `� is not sound for this lan-

guage, since the soundness proof relies on right-linearity.) Because

there can not be a recursive and complete such calculus, we restrict

attention to the calculus for right-linear game logic.

The new rule `� is an adaptation of the Park fixpoint induction

rule to the setting of right-linear games. Completeness requires

the rule M� only for games of the form 0, 0d and G , since the more

general rule is derivable.With themore general definition however

it is clear that if GL ⊢ i , then by substituting free occurrences of G

across the entire proof also GL ⊢ i UG .
If there is a proof of rlGL ⊢ i consisting only of game logic for-

mulas we write GL ⊢ i . Observe that this is equivalent to Parikh’s
calculus for game logic [36]. The rule `� restricted to GL formulas

is interderivable with the standard game logic induction rule

(`∗�)
d ∨ 〈U〉k → k

〈U∗〉d → k

in the context of the axioms ∪, ;, ?, ! and M� . Similarly the axiom

fp� restricted to GL formulas is interderivable with

(∗�) i ∨ 〈U〉〈U∗〉i → 〈U∗〉i

in the presence of axioms ∪, ¬, ; and ?.

The following axioms and rule are derivable from ¬:

(!) 〈!i〉k ↔ (i → k)

(∩) 〈U ∩ V〉i ↔ 〈U〉i ∧ 〈V〉k

(a�)
〈V〉k → 〈U

V ;?k ;!⊥
G 〉d

〈V〉k → 〈aG.U〉d

Rulea� captures the coinductive nature of the greatest fixpoints

that define Demons’s games, similarly to how the induction rule

`� formalizes the inductive nature of Angel’s games.

Originally Parikh’s calculus was designed for game logic inter-

preted over monotone neighbourhood structures. An extension of

Parikh’s calculus with the axioms [∧] , K and [⊤] from Kozen’s

calculus turns it into a suitable axiomatization for game logic over

Kripke structures. The appearance of 0 in these axioms ranges only

over atomic games and not over arbitrary games for which these

axioms would be unsound. If there is a proof of i in the rlGL cal-

culus from the axioms [∧] , K and [⊤] we write rlGL +� ⊢ i . The
proof calculus is sound for monotone neighbourhood structures

and Kripke structures:

Lemma 6.3 (Soundness). For any formula i of rlGL

(1) if rlGL ⊢ i then � i

(2) if rlGL +� ⊢ i then � i

Proof. For most axioms and rules the proof of soundness is

exactly the same as for game logic [36]. Soundness of `� follows

as in game logic with Lemma 3.7. �

Lemma 6.4. The right-linearity axiom and the reverse fixpoint ax-

iom are derivable in the rlGL calculus for rlGL

(RL) 〈U
V
G 〉i ↔ 〈U

V ;?i ;!⊥
G 〉i (U is right-linear)

(rfp�) 〈rG.U〉i → 〈U rG.U
G 〉i

Proof. Axiom RL can be derived by induction on U . For axiom

rfp� by RL and `� , it suffices to prove

〈U
U
rG.U
G
G 〉i → 〈U rG.U

G 〉i

in the calculus. By induction one proves more generally for any

right-linear game V that

〈V
U
rG.U
G
G 〉i → 〈V rG.U

G 〉i.

For the case that V ≡ G this holds by axiom fp� . �

6.2.1 Proof Calculus for Sabotage Game Logic. In addition to the
proof calculus for right-linear game logic, the proof calculus for
game logic can be extended to a proof calculus for sabotage game
logic. This involves adding axioms for the rule-change games:

9

Noah Abou El Wafa and André Platzer

(∼) 〈∼0〉〈U
0; ®V
®G

0d;®W
®~

®X
®I
〉i ↔ 〈U

∼0; ®V
®G

!⊥
®~

∼0; ®X
®I

〉i (†)

(∼) 〈∼0d 〉〈U
0; ®V
®G

0d;®W
®~

®X
®I
〉i ↔ 〈U ?⊥

®G
∼0d;®W

®~
∼0d; ®X

®I
〉i (†)

(∼∪) 〈[;∼08 ; V8 〉 (〈U
V
F 〉i ↔ 〈U

(
⋃=
8=1

08 ;V8) ;V

F 〉i) ([= ∼0d1 ; . . . ;∼0
d
= , and ‡)

(≅) 〈∼0;U 0
G 〉i ↔ 〈∼0;U 0;∼0

G 〉i

(≃) 〈U
®[
®G

®X ;V
®~
〉i ↔ 〈U ?⊤

®G

®X ;V
®~
〉i (0, 0d ∉ U,i and [8 , X8 ∈ {∼0, ∼0d })

(∼1) 〈U
0;V
G

∼0d

~ 〉i ↔ 〈U
0;V
G

∼0d;[
~ 〉i ([∈ {∼1,∼1d } and ∼0, 1,1d ∉ U,i)

The notation in axioms should be understood schematically. In

∼ and ∼ the game U is a GLs game with two lists of free vari-

ables ®G, ®~, ®I occuring only right-linearly1 and ®V, ®W, ®X are lists of sab-

otage game logic games of the same dimensions that are substi-

tuted into U . The axioms ∼ and ∼ require the side condition † that

0, 0d,∼0,∼0d do not appear in U and that 0, 0d do not appear in

i . The axioms ∼ and ∼ capture the effect of a rule change deep

within a formula. The axiom ∼∪ allows to reason about more com-

plex branching behaviour. It requires as a side condition ‡ saying

that each V8 is a formula of the form ∼11; . . . , ;∼1 9 ;∼1
d
9+1; . . . ∼1

d
< ,

such that sabotages of the atomic games 08 , 1 9 appear in U only

in the form [;∼08 ; V8 . Axiom ≃ allows the uniform removal of un-

needed sabotages.

The proof calculus for sabotage game logic consists of the six

axioms ∼, ∼, ∼∪, ≃, ∼1 and ≅ together with ¬, ?, ∪, ;, ∗� , MP� ,

`∗
�

and M� . If there is a Hilbert-style proof of i in this calculus

consisting only ofGLs formulas, writeGLs ⊢ i . The proof calculus
for GLs can also be adjusted to work for Kripke structures. This

extension adds the axioms [∧] , K and [⊤] . Write GLs +� ⊢ i if

there is a proof of i in this extension.

Lemma 6.5 (Soundness). For any formula i of GLs

(1) if GLs +� ⊢ i then � i

(2) if GLs ⊢ i then � i

Proof. Soundness of the common part of the proof calculus

goes through exactly as for game logic [36]. Soundness of ∼ and ∼

is proved by induction on U using the side condition †. �

See full proof on page 17.

6.3 Equivalence of Proof Calculi

This section shows that the translations between right-linear game

logic and the modal `-calculus shows not only equiexpressiveness,

but also that the proof calculi are equivalent. This will enable the

transfer of completeness frommodal `-calculus to right-linear game

logic.

Rank. In order to flatten the mutual inductions that arise natu-

rally, because of the mutually inductive definition of formulas and

games, a well-order on all formulas is required. This order is given

by the rank of a formula of game logic defined in Appendix A.

Many of the proofs about the calculi for game logic are carried

out by induction on the rank of a formula.

1No variable appears on the left hand side of a composition, in the scope of a loop or

in a test.

Correctness of Translation. The translations between right-linear

game logic and the modal `-calculus have been proved sound se-

mantically. In order to use these to relate the proof calculi, the

soundness of the translation needs to be proved in the calculus

itself. Since each calculus can only talk about formulas in its re-

spective language the correct notion of correctness here is that of

Corollary 5.3.

Lemma 6.6 (Provable Correctness). (1) rlGL ⊢ i ↔ i ♭♯

for any well-named rlGL formula i

(2) and mL` ⊢ i ↔ i♯♯
♭
for any well-named L` formula i

See proof on page 18.

The key then is that proofs in themodal `-calculus can be turned

into right-linear game logic proofs. Since the modal `-calculus is

complete and has the same expressive power as right-linear game

logic it follows that any formula i is provable up to translation.

Theorem6.7 (Eqivalenceof Calculi). Right-linear game logic

and the modal `-calculus prove the same formulas modulo transla-

tion.

(1) rlGL ⊢ i iffmL` ⊢ i ♭for closedwell-named rlGL formulasi

(2) L` ⊢ i iff rlGL ⊢ i♯ for well-named L` formulas i

Proof. For the forward direction of (1) observe that Lemma 6.3

and Corollary 5.5 imply � i ♭. Hence mL` ⊢ i ♭follows from

Proposition 6.1. The forward direction of (2) is proved in the ap-

pendix as Lemma D.2.

For the backward direction of (1) considermL` ⊢ i ♭. By the for-

ward direction of (2) also rlGL ⊢ i ♭♯ . Then by Lemma 6.6 conclude

rlGL ⊢ i . The backward implication of (2) is similar. �

6.4 Completeness for rlGL

Because the translations are semantically correct and preserve prov-

ability by the results of Section 6.3, completeness of rlGL follows.

Theorem 6.8 (rlGL Completeness). For a closed rlGL formulai

(1) rlGL +� ⊢ i iff � i

(2) rlGL ⊢ i iff � i

Proof. (2) By U� assume without loss of generality that i is

well-named. Consider the following chain of equivalences

� i

iff � i ♭ (Corollary 5.5)

iff mL` ⊢ i ♭ (Proposition 6.1)

iff rlGL ⊢ i ♭♯ (Theorem 6.7)

iff rlGL ⊢ i (Lemma 6.6 and MP)

This proves the equivalence.

(1) A slight modification of the proof of Lemma D.2 shows that

rlGL +� ⊢ k ♯ provided L` ⊢ k for a closed L` formulak . All that

needs to be added is that the ♯-translation of the axioms [∧] , K and

[⊤] are again instances of the same axiom in rlGL +� . The same

argument as for (2) then applies to show completeness of rlGL. �

10

Complete Game Logic with Sabotage

7 SABOTAGE GAME LOGIC AND MODAL `

In this section the equiexpressiveness of rlGL andmodal `-calculus

are exploited to obtain the desired equiexpressiveness of sabotage

game logic with the modal `-calculus as well as completeness of

sabotage game logic through translations turning sabotage modal-

ities into named subgames and vice versa.

7.1 Embedding of GLs into rlGL

The difficulty in embedding GLs into rlGL is that the ownership

information about previously committed acts of sabotage must be

taken into account. This can be done here by coding this informa-

tion on the claimed atomic games into the nesting structure of the

fixpoint variables. To simplify this coding, we use simultaneous fix-

points, which do not add to the expressive power. This is captured

by the following proposition, known as Bekić’s Theorem,

Theorem7.1 ([4, Lemma 1.4.2]). For variablesG1, . . . , G= and rlGL

games U1, . . . , U= there are rlGL games V1, . . . , V= such that

©«

NÈV1É
�

NÈV2É
�

...

NÈV<É�

ª®®®®¬
= `

©«

F1

F2

...

F=

ª®®®®¬
.

©
«

NÈU1É
� [®G ↦→ ®F]

NÈU2É
� [®G ↦→ ®F]

...

NÈU<É� [®G ↦→ ®F]

ª®®®®®
¬

We write r8 (G1, . . . , G=).(U1, . . . , U=) for this V8 .

The Embedding. We fix for every possible context 2 ∈ C a fresh

variable ~2 . For any formula i and any game U of sabotage game

logic we define a translation U2 depending on the context 2 . The

context allows the translation to depend on the state of ownership

of atomic games. Moreover the translation of games will contain

free variables ~2 . Those mark the end of the game and keep track

of the context in which this end has been reached. This allows a

compositional definition of the translation. Let

(%)2 = ?% ; !⊥ (¬%)2 = ?¬% ; !⊥

(i ∨k)2 = i2 ∪k2 (i ∧k)2 = i2 ∩k2

(0)2 =

0;~2 if 2 (0) = ∅

~2 if 2 (0) = ⋄

?⊥ if 2 (0) = ⋄

(0d)
2
=

0d;~2 if 2 (0) = ∅

!⊥ if 2 (0) = ⋄

~2 if 2 (0) = ⋄

(∼0)2 = ~
2
⋄
0

(∼0d)
2
= ~

2
⋄
0

(?i)2 = i2 ∩ ~2 (!i)2 = i2 ∪ ~2

(U ∪ V)2 = U2 ∪ V2 (U ∩ V)2 = U2 ∩ V2

The translation of atomic games and sabotage games illustrates the

importance of translating relative to a context. The translation of

formulas 〈U〉i and games U ; V and U∗ are slightly more involved.

For the first two define

(〈U〉i)2 = U2
i · ;?⊥
~·

(U ; V)2 = U2
V ·

~·

where the notation U2
V ·

~·
means that any instance of a variable ~4

is replaced by V4 , the translation of V with respect to the context 4 .

For a fixpoint game U∗ list all the atomic games 01, . . . , 0< such

that either 2 (0) ≠ ∅ or ∼0 or ∼0d appears in U . List 21, . . . , 2< all

possible contexts that satisfy 28 (0) = ∅ for all 0 ∉ {01, . . . , 0<}.
Define the translation of repetition games

(U∗)28 = r8 (I21 , . . . , I2=).(~21 ∪ U21
I2 ·
~·
, . . . , ~2= ∪ U2=

I2 ·
~·
)

(U×)
28

=

r

8 (I21 , . . . , I2=).(~21 ∩ U2=
I2 ·
~2 ·

, . . . , ~2= ∩ U2=
I2 ·
2 · ;~·

)

where the I2 · are fresh variables. Observe that the translation of

any GLs formula or game is a right-linear rlGL game.

The next proposition shows that the translation is correct.

Proposition 7.2. For any formula i of sabotage game logic

NÈiÉs↾2 = NÈi2É(∅).

and for any game U of sabotage game logic

NÈUÉs (*)↾2 = NÈU2É� (∅)

where � (~4) = * ↾4 .

See proof on page 19.

The translation of a sabotage game logic formulas into a formula

of right-linear game logic potentially grows very quickly. The up-

per bound on the length of the translation of a fixpoint game ob-

tained from the proof above is

| (U)2 | ≤ (� · |U |)3
ℓ ↑↑:,

where : is the fixpoint nesting depth of U and ℓ is the number of

atomic games in U .2 This comes from the fact that the translation

of any game U considers all of the up to 3ℓ -many relevant contexts.

The only known transformation from vectorial fixpoints to non-

vectorial nested fixpoints as in Theorem 7.1 grows exponentially

in the formula size. Consequently every fixpoint leads to a doubly

exponential blow-up in length. In [13] it is shown that reducing

vectorial fixpoints to non-vectorial fixpoints is at least as hard as

solving parity games, for which the existence of a polynomial time

algorithm is a longstanding open question. It was conjectured [12]

that a vectorial fixpoint formula can be exponentially smaller than

the shortest equivalent non-vectorial formula.

While it is unclear to what extent this upper bound is optimal,

it suggests that complex formulas of the modal `-calculus may in

general be expressed muchmore succinctly in sabotage game logic.

7.2 Embedding of rlGL into GLs
The challenge of the converse translation from rlGL to GLs is that

the arbitrarily nested named games of rlGL need to be turned into

structured repetition games of sabotage game logic. It turns out

that using sabotage, players can force the behaviour of nested named

games onto structured repetition games. To facilitate this, fix fresh

atomic games 1G , 2G for every variable G . By induction define the

2We use Knuth’s up-arrow notation for :-fold iterated exponentiation.

11

Noah Abou El Wafa and André Platzer

translation of a rlGL formula and game into GLs:

(%)♮ = % (¬%)♮ = ¬%

(i ∨k)♮ = i♮ ∨k ♮ (i ∧k)♮ = i♮ ∧k ♮

(〈U〉i)♮ = 〈U♮〉i♮

(0)♮ = 0 (0d)
♮
= 0d

(?i)♮ = ?i♮ (!i)♮ = !i♮

(U ∪ V)♮ = U♮ ∪ V♮ (U ∩ V)♮ = U♮ ∩ V♮

(U ; V)♮ = U♮ ; V♮ (G)♮ = G

(rG.U)♮ = X ; (2G ;X
d;U♮ XG)

∗
;1G where X ≡ ∼1dG ;∼2G

(rG.U)♮ = Xd; (2dG ;X ;U
♮ Xd

G)
×
;1dG where X ≡ ∼1dG ;∼2G

While only the translation of closed formulas of right-linear

game logic is of interest, the translation is defined more generally

for open formulas into the extension of sabotage game logic with

free variables.

Intuitively the translation of the fixpoints uses rule changes to

remove the non-determinism from the repetition game. In a nor-

mal U∗ game it is Angel’s choice whether to continue playing the

game U or not. However in general rG.U games, this choice is made

differently. If the variable G is reached the game must be repeated.

If the game ends without reaching this variable it must not be re-

peated. The translation enforces this deterministic behaviour of

the repetition game in a ∗ game. Although the ∗-game theoreti-

cally allows Angel to stop prematurely, Demon will have changed

the rules (∼1dG), so that Angel would automatically lose afterwards.

Similarly if Angel does not stop when she ought to, she will also

lose immediately, due to a demonic claim on ∼2dG . This ensures cor-
rectness of the translation.

Proposition 7.3 (Correct ♮). For any closed, well-named for-

mula i of right-linear game logic the translation i♮ is a formula of

sabotage game logic with

NÈi♮És↾2 = NÈiÉ .

See proof on page 20.

Theorem 7.4 (Eqiexpressiveness). Sabotage game logic, right-

linear game logic and the modal `-calculus are equiexpressive.

Proof. By Propositions 7.2 and 7.3 and Corollary 5.5. �

The equiexpressiveness of sabotage game logic and the modal

`-calculus means that sabotage game logic inherits many of the

nice properties of the modal `-calculus for free.

Theorem 7.5 (Meta properties). Sabotage game logic has the

small model property and the satisfiability problem is decidable.

Proof. The modal `-calculus has these properties [40, 43], and

they can be transferred to sabotage game logic by Theorem 7.4. �

7.3 Proof Transformations

This section shows that the translation also respects the proof cal-

culus. Combined with the semantic correctness of the translation

this allows the transfer of completeness from rlGL to GLs. The key

fact needed about the translation is that the sabotage paraphrasing

of the named recursive games, provably behaves the same as the

extremal fixpoint it denotes.

Lemma 7.6. For any formula i and any game U of right-linear

game logic the following hold:

(1) i♮ ≡ i♮

(2) GLs ⊢ (〈U rG.U
G 〉i → 〈rG.U〉i)♮

(3) GLs ⊢ (〈rG.U〉i)♮ → 〈V〉k if GLs ⊢ 〈U♮
V ;?k ;!⊥
G 〉i♮ → 〈V〉k

See proof on page 21.

Lemma 7.7. Suppose i is a formula of sabotage game logic then

GLs ⊢ (〈i2∅ 〉⊥)♮ → i .

See proof on page 21.

Since the translation ♮ provably behaves as intended, rlGLproofs
can be translated completely to GLs.

Proposition 7.8. Suppose i is a closed right-linear game logic

formula and rlGL ⊢ i then GLs ⊢ i
♮ .

See proof on page 23.

Theorem 7.9 (Sabotage game logic Completeness). Sabotage

game logic is sound and complete. That is for all GLs formulas i :

GLs ⊢ i iff � i

See proof on page 23.

7.4 A Completion of Parikh’s Calculus

Fix infinite disjoint setsG1∪G2∪G3 = G. For all1 ∈ G2 fix a unique

1̃ ∈ G3. Consider the setA consisting of all formulas obtained from

instances of the axioms ∼, ∼, ≈ and ≈ of sabotage game logic which

contain atomic games only from G2 by replacing all ∼1 and all

∼1d by 1̃ and (1̃)d respectively. Taken as axioms these game logic

formulas suffice to complete Parikh’s proof calculus for game logic.

Write GL + A ⊢ i if there is a proof of i in Parikh’s calculus from

these axioms.

Theorem 7.10 (Game logic Completeness). For any GL for-

mula i with atomic games from G1:

(1) � i iff GL +A ⊢ i
(2) � i iff GL +� + A ⊢ i

Proof. Soundness: Suppose GL + A ⊢ i and consider a mono-

tone neighbourhood structure N . Replacing every appearance of

some 1̃ in a proof of GL + A ⊢ i by ∼1 gives a proof for GLs ⊢ i .

Hence by soundness (Lemma 6.5) conclude that � i .

Completeness: Suppose i is a valid formula. As in the proof of

Theorem 7.9 obtain a proof of GLs ⊢ i . By the construction of this

proof (Proposition 7.8) it is clear that the proof contains games of

the form ∼0,∼0d only for atomic games that do not already appear

in i . Without loss of generality assume the proof contains games

of the form ∼1,∼1d only for 1 ∈ G2.

12

Complete Game Logic with Sabotage

The GLs proof of i can be transformed into a game logic proof

by uniformly replacing every game of the form ∼0 by 1̃ and every

∼0d by 1̃d . Instances of the axioms ∼, ∼, ≈ and ≈ in the original

proof become instances of axioms in A. Hence the modified ver-

sion of the proof is a valid GL proof of i from the axioms inA. �

The results in this section pave the way for using the proof cal-

culus for GLs to address the question of completeness of Parikh’s

axiomatization for game logic through a proof transformation by

eliminating instances of axioms from A.

8 CONCLUSION

This paper studies how logic, games, and fixpoints meet by intro-

ducing two different extensions of Game Logic. The first, sabotage

game logic, allows players to sabotage their opponent, while the

second, recursive game logic, adds recursive games.

Not only is sabotage game logic (GLs) well-suited to describe

and investigate games with rule changes by logical means, but per-

haps surprisingly, sabotage game logic has a number of additional

advantages over game logic. Unlike game logic, the extension sabo-

tage game logic allows exactly the right amount of state to increase

its expressive power to match the modal `-calculus, without sacri-

ficing the desirable logical properties of game logic.

The virtue of recursive game logic (RGL) is that it allows the

description of games featuring arbitrarily nested recursive games.

Unlike ordinary Game Logic, the extended version is significantly

more expressive than the modal `-calculus, although it remains

syntactically close to GL. We have identified the fragment of RGL

that corresponds exactly to the modal `-calculus in expressiveness

and transferred completeness of modal `-calculus to obtain a com-

plete and natural proof calculus for this fragment.

Additionally, it was shown that sabotage game logic and the

modal `-calculus are equivalent in expressiveness via a translation

going through the right-linear fragment of recursive game logic.

Completeness of the natural Hilbert style proof calculus for sab-

otage game logic GLs was obtained as a consequence. This is in

contrast to game logic GL for which completeness of the natural

proof calculus is not known [30]. Completeness of sabotage game

logic was used to obtain the completeness of a modest extension

of Parikh’s proof calculus for game logic GL.

Future Research. The completeness of sabotage game logic sug-

gests an interesting approach to studying proof calculi for game

logic. It reduces the problem of the completeness of Parikh’s ax-

iomatization of game logic to eliminating instances of the new ax-

ioms in a proof. Equiexpressiveness with L` indicates that atomic

games for sabotage are worth studying further.

The translation from GLs into L` leads to a non-elementary

blow-up in formula length. This raises the question whether this

increase is necessary and if better algorithms exist that directly

target the model checking and satisfiability problems of GLs.

ACKNOWLEDGMENTS

This project was supported by an Alexander von Humboldt Profes-

sorship.

REFERENCES
[1] S. Abramsky and P.-A. Mellies. 1999. Concurrent games and full completeness.

In Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).
431–442. https://doi.org/10.1109/LICS.1999.782638

[2] Bahareh Afshari and Graham E. Leigh. 2017. Cut-free completeness for modal
mu-calculus. In 32ndAnnual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017, Reykjavik, Iceland, June 20-23, 2017. IEEE Computer Society, 1–12.
https://doi.org/10.1109/LICS.2017.8005088

[3] Carlos Areces, Raul Fervari, Guillaume Hoffmann, and Mauricio Martel. 2017.
Undecidability of Relation-Changing Modal Logics. In Dynamic Logic. New
Trends and Applications - First International Workshop, DALI 2017, Brasilia,
Brazil, September 23-24, 2017, Proceedings (Lecture Notes in Computer Science,
Vol. 10669), Alexandre Madeira and Mario R. F. Benevides (Eds.). Springer, 1–
16. https://doi.org/10.1007/978-3-319-73579-5_1

[4] André Arnold and Damian Niwinski. 2001. Rudiments of mu-calculus. Studies in
Logic and the Foundations of Mathematics, Vol. 146. North Holland Publishing
Co., Amsterdam.

[5] Guillaume Aucher, Johan van Benthem, and Davide Grossi. 2015. Sabotage
Modal Logic: Some Model and Proof Theoretic Aspects. In Logic, Rationality,
and Interaction - 5th International Workshop, LORI 2015 Taipei, Taiwan, October
28-31, 2015, Proceedings (Lecture Notes in Computer Science, Vol. 9394), Wiebe
van der Hoek, Wesley H. Holliday, and Wen-Fang Wang (Eds.). Springer, 1–13.
https://doi.org/10.1007/978-3-662-48561-3_1

[6] Guillaume Aucher, Johan van Benthem, and Davide Grossi. 2018. Modal
logics of sabotage revisited. J. Log. Comput. 28, 2 (2018), 269–303.
https://doi.org/10.1093/LOGCOM/EXX034

[7] Dietmar Berwanger. 2003. Game Logic is Strong Enough for Parity Games. Stu-
dia Logica 75, 2 (2003), 205–219. https://doi.org/10.1023/A:1027358927272

[8] Dietmar Berwanger, Erich Grädel, and Giacomo Lenzi. 2007. The Variable Hier-
archy of the `-calculus is strict. Theory Comput. Syst. 40, 4 (2007), 437–466.

[9] Francesca Zaffora Blando, Krzysztof Mierzewski, and Carlos Areces. 2020. The
Modal Logics of the Poison Game. In Knowledge, Proof and Dynamics, Fenrong
Liu, Hiroakira Ono, and Junhua Yu (Eds.). Springer, 3–23.

[10] JulianC. Bradfield. 1996. TheModal mu-calculus Alternation Hierarchy is Strict.
In CONCUR ’96, Concurrency Theory, 7th International Conference, Pisa, Italy, Au-
gust 26-29, 1996, Proceedings (LNCS, Vol. 1119), Ugo Montanari and Vladimiro
Sassone (Eds.). Springer, 233–246. https://doi.org/10.1007/3-540-61604-7_58

[11] Julian C. Bradfield and Colin Stirling. 2006. Modal Mu Calculi. In Handbook of
Modal Logic, Patrick Blackburn, Johann van Benthem, and Frank Wolter (Eds.).
Elsevier, 721–756.

[12] Julian C. Bradfield and Igor Walukiewicz. 2018. The mu-calculus and Model
Checking. In Handbook of Model Checking, Edmund M. Clarke, Thomas A.
Henzinger, Helmut Veith, and Roderick Bloem (Eds.). Springer, 871–919.
https://doi.org/10.1007/978-3-319-10575-8_26

[13] Florian Bruse, Oliver Friedmann, and Martin Lange. 2015. On guarded
transformation in the modal `-calculus. Log. J. IGPL 23, 2 (2015), 194–216.
https://doi.org/10.1093/JIGPAL/JZU030

[14] Facundo Carreiro. 2015. Fragments of fixpoint logics. Ph. D. Dissertation. Ph. D.
thesis, University of Amsterdam.

[15] Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. 2007. Strat-
egy Logic. In CONCUR 2007 - Concurrency Theory, 18th International Conference,
CONCUR 2007, Lisbon, Portugal, September 3-8, 2007, Proceedings (Lecture Notes
in Computer Science, Vol. 4703), Luís Caires and Vasco Thudichum Vasconcelos
(Eds.). Springer, 59–73. https://doi.org/10.1007/978-3-540-74407-8_5

[16] Corina Cîrstea, Clemens Kupke, and Dirk Pattinson. 2011. EXPTIME Tableaux
for the Coalgebraic mu-Calculus. Log. Methods Comput. Sci. 7, 3 (2011).
https://doi.org/10.2168/LMCS-7(3:3)2011

[17] Pierre Clairambault. 2009. Least and Greatest Fixpoints in Game Semantics. In
Foundations of Software Science and Computational Structures, 12th International
Conference, FOSSACS 2009, Held as Part of the Joint European Conferences on The-
ory and Practice of Software, ETAPS 2009, York, UK,March 22-29, 2009. Proceedings
(Lecture Notes in Computer Science, Vol. 5504), Luca de Alfaro (Ed.). Springer, 16–
31. https://doi.org/10.1007/978-3-642-00596-1_3

[18] Pierre Duchet and Henry Meyniel. 1993. Kernels in directed
graphs: a poison game. Discret. Math. 115, 1-3 (1993), 273–276.
https://doi.org/10.1016/0012-365X(93)90496-G

[19] Andrzej Ehrenfeucht. 1961. An application of games to the completeness prob-
lem for formalized theories. Fundamenta Mathematicae 49 (1961), 129–141.
https://api.semanticscholar.org/CorpusID:118038695

[20] E. Allen Emerson and Charanjit S. Jutla. 1991. Tree Automata, Mu-Calculus and
Determinacy (Extended Abstract). In 32nd Annual Symposium on Foundations
of Computer Science, San Juan, Puerto Rico, 1-4 October 1991. IEEE Computer
Society, 368–377. https://doi.org/10.1109/SFCS.1991.185392

[21] E. Allen Emerson, Charanjit S. Jutla, and A. Prasad Sistla. 2001. Onmodel check-
ing for the `-calculus and its fragments. Theor. Comput. Sci. 258, 1-2 (2001),
491–522.

13

https://doi.org/10.1109/LICS.1999.782638
https://doi.org/10.1109/LICS.2017.8005088
https://doi.org/10.1007/978-3-319-73579-5_1
https://doi.org/10.1007/978-3-662-48561-3_1
https://doi.org/10.1093/LOGCOM/EXX034
https://doi.org/10.1023/A:1027358927272
https://doi.org/10.1007/3-540-61604-7_58
https://doi.org/10.1007/978-3-319-10575-8_26
https://doi.org/10.1093/JIGPAL/JZU030
https://doi.org/10.1007/978-3-540-74407-8_5
https://doi.org/10.2168/LMCS-7(3:3)2011
https://doi.org/10.1007/978-3-642-00596-1_3
https://doi.org/10.1016/0012-365X(93)90496-G
https://api.semanticscholar.org/CorpusID:118038695
https://doi.org/10.1109/SFCS.1991.185392

Noah Abou El Wafa and André Platzer

[22] Sebastian Enqvist, Helle Hvid Hansen, Clemens Kupke, Johannes Marti, and
Yde Venema. 2019. Completeness for Game Logic. In 34th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC, Canada, June
24-27, 2019. IEEE, 1–13. https://doi.org/10.1109/LICS.2019.8785676

[23] Sebastian Enqvist, Fatemeh Seifan, and Yde Venema. 2018. Completeness for
the modal `-calculus: Separating the combinatorics from the dynamics. Theor.
Comput. Sci. 727 (2018), 37–100. https://doi.org/10.1016/j.tcs.2018.03.001

[24] Sebastian Enqvist, Fatemeh Seifan, and Yde Venema. 2019. Completeness for
`-calculi: A coalgebraic approach. Ann. Pure Appl. Log. 170, 5 (2019), 578–641.
https://doi.org/10.1016/J.APAL.2018.12.004

[25] Alessandro Facchini, Yde Venema, and Fabio Zanasi. 2013. A Characterization
Theorem for the Alternation-Free Fragment of theModal µ-Calculus. In Proceed-
ings of the Twenty-Eighth Annual IEEE Symposium on Logic in Computer Science
(LICS 2013) (New Orleans, USA). IEEE Computer Society Press, 478–487.

[26] Nina Gierasimczuk, Lena Kurzen, and Fernando R. Velázquez-Quesada. 2009.
Games for Learning: A Sabotage Approach. In Proceedings of the Second Multi-
Agent Logics, Languages, and Organisations Federated Workshops, Turin, Italy,
September 7-10, 2009 (CEUR Workshop Proceedings, Vol. 494), Matteo Baldoni,
Cristina Baroglio, Jamal Bentahar, Guido Boella, Massimo Cossentino, Mehdi
Dastani, Barbara Dunin-Keplicz, Giancarlo Fortino, Marie-Pierre Gleizes, João
Leite, VivianaMascardi, JulianA. Padget, Juan Pavón, Axel Polleres, Amal El Fal-
lah Seghrouchni, Paolo Torroni, and Rineke Verbrugge (Eds.). CEUR-WS.org.
https://ceur-ws.org/Vol-494/famaspaper5.pdf

[27] Yuri Gurevich and Leo Harrington. 1982. Trees, Automata, and Games. In
Proceedings of the 14th Annual ACM Symposium on Theory of Computing,
May 5-7, 1982, San Francisco, California, USA, Harry R. Lewis, Barbara B. Si-
mons, Walter A. Burkhard, and Lawrence H. Landweber (Eds.). ACM, 60–65.
https://doi.org/10.1145/800070.802177

[28] Jaakko Hintikka. 1982. Game-theoretical semantics: insights and prospects.
Notre Dame Journal of Formal Logic 23, 2 (1982), 219–241.

[29] David Janin and Igor Walukiewicz. 1996. On the Expressive Completeness of
the Propositional mu-Calculus with Respect to Monadic Second Order Logic. In
CONCUR ’96, Concurrency Theory, 7th International Conference, Pisa, Italy, Au-
gust 26-29, 1996, Proceedings (LNCS, Vol. 1119), Ugo Montanari and Vladimiro
Sassone (Eds.). Springer, 263–277. https://doi.org/10.1007/3-540-61604-7_60

[30] Johannes Kloibhofer. 2023. A note on the incompleteness of Af-
shari & Leigh’s system Clo. https://doi.org/10.48550/arXiv.2307.06846
arXiv:2307.06846 [math.LO]

[31] Dexter Kozen. 1983. Results on the Propositional `-Calculus. Theor. Comput.
Sci. 27, 3 (1983), 333–354. https://doi.org/10.1016/0304-3975(82)90125-6

[32] Christof Löding and Philipp Rohde. 2003. Model Checking and Satisfiabil-
ity for Sabotage Modal Logic. In FST TCS 2003: Foundations of Software Tech-
nology and Theoretical Computer Science, 23rd Conference, Mumbai, India, De-
cember 15-17, 2003, Proceedings (Lecture Notes in Computer Science, Vol. 2914),
Paritosh K. Pandya and Jaikumar Radhakrishnan (Eds.). Springer, 302–313.
https://doi.org/10.1007/978-3-540-24597-1_26

[33] Markus Müller-Olm. 1999. A Modal Fixpoint Logic with Chop. In STACS
99, 16th Annual Symposium on Theoretical Aspects of Computer Science, Trier,
Germany, March 4-6, 1999, Proceedings (Lecture Notes in Computer Science,
Vol. 1563), Christoph Meinel and Sophie Tison (Eds.). Springer, 510–520.
https://doi.org/10.1007/3-540-49116-3_48

[34] Sara Negri. 2017. Proof Theory for Non-normal Modal Logics: The
Neighbourhood Formalism and Basic Results. FLAP 4, 4 (2017).
http://www.collegepublications.co.uk/downloads/ifcolog00013.pdf

[35] Damian Niwinski and Igor Walukiewicz. 1996. Games for
the mu-Calculus. Theor. Comput. Sci. 163, 1&2 (1996), 99–116.
https://doi.org/10.1016/0304-3975(95)00136-0

[36] Rohit Parikh. 1983. Propositional Game Logic. In FOCS. 195–200.
https://doi.org/10.1109/SFCS.1983.47

[37] Marc Pauly and Rohit Parikh. 2003. Game Logic - An Overview. Stud Logica 75,
2 (2003), 165–182. https://doi.org/10.1023/A:1027354826364

[38] André Platzer. 2015. Differential Game Logic. ACM Trans. Comput. Log. 17, 1
(2015), 1. https://doi.org/10.1145/2817824

[39] Vaughan R. Pratt. 1981. A Decidable mu-Calculus: Preliminary Report. In FOCS.
IEEE Computer Society, 421–427. https://doi.org/10.1109/SFCS.1981.4

[40] Vaughan R. Pratt. 1981. A Decidable mu-Calculus: Preliminary Re-
port. In 22nd Annual Symposium on Foundations of Computer Science,
Nashville, Tennessee, USA, 28-30 October 1981. IEEE Computer Society, 421–427.
https://doi.org/10.1109/SFCS.1981.4

[41] Philipp Rohde. 2006. On the `-Calculus Augmented with Sabotage. In Foun-
dations of Software Science and Computation Structures, 9th International Confer-
ence, FOSSACS 2006, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2006, Vienna, Austria, March 25-31, 2006, Proceedings
(Lecture Notes in Computer Science, Vol. 3921), Luca Aceto and Anna Ingólfsdóttir
(Eds.). Springer, 142–156. https://doi.org/10.1007/11690634_10

[42] Colin Stirling. 1996. Games and Modal Mu-Calculus. In Tools and Algorithms
for Construction and Analysis of Systems, Second International Workshop, TACAS
’96, Passau, Germany, March 27-29, 1996, Proceedings (Lecture Notes in Computer

Science, Vol. 1055), Tiziana Margaria and Bernhard Steffen (Eds.). Springer, 298–
312. https://doi.org/10.1007/3-540-61042-1_51

[43] Robert S. Streett and E. Allen Emerson. 1989. An Automata Theoretic Decision
Procedure for the Propositional Mu-Calculus. Inf. Comput. 81, 3 (1989), 249–264.

[44] Johan van Benthem. 2005. An Essay on Sabotage and Obstruction. In
Mechanizing Mathematical Reasoning, Essays in Honor of Jörg H. Siekmann
on the Occasion of His 60th Birthday (Lecture Notes in Computer Science,
Vol. 2605), Dieter Hutter and Werner Stephan (Eds.). Springer, 268–276.
https://doi.org/10.1007/978-3-540-32254-2_16

[45] NoahAbou ElWafa and André Platzer. 2022. First-Order Game Logic andModal
Mu-Calculus. arXiv:2201.10012 [cs.LO]

[46] Igor Walukiewicz. 1995. Completeness of Kozen’s Axiomatisation of the Propo-
sitional mu-Calculus. In Proceedings, 10th Annual IEEE Symposium on Logic in
Computer Science, San Diego, California, USA, June 26-29, 1995. IEEE Computer
Society, 14–24. https://doi.org/10.1109/LICS.1995.523240

14

https://doi.org/10.1109/LICS.2019.8785676
https://doi.org/10.1016/j.tcs.2018.03.001
https://doi.org/10.1016/J.APAL.2018.12.004
https://ceur-ws.org/Vol-494/famaspaper5.pdf
https://doi.org/10.1145/800070.802177
https://doi.org/10.1007/3-540-61604-7_60
https://doi.org/10.48550/arXiv.2307.06846
https://arxiv.org/abs/2307.06846
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1007/978-3-540-24597-1_26
https://doi.org/10.1007/3-540-49116-3_48
http://www.collegepublications.co.uk/downloads/ifcolog00013.pdf
https://doi.org/10.1016/0304-3975(95)00136-0
https://doi.org/10.1109/SFCS.1983.47
https://doi.org/10.1023/A:1027354826364
https://doi.org/10.1145/2817824
https://doi.org/10.1109/SFCS.1981.4
https://doi.org/10.1109/SFCS.1981.4
https://doi.org/10.1007/11690634_10
https://doi.org/10.1007/3-540-61042-1_51
https://doi.org/10.1007/978-3-540-32254-2_16
https://arxiv.org/abs/2201.10012
https://doi.org/10.1109/LICS.1995.523240

Complete Game Logic with Sabotage

A THE RANK

We define the rank of a recursive game logic formula and a recur-

sive game logic game by (simultaneous) structural induction on

the formula

rank(%) = 0

rank(¬%) = 0

rank(i ∨k) = max{rank(i), rank(k)} + 1

rank(i ∧k) = max{rank(i), rank(k)} + 1

rank(〈U〉i) = rank(U) + rank(i) + 1

rank(0) = 0

rank(0d) = 0

rank(G) = 0

rank(?i) = rank(i) + 2

rank(?i) = rank(i) + 3

rank(U ∪ V) = max{rank(U), rank(V)} + 2

rank(U ∩ V) = max{rank(U), rank(V)} + 2

rank(U ; V) = rank(U) + rank(V) + 2

rank(rG.U) = rank(U) + 1

rank(rG.U) = rank(U) + 1

B FIXPOINT LEMMAS

For any valuation � and any � ∈ P(|N |) we let � [�] be the modi-

fied valuation with � [�] (G) = � (G)(�).

Lemma B.1. Supposei is a FLC formula without composition and

� ∈ P(|N |). Then

NÈiÉ� (�) = NÈiÉ� [�] (�).

Moreover

(1) NÈ`G.iÉ� (�) = `�.(NÈiÉ� [G ↦→�] (�))

(2) NÈaG.iÉ� (�) = a�.(NÈiÉ� [G ↦→�] (�))

Proof. We prove this by induction on i . The only interesting

case is for formulas of the form `G.i . We define the following

monotone functions

Δ1(F) = NÈiÉ� [G ↦→F]
Δ2(F) = NÈiÉ� [�] [G ↦→F]

and prove that they satisfy the assumptions of Lemma 2.2. Two

applications of the inductive hypothesis yield

Δ1(F)(�) = NÈiÉ� [G ↦→F] (�) = NÈiÉ� [G ↦→F] [�] (�)

= NÈiÉ� [G ↦→F (�)] [�] (�) = NÈiÉ� [G ↦→F (�)] (�)

= Δ1(F (�))(�)

for allF ∈ W(|N |) and all � ∈ P(|N |). The case for Δ2 is similar.

Note also that � [�] [G ↦→ �] = � [G ↦→ �] [�] and hence by the

induction hypothesis Δ1 (�)(�) = Δ2(�)(�) for all � ∈ P(|N |).
By Lemma 2.2 we compute

NÈ`G.iÉ� (�) = `F.Δ1 (F)(�) = `�.(Δ1(�)(�))

= `�.(Δ2(�)(�)) = NÈ`G.iÉ� [�] (�).

The case for greatest fixpoints is symmetric. �

A similar result holds for right-linear game logic.

Lemma B.2. Suppose i is a formula and U a game of right-linear

game logic and �, � ∈ P(|N |). Then

NÈUÉ� (�) = NÈUÉ� [�] (�).

Moreover

(1) NÈrG.UÉ� (�) = `�.NÈUÉ� [G ↦→�] (�)

(2) NÈ rG.UÉ� (�) = a�.NÈUÉ� [G ↦→�] (�)

Proof. We prove this by structural induction on formulas and

games simultaneous. in which the duality operator 0d is only ap-

plied to atomic modalities 0.

The interesting cases are for where U is a test, a composition or

a fixpoint.

(1) If the game is of the form ?i then

NÈ?iÉ� (�) = NÈiÉ� ∩� = NÈiÉ� [�] ∩ � = NÈiÉ� [�] (�),

since i does not have any free variables by definition of

right-linear games.

(2) If the game is of the form U ; V then

NÈU ; VÉ� (�) = NÈUÉ� (�) ◦ NÈVÉ� (�)

= NÈUÉ� [�] (NÈVÉ� (�))

= NÈUÉ� [�] (NÈVÉ� [�] (�))

= NÈU ; VÉ� [�] (�)

where the second equality uses that U does not have any

free variables and the third equality is by induction hypoth-

esis.

(3) If the game is of the form rG.U . We define the following

monotone functions

Δ1(F) = NÈUÉ� [G ↦→F]
Δ2(F) = NÈUÉ� [�] [G ↦→F]

and prove that they satisfy the assumptions of Lemma 2.2.

Two applications of the inductive hypothesis yield

Δ1(F)(�) = NÈUÉ� [G ↦→F] (�) = NÈUÉ� [G ↦→F] [�] (�)

= NÈUÉ� [G ↦→F (�)] [�] (�) = NÈUÉ� [G ↦→F (�)] (�)

= Δ1(F (�))(�)

for allF ∈ W(|N |) and all � ∈ P(|N |). The case for Δ2 is

similar.

Note also that � [�] [G ↦→ �] = � [G ↦→ �] [�] and hence

by the induction hypothesis Δ1(�)(�) = Δ2(�)(�) for all
� ∈ P(|N |).
By Lemma 2.2 we compute

NÈ`G.UÉ� (�) = `F.Δ1 (F)(�) = `�.(Δ1(�)(�))

= `�.(Δ2(�)(�)) = NÈ`G.UÉ� [�] (�).

The case for greatest fixpoints is analogous. �

Lemma B.3. Suppose k is an FLC formula with no free variables

other than G and in which G is not bound. Thenk ≡ k id
G ◦ G .

15

Noah Abou El Wafa and André Platzer

Proof. By induction on the formula k . The only interesting

case is for formulas of the form `~.k . By Lemma B.1

NÈ(`~.k id
G) ◦ GÉ

� (�) = `�.(NÈk id
G É

� [~ ↦→�] (NÈGÉ� (�)))

= `�.(NÈiÉ� [~ ↦→�] (�))

= NÈ`~.kÉ� (�)

where the second equality is by the induction hypothesis. �

C DERIVED AXIOMS FOR GLs
To facilitate proofs in GLs we use some derived axioms, which are

immediate consequences of the original axioms of GLs for conve-

nience.

(W) 〈∼0;0d〉⊥

(C) 〈∼0〉〈0〉i ↔ 〈∼0〉i

(∼∨) 〈∼0〉(i ∨k) ↔ 〈∼0〉i ∨ 〈∼0〉k

(∼∧) 〈∼0〉(i ∧k) ↔ 〈∼0〉i ∧ 〈∼0〉k

(0∼) 〈∼0〉i ↔ i (if 0, 0d not in i)

(P) 〈U ;∼0〉i ↔ 〈∼0;U〉i ({0, 0d,∼0,∼0d} not in U)

(≈) 〈∼0;∼0〉i ↔ 〈∼0〉i

(≈) 〈∼0;∼0d〉i ↔ 〈∼0d〉i

Proof. Axiom W is derived from the ∼ instance

〈∼0〉〈G 0
d

G 〉⊥ ↔ 〈G !⊥
G 〉⊥.

Axiom C is exactly the instance

〈∼0〉〈G 0G 〉i ↔ 〈G ∼0
G 〉i

of ∼. For ∼∨ use the ∼-instance

〈∼0〉〈(G ∪ ~)
?i
G

?k
~ 〉⊤ ↔ 〈(G ∪ ~)

∼0;?i
G

∼0;?k
~ 〉⊤

and similarly for ∼∧. Axiom 0∼ is derived from the instance

〈∼0〉〈?⊤〉i ↔ 〈?⊤〉i

or ∼. For axiom P use the instance

〈∼0〉〈(U ;G)
?i
G 〉⊤ ↔ 〈(U ;G)

∼0;?i
G 〉⊤

of ∼. Axiom ≈ and ≈ are instances of ≃ with U ≡ G ;~. �

D PROOFS

Proof of Lemma 2.2. We prove the case for the least fixpoint.

Let F = `D.Δ(D). For the ⊆ inclusion we pick any � ∈ P(-) with

Δ(�)(A) ⊆ � and show thatF (�) ⊆ �. Define D ∈ W(-)

D (�) =

{
� if � = �

- otherwise.

Note that Δ(D) ⊆ D because

Δ(D)(�) = Δ(D (�))(�) = Δ(�)(�) = � = D (�).

Hence F ⊆ D and in particularF (�) ⊆ D (�) = �.

For the ⊇ inclusion note that Δ(F) ⊆ F . Hence

Δ(F (�))(�) = Δ(F)(�) ⊆ F (�)

for all �. �

Proof of Lemma 3.4. For games of the form ∼U observe

NÈ(∼0)dÉs (�
C) = {(l, 2) : (l, 2 ⋄

0) ∈ �C}

= {(l, 2) : (l, 2 ⋄0) ∉ �}

= {(l, 2) : (l, 2 ⋄0) ∈ �}C = (NÈ∼0És(�))
C

The general claim is proved by mutual induction on the definition

of formulas and games. We do the interesting case for games of the

formU∗. Observe

NÈU∗És
D (�) = NÈU∗És (�

C)
C
= (NÈUÉs (NÈU∗És (�

C)) ∪ �C)
C

= NÈUdÉs (NÈU∗És (�
C)

C
) ∩�

= NÈUdÉs (NÈU∗És
D (�)) ∩�

Hence by maximality NÈU∗És
D (�) ⊆ NÈUd

×
És (�).

For the reverse inclusion note

NÈUd
×
És (�)

C
= (NÈUdÉs (NÈUd

×
És (�)) ∩�)

C

= NÈUÉs (NÈUd
×
És (�

C)
C
) ∪ �C

= NÈUÉs (NÈUd
×
És

D
(�)) ∪ �C

Hence by minimalityNÈUÉs (�
C) ⊆ NÈUd

×
És (�)

C
. The required

NÈU∗És
D (�) ⊇ NÈUd

×
És (�) follows by taking C. �

Proof of Lemma 3.5. We do the cases for tests ?i and fixpoints

rG.U in a mutual induction on formulas and games explicitly. For a

test

(NÈ?iÉ�
d
)
d
(�) = |N | \ (NÈ?iÉ�

d
(|N | \�))

= |N | \ (NÈiÉ�
d
∩ |N | \�)

= |N | \ (NÈiÉ�
d
) ∪ �

= NÈ?iÉ� (�)

The last equality holds, since any formula appearing in a test does

not have free variables by definition.

Consider games of the form rG.U .

(NÈrG.UÉ�
d
)
d
= (`F.NÈUÉ�

d [G ↦→F])
d

= aF.(NÈUÉ� [G ↦→F]d)
d

= aF.NÈUdÉ� [G ↦→F]

= NÈ(rG.U)dÉ� [G ↦→F]
�

Proof of Proposition 5.2. This is shown by a mutual induc-

tion on formulas i and games U of RGL. Most cases of the induc-

tion are straightforward. We do the interesting cases.

16

Complete Game Logic with Sabotage

First we consider formulas of the form 〈U〉k .

NÈ(〈U〉k)♭É� (�) = NÈU♭
k♭

u,vÉ
� (�) = NÈU♭É� [u,v ↦→NÈi♭É�] (�)

= NÈUÉ� (NÈi♭É� (�)) = NÈUÉ� (NÈiÉ�)

= NÈ〈U〉kÉ�

The well-namedness assumption is used to ensure that the substi-

tution does not capture free variables. The case for the games of

the form U ; V is very similar, as it is a similar composition.

For a game of the form G observe

NÈGÉ� ◦F = � (G) ◦F = NÈG ◦ vÉ� [u,v↦→F]
= NÈG♭É� [u,v ↦→F] .

Finally we also consider the case of games rG.U . with the induc-

tion hypothesis we compute

NÈ(rG.U)♭É� [u,v ↦→F]
= NÈrG.U id

u,v

♭
◦ uÉ� [u,v ↦→F]

= (`F.NÈi♭ id
u,vÉ

� [u,v↦→id] [G ↦→F]) ◦F

= (`F.NÈi♭É� [u,v ↦→id] [G ↦→F]) ◦F

= (`F.NÈiÉ� [G ↦→F] ◦ id) ◦F

= NÈrG.UÉ� ◦F �

Proof of Proposition 5.4. For the purposes of this proof we

call a valuation � constant if � (G) is constant for all G except u and

v. We prove by structural induction on allwell-named normal form

rlGL formula i all well-named rlGL games U that

NÈi ♭É� = NÈi♭É� and NÈU ♭É� = NÈU♭É� .

for all constant valuations � .

Most cases of the induction are straightforward. For formulas

of the form 〈U〉i

NÈ(〈U〉i) ♭É� = NÈU ♭i ♭
u É� = NÈU ♭É� [u,v↦→NÈi ♭É�]

= NÈU♭É� [u,v↦→NÈi♭É�]
= NÈ(〈U〉i)♭É�

The well-namedness property of the formula ensures that U does

not bind a variable that is free in i , so that the substitution above

does not capture variables. For variables G note that

NÈG ♭É� = � (G) = � (G) ◦ � (v) = NÈG ◦ vÉ� = NÈG♭É�

because � is constant. The argument for games of the form U ; V is

similar.

Finally we also consider the case of games aG.U . Using Lem-

mas B.1 and B.2 we can compute the fixpoint pointwise

NÈ(aG.U) ♭É� (�) = NÈaG.U ♭É� (�) = `�.(NÈU ♭É� [G ↦→�] (�))

= `�.(NÈU♭É� [G ↦→�] (�))

= `�.(NÈUÉ� [G ↦→�] (� (u)(�)))

= NÈaG.UÉ� (� (u)(�))

= NÈ(aG.U)♭É� (�)

The third equality is by the induction hypothesis. The fourth and

the sixth equalities are by (2) of Proposition 5.2.

The moreover follows with Proposition 5.2. �

Proof of Lemma 5.6. (1) The only way the ♯ translation

can give rise to a non-GL formula is through translation

of fixpoints. The translation of the ∗ fixpoints in L∗ formu-

las are clearly into repetition games.

(2) First observe that ifi is separable theni
k
u is also separable

if the free variables ofk are never bound in i and u is not

bound in i .

We prove by simultaneous structural induction that for any

formula i and any game U of GL the translations i ♭and

U ♭are separable L` formulas.

Most cases are straightforward for formulas 〈U〉i and games

U ; V we use the induction hypothesis and the observation

above, which applies by the assumption thati is well-named.

Themost interesting case is for games U is of the formU∗ =

rG.(?⊤ ∪ U ; G), where G is not in U . The translation is

(U∗) ♭
= `G.(u ∨ U ♭G

u).

Because U has no free variables as aGL game only u is free

in U ♭. Hence the translation is separable.

(3) We prove by structural induction on a formula of themodal

`-calculus that provided it is separable, there is an equiv-

alent L∗ formula. The only interesting case is for fixpoint

formulas. Consider a separable formula i . Pick separable

formulas k, d such that i ↔ `G.(d ∨ k) where G is not

free in d , only G is free in k . By renaming we ensure that

G is not bound in k . Note that by Lemma B.3 semantically

k ≡ k id
G ◦ G .

By the induction hypothesis pick L∗ formulask ′, d′ equiv-

alent to k, d respectively. We claim that i is equivalent to

the L∗ formula (k ′ id
G)

∗
◦ d′ . Semantically

(k ′ id
G)

∗
◦ d′ ≡ `G.(id ∨k ′ id

G ◦ G) ◦ d

≡ `G.(id ∨k id
G ◦ G) ◦ d

≡ `G.(id ∨k) ◦ d

Because id∨k is a modal `-calculus formula without com-

position by Lemma B.3 we compute

NÈ`G.(id ∨k) ◦ dÉ� (�)

=`�.(NÈid ∨kÉ� [G ↦→�] (NÈdÉ� (�)))

=`�.(NÈdÉ� (�) ∪ NÈk id
G ◦ GÉ� [G ↦→�] (NÈdÉ� (�)))

=`�.(NÈdÉ� [G ↦→�] (�) ∪ NÈk id
G ◦ GÉ� [G ↦→�] (�))

=`�.(NÈd ∨kÉ� [G ↦→�] (�))

=NÈ`G.(d ∨k)É� (�)

The third equality holds because G is not free in d and by

the fact thatNÈGÉ� [G ↦→�] (�) = � is constant. �

Proof of Lemma 6.5. Soundness of the commonpart of the proof

calculus goes through exactly as for game logic [36].

We say a set � ⊆ |N | × C is 0-invariant if

NÈ∼0És (�) = NÈ∼0dÉs (�) = �.

17

Noah Abou El Wafa and André Platzer

Observe thatNÈiÉs is ∼0-invariant as it does not mention 0, and

0d. Hence it suffices to show

NÈ∼0És (NÈU
0; ®V
®G
0d ;®W
®~

®X
®I
És (�)) = NÈU

∼0; ®V
®G

!⊥
®~
∼0; ®X
®I

És (�)

for all ∼0-invariant sets � and all U satisfying †. We prove this by

induction on U . Most cases of the induction are routine. If U is a

loop this is immediate by ∼0-invariance, since U does not contain

variables.

For ∼∪ let

� = |N | ×
=⋃
8=1

{2 ∈ C :2 (08) = ⋄,∀∀: ≠ 8 2 (0:) = ⋄,

∀∀: ≤ 9 2 (1:) = ⋄,∀∀: > 9 2 (1:) = ⋄}

where V8 ≡ ∼181; . . . ∼1
8
9 ;∼1

8
9+1

d
; . . .∼18<

d
.. It is easy to see by in-

duction on U that

NÈU
(01 ;V1∪...∪0= ;V=) ;V

F És (*) ∩ �

= NÈU
(01 ;V1∪...∪0= ;V=) ;V

F És (* ∩ �) ∩ �

= NÈU
V
FÉs (* ∩ �) ∩ �

= NÈU
V
FÉs (*) ∩ �

for all * .

For ≃ observe by induction on U thatNÈU
®[
®G

®X ;V
®~
És is a function

that maps 0-invariant sets to 0 invariant sets. Again by induction

on U now observe that it equalsNÈU ?⊤
®G

®X ;V
®~
És on 0-invariant sets.

For ∼1 let � = {* ⊆ |N | × C : if (l, 2) ∈ * and 2 (0) =

⋄ then (l,2 ⋄
1

∈ *) ⇔ (l, 2 ⋄
1

∈ *)}. By induction on U simul-

taneously prove that

NÈU
0;V
G

∼0d

~ És = NÈU
0;V
G

∼0d ;[
~ És

as functions from � to itself.

For ≅ let � = |N | × {2 ∈ C : 2 (0) ≠ ∅}. By induction on U it is

straightforward to prove the following equalities

NÈU 0G És (*) ∩ � = NÈU 0G És(* ∩ �) ∩ �

= NÈU 0;∼0G És (* ∩ �) ∩ �

= NÈU 0;∼0G És (*) ∩ �

for all * . �

Proof of Lemma 6.6. For (1) we prove only the backward im-

plication. The forward directionwill later follow from Theorem 6.8

and corollary 5.3 and unlike the backward implication is not re-

quired for the proof of Theorem 6.8. We prove the implication for

all d by induction on the rank of i . We distinguish based on the

shape of the formula.

If i is a proposition constant of the form % then we can prove

rlGL ⊢ 〈?% ; !⊥〉→%

by ;, ? and !. Similarly for ¬% . If i is a conjunction the equivalence

is an instance of ∪. If i is of the form 〈U〉k we distinguish on the

shape of U :

(1) Case 0. The desired implication

rlGL ⊢ 〈0〉k ♭♯ → 〈0〉k

is derivable with an application of M� from the induction

hypothesis rlGL ⊢ k ♭♯ → k . Similarly for 0d and variables

G .

(2) Case V ;W . Then by induction hypothesis since 〈V〉〈W〉k is

of lower rank

rlGL ⊢ (〈V〉〈W〉k) ♭♯ → 〈V〉〈W〉k .

Since (〈V〉〈W〉k) ♭≡ (〈V ;W〉k) ♭the implication is derivable

with a use of ;.

(3) Case ?d. Observe that (〈?d〉k) ♭= (d ∧k) ♭and rlGL ⊢
〈?d〉k ↔ d∧k . Hence the implication follows by induction

hypothesis on the lower rank formula d ∧k . Analogously

for !d .

(4) Case V∪W . The induction hypothesis on the lower rank for-

mula 〈U〉k∧〈V〉k can be used by∪ because (〈U〉k ∧ 〈V〉k) ♭↔

(〈U ∪ V〉k) ♭. The case V ∩ W is similar.

(5) Case rG.U . Note that by the inductive hypothesis applied

to the lower rank formula 〈U〉k

rlGL ⊢ 〈U ♭♯♯k ♭
♯♯

u 〉⊥ → 〈U〉k

By substituting G by rG.U ; ?k ; !⊥

rlGL ⊢ 〈U ♭♯♯k ♭
♯♯

u
rG.U ;?k ;!⊥

G 〉⊥ → 〈U
rG.U ;?k ;!⊥

G 〉k

and an application of RL and fp� yields

rlGL ⊢ 〈U ♭♯♯k ♭
♯♯

u
rG.U ;?k ;!⊥

G 〉⊥ → 〈rG.U〉k

The implication follows with an application of `� , since

the translation of 〈rG.U〉k is

(〈rG.U〉k) ♭♯ ≡ 〈`G.U ♭♯♯k ♭
♯♯

u 〉⊥.

(6) Case rG.U . By definition of the translations

rlGL ⊢ (〈 rG.U 〉k) ♭♯ → 〈U ♭♯♯k ♭
♯♯

u
(〈

r

G.U 〉k) ♭
♯♯

G 〉⊥

is a consequence of rfp� and consequently

rlGL ⊢ (〈 rG.U〉k) ♭♯ → 〈U ♭♯♯k ♭
♯♯

u
(〈

r

G.U 〉k) ♭
♯♯

;?⊥;!⊥
G 〉⊥

by RL. By the induction hypothesis applied to U and sub-

stituting G by (〈 rG.U〉k) ♭♯♯ ; ?⊥; !⊥ this implies

rlGL ⊢ (〈 rG.U 〉k) ♭♯ → 〈U
(〈

r

G.U 〉k) ♭
♯♯

G 〉k

Hence by a� the implication follows.

The equivalence in (2) follows immediately from Proposition 6.1

and Corollary 5.3 �

Lemma D.1. rlGL ⊢ i♯ ↔ i♯ for i a closed L` formula.

Proof of Lemma D.1. We prove the equivalence by induction

on the formula i .

18

Complete Game Logic with Sabotage

(1) If the formula is of the form id, then we need to prove the

equivalence

rlGL ⊢ 〈?⊤; !⊥〉⊥ ↔ 〈!⊥〉⊤

This is immediate from ;, ∪, ∩
(2) If the formula is of the form % we prove the equivalence

rlGL ⊢ 〈?¬% ; !⊥〉⊥ ↔ 〈!% ; ?⊥〉⊤

by ;,? and !.

(3) If the formula is of the form i ∨k the equivalence follows

from the induction hypothesis with ∩. Similarly for formu-

las of the form i ∧k

(4) If the formula is of the form 〈0〉i the equivalence follows

from the induction hypothesis with ; and an application

of M� .

(5) If the formula is of the form `G.k . The equivalence we need

to prove is rlGL ⊢ 〈 rG.k
♯
〉⊥ ↔ 〈 rG.k ♯d〉⊤.

For the forward direction rlGL ⊢ 〈 rG.k
♯
〉⊥ → 〈k

♯ r

G.k
♯

G 〉⊥
is an instance of rfp� . By induction hypothesis

rlGL ⊢ 〈 rG.k
♯
〉⊥ → 〈k ♯d

r

G.k
♯

G 〉⊤

An application of RL allows to deduce the desired implica-

tion with a� . The reverse implication is analogous. �

Lemma D.2. For closed L` formulas i , ifmL` ⊢ i then rlGL ⊢ i♯ .

Proof of Lemma D.2. First note that

rlGL ⊢ (i ∨k)♯ ↔ i♯ ∨k ♯ rlGL ⊢ (i ∧k)♯ ↔ i♯ ∧k ♯

Indeed these are instances of ∪ and ∩ respectively. By Lemma D.1

rlGL ⊢ ¬%♯ ↔ (¬%)♯ . Thus if i is a propositional tautology rlGL ⊢

i♯ is provably reducible to a propositional tautology and therefore

provable in rlGL ⊢.
Note also by Lemma D.1

(♯) (i → k)♯ ↔ (i♯ → k ♯)

is an instance of ∪ after expanding the abbreviations.

From ♯ it follows that the ♯-translation of any instance of fp is

provably equivalent to an instance of fp� . Hence the translations

of all axioms of the monotone modal `-calculus are provable in

right-linear game logic. We now proceed to show the claim by in-

duction on the length of the proof.

If the last step of the proof of mL` ⊢ k is an instance of MP of

the kind

i i → k
M0 k

then
i♯ i♯ → k ♯

M� k ♯

is an instance of MP� . Because ♯ provably distributes over impli-

cations we can derive

i♯
(i → k)♯

♯,MP� i♯ → k ♯

M� k ♯

If the last step of a proof of mL` ⊢ 〈0〉i → 〈0〉k is an instance

of rule M0 of the kind

M0

i → k

〈0〉i → 〈0〉k
then M�

i♯ → k ♯

〈0〉i♯ → 〈0〉k ♯

is an instance of M� . We can derive

♯,MP�

;,MP�

M�

♯,MP�
(i → k)♯

i♯ → k ♯

〈0〉i♯ → 〈0〉k ♯

(〈0〉i)♯ → (〈0〉k)♯

(〈0〉i → 〈0〉k)♯

The induction hypothesis yields a proof for rlGL ⊢ (〈0〉i → 〈0〉k)♯ .
If the last step of the proof is an instance of ` of the kind

`
i
k
G → k

`G.i → k

then by the induction hypothesis and ♯ observe rlGL ⊢ 〈i♯♯
k ♯♯

G 〉⊥ →

〈k ♯♯〉⊥. By an application of RL deduce rlGL ⊢ 〈i♯♯
k ♯♯ ;?⊥;!⊥

G 〉⊥ →

〈k ♯♯〉⊥. The implication rlGL ⊢ (`G.i → k)♯ follows by `� with ♯.
�

LemmaD.3 (Substitution). IfU, V1, . . . , V= are rlGL games such

that V8 does not mention freely any variable G such that G8 appears

in U in a context where G is bound, then

NÈUÉ
�
NÈV ·É

�

G · = NÈU
V ·
G ·
É� .

Proof of Lemma D.3. By a straightforward induction onU . �

Proof of Proposition 7.2. By simultaneous induction on for-

mulas and games of sabotage game logic. For tests this uses the

observation that the translation i2 of a formula does not have free

variables.

We consider the interesting cases. For formulas of the form 〈U〉i
note that by the induction hypothesis

NÈ〈U〉iÉs↾2 = NÈU2É� (∅)

where � (~4) = NÈi4É(∅) = NÈi4 ; ?⊥É. Hence NÈ〈U〉iÉs↾2 =

NÈU2
i · ;?⊥
~·

É(∅) by Lemma D.3 as required. The case for games of

the kind U ; V is similar.

We also explicitly treat games of the form U∗. Let 01, . . . , 0< be

the list of atomic games in U such that either 2 (0) ≠ ∅ or ∼0 or

∼0d appears in U . List 21, . . . , 2< all possible contexts that satisfy

28 (0) = ∅ for all 0 ∉ {01, . . . , 0<}.
Consider first the ⊆ inclusion. Fix �8 = NÈ(U∗)28 É� (∅). By def-

inition of the translation, Lemma D.3 the inductive hypothesis

�8 = NÈ~8 ∪ U28
(U ∗)28

~·
É� (∅)

= * ↾28 ∪ NÈU28 É
�
� ·
~· (∅)

= * ↾28 ∪ NÈUÉs (�)↾28

where � =
⋃=
8=1 �8 × {28 }. Hence NÈU∗És (*)↾28 ⊆ �8 follows by

pointwise minimality.

19

Noah Abou El Wafa and André Platzer

Consider next the ⊇ inclusion. Define �8 = NÈU∗És (*)↾28 . By
induction hypothesis

�8 = * ↾28 ∪NÈUÉs (NÈU∗És (*))↾28

= * ↾28 ∪NÈUÉ�8 (∅)

where �8 (~28) = NÈU∗És (*)↾28 for all 8 . The ⊇ inclusion follows

from Theorem 7.1 by minimality. �

Proof of Proposition 7.3. Note that the proof of Lemma 7.6

does note rely on this lemma. For convenience we therefore freely

use Lemma 7.6 in this proof.

The identity is proved by structural induction on the rank of

a closed formula. Most cases are straightforward. The interesting

cases are for least and greatest fixpoint formulas. So consider a

formula rG.U . Observe that for / = NÈrG.U ♮És by (2) of Lemma 7.6

and soundness

NÈU♮É
� [G ↦→/]
s ⊆ /

Hence by induction hypothesis and minimality NÈrG.UÉ ⊆ / .

Analogously compute

NÈU♮É
� [G ↦→,]
s = NÈUÉ� [G ↦→,] ⊆,

where, = NÈrG.UÉ×C. The reverse inclusionNÈiÉ ⊇ / follows

by minimality of / .

The case for greatest fixpoints follows from the least fixpoint

with (1) of Lemma 7.6. �

LemmaD.4. IfU is a game of right-linear game logic,X ≡ ∼1dG ;∼2G
are fresh and V is a GLs game , then

GLs ⊢ 〈U♮
X ;V
G 〉i ↔ 〈Xd;U♮ XG ; (2G ;X ; V ∪ 1G)〉i

Proof of Lemma D.4. For the purposes of this proof we call a

GLs game U with free variables controlled if it is right-linear and it

contains iteration games only in the form

[; (2;[d;U
[
G)

∗
;1 and [d; (2d;[;U

[d

G)
×
;1d

for [≡ ∼1d;∼2 , where neither 1, 2,∼1,∼2 nor their duals appear

in U .

Fix a fresh variable ~ and first define for every controlled GLs
game U amodificationU* with respect to a set* ⊆ V by induction

on U as follows

F* =

{
G if G ∈ *

F ;~ otherwise
(U ; V)* = U ; (V)*

0* = 0;~ (0d)* = 0d;~

(∼0)* = ∼0;~ (∼0d)* = ∼0d;~

(?i)* = ?i ;~ (!i)* = !i ;~

(U ∪ V)* = U* ∪ U* (U ∩ V)* = U* ∩ U*

and for controlled loop games:

([; (2;[d;U
[
G)

∗
;1)* = [; (2;[d;U*∪{G }

[
G)

∗
;1

([d; (2d;[;U
[d

G)
×
;1d)* = [d; (2d;[;U*∪{G }

[d

G)
×
;1d

where [≡ ∼1d;∼2 .
By induction on the definition observe that

GLs ⊢ 〈U*
f· ;W
D ·

W
~ 〉i ↔ 〈U f·D ·

;W〉i (1)

for all right-linear GLs f,W , where D · ranges over all elements of* .

The only interesting case is for controlled loop games. Before

we give a proof we show that the following pairwise equivalences

are provable for any k

〈[d;U*∪{G }
[
G
f· ;W
D ·

W
~ 〉k

iff 〈[d;U*∪{G }
[
G
[d;f· ;W
D ·

[d;W
~ 〉k

iff 〈[d;U*∪{G }
[;W̃
G
[d;f· ;W̃
D ·

[d;W̃
~ 〉k

iff 〈[d;U
[
G
[d;f·
D ·

; W̃〉k

where W̃ ≡ (2 ∪ 1;W). The first two equivalence use ∼ and ∼ and
the third is by induction hypothesis and using 0∼ since [sets fresh

variables not in f· . We now turn to the proof of the case of (1) for

controlled repetition. This amounts to proving

GLs ⊢ 〈[; (2;[d;U*∪{G }
[
G
f· ;W
D ·

W
~)

∗
;1〉i ↔ 〈[; (2;[d;U

[
G
f·
D ·
)
∗
;1;W〉i

(2)

We first prove the forward implication. For this purpose let d =

〈2; (2;[d;U
[
G
f·
D ·
)
∗
;1;W〉i∨〈1〉i . The following chain of equivalences

is provable:

〈2; 2;[d;U*∪{G }
[
G
f· ;W
D ·

W
~ 〉d

then 〈2; 2;[d;U
[
G
[d;f·
D ·

; W̃〉d

then 〈2; 2;[d;U*∪{G }
[;W̃ ;d̃
G

[d;f· ;W̃ ;d̃
D ·

[d;W̃ ;d̃
~ 〉i

then 〈2; 2;[d;U*∪{G }
[;d̃0
G

[d;f· ;d̃0
D ·

d̃0
~ 〉i

then 〈2; 2;[d;U
[
G
[d;f·
D ·

; d̃0〉i

then 〈2; d̃0〉i

then d

where d̃ ≡ (2; d̃0) ∪ 1 and d̃0 ≡ (2;[d;U
[
G
f·
D ·
)
∗
;1;W . Hence we also

get:

GLs ⊢ 〈1〉i ∨ 〈2; 2;[d;U*∪{G }
[
G
f· ;W
D ·

W
~ 〉d → d

By applying `∗
�
this yields

GLs ⊢ 〈(2; 2;[d;U*∪{G }
[
G
f· ;W
D ·

W
~)

∗
;1〉i → d.

By applying M� we obtain

GLs ⊢ 〈[; (2;2;[d;U*∪{G }
[
G
f· ;W
D ·

W
~)

∗
;1〉i → 〈[〉d.

Applying ≅ we can remove the additional 2 and obtain:

GLs ⊢ 〈[; (2;[d;U*∪{G }
[
G
f· ;W
D ·

W
~)

∗
;1〉i → 〈[〉d.

Finally using ∼∨, ∼ and ∼ on the succedent of the implication we get

the forward implication of (2).

We next prove the backward implication (2). For this purpose let

j = 〈2; (2;[d;U*∪{G }
[
G
f· ;W
D ·

W
~)

∗
;1〉i ∨ 〈1;W〉i . The following chain

20

Complete Game Logic with Sabotage

of equivalences is provable:

〈2; 2;[d;U
[
G
f·
D ·
〉j

then 〈2; 2;[d;U
[
G
[d;f·
D ·

〉j

then 〈2; 2;[d;U*∪{G }
[;j̃
G
[d;f· ;j̃
D ·

[d;j̃
~ 〉i

then 〈2; 2;[d;U*∪{G }
[;W̃ ;j̃0
G

[d;f·W̃ ;j̃0
D ·

[d;W̃ ;j̃0
~ 〉i

then 〈2; 2;[d;U
[
G
[d;f·
D ·

; W̃ ; j̃0〉i

then 〈2; 2;[d;U*∪{G }
[;W̃
G
[d;f·W̃
D ·

[d;W̃
~ ; j̃0〉i

then 〈2; 2;[d;U*∪{G }
[
G
f·W
D ·

W
~ ; j̃0〉i

then 〈2; j̃0〉i

then j

where j̃ ≡ (2; j̃0) ∪ (1;W) and j̃0 ≡ (2;[d;U*∪{G }
[
G
f· ;W
D ·

W
~)

∗
;1.

Hence

GLs ⊢ 〈1;W〉i ∨ 〈2; 2;[d;U
[
G
f·
D ·
〉j → j

The remainder of the proof of the backward implication of (2) is

analogous to the proof of the forward implication.

Finally the pairwise equivalences of the following formulas is

provable in GLs:

〈Xd;U♮ XG ; (2G ;X ; V ∪ 1G)〉i

iff 〈Xd; (U♮){G }
X ;(2G ;X ;V∪1G)

G
(2G ;X ;V∪1G)

~ 〉i

iff 〈(U♮){G }
X ;(2G ;X ;V∪1G)

G
Xd (2G ;X ;V∪1G)

~ 〉i

iff 〈(U♮){G }
X ;V
G

?⊤
~ 〉i

iff 〈U♮
X ;V
G 〉i

where the first and the fourth equivalence are by (1). The second

and third equivalences use ∼, ∼ and ≈. �

Proof of Lemma 7.6. (1) is a straightforward structural induc-

tion.

(2) The translation of 〈U rG.U
G 〉i with ♮ is

〈U♮
X ;(2G ;X

d ;U ♮ X
G)

∗
;1G

G 〉i♮

where X ≡ ∼1dG ;∼2G . For readability we drop the variable subscript.
By Lemma D.4 this provably implies

〈Xd;U♮ XG ; (2;X ; (2;X
d;U♮ XG)

∗
;1 ∪ 1)〉i♮

By ∪, ;, ? and M� this provably implies

〈Xd;U♮ XG ; (2;X ; (2;X
d;U♮ XG)

∗
∪ ?⊤);1〉i♮

By rfp� and M� this provably implies

〈Xd;U♮ XG ; (2;X ; 2;X
d;U♮ XG ; (2;X

d;U♮ XG)
∗
∪ ?⊤);1〉i♮

By P, C and ≈:

〈Xd;U♮ XG ; (2;X
d;U♮ XG ; (2;X

d;U♮ XG)
∗
∪ ?⊤);1〉i♮

Hence by ∗� and M�

〈Xd;U♮ XG ; (2;X
d;U♮ XG)

∗
;1〉i♮

By ≈ and C this in turn provably implies the translation

〈X ; 2;Xd;U♮ XG ; (2;X
d;U♮ XG)

∗
;1〉i♮

By M� and ∗� this in turn provably implies the translation

(〈rG.U〉i)♮ ≡ 〈X ; (2;Xd;U♮ XG)
∗
;1〉i♮

as required.

(3) Let d ≡ 〈2;Xd; V〉k ∨〈1〉i♮ . AssumeGLs ⊢ 〈U♮
V ;?k ;!⊥
G 〉i♮ →

〈V〉k . By M� and some propositional reasoning deduce

GLs ⊢ 〈1〉i♮ ∨ 〈2;Xd;U♮
X ;V ;?k ;!⊥

G 〉i♮ → d

By Lemma D.4 (and ≈) this implies (by M� and 0∼)

GLs ⊢ 〈1〉i♮ ∨ 〈2;Xd;U♮ XG ; (2;X ; V ; ?k ; !⊥ ∪ 1)〉i♮ → d

Since 1, 2 do not appear in V,k this implies

GLs ⊢ 〈1〉i♮ ∨ 〈2;Xd;U♮ XG 〉d → d

By applying `∗
�
it follows that

GLs ⊢ 〈(2;Xd;U♮ XG)
∗
;1〉i♮ → d

is provable. By M� it follows that

GLs ⊢ 〈X ; (2;Xd;U♮ XG)
∗
;1〉i♮ → 〈X〉(〈2;Xd; V〉k ∨ 〈1〉i♮)

By C, ≈, 0∼, ∼∨ and W this provably implies

GLs ⊢ 〈X ; (2;Xd;U♮ XG)
∗
;1〉i♮ → 〈V〉k

as required. �

Proof of Lemma 7.7. We can without loss of generality fix a

finite set* of atomic games and prove the lemma only for formulas

restricted to atomic games from * . We fix for every atomic game

0 ∈ * three fresh atomic games 0∅ , 0⋄ and 0 ⋄. The role of these
games is to capture the context syntactically, that is we maintain

the invariant 2 (0) = 8 iff 2 (08) = ⋄. We say 2 is a * -context if

2 (0) = ∅ for all 0 ∉ * . Let C* be the set of all * -contexts.

Fix some context 2 and list all elements of * as

01, . . . , 0=, 11, . . . , 1<, 21, . . . , 2:

such that 2 (08) = ⋄, 2 (18) = ⋄ and 2 (28) = ∅ for all 8 . Define the

games

[2 ≡ ∼01; . . . ;∼0=;∼1
d
1 ; . . . ;∼1

d
<

Z2 ≡ ∼(01)
d
∅ ;∼(01)⋄ ;∼(01)

d
⋄; . . . ;∼(0=)

d
∅ ;∼(0=)⋄ ;∼(0=)

d
⋄

∼(21)
d
∅ ;∼(21)

d
⋄ ;∼(21) ⋄; . . . ;∼(2:)

d
∅ ;∼(2:)

d
⋄ ;∼(2:) ⋄

∼(21)∅ ;∼(21)
d
⋄ ;∼(21)

d
⋄; . . . ;∼(2:)∅ ;∼(2:)

d
⋄ ;∼(2:)

d
⋄

b2 ≡ (01)⋄ ; . . . ; (0=)⋄ ; (11) ⋄; . . . ; (1<) ⋄; (21)∅ ; . . . ; (2:)∅

For a C* -indexed family U2 of GLs games we define the guarded

version

Ǔ · =
⋃
2∈C*

(b2 ; Z2 ;U2)

For a single game U wemean by Ǔ = V̌ · where V2 = U for all 2 ∈ C* .

21

Noah Abou El Wafa and André Platzer

We define for every formula i and every game U of GLs we

define modified versions î and Û by induction on the definition as

follows

%̂ ≡ % ¬̂% ≡ ¬%

�i ∨k ≡ î ∨ k̂ �i ∧k ≡ î ∧ k̂

�〈U〉i ≡ 〈Û〉î Û ; V ≡ Û ; V̂

0̂ ≡ 0∅ ;0 ∪ 0⋄ 0̂d ≡ 0∅ ;0
d ∪ 0⋄ ; !⊥ ∪ 0 ⋄

∼̂0 ≡ ∼0d∅ ;∼0⋄ ;∼0
d
⋄ ∼̂0d ≡ ∼0d∅ ;∼0

d
⋄ ;∼0 ⋄.

?̂i ≡ ?î !̂i ≡ !î

�U ∪ V ≡ Û ∪ V̂ �U ∩ V ≡ Û ∩ V̂

Û∗ ≡ (ˇ̂U)
∗

Û× ≡ (ˇ̂U)
×

Before we prove the lemma we make the following observations

(1) GLs ⊢ 〈Z2 〉î → 〈[2 〉i

(2) GLs ⊢ 〈Z2 〉〈Û ; V̌〉⊤ → 〈Z2〉〈Û ; V〉⊥

(3) GLs ⊢ 〈Z2 〉(〈V̌ ·〉i ↔ 〈V2 〉i)

for all formulas i and all games U .

For observation (1) define first a second modification (·)� ex-

actly like ·̂ except that

(∼0)� ≡ ∼0d∅ ;∼0⋄ ;∼0
d
⋄;∼0 (∼0d)

�
≡ ∼0d∅ ;∼0

d
⋄ ;∼0 ⋄;∼0

d.

Then by ∼1 observe GLs ⊢ 〈Z2 〉(î ↔ i�). Define a further modifi-

cation (·)� exactly like (·)� except that

(0)� ≡ (0∅ ∪ 0⋄ ∪ 0 ⋄);0 (0d)
�
≡ (0∅ ∪ 0⋄ ∪ 0 ⋄);0

d

Using ∼∪ it is not hard to deduce that GLs ⊢ 〈Z2〉(i
� ↔ i�). Again

applying ∼∪ yields that GLs ⊢ 〈Z2 〉(i
� ↔ i�), where (·)� exactly

like (·)� except that

(0∗)� ≡ (U�)
∗

(U×)
�
≡ (U�)

×
.

Finally the required implication follows with ≃ since no 0∅, 0⋄, 0 ⋄
appears. Observation (2) can also be proved with ∼∪ and (3) is im-

mediate.

We finally prove the main claim of the lemma. By simultaneous

induction on formulas i and games U of sabotage game logic we

prove

(1) GLs ⊢ 〈i2 ♮〉⊥ → 〈Z2〉î

(2) GLs ⊢ 〈U2 ♮
Z2 · ;V2 ·
~2 ·

〉⊥ → 〈Z2〉〈Û ; V̌ ·〉⊥

for all contexts 2 and all games V2 · . The lemma is easily deduced

from the case for 2 = 2∅ with observation 1.

(1) If the formula is of the form % the implication to show is

GLs ⊢ 〈?% ; !⊥〉⊥ → 〈Z2〉% . The implication is provably by

0∼, ; and ?. The case for ¬% is analogous.

(2) If the formula is of the form i ∨k or i ∧k then the impli-

cation is by the induction hypothesis, ∪, ∩, ∼∨ and ∼∧.
(3) If the formula is of the form 〈U〉k we first apply the induc-

tion hypothesis to i and obtain

GLs ⊢ 〈U2 ♮
i2 ♮ ;?⊥
~2 ·

〉⊥ → 〈U2 ♮
Z2 · ;?î ;!⊥
~2 ·

〉⊥.

Now applying the induction hypothesis for U combined

with (2) we get

GLs ⊢ 〈U2 ♮
Z2 · ;?î ;!⊥
~2 ·

〉⊥ → 〈Z2 〉〈Û ; ?î ; !⊥〉⊥.

Putting this together we get

GLs ⊢ 〈(〈0〉i)2 ♮〉⊥ → 〈Z2 〉〈0̂〉î .

as required.

(4) If the game is atomic of the form 0 there are three cases. If

2 (0) = ∅ we need to show

GLs ⊢ 〈0; Z2 ; V2〉⊥ → 〈Z2〉〈0̂; V̌ ·〉⊥

This is easy to see using P, (3) and ∼.
If 2 (0) = ⋄ note that the required

GLs ⊢ 〈Z2 ; V2〉⊥ → 〈Z2 〉〈0̂; V̌ ·〉⊥

is easily provable with ∼ since ∼0⋄ appears in Z2 and using
observation (3).

If 2 (0) = ⋄ then (〈02 〉⊥)♮ is provably false, so the implica-

tion holds vacuously.

(5) If the game is of the form 0d there are again three cases.

The case for 2 (0) = ∅ is analogous to the previous case.

If 2 (0) = ⋄ the antecedent is valid, so we need to show

GLs ⊢ 〈Z2〉〈0̂d〉〈V̌ ·〉⊥. This follows with ∼ since Z2 contains

∼0⋄ .
If 2 (0) = ⋄ the proof is analogous to the case of 2 (0) = ⋄
for games 0.

(6) If the game is of the form ∼0 the claim is

GLs ⊢ 〈Z
2
⋄
0
; V
2
⋄
0
〉⊥ → 〈Z2 〉〈∼̂0; V̌ ·〉⊥.

This is easy to see by rearranging the sabotages with P and

observation (3).

The case for ∼0d is analogous.
(7) If the game is of the form ?i , !i , V ∪ W or V ∩ W the claim

is easy to derive from the induction hypothesis using ∼∨
and ∼∧.

(8) If the game is of the form U ;W note that by induction hy-

pothesis on U :

GLs ⊢ 〈(U ;W)2 ♮
Z2 · V2 ·
~2 ·

〉⊥ → 〈Z2 〉〈Û ;
⋃
4∈C*

(b4 ; Z4 ;W
4 ♮ Z2 · V2 ·

~2 ·
)〉⊥

Applying the induction hypothesis on W this shows:

GLs ⊢ 〈(U ;W)2 ♮
Z2 · V2 ·
~2 ·

〉⊥ → 〈Z2〉〈Û ;
⋃
4∈C*

(b4 ; Z4 ; Z4 ; Ŵ ; V̌ ·)〉⊥

Now ≈ and (3) yield the required implication.

(9) If the game is of the form U∗ list the contexts 21, . . . , 2= as

in the definition of U∗2 .

We need to show:

GLs ⊢ (〈r8 (I21 , . . . , I2=) .(~21 ∪ U21
I2 ·
~2 ·

, . . . , ~2= ∪ U2=
I2 ·
~2 ·

)〉⊥)
♮ Z2 · ;V2 ·

~2 ·

→ 〈Z28 〉(〈
ˇ̂U
∗
; ˇV2 · 〉⊥)

By the inductive generalization (3) of Lemma 7.6 to the vec-

torial fixpoints from Theorem 7.1 this reduces to proving

(for all 8 = 1, . . . , =):

GLs ⊢ 〈Z28 ; V28 ∪ (U28)♮
Z2 · ;

ˇ̂U
∗
; ˇV2 · ;?⊥
~2 ·

〉⊥ → 〈Z28 〉(〈
ˇ̂U
∗
; ˇV2 · 〉⊥)

22

Complete Game Logic with Sabotage

By the induction hypothesis and (3) on U this reduces to

GLs ⊢ 〈Z28 ; V28 ∪ Z28 ; Û ;
ˇ̂U
∗
; ˇV2 · ; ?⊥〉⊥ → 〈Z28 〉(〈(̂U

∗); ˇV2 · 〉⊥)

Using (3) this again reduces to

GLs ⊢ 〈Z28 〉(〈
ˇV2 · ∪

ˇ̂U ; ˇ̂U
∗
; ˇV2 · ; ?⊥〉⊥ → 〈 ˇ̂U

∗
; ˇV2 · 〉⊥)

This now easily follows from an instance of ∗� with M� .

(10) If the game is of the form U× list the contexts 21, . . . , 2= as

in the definition of U×
2
. Let

W28 ≡ (r8 (I21 , . . . , I2=) .(~21 ∩ U21
F2 · ;I2 ·
~2 ·

, . . . , ~2= ∩ U2=
F2 · ;I2 ·
~2 ·

))
♮ Z2 · ;V2 ·

~2 ·

And let X8 = W28
Z2 ·
F2 ·

. By (2) of Lemma 7.6 and ¬

GLs ⊢ 〈[28 〉⊥ → 〈Z28 ; V28 ∩ (U28)♮
Z2 · ;X2 ·
~2 ·

〉⊥. (3)

(Although it is written as a vectorial fixpoint, formally it

is a single variable fixpoint as defined by Theorem 7.1 and

Lemma 7.6 applies.) By applying M�

GLs ⊢ 〈Z28 ;X28 〉⊥ → 〈Z28 ; V28 ∩ Z28 ; (U
28)♮

Z28 ;X2 ·
~2 ·

〉⊥.

By the induction hypothesis on U and ≈ we obtain

GLs ⊢ 〈Z28 ;X28 〉⊥ → 〈Z28 ; V28 ∩ Z28 ; Û ;
ˇX2 · 〉⊥.

Combining these for all 8 and using M�

GLs ⊢ 〈X̌ ·〉⊥ → 〈 ˇV2 · ∩
⋃
4∈C*

(b4 ; Z4 ; Û); ˇX2 · 〉⊥.

By ∗� this implies

GLs ⊢ 〈X̌ ·〉⊥ → 〈(̂U∗); ˇV2 · 〉⊥.

Using M� and observation (3)

GLs ⊢ 〈Z28 ;X28 〉⊥ → 〈Z28 ; (̂U
∗); ˇV2 · 〉⊥.

By ≃ the game Z28 ;X28 is equivalent to U
2 ♮ Z2 · ;V2 ·

~2 ·
. �

Proof of Proposition 7.8. Let c be a proof of i in rlGL. By

replacing every free variable in any formula in c by a fixed atomic

game 0 we turn c into a rlGL proof of i which does not mention

formulas which have free variables. Next replace every formula i

in this proof by i♮ and call the resulting proof c ′ . This proof can

now be transformed into a GLs proof for GLs ⊢ i
♮ .

By definition and (1) of Lemma 7.6 it is clear that the translation

of most proof rules and axioms remain proof rules and axioms re-

spectively. For the fp� axiom we use (2) of Lemma 7.6 and include

a derivation of this axiom. For the rule `� we can extend the proof

appropriately by (3) of Lemma 7.6. �

Proof of Theorem 7.9. Soundness holds by Lemma 6.5. If i is

a valid formula of GLs, the translation 〈i2∅ 〉⊥ is valid by Propo-

sition 7.2. Moreover by Theorem 6.8 and Proposition 7.8 the for-

mula GLs ⊢ (〈i2∅ 〉⊥)♮ is provable and therefore by Lemma 7.7

also GLs ⊢ i . �

23

	Abstract
	1 Introduction
	2 Preliminaries
	3 Extensions of Game Logic
	3.1 Sabotage Game Logic
	3.2 Recursive Game Logic
	3.3 Semantics of Game Logics

	4 Modal Fixpoint Logics
	5 Expressiveness
	5.1 Equiexpressiveness of FLC and RGL
	5.2 The Modal mu-Calculus as a Game Logic
	5.3 Game Logic as a Fixpoint Logic
	5.4 Summary of Expressiveness

	6 Proof Calculi
	6.1 Proof Calculi for the Modal mu-Calculus
	6.2 Proof Calculi for Game Logics
	6.3 Equivalence of Proof Calculi
	6.4 Completeness for rlGL

	7 sabotage game logic and Modal mu
	7.1 Embedding of GLs into rlGL
	7.2 Embedding of rlGL into GLs
	7.3 Proof Transformations
	7.4 A Completion of Parikh's Calculus

	8 Conclusion
	Acknowledgments
	References
	A The Rank
	B Fixpoint Lemmas
	C Derived Axioms for GLs
	D Proofs

