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Analyses for the NICER data indicate that there is no significant variation of the compact star
radii within the mass range of 1.4 to 2.0 solar masses. Yamamoto et al. [Phys. Rev. C 108, 035811
(2023)] concluded recently that “this feature cannot be reproduced by the hadronic matter due to
the softening of the equation of state (EoS) by hyperon mixing, suggesting the possible existence
of quark phases in neutron-star interiors.” Using a collection of 162 purely nucleonic, hyperonic,
and quarkish EoSs from CompOSE database and some other works, we verify that hyperons indeed
lead to a significant difference in radii of stars of 1.4 and 2.0 solar masses, which diminishes in the
presence of quarks. We compare the shapes of the mass-radius curves and show that hyperons and
quarks in the neutron star cores prefer a particular curve shape with backbending. It is argued
that the shape is controlled by the density dependence of the nuclear symmetry energy. We draw
attention to the existence of a class of purely hadronic relativistic mean-field EoSs with scalar-field
dependent hadron masses and coupling constants that satisfy the known constraints on the EoSs
including the analyses of the new NICER data and the above requirement of no significant variation
of the neutron star radii.

I. INTRODUCTION

The advent of the multi-messenger astronomy enables
studies of neutron stars (NSs) through all the avail-
able tracers: cosmic rays, neutrinos, electromagnetic
and gravitational waves. New data provide more strin-
gent constraints on the main NS parameters, which are
used to get insight into hadron/nucleon interactions at
supra-saturation densities [1]. Thanks to dedicated cam-
paigns of the radio pulsar timing measurements several
heavy NSs with masses greater than two solar masses
were identified. The recently launched X-ray timing tele-
scope, the Neutron Star Interior Composition Explorer
(NICER), delivered several first joint measurements of
star masses and radii. Based on the attempts to describe
the new data, works have appeared with the conclusion
that purely hadronic equation of state (EoS) cannot fully
account for them [2, 3], and that a hydrid EoS involv-
ing sub-hadronic degrees of freedom (quarks, diquarks)
is needed.

The purpose of this paper is, first, to restate, which
of the NS properties may appear problematic for the de-
scription with the purely hadronic EoSs, and, second, to
point out a class of hadronic models that accommodate
the new data.

II. MASSES OF NEUTRON STARS

For quite some time there has been a consensus that
most of NSs have masses nearby 1.4M⊙ [4], being pro-
duced in supernova explosions with masses close to the
NS maximum mass Mmax ≃ 1.5M⊙ [5]. Most of the ex-
isted hadronic EoSs could describe NSs with such masses.
Also such a very narrow NS mass distribution offered a
convenient way to explain the NS cooling data within

the minimal cooling plus direct Urca (DU) scenario [6, 7]
without including in-medium effects. In contrast, a nu-
clear medium cooling scenario was developed in Refs. [8–
11]. It relied on the assumption that NSs with measured
surface temperatures (first data fixed only upper lim-
its on surface temperatures) have very different masses
and that NS neutrino emissivity depends strongly on the
density–NS mass, since the in-medium pion exchange sig-
nificantly affects the two-nucleon reaction rates, whereas
the DU reaction is not allowed [8, 12]. This approach
has been supported by the discovery of a light pulsar
with mass 1.25M⊙ in the double pulsar system J0737-
3039 [13] and by the growing evidence for the exis-
tence of NSs with masses greater than 1.5M⊙ [14]. It
is now well established that the NS masses vary over
a wide interval [15]. The so-far lightest NS [16] with
the well-measured mass of 1.174(4)M⊙ is the pulsar
PSR J0453+1559 [17]. The masses of the heaviest pul-
sars are mainly derived from analyses of Shapiro delay
measurements of pulsar binaries. The first well-measured
masses were 1.908(16)M⊙ of PSR J1614-2230 [18–20]
and 2.01(4)M⊙ for PSR J0348+0432 [21]. The cur-
rent highest precisely measured mass is 2.08(7)M⊙ for
PSR J0740+6620 [22, 23]. Additional information is ob-
tained from the photometry of binary systems of mil-
lisecond pulsars in tight < 1 day orbits, with the com-
panion heated and evaporated by the pulsar spindown
power – the so-called spiders: black widows with substel-
lar companions and redbacks with low-mass star com-
panions. Among these objects there is the fastest rotat-
ing pulsar PSR J0952-0607 [24] whose mass is found to
be 2.35(17)M⊙. A joint analysis including other spider
pulsars in [25] leads to the conclusion that the minimum
value for the maximum NS mass isMmax > 2.19M⊙ with
1σ confidence. It is to be noticed that all spider NSs are
fast-rotating millisecond pulsars so one should include
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corrections for a possible increase of the star mass due to
rotation, which is estimated in [26] as 3%. Therefore, the
lower limit on the maximum NS mass should be lowered
and, consequently, we would haveMmax > 2.1M⊙. There
is also a constraint on Mmax from above. The authors
of Ref. [27] combining gravitational wave observations of
merging systems of binary NSs and quasi-universal rela-
tions concluded that for a non-rotating NS the maximum
mass should satisfy the constraint, Mmax < 2.33M⊙. If
so, the value of Mmax can be considered as a very-well
constrained quantity, 2.1M⊙ < Mmax < 2.33M⊙.

III. HYPERON AND ∆ PUZZLES

Many purely nucleonic EoSs can satisfy the constraint
Mmax > 2.1M⊙, see Ref. [28] and review of Skyrme
models [29]. In the relativistic mean-field (RMF) mod-
ified Walecka models this inequality can be easily sat-
isfied by choosing a sufficiently small effective nucleon
mass at the saturation density as an input parameter, see
Fig. 6 in Ref. [30]. However, allowing for the existence
of strange particles in the model and the population of
the corresponding Fermi seas, one realizes [31, 32] that
employing an empirically motivated two-body hyperon—
nucleon potential, hyperons appear in NS matter already
at baryon densities >∼ (2− 3)n0, where n0 ≃ 0.16 fm−3 is
the nuclear saturation density. The coupling constants of
hyperons with vector mesons were interrelated by SU(6)
symmetry relations, cf. [33]. As a result, the maximum
masses of NSs with hyperons fall below not only 2M⊙ but
also below 1.4M⊙. This was called in the literature as
the “hyperon puzzle”, which can be avoided by artificially
preventing the appearance of hyperons or by including
the hyperon–nucleon and/or hyperon–hyperon density-
dependent repulsion, e.g., due to three-body forces [34],
see the discussion in Ref. [35]. In the framework of RMF
models one can include the hyperon-hyperon repulsion
mediated by a ϕ-meson mean field and/or use a differ-
ent choice of hyperon-meson coupling constants beyond
the quark counting within the SU(6) symmetry, see, e.g.,
Ref. [36], to increase the NS mass. The similar “∆ puz-
zle” with the occupation of ∆ isobar Fermi seas was iden-
tified in Ref. [37].

Another aspect of the hyperon puzzle is that the pres-
ence of hyperons in the NS interiors allows efficient DU
reactions on hyperons (HDU), e.g. Λ → p + e + ν̄ lead-
ing to very fast cooling of NSs with masses M > MHDU,
where MHDU is the NS mass, at which the first hyperons
appear in the star center. This second part of the prob-
lem is solved within the nuclear medium cooling scenario
in [38, 39].

IV. RADII OF NEUTRON STARS

In the early 2000s, experimental data on the NS
radii began to appear: from analyses of quasi-

periodic oscillations in the low-mass X-ray binary sys-
tem 4U 0614+09 [40], the thermal emission of the bright
isolated NS RX J1856.5-3754 [41], thermonuclear X-ray
bursts from NSs in low-mass X-ray binaries [42, 43], and
pulse-phase-resolved X-ray spectroscopy [44, 45]. See
also the Bayesian analysis of combined data in [46].
In most of these works, the masses of the studied ob-
jects were poorly constrained and only broad regions on
the mass-radius plane (in some cases not even overlap-
ping) were marked as allowed. This situation began to
change with the launch of the NICER observatory. In
its first measurement campaigns NICER studied the mil-
lisecond pulsar PSR J0030+0451 whose mass was found
in two independent analyses to be 1.34+0.15

−0.16 M⊙ [47]

and 1.44+0.15
−0.14 M⊙ [48] and the inferred radius was de-

termined to be 12.71+1.14
−1.19 km in [47] and 13.02+1.24

−1.06 km
in [48]. NICER then turned to one of the heaviest NSs,
object PSR J0740+6620. The radius was found to be
13.7+2.6

−1.5 km in [49] and 12.39+1.30
−0.98 km in [50]. Applying

the two-star radius measurements with the tidal deforma-
bility constraints to three different frameworks for EoS,
Ref. [49] provided the following 68% credible intervals of
the radius estimates

R1.4M⊙ = 12.45(65) km , R2.0M⊙ = 12.35(75) km . (1)

The NICER data [47–50] have been incorporated in
Ref. [51] into the joint analysis of the NS EoS, using a
nonparametric EoS model based on Gaussian processes
and combining information from other X-ray, radio and
gravitational wave observations of NSs. The results are

R1.4M⊙ = 12.56+1.00
−1.07 km [48] and 12.34+1.01

−1.25 km [47] ,

(2)

R2.0M⊙ = 12.41+1.00
−1.10 km [49] and 12.09+1.07

−1.17 km [50]. (3)

These analyses show that despite significant statistical
uncertainties, the derived NS radii are consistent with
being equal over a wide mass range, with a radius differ-
ence of

∆R(1.4−2.0)M⊙ ≡ R1.4M⊙ −R2.0M⊙

=

{
0.12+0.85

−0.83 km (Miller et al. [48, 49])
0.20+0.8

−0.82 km (Riley at al. [47, 50])
, (4)

see Table 2 in [51]. The results of the combined
analyses collected in Table 4 in Ref. [49] assume that
−0.48 km <∼ ∆R(1.4−2.0)M⊙

<∼ 0.35 km. The lower
limit ∆R(1.4−2.0)M⊙ ≃ −0.68 km follows from the di-
rect NICER measurement by Miller et al. [48, 49], while
the results by Riley at al. [47, 50] give the upper limit
∆R(1.4−2.0)M⊙ ≃ 0.32 km. Reference [52] investigated
the additional effect on the EoS of the jointly esti-
mated mass and radius of PSR J0740+6620 presented
in [50] by analyzing a combined data set from X-ray tele-
scopes NICER and XMM-Newton. They concluded that
R1.4M⊙ ∼ R1.8M⊙ ∼ R2.0M⊙ within 1 km precision.
The lightest NS identified as the central compact ob-

ject XMMU J173203.3-344518 could have a rather small
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radius 10.4+0.86
−0.78 km within 1σ confidence according to

Ref. [53]. If confirmed, it would be an intriguing pos-
sibility of a superdense compact object different from
a NS [54]. However, as pointed in Ref. [55], the re-
sults of Ref. [53] would change, if the distance to the
object is revised. The authors of Ref. [55] used the
Gaia parallax measurements of the optical star and es-
timated the distance to the object to be shorter by fac-
tor 1.28. Consequently, they obtained the larger mass
of 0.83+0.17

−0.13 M⊙ and the larger radius 11.25+0.53
−0.37 km for

XMMU J173203.3-344518.

V. EOS AND EMPIRICAL CONSTRAINTS

Typical hadronic EoSs are challenged by the require-
ment of simultaneous fulfillment of empirical constraints
gained in studies of various nuclear systems: atomic nu-
clei, heavy-ion collisions, and astrophysics. Most difficult
is to unite the description of the particle flow in heavy-ion
collision requiring a soft EoS for the isospin-symmetric
matter [56] and a large value of the maximum NS mass
requiring a stiff EoS for the NS matter, see discussion in
Ref. [28]. To resolve this problem in the framework of
RMF models, the baryon-density dependence of hadron
coupling constants was suggested in Refs. [57, 58]. In this
case, the construction of thermodynamically consistent
quantities requires additional care. In Ref. [30] we pro-
posed the RMF model with scaling of hadron masses and
coupling constants, the SHMC model, in which hadron
masses and meson–baryon coupling constants are depen-
dent on the σ mean field. For infinite nuclear matter,
the scaling functions for masses and coupling constants
enter the EoS only as a ratio, which dependence on the
σ field is chosen to gain the best description of empiri-
cal constraints that minimizes the number of fitted pa-
rameters. The σ-field scaling of RMF mass terms was
motivated by experimental hints on the modification of
hadronic masses and widths in hadronic matter and ar-
guments for partial symmetry breaking with a baryon
density increase. So, it looks natural that within the
RMF approach not only baryon mass terms but also the
mass terms of σ, ω, ρ, and ϕ meson fields should be sim-
ilarly dependent on the σ field in the medium. In the
SHMC models we deal with the usual Lagrangian ap-
proach and the derivation of thermodynamic quantities
follows without ado. The models KVR and KVOR of
such a type formulated in [30] and named so in [28] al-
lowed to satisfy most of the constraints on EoS known
to that time from analysis of nuclei, heavy-ion collisions,
and NSs, including the particle flow, DU, and maximum
NS mass constraints, cf. Table V in Ref. [28]. To describe
the new data on NS masses together with the flow con-
straint, two families of models (labeled as MKVOR and
KVORcut) were constructed in Refs. [59–61] based on the
KVOR model. The models implement various versions
of the stiffening mechanism (the cut mechanism) devel-
oped in [62], which aims at leveling off the sigma-field

increase at some specified value. As a result, the effec-
tive baryon masses stop decreasing at some chosen value
of the density n∗ >∼ (2 − 4)n0. Some microscopic sup-
port for such in-medium nucleon mass variation can be
found in the renormalization group approach [63]. Also,
if the decrease of the nucleon mass is determined by a
decrease of the quark condensate in the medium, several
mechanisms lead to a strong reduction of the condensate
decrease rate at higher densities [64]. In the KVORcut
family, the cut mechanism (strong variation of parame-
ters with σ) is included in the ω-field sector, whereas in
the MKVOR family the cut-mechanism is implemented
in the ρ-meson sector. Therefore, we could push up the
maximum NS mass and simultaneously satisfy the parti-
cle flow constraint from heavy-ion collisions since there is
no ρ meson contribution for the isospin-symmetric mat-
ter.

The SHMC models were used in studies of heavy-
ion collisions and NSs in Refs. [38, 39, 59–62, 65–69],
demonstrating that the maximum NS mass is Mmax >
(2 − 2.2)M⊙ even in the presence of hyperons and ∆
baryons. Also, the models fulfill the constraints on the
EoS of the isospin symmetric matter from the nucleon
flow and kaon production, giant monopole resonances,
the constraints on the symmetry energy from neutron-
proton elliptic flow difference measured by FOPI-LAND
experiment, and nuclear analog isobaric states. The mod-
els describe appropriately optical nucleon potential U(n)
and for n <∼ n0 we appropriately recover the results of
the chiral perturbation theory. In the case of the beta-
equilibrium matter the DU constraint is fulfilled. The NS
cooling data are also properly described even with taking
into account of hyperons [38, 39]. The NS deformability
calculated with our MKVOR-based models fits within
the 90% confidence region obtained from the GW170817
gravitational wave signal. For the KVORcut03-based
model, the results lie on a border of the 90% confi-
dence region [70]. Thus, most of the presently known
constraints are satisfied with the purely hadronic EoSs
obtained with the SHMC model.

Usually, new degrees of freedom appearing in a phase
transition lead to a decrease of a thermodynamic poten-
tial that necessarily results in the EoS softening. Never-
theless, the maximum NS mass remains above the mod-
ern empirical constraints in our SHMC models [59–61]
even in the presence of hyperons and ∆’s. Reference [70]
also demonstrated the possibility that in the SHMC mod-
els the most massive NSs may contain a hadron-quark
pasta phase and quark cores, satisfying the maximum
NS mass constraint. In Ref. [71] the hybrid star cooling
scenario is shown to be compatible with the NS cooling
data provided the density dependence of diquark gaps is
taken into account and the nuclear medium cooling sce-
nario is used for the description of the hadronic part of
the NSs.

To avoid the EoS softening in the phase transition
constructed by matching of thermodynamical potential,
the authors of Ref. [72] suggested the so-called “three-
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window scenario” assuming an enforced transition from
the purely hadronic phase to a crossover phase at some
density nc1 ∼ 2n0, which at density nc2 ∼ (4–7)n0

changes to the quark matter. By this logic one can use
the nuclear equation of state only at densities n < nc1,
some quark model at n > nc2, and a smooth interpola-
tion in between. Such a picture could be supported by
the quark percolation conjecture [73, 74] assuming that
quarks may begin to ‘jump’ between nucleons at nc1 and,
then, the fraction of ‘shared’ quarks increases with a den-
sity increase. If were so, the hadron phase would change
smoothly to the quarkish phase even though the latter
one has a higher value of the thermodynamic potential
(resulting in a stiffer EoS) than the hadronic one, see
discussions in Refs. [2, 75, 76]. Within the three-window
scenario the hyperon and ∆ puzzles get an almost triv-
ial solution: as soon as the quark percolation starts, the
formation of new baryonic states and the corresponding
Fermi seas is forbidden. It should be noticed, however,
that there is currently no quantitative description of the
intermediate density phase. Moreover, the density in-
terval (2 − 4)n0 is well covered by low-energy heavy-ion
collision experiments, which interpretation does not re-
quire the introduction of quark matter. Also, the NS
masses obtained in ordinary RMF EoSs corresponding
to central densities (2−4)n0 are still low, (0.7−1.5)M⊙.
Thus, within this approach, questions remain about the
fulfillment of other constraints such as the flow constraint
(covering densities <∼ 4.5n0) and the DU constraint sug-
gesting absence of the neutrino DU reactions in NSs with
M <∼ (1.35− 1.5)M⊙, cf. [28].

VI. APPLICATION OF NEW NICER DATA

Recently Ref. [3] proposed to interpret the NICER data
in favor of approximate independence of the NS radii on
the star mass in the interval of the NS masses between
1.4M⊙ and 2.0M⊙ and to use the relation

R1.4M⊙ ≈ R2.0M⊙ , (5)

as a possible novel constraint on the NS EoS supported
by the analysis of [52]. A similar relation was discussed
in Ref. [77]. From attempts to satisfy this constraint the
authors of Ref. [3] concluded that it cannot be fulfilled
with the purely hadronic EoSs softened by the admixture
of hyperons, indicating thereby in favor of the existence
of quark or hybrid phases in NS interiors.

Before discussing the possibility of understanding new
mass and radius measurements using SHMC models of
purely hadronic EoS, including both hyperons and ∆s,
we analyze typical EoSs for NSs used in the literature.
We benefit from Ref. [78], where a set of cold NS EoSs was
collected mainly from the CompOSE database [79] and
from other works [80–82]. All together, 162 EoSs were se-
lected in [78]. Dropping the EoSs with Mmax < 2.0M⊙
we remain with 103 EoSs. In Fig. 1 we show the radii
R1.4M⊙ and R2.0M⊙ calculated in the SHMC models and
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FIG. 1. Radii of NSs with masses 1.4M⊙ and 2.0M⊙ for the
EoSs collected in Ref. [78]. Filled symbols stand for purely
nucleonic EoSs (squares, N), EoSs with hyperons and/or ∆
(circles, H(∆)), and hybrid EoSs with nucleons and quarks
(returned triangles, NQ). Symbols with error bars show the
results by Legred et al. [51], Eqs. (2,3) using the NICER data
[47, 50] by Riley et al. (pentagon) and [48, 49] by Miller
et al. (star), and the results (1) of the combined analysis
from [49] (hexagon). The error bars of the latter analysis
are visualized by the colored rectangle. The dashed line rep-
resents the relation R1.4M⊙ = R2.0M⊙ . The EoSs for the
SHMC models are depicted by open symbols: squares are
for purely nucleonic models – MKVOR* (with the vertical
cross) and KVORcut03 (with the diagonal cross); circles are
for models with hyperons and ∆s – MKVORH*∆ϕσ (with
the vertical cross) and KVORcut03∆ϕσ (with the diagonal
cross).

for the EoS collected in [78], among which there are
63 purely nucleonic EoSs (N), 18 EoSs with hyperons
and/or ∆s (NH(∆)), and 22 hybrid EoSs with nucleons
and quarks (NQ) depicted by squares, circles and tri-
angles, respectively. Symbols with error bars show the
results of the analyses [51], see Eq. (3), and [49], see
Eq. (1). The colored rectangle visualizes the error bars
given in (1). The dashed line stands for Eq. (5). We see
that the radii for many purely nucleonic EoSs satisfy the
constraint (5), i.e. the corresponding squares lie close
to the dashed line. Also, many N-EoSs produce radii
R1.4(2.0)M⊙ falling within the large experimental error
bars. Open squares with crosses show two versions of
the purely nucleonic SHMC models. The minimal modi-
fication of the MKVOR model labeled MKVOR* in [61]
prevents the effective nucleon mass from vanishing at any
density. The MKVOR* square is closer to the dashed
line than that for KVORcut03, cf. [60]. In case of the
MKVOR* model the radius difference ∆R(1.4−2.0)M⊙ is
negative, −0.1 km, while for the KVORcut03 model it is
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positive +0.4 km. We stress that these two models differ
in the density dependence of the symmetry energy, which
is weaker in the first model for n > n0.

The inclusion of hyperons (or/and ∆s) shifts the radii
(circles) in Fig. 1 up from the dashed line. For those
H(∆) EoSs whose radii agree with Legred’s analyses,
the radius difference ∆R(1.4−2.0)M⊙

>∼ 1 km, and only
one H(∆) EoS is within error bars of the constraint (1),
i.e. enters the colored rectangle. One more point sat-
isfies this constraint marginally. Thus, indeed, among
the EoSs collected in [78], the inclusion of hyperons
complicates the fulfillment of the condition (5). On
the contrary, many NQ EoSs satisfy well this condition,
and many triangles lie close to the dashed line. So, in
favor of the statement [3] it is tempting to conclude
that the quark admixture in the NS matter is neces-
sary to reach the agreement with condition (5). How-
ever, the purely hadronic SHMC models with hyperons
can also satisfy condition (5). Open circles with crosses
in Fig. 1 show the radii for the models MKVOR*H∆ϕσ
and KVORcut03H∆ϕσ [60, 61]. The suffix “ϕ” means
that in these models we included the ϕ-meson mean field
providing repulsion among hyperons and took into ac-
count the scaling of the mean-field ϕ meson mass term
similar to the scaling of other mean-field mass terms
and the nucleon mass. As shown in Ref. [59] this scal-
ing enhances the hyperon-hyperon repulsion and allows
the solution of the hyperon puzzle. The suffix “σ” in-
dicates that we include the effect of reducing hyperon-
sigma coupling with a σ-field increase as it follows, e.g.,
from the quark-meson coupling model [83]. We see that
the KVORcut03H∆ϕσ point enters the colored rectan-
gle in Fig. 1, and MKVOR*H∆ϕσ marginally satisfies
this constraint. For the MKVOR*H∆ϕσ model we have
∆R(1.4−2.0)M⊙ = −0.03 km and for KVORcut03H∆ϕσ
model, 0.5 km.

The shape of the mass-radius curve can be character-
ized by the sign and magnitude of the derivative R′(M)
at the inflection point of the R(M) curve, i.e. the point
where R′′(Minfl) = 0. In Fig. 2 we illustrate the cor-
relation between ∆R(1.4−2.0)M⊙ and R′(Minfl) for differ-
ent types of the EoSs. If R′(Minfl) < 0, then M(R) is
a monotonically decreasing function, shown in the left
insertion plot in Fig. 2. If R′(Minfl) > 0, then M(R)
curve is non-monotonous with a backbending, as shown
in the right insertion. We see that most of the NH(∆)
and NQ EoSs give the M(R) curve with backbending,
while the nucleonic (N) EoSs can produce the M(R)
curves with and without backbending. For MKVOR*
and MKVOR*H∆ϕσ EoSs, R(M) curves have backbend-
ing and R′(Minfl) > 0. These models are character-
ized by a softer density dependence of the symmetry en-
ergy than the KVORcut models. Respectively, the coef-
ficient L characterizing the density dependence of the
symmetry energy nearby n ≃ n0 is smaller (L ≃ 41
MeV) for MKVOR-type models than that (L ≃ 71 MeV)
for KVOR-type models. The model KVORcut03H∆ϕσ
demonstrates R′(Minfl) < 0. The KVORcut03 EoS shows
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R
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X
R

M

FIG. 2. Correlation between ∆R(1.4−2.0)M⊙ and the form of
the mass-radius curve characterized by the sign of the deriva-
tive R′(M) at the inflection point (shown by crosses in the
insertion plots as an illustration) for the same set of EoSs as
in Fig. 1. All symbols have the same meaning as in Fig. 1. The
rectangle indicates the interval −0.68 km < ∆R(1.4−2.0)M⊙ <
0.35 km encompassing the results of different analyses, see
Eq. (4) and the text below it. Central dots indicate the EoSs,
which fall within the colored rectangle in Fig. 1 satisfying the
radius constraint from the combined analysis of Ref. [49].

a tiny negative value of R′(Minfl). The correlation be-
tween the density dependence of the symmetry energy
and the shape of M(R) curve is also visible in Fig. 1 of
work [84] and in Fig. 5 of work [85] for the EoSs studied
there.
The colored rectangle in Fig. 2 indicates interval of

−0.68 km < ∆R(1.4−2.0)M⊙ < 0.35 km motivated by the
analyses [48, 49]. By central dotes we additionally mark
those EoSs, whose NS radii occur within the colored
rectangle in Fig. 1. Only these EoSs agree with em-
pirical data (1) from the analysis [49]. None of the
NH(∆) EoSs can be found simultaneously in the col-
ored rectangles in Fig. 1 and in Fig. 2. The SHMC
EoSs MKVOR* and MKVOR*H∆ϕσ satisfy both con-
straints. The model KVORcut03 satisfies the constraint
marginally. The model KVORcut03H∆ϕσ does not fulfill
it.
Finally, let us compare the NS mass-radius relations

for the considered SHMC models with the available em-
pirical constraints, see Fig. 3. All four models have
Mmax>2.0M⊙. The NS mass constraint from the black
widow pulsar J0952-0607 (Mmax>2.2M⊙) is satisfied by
the purely nucleonic MKVOR* model and also by the
MKVOR*H∆ϕσ model with hyperons and ∆s. With ac-
count for the rotation correction [26] the lower edge of
the constraint can be reduced to 2.1M⊙, then also the
KVORcut03 EoS and marginally the KVORcut03H∆ϕσ
EoS will satisfy it. We stress that the mass-radius curves
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FIG. 3. The mass-radius relation for cold non-rotating NS.
Solid, dashed, dash-dotted and dotted lines show the result for
four SHMC models discussed in text. Hatched regions show
the results of NICER obtained by Miller et al. in [48, 49] and
Riley et al. in [47, 50], and the XMMU data after the distance
correction in Ref. [55]. Dash-dotted contour shows the M–
R range from the Bayesian probability analysis (BPA) [46].
Filled circles show the results of the analysis by Raaijmakers
et al. [52]. The results of the combined analysis of Legred
et al. [51] using data of Miller et al. and Riley et al. are
shown by triangle and cross symbols, respectively. Hexagons
represent the analysis of the data done in Ref. [49].

for all four SHMC EoSs go through the results of ex-
tended analyses of the NICER data [51, 52] including
additional empirical and theoretical information. As
for the results of the direct NICER measurements, the
SHMC EoSs do not pass through the radius range ob-
tained by Miller et al. [49] for the 2.0M⊙ NS, however
all agree with the range deduced by Riley et al. [50].
For the direct measurements presented in Refs. [47, 48],
the MKVOR*H∆ϕσ model does not pass through the
1σ range suggested for R1.4M⊙ in Ref. [48], but agrees
with the result [47] and almost touches the 1σ error bar
(hexagon in Fig. 3) given in the analysis of [49], see
Eq. (1). We note also that the re-analysis in Ref. [49],
Eq. (1), reduces the tension between the direct NICER
results by Miller et al. [48], R1.4M⊙ = 13.02+1.24

−1.06 km,
and the constraint put on R1.4M⊙ in Ref. [86], where
the authors used the chiral effective field theory and the
gravitational wave observations of the binary NS merger
GW170817. They claim R1.4M⊙ = 11.0+0.9

−0.6 km with 90%
confidence. The XMMU rectangle shows the constraint
obtained after the distance correction in Ref. [55]. The
MKVOR-based models satisfy this constraint unlike the
KVORcut-based models. This difference may be related
to the weaker density dependence of the symmetry energy

in the former ones. In Fig. 3 we also see that stars with
hyperons and ∆s have smaller radii than stars without.

VII. CONCLUSION

At the hand of a set of 103 EoSs collected in Ref. [78]
from the CompOSE database [79] and from Refs. [80–82],
among which there are 18 EoSs with hyperons and/or ∆s
and 22 hybrid NQ EoSs, we demonstrated that indeed
most of the used hadronic EoSs with hyperons and/or ∆s
(NH(∆)) do not satisfy the condition conjectured in [3]
that the stellar radius weakly changes with the mass in-
crease from 1.4 to 2.0M⊙, Eq. (5). According to the
analyses of a combined data set from the X-ray telescopes
NICER and XMM-Newton supplemented by the gravita-
tional wave constraints and theoretical constraints on the
EoSs [49, 51, 52] discussed above, the radius difference is
limited as −0.68 km < ∆R(1.4−2.0)M⊙ < 0.35 km. None
of the NH(∆) EoS from the EoSs collection in [78] sat-
isfies both this constraint and the constraint (1) on stel-
lar radii obtained in the analysis [49]. On the contrary,
the hybrid EoSs with nucleons and quarks constructed
within the three-window scenario fulfill these constraints,
see Fig. 1.
We analyzed the shape of the mass-radius curve,

M(R), for different EoSs and demonstrated that for the
NH(∆) and NQ EoSs it has, as a rule, backbending, as
shown in Fig. 2. We also argued that this shape favors
a smoother density dependence of the nuclear symmetry
energy and a smaller value of L.
We showed that the hadronic relativistic mean-field

models with the σ-field-scaled hadron masses and cou-
pling constants (SHMC), — the KVORcut03- and
MKVOR-based models, — constructed in Refs. [59–61]
pass most of the currently known constraints from ex-
periments with nuclei, heavy-ion collisions and compact
stars, including the analyses of the new NICER mass-
radius measurements. The MKVOR-type models with
and without hyperons and ∆s satisfy well the condi-
tion (5) conjectured in [3]. The KVORcut03 EoS satisfies
it marginally. The mass-radius curves for the considered
SHMC models shown in Fig. 3 agree very well with the
constraints based on the new NICER data.
A weak variation of the NS radius of the star mass

for M > 0.5M⊙ has been noticed already in works [59–
61] and it is now supported by the NICER data and
suggested as a constraint in Ref. [3]. We hope that our
results can be treated in favor of RMF models including
σ scaling not only of baryon masses but also of meson
masses.
The presented analysis shows that the new NICER-

data-based constraints on the NS radii are very selective
to the EoS used in the NS descriptions. The future next-
generation gravitational-wave observatory [87] – Cosmic
Explorer – is planned to detect NS mergers with a high
rate that will enable the determination of stellar radii
with a very high precision of 100 meters. Thus, the con-
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jecture of Ref. [3] supported by our results [59–61] ob-
tained with purely hadronic SHMC models and other re-
sults illustrated in Figs. 1–3 could be, hopefully, verified
experimentally.
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A. Santangelo, A strangely light neutron star within a
supernova remnant, Nature Astronomy 6, 1444 (2022).

[54] J. E. Horvath, L. S. Rocha, L. M. de Sá, P. H. R. S.
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