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Förster resonance energy transfer (FRET) is a quantum mechanical phenomenon involving the
non-radiative transfer of energy between coupled electric dipoles. Due to the strong dependence of
FRET on the distance between the dipoles, it is frequently used as a “molecular ruler” in biology,
chemistry, and physics. This is done by placing dipolar molecules called dyes on molecules of interest.
In time-resolved confocal single-molecule FRET (smFRET) experiments, the joint distribution of the
FRET efficiency and the donor fluorescence lifetime can reveal underlying molecular conformational
dynamics via deviation from their theoretical Förster relationship. This deviation is referred to
as a dynamic shift. Quantifying the dynamic shift caused by the motion of the fluorescent dyes
is essential to decoupling the dynamics of the studied molecules and the dyes. We develop novel
Langevin models for the dye linker dynamics, including rotational dynamics, based on first physics
principles and proper dye linker chemistry to match accessible volumes predicted by molecular
dynamics simulations. By simulating the dyes’ stochastic translational and rotational dynamics, we
show that the observed dynamic shift can largely be attributed to the mutual orientational dynamics
of the electric dipole moments associated with the dyes, not their accessible volume.

I. INTRODUCTION

Förster resonance energy transfer (FRET)[1, 2] experi-
ments are commonly used in biochemistry and biophysics
to measure distances on molecules of interest.[3–6] This
is done by exploiting the physical mechanism of FRET
wherein energy is transferred non-radiatively between a
donor and an acceptor fluorophore due to electric dipole
coupling. Throughout the document, these fluorophores
will be referred to as dyes. The rate of energy trans-
fer depends on the distance between the dipoles to the
sixth power, as well as an orientational factor and sev-
eral other time-independent factors.[1, 4, 7–9] Due to this
strong dependence on distance, FRET is often used as a
molecular ruler [10, 11]. Therefore, an accurate under-
standing of FRET measurements is paramount to un-
derstanding the collected experimental data and forming
concrete hypotheses about the conformational dynamics
of the molecule of interest, which provides information
for the health sciences. [12]

It has been shown in [13–15] that the joint distribu-
tion between FRET efficiency and lifetime measurements
contains a wealth of information on the structural dy-
namics of the underlying molecule. This information
is seen by a deviation from the ideal Förster relation-
ship, termed a dynamic shift [13]. The use of smFRET
in structural biology is well established. [11, 14, 16–33]
Moreover, the use of the dynamic shift to understand dy-
namic structural biology has recently been established.
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[14, 21, 30, 31, 34, 35] Due to thermal noise, the dye po-
sition will fluctuate randomly, inducing a change in the
joint FRET-lifetime distribution.[15, 36] Hence, it is nec-
essary to understand the influence of this stochastic fluc-
tuation on the resulting FRET measurements.[37–41] So,
a complete understanding of the dynamic shift induced
by the dye dynamics is needed to facilitate accurate es-
timates for structural dynamics.[42, 43]

Currently, in the literature, there is no physical model
for the dye motion to facilitate accurate and high-
precision FRET measurements.[15, 36] The models avail-
able are either simplistic [44] or require a high computa-
tional cost [20, 43, 45, 46]. Typically, all-atom molec-
ular dynamics simulations are conducted on a sample-
by-sample basis to calculate the accessible volume of
the dyes in order to estimate the range of motion of
the molecule and, therefore, provide a way of uncer-
tainty quantification in the FRET-lifetime distribution
[31, 34, 43, 47]. An important critique of this method
is that the simulations do not last for the entire sam-
pling process.[43] Hence, the full range of motion for the
dyes during a sample time is not achieved. Here, we at-
tempt to provide a semi-analytic model for fluorescent
dye motion. In addition, these simulations are meant
to approximate the equilibrium distribution of the dye
motion and hence ignore any time inhomogeneity in the
energy transfer process itself. We consider several of the
following relevant aspects of dye motion. First, will an
isotropic Gaussian process provide a correct model? In
this situation, the common assumption of Gaussian inter-
dye displacement is satisfied. Second, what is the impact
of linker length? Third, what is the role of dipole motion
in FRET measurements? We answer these questions in
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the context of a simulated smFRET experiment. Our
results shed light on the past assumption that the dy-
namic shift induced by the dyes is due to the accessible
volume of the dye. [13, 14] In reality, the dynamic shift
has to do with the full state dynamics of the dyes, both
translational and orientational.

A. Confocal smFRET

A time-resolved confocal smFRET experiment uses the
FRET phenomena by attaching fluorescent dyes to a
molecule of interest by continuously exciting the donor
molecule and measuring the resulting emitted light; one
may estimate the FRET efficiency and, from that, esti-
mate the distance between the molecules.

The estimation of FRET efficiency is done in two
ways deemed intensity based FRET and lifetime based
FRET.[4, 48] Both methods may be used in time-resolved
confocal smFRET, and indeed, the subject of this paper
concerns the relationship between the two.

The experiment is carried out by diluting the sam-
ple of interest so that, on average, less than one
molecule of interest lies within the confocal volume of the
microscope.[4, 48] By freely diffusing through the confo-
cal volume, the attached donor dye becomes repeatedly
excited, and the resulting fluorescence is measured. The
random amount of time spent within the confocal vol-
ume is termed a burst time due to the burst of photons
seen in the measurement process. Moreover, by recording
the time between the laser pulse and measurement, one
obtains the lifetime measurement [48]. The lifetime mea-
sures how long the molecule remains excited, a quantity
that will change in the presence of other molecules.

A burst time is defined as the amount of time the
molecule diffuses through the confocal volume. Dur-
ing this time, the inter-photon arrival time decreases
sharply from the background level. Through this stochas-
tic time frame, measurements are made and one ob-
tains a sample of lifetimes and photons by which the
FRET efficiency and lifetime distribution may be esti-
mated. By collecting multiple burst samples, one ob-
tains the joint FRET-lifetime distribution. During each
burst, the donor molecule repeatedly enters an excited
state wherein it may fluoresce, transfer energy via the
FRET mechanism, or relax due to some other relaxation
pathway. We refer to the event of excitation and the fol-
lowing process dictating the observation as an excitation
event. In simple terms, a burst time will give a data
point in the FRET-lifetime distribution and represents
multiple photons. Whereas an excitation event gives the
color and lifetime of one photon.

B. FRET Model as a Continuous-Time Markov
Chain (CTMC)

Consider two completely static dyes with normalized
dipole moments µA ∈ S2 and µD ∈ S2 for the acceptor
and donor, respectively. Further, let the inter-dye dis-
placement vector be r ∈ R3. The energy transfer rate is
defined in Eq. (1),

kET (r) = kD

(
R0

∥r∥

)6

, (1)

where kD is the fluorescence decay time for the donor
dye, and R0 is a physical parameter called the Förster
radius where the probability of energy transfer is 0.5
[2, 4, 17, 41]. Note that the energy transfer rate in-
creases dramatically as the distance decreases and vice
versa as the distance increases. However, no matter the
distance, no energy transfer can happen if µD, µA, and
r̂ are mutually orthogonal. [49, 50] The Förster radius
can be written as R6

0(t) = Cκ2(t) where C is a constant
depending on the environment surrounding the dye. The
parameter κ2(t) is the dipole orientational factor

κ(t) = (µD(t) · µA(t))− 3(r̂ · µD(t))(r̂ · µA(t)) (2)

with r̂ = r
∥r∥ .[51] . Since the dipole moments are known

to reorient on timescales faster than the energy exchange
rate[50, 52], kappa square is treated as time-dependent.
This is in contrast to previous models wherein the dipole
moment is chosen from the equilibrium distribution of the
rotational diffusion. [41, 53, 54] In this model, the initial
distribution of the dipoles is chosen according to the equi-
librium distribution, but rotational processes evolve dur-
ing the energy transfer. This is vital because the FRET
efficiency cannot be evaluated in terms of an evaluation
of the energy transfer rate at a specific time but rather
as dependent on the history of the κ2 process using the
fact that the transfer times at a time T > 0 of a non-
homogeneous CTMC are exponential with rate

∫ T

0
k(s)ds

[55–58] therefore the probability a donor photon is flu-
oresced before energy transfer, termed the FRET effi-
ciency, at time T is given by

E(T ) =
∫ T

0
kET (s)ds∫ T

0
kET (s)ds+ kDT

. (3)

In this way, the FRET efficiency process, E(t), is non-
Markovian. It is important to note that each excita-
tion event’s fluorescence process will still be Markovian.
As noted in [53], the inter-arrival time for the photon
count process need not be exponentially distributed.[59]
Therefore, the photon arrival process cannot be seen as
a time-homogeneous Poisson process in contrast to pre-
vious common assumptions.[3, 23, 60–62] Depending on
the rate at which the dyes reorient, each vector may be
treated as uniformly distributed on the unit sphere or a
cone.[53] In this case the average value of κ2 is given by
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FIG. 1: Representation of FRET by CTMC.
Comparison of the CTMC states with the Jablonski

diagram for the FRET process.

2
3 .[1] This is referred to as the dynamic averaging regime
[50, 51, 53].

Using the fact that exponential random variables
can well model fluorescence times [63] and account-
ing for the time dependence of the Förster radius on
κ2 the energy transfer process in FRET is modeled
as a time-inhomogeneous continuous-time Markov chain
(CTMC)[56, 57], illustrated in Figure 1, with rate matrix
defined in (4);

Q(t) =

−(kD + kET (t)) kET (t) kD 0
0 −kA 0 kA
0 0 0 0
0 0 0 0

 , (4)

where kD is the Donor fluorescence rate, kA is the accep-
tor fluorescence rate, kET is the FRET energy transfer
rate. The state space is defined as S = {D,A, FD, FA},
where D is the donor position, A is the acceptor position,
FD is the donor fluorescence, and FA is the acceptor flu-
orescence.

Note that if r = 0, the CTMC is reduced to a two-state
system transitioning between states A and FA with rate
kA.

Assuming the dynamic averaging regime, one may eas-
ily derive the common time-homogeneous FRET effi-
ciency. Observation of an acceptor photon only occurs
when energy transfer occurs, i.e., if we have a transition
from D → A. Let τD and τET be the transfer times of
D → FD and D → A respectively. Then using Equation
3 one obtains,

E(t) = P(min(τD, τET ) = τET )

=

∫ t

0
kET (t)∫ t

0
kET (t) + kDt

=
kD(R0

r )t

kD(R0

r )t+ kDt

=
1(

r
R0

)6
+ 1

.

Therefore, the theoretical time-homogeneous FRET ef-

ficiency is given by

E =
1(

r
R0

)6
+ 1

. (5)

One may approximate this value using two methods:
intensity-based FRET and lifetime-based FRET [41, 48].
For intensity-based FRET, the measurements are counts
of observed photons from each dye. Effectively, the ex-
periment measures the probability of success of a bino-
mial random variable with a probability of success p given
by the FRET efficiency, E . The best estimator in the ab-
sence of experimental corrections is given by the number
of successes observed divided by the total number of tri-
als, denoted in Equation (6);[31, 41, 64–66]

EI =
IA

IA + ID
. (6)

For lifetime-based FRET, consider

E + P (min(τD, τET ) = τD) = 1.

Noting that since P (τD > t|min(τD, τET ) = τD) ∼
exp(kD + kET ) [57], the FRET efficiency can be calcu-
lated in terms of the lifetimes,

E = 1− τ ′D
τD

, (7)

where τ ′D = (kD + kET )
−1 is the lifetime of the donor in

the presence of the acceptor, and τD = k−1
D is the lifetime

in the absence of the acceptor. Hence, the measurements
are observed lifetimes and an estimate for the mean life-
time of the donor, τD. The FRET efficiency is estimated
by approximating the mean, and hence the rate, of this
exponential random variable [48].

C. The Dynamic Shift

Consider a sample drawn from a population with a dis-
tribution of fluorescence rates K(x) such that the prob-
ability of an individual having a specific rate is given by
the distribution π(x). Then the average lifetime is

τ = E[τ ] =
∫
Rd

E[τ |K(x)]dπ(x) =

∫
Rd

1

K(x)
dπ(x). (8)

However, the lifetime resulting from the average rate is
given by

τ =
1

E[K(x)]
=

1∫
Rd K(x)dπ(x)

. (9)

Therefore, by Jensen’s inequality [67], using the fact that
ϕ(x) = 1

x is convex for x ∈ [0,∞), it must be that

τ =
1

E[K(x)]
≤ E

[
1

K(x)

]
= τ . (10)
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Consequently, the average lifetime for a mixture of states
will be greater than that of the associated average state.
This phenomenon is known as the dynamic shift.

We introduce a new quantitative definition of the dy-
namic shift ∆ for a point (E ′, τ ′) in the plane, given
by the signed distance from the point to the static line,
S = {(E , τ) : E = 1− τ} as shown in Figure 2.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

τ D
(A

)/τ
D

(0
)

FRET Efficiency,

0.1

0.2

0.3

S -Static FRET Line

S
M

- Static Moment Difference Line

FIG. 2: Visualization of the definition of the dynamic
shift using normalized values: S = {(E , τ) ∈ (0, 1)2 : E +
τ−1 = 0} in the bottom. The top figure is a visualization
of the moment difference dynamic shift. For the moment

difference We used Eτ = 1− τD(A)

τD(0)

.

One can find an expression for the dynamic shift using
standard analytic geometry. The formula in the normal-
ized lifetime case,

τD(A)

τD(0)
= τ , is given by

∆(E , τ) = E + τ − 1√
E2 + τ2

. (11)

The definition of the dynamic shift becomes the signed
length of the orthogonal projection of the point onto the
static line - how much it deviates from the static line. Un-
der the constraint that the FRET - lifetime pair resides
within the unit square, this implies that the dynamic shift
has extreme values at ± 1√

2
at (1, 1) and (0, 0). This def-

inition provides a means by which each data point from

a smFRET experiment may be assigned a dynamic shift
value, and the resulting distribution may be examined.
The average dynamic shift can be seen as an average de-
viation from the static line. With two state transitions,
this definition agrees with the definition present in [13].
Furthermore, when the average dynamic shift is 0, one
may use the dynamic shift distribution to quantify shot
noise inherent in the measurements.

Another way to view the dynamic shift introduced in
[13] is the moment difference approach. In this method,
one investigates the behavior of the difference between
the first and second moments of the FRET distribution,
E[E(1 − E ]) = E[τ(1 − τ)]. In this way, the effects of
multiple states are linearized, while the static line is non-
linear. In this case, the dynamic shift can be seen as a
consequence of Jensen’s inequality but for concave func-
tions. When dynamic mixing is present in the sample,
the moment difference should fall below the static line of
Eτ (1 − E). Note that when this difference is negative, it
implies that the covariance between Eτ and E is larger
than the average of E . This can occur from shot noise or
when the lifetime distribution has a large variance but
maintains the same mean. Conditions for this to occur
are discussed in Section III B To define the dynamic shift
from the static moment difference line, one again takes
the distance from the point to the static line. The vector
between the point and the static line with a length equal
to the moment difference dynamic shift will be orthog-
onal to the tangent line of the static line at the point
closest to the point.

The dynamic shift introduced in [13] considers an un-
derlying distribution dependent on two separate states.
Consider two FRET efficiency states denoted by Ei, i =
1, 2 with equal transition rate between the states λ for
simplicity. Such a two-state system provides valuable
insight into the nature of the dynamic shift. When
two states are separated on long time scales, λ << 1,
the dynamic shift is slight due to the small amount of
mixing during a burst or sample. As the two states
mix, corresponding to an increase in λ, an arc forms
between the static FRET-lifetime coordinates, following
(1 − E1 − E2)E − E1E2. As λ → ∞, this process culmi-
nates in a point mass FRET-lifetime distribution with a
dynamic shift at the maximum of this arc. Therefore,
the dynamic shift can be seen as a metric of the amount
of mixing between states. Two-state transition systems
can be used to understand the transition rates between
stable states in protein conformational dynamics. For
the current purpose, it provides a convenient method for
interpreting the dynamic shift induced by the dyes. The
dynamic shift will most readily be present when there are
mixing states, and understanding the influence of mixing
between an uncountable number of states is of current
interest. It will be shown in Section III that the dy-
namic shift induced by dye dynamics can be viewed as
a consequence of the fluctuations in the energy transfer
rate during the FRET process. Under common circum-
stances, the energy transfer rate can be approximated
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by a two-state system corresponding to the modes of the
distribution, essentially leading to a quickly transitioning
two-state system.

II. STOCHASTIC MODELS OF
FLUORESCENCE DYNAMICS

This section presents several models of stochastic fluo-
rescence dynamics related to the smFRET dynamic shift
and associated molecular probes. In this way, estimation
of the mixture of states, π(x) as seen in Section IC, is
accomplished. Figure 3 shows the basic coordinate ex-
pression for the dye motion.

FIG. 3: Cartoon showing the coordinate references for
the processes. The translational process is expressed in
both Cartesian and polar coordinates with ϕt the az-
imuthal coordinate, θt the polar coordinate, rt the radial
coordinate, (xt, yt, zt) standard Cartesian coordinates, µt

the dipole orientational process

Throughout, the dynamics are assumed to evolve on
different timescales. Letting TP , TD, TO represent the
timescales of protein dynamics, dye translational dynam-
ics, and dipole orientational dynamics. The order of
timescale separation assumed in this work is given by
TP >> TD >> TO. Further, as in [53], it is assumed
that the orientation process and the translational pro-
cess are independent processes. Note that this is an ex-
tremely common assumption since the independence of
κ and r dynamics is implicitly assumed whenever the av-
erage κ value is used and whenever static κ distributions
are employed. [68] Moreover, to provide a clear and suc-
cinct picture of the influence of dye dynamics on FRET
measurements, the timescale TP is not considered in the
current discussion. However, an extension of this analysis
to include this timescale is in development.

A. Spring Models

The simplest possible model to describe a stationary
mean-reverting process is an Ornstein - Uhlenbeck (OU)

process.[69] This physically represents an overdamped
harmonic oscillator subject to noise.[70] The OU process
is a Gauss-Markov process and, therefore, provides a sim-
ple model for thermal fluctuations of the fluorescent dyes.
The equation of motion for the state vector Xt ∈ R3 is
given by the stochastic differential equation,

dXt = K(Xt −Xeq)dt+ σI ◦ dBt, (12)

where K = [ki,j ]
3
i,j=1 is a matrix of spring constants.

The notation ◦dBt denotes the use of Stratonovich
integration.[71] We refer to systems such that the spring
matrices can be written in the form K = kI3×3,
as isotropic springs. Otherwise, the system is called
anisotropic.
Both isotropic and anisotropic spring systems with a

diagonal spring matrix are considered. The spring co-
efficients are calculated using the linker chemistry. Uti-
lizing the vibrational frequency of a C − C bond, we
find that the spring constant for a single C − C bond is
k = 1010N/nm.[72] Therefore, a system of N ≥ 1, C−C
links is treated as a system of springs in series. Therefore

1

keff
=

N∑
i=1

1

k
→ keff = k

k

N
.

Finally, to find the length of the linker, we investigate the
equilibrium bond length, L, in a C−C−C link. Using the
law of cosines, we find that 2L =

√
2l2 − 2l2 cos θ with l

being the length of a C−C bond. Therefore, the effective
length in the linker for each link can be calculated using
l = 1.54Å and θ = 109.5◦.
In the isotropic case, illustrated in Figure 4A, the

spring matrix is given by keffI3×3. This provides a sym-
metric three-dimensional Gaussian as the stationary dis-
tribution for the isotropic spring.[69] It can be seen in
[70, 73] that the variance of this distribution will be given
by Σ = σ

keff
I3×3.

In the anisotropic case, illustrated in Figure 4C, we
use a diagonal spring matrix with two entries being pkeff
and the third being keff with p ∈ (0, 1). Therefore, the
stationary distribution is an ellipse with major axes de-
termined by the entries of the spring matrix.
This planar freedom in the anisotropic case can be used

to investigate the influence of the orientation of the sta-
tionary distribution on the resulting dynamic shift. Such
a scenario is exemplified in the case when the planes
formed by the major axes of each stationary ellipse are
mutually orthogonal. Since the stationary distribution
for the isotropic case is a sphere and is perfectly sym-
metric, this can only arise in the anisotropic case.
Furthermore, these models have the added benefit of

having an analytical expression for the inter-dye displace-
ment, espeically in the isotriopic case. Sine the coordi-
nates will be Gaussian distributed the distance between
them is simply Reighley distributed. [64] This distribu-
tion is unimodal, and therefore the only mixing present is
due to the variance of the stationary distributions. This
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FIG. 4: Dye model trajectories and resulting FRET efficiency vs normalized mean fluorescence lifetime and
moments difference for A-B) Isotropic Spring, C-D) Anisotropic Spring, E-F) Elastic Pendulum. G) Sample

trajectory of a spherical Brownian motion on the unit sphere. Such processes are used to model the diffusion of the
electric dipole moment. H) FRET efficiency vs normalized mean fluorescence lifetime and moments difference when
the dipole orientation for donor and acceptor is included in the FRET process during the Elastic Pendulum model.

mixing is, therefore, strongly dependent on the flexibility
of the dyes, and as seen above, the variances in their po-
sitions when modeling the spring constant according to
dye linker chemistry are quite small.

B. Elastic Pendulum Model

The next model for the dye linker dynamics takes
a stochastic geometric mechanics approach. Consider
the motion of a rigid body attached to a spring that
is free to move in space. This system forms an elastic
pendulum.[74] The following system of Langevin equa-
tions describes the motion of a point mass elastic pendu-
lum system subject to white noise;


drt = −kr(rt − req) +

1
rt
dt+ σr ◦ dBr

t

dθt = −kθ sin (θt) +
σ2
θ

r2t tan θt
◦ dBθ

t

dϕt =
σϕ

rt sin (θt)
◦ dBϕ

t .

(13)

Importantly, the system is considered in spherical co-
ordinates. The radial dynamics, rt evolve according to
the spring dynamics explained in Section IIA, with slight
alterations due to the change of coordinates. The angular

parts of the motion are given by the standard nonlinear
pendulum force in the polar direction θt and free diffusion
in the azimuthal direction ϕt. Figure 4 shows a sample
dye trajectory.

The flexibility in the angular components is remi-
niscent of the wobble in a cone model used in previ-
ous investigations[44], and angular flexibility can be ex-
plained via the angular flexibility of C − C bonds them-
selves. However, unlike the classical wobble in a cone
model, thermal noise and dye linker chemistry drive the
dynamics and present a purely stochastic system. More-
over, by varying the parameters used, the system shows
various behaviors.

Moreover, this model presents a possible explanation
for the dynamic shift induced by dye motion due to the
non-Gaussian inter-dye distributions, as shown in
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FIG. 5: Histogram of inter-dye distances for the elastic
pendulum model during an excitation event.

This bimodality presents a mixing of two distinct states
that are frequently needed to present a dynamic shift.
Further, this provides a much larger change in inter-dye
displacement than the spring models, which, as men-
tioned in Section IIA, do not possess any strong range of
translational motion.

C. Orientational Dynamics

The final consideration involves the orientational dy-
namics of the electric dipole moments of the dyes. As dis-
cussed in Section I, the Förster radius is dependent on the
κ parameter, which is dependent on the mutual orienta-
tions of the electric dipole moments µA, µD and the inter-
dye displacement unit vector R̂. Typically, κ2 is taken as
the mean value of 2/3 when the unit vectors are consid-
ered uniformly distributed on the sphere.[49, 50, 68] This
assumption ignores the temporal aspect of the fluorescent
process. Since dyes reorient on timescales faster than flu-
orescent lifetimes, the energy exchange rate changes dur-
ing the FRET process. This changes the original CTMC
model to a time-inhomogeneous CTMC, and thus, the
transfer rates are dependent on the time integral of the
infinitesimal transfer rates. [55–58]

To incorporate the influence of orientational dynamics
on the lifetime distribution and FRET efficiency, consider
the dipoles to be fixed to a reference frame of some rigid
body with tensor of inertia I. The rigid body of the dye
will be subjected to random torques and, therefore will
reorient according to the Euler equations[74, 75]{

Idωt + ωt × Iωt = −νωt + dWt

ωt = dΦt
(14)

where dWt is a spherical Brownian motion and Φt is the
angular position vector. Assuming the dye is overdamped
and hence dωt = 0, one obtains the simplified equations{

ωt × Iωt = −νωt + dWt

ωt = dΦt.
(15)

Making the assumption that the dye is spherical and
therefore the inertia tensor may be replaced with a scalar

value [74] and using the fact that v×v = 0 for any vector
v we obtain the simple formula

νdΦt = dWt (16)

and hence, the dipole diffuses according to a spherical
Brownian motion. Spherical Brownian motions can be
expressed in terms of the Langevin equations below [76,
77]

{
dθt =

σ2
θ

tan (θt)
dt+ σθ ◦ dBt

dϕt =
σϕ

sin θt
◦ dBt

(17)

The rotational diffusion coefficients depend on the hy-
drodynamic radius of the dye Rh by the classical relation
D = 8πνR3

h, where ν is the dynamic viscosity of the sur-
rounding fluid. A sample trajectory is shown in Figure
3.
Note that the stationary distribution for such a system

is the uniform distribution, providing an ideal starting
stochastic process to test the time-dependent behavior
of orientational dynamics.[71, 75] The key idea is that
the excitation of the fluorophores provides a single ini-
tial κ value. This value then needs to evolve back to
equilibrium during the FRET process. The relaxation
effects are the object of interest, especially with regard
to lifetime duration. The notion that κ may be close
to 0 for the entire FRET process for one excitation but
higher for another in the same sampling time provides
an additional source of variance in the lifetime distribu-
tion. This should depend on the rotational diffusion of
the dipole moment, with faster reorientation causing an
averaging out effect as mentioned in [50].

III. SOURCES OF OBSERVED DYNAMIC
SHIFT

A. Dye Configuration

This section compares the dye models mentioned in
Section II. First, inspecting the joint FRET-lifetime dis-
tributions using the contour plots and marginal his-
tograms seen in Figure 4, one can see the influence of
the differing models. These FRET-lifetime distributions
were generated by simulating the above-mentioned mod-
els in a confocal smFRET environment. As can be
seen, the spring models show similar characteristics to
the anisotropic model, which shows slightly more dy-
namic shifting. In addition, the elastic pendulum model
produces a noticeable shift where the bulk of the dis-
tribution lies off of the static line. Despite the dy-
namic mixing involved in the purely translational elas-
tic pendulum model, the dynamic shift produced is still
not representative of experimental observations. Only
through the addition of the orientational motion and
time-inhomogenous energy transfer rates does the dis-
tribution show the hallmark dynamic shift in both the
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moment difference as well as direct FRET-lifetime distri-
bution.

The dynamic shift distributions of each dye configura-
tion are calculated using the definition of the dynamic
shift shown in Equation (11). It has been known from
experimental data that the average dynamic shift of dye
motion is µ(∆) ≈ 0.2.[13] Using this quantity, the aver-
age dynamic shift for the associated models is examined
to determine the model that captures the appropriate
mean dynamic shift. The comparison of the dynamic
shift distributions is shown in Figure 6.

FIG. 6: Linear Dynamic shift, d, histogram comparison
of dye models

In addition, these simulations have no burst noise from
background radiation, as this could potentially cloud the
impact of the dye motion.[62] The noise is solely from
the experimental photon loss considerations and the dye
motion as dictated by the models and simulation meth-
ods. Therefore, the only source of dynamic shifting must
be from the dye models.

Curiously the dynamic shift densities shown in Figure
6 exhibit similar variances but differing mean dynamic
shift values, as seen in Table I. While the elastic pen-

TABLE I: Dynamic Shift: Mean and standard
deviation of the dynamic shift for each model in Figure

6.

Model µ(∆) σ(∆)
Isotropic Spring 0.10 0.01

Anisotropic Spring 0.01 0.01
Elastic Pendulum κ ≈ 2/3 0.12 0.01

Elastic Pendulum Dynamic κ 0.20 0.10

dulum model does not completely capture the mean dy-
namic shift, with the addition of a dynamic κ2 value, the
proper dynamic shift appears. This is in stark contrast
to previous suggestions that the dynamic shift is a result
of the accessible volume of the dye. Despite the elas-
tic pendulum having an accessible volume comparable to

those found in all-atom molecular dynamic simulations
and exhibiting dynamic mixing between two states, the
resulting dynamic shift is less than expected. This sug-
gests that the inclusion of time-inhomogeneities in the
Förster radius due to orientational factors is essential to
the description of the dynamic shift.
It is important to note that the spring models can be

made to incorporate a dynamic κ2 parameter. However,
the model parameters based on linker composition pre-
vent these models from being used in earnest, as the ac-
cessible volumes are smaller than physically reasonable.
This can be seen by investigating the variance of their as-
sociated stationary distributions. As mentioned in Sec-
tion IIA, the variance along each axis in the isotropic
case will be σ/keff , or KBT/γkeff , where γ is the local
friction. This produces a stationary distribution with a
3 standard deviation radius of less than an Angstrom.

B. κ2 Dynamics

A chief consideration brought to attention in Section
IIIA is the influence of κ2 dynamics on FRET lifetime
pairs. The key issue in incorporating κ2 dynamics into
FRET uncertainty quantification has been to assess κ2 as
a stationary object during energy transfer. This is done
by considering κ2 as being chosen from its equilibrium
distribution, assuming that it follows a discrete state
Markov chain, or simply using the 2/3 approximation.
[53, 78–80] From there, one can use the mean and stan-
dard deviation in uncertainty quantification.[49, 50, 68]
However, these approximations ignore the time inhomo-
geneous nature of the FRET process, as mentioned in
Section IB. Notably, the probability of a donor fluores-
cence event, as shown in Section IB, is dependent on the
integral of the energy transfer rates as well as the lifetime
distribution. [55, 56, 58, 81] While the use of an ergodic
approximation might mitigate these concerns, this relies
on the convergence of the long run time average to the
long run spatial average. The short time span involved
in the FRET process, especially in slow rotational dif-
fusion regimes, should not be considered long enough to
invoke such an approximation. Furthermore, this miti-
gation ignores the dependence of the energy transfer rate
and FRET efficiency on the history of the κ2 process.
As seen in Section IB, the energy transfer rate is de-
pendent on the integral of the κ2 path. For example,
in Figures 7A and B, the second (red) trajectories have
similar mean values after the 1ns run, with path A hav-
ing the larger. However, if one were to investigate the
energy transfer rate at time 0.5 one would find that the
probability of energy transfer is much lower for path B
rather than being similar to path A. One can see how
this integral fluctuation may be reduced in the presence
of fast dyes. As shown in Figure 7C, the rapid oscil-
lations induced by the swift rotational diffusion of the
dyes produce highly clustered κ2 trajectories. However,
as can be seen in the associated average κ2 distribution in
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FIG. 7: Comparison of κ2 trajectories for three common cases. Figure A− C shows the sample paths of κ2 during
an excitation event, these can be seen as four realizations of κ2 during the same burst. Each path is representative
of a single energy transfer event. Figures D − F show the associated distribution of average κ2, the red vertical lines
in figures D − F are the isotropic 2/3 average, where the black lines are the mean of the path average. The black
lines in Figures A− C, for all excitation events in a burst. Figures A and D show a pair of dyes for which the

rotational diffusion is only an order of magnitude greater than the translational diffusion of the dye. Figures B and
E show the sample behavior when one dye has a rotational diffusion three orders of magnitude greater than

translational and one dye one order of magnitude greater. Finally, Figures C and F show the case in which both
dyes have rotational diffusions three orders of magnitude greater than translational.

Figure 7F, the resulting average distribution becomes bi-
modal. This bimodality can be seen in the trajectories in
which the oscillations can vary between smaller values or
larger values. Notably, this is heavily dependent on the
radial-dipole dot product term in the definition of κ2.
Furthermore, with the decrease in rotational diffusion,
the κ2 process predictably oscillates much slower. This
yields trajectories such that larger values are maintained
for longer. These larger stretches of high κ2 values can
lead to much shorter donor lifetimes, but similarly, this
also leads to longer stretches of small κ2 values. Overall,
slower rotational diffusion will show a larger temporal
correlation. Hence, the stationary distribution will play
a much more important role, since the κ2 trajectory is
not as likely to change as drastically from its initial value.

The skew of the mean κ2 value shows the flaw in the
averaging assumption. While the mean κ2 average is in-
deed 2/3, the most common values for the mean κ2 are
below this value. In fact, one can see that out of the three
distributions of average κ2 the only one in which the most
common value is 2/3 is Figure 7E, wherein as mentioned
above, the temporal fluctuations of the κ2 path will play
a larger role due to their larger time inhomogeneity than
the paths in Figure 7A and 7C.

The dynamic shift produced by dye motion is then a
product of the variability of the κ2 trajectories. This tem-
poral inhomogeneity during the energy exchange process
provides the crucial mixing element to significantly slow
the the average sampled donor lifetime. While it can be

seen in Figure 4 that inter-dye radial displacement dy-
namics can produce a slight dynamic shift, the mixing
is not strong enough to produce the lifting seen by con-
sidering the direct change in energy transfer rate caused
by rotational dynamics. Figure 7D- 7E can be seen as
representative of the average κ2 values during a single
burst. If one simplifies the path-based description above
to these distributions, it is simple to see that in the case
of two rapidly rotating dyes, the bimodality of the distri-
bution provides two populations of energy transfer rate.
The switching between the two during the burst provides
a direct comparison to the two-state systems investigated
in [13, 14]. However, it must be stressed that the path-
by-path inhomogeneity of the FRET process is crucial to
the analysis. While the average values shown can be rep-
resentative of normalized time integrals, one must con-
sider that the plots shown in Figure 7 each last for one
nanosecond, and therefore do not capture the stopping
time of fluorescence or energy transfer. As noted, the
time-dependent FRET efficiency E(t) will vary path-by-
path, producing the observed lifetime distribution.

IV. DISCUSSION

From the above results, it has been shown that the
dynamic shift resulting from dye motion is not as simple
as previously thought. By presenting the first physics-
based model for fluorescence dynamics, incorporating dye
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linker chemistry and fluorescent dye composition, it has
become clear that the time-inhomogeneous nature of the
Förster radius is an essential part of the dynamic shift.
This is shown by noting that models with proper accessi-
ble volumes do not demonstrate experimentally observed
dynamic shifts and noting that the time-inhomogeneous
nature of the FRET process depends on the path space
dynamics of κ2 trajectories. Furthermore, it was shown
that the dynamics of κ2 trajectories change with the se-
lection of fluorescent dyes used, with common situations
such as an organic dye paired with a fluorescent protein
exhibiting noticeable differences from a pair of organic
dyes. While the average κ2 stays consistent with the 2/3
isotropic assumption, the fluctuations during the FRET
process cause fluctuations in the FRET-lifetime distri-
bution during the burst. These fluctuations provide a
source of dynamic mixing and, hence, a dynamic shift.

Additional considerations of dye orientational dynam-
ics are not here considered due to the added complexity.
In this work the results are for only spherical dyes, how-
ever, the rotational Langevin equations used in section
IIC can be utilized for arbitrary intertia tensors. While
this is simple to state, the resulting equations become ar-
bitrarily difficult to work with, as well as simulate. Such
an endeavor is beyond the scope of the present work, but
is highly encouraged as a future research direction since
different intertia tensors will produce different rotational
processes and hence different κ2 trajectories. Further
considerations into the coupling between translational
motion and orientational motion must also be consid-
ered. Unfortunately, the incorporation of this consider-
ation is distracting to the message presented above and
comes with unique challenges. While this is a common
assumption, as it is invoked each time dynamic averag-
ing is used for κ2 and is used in other theoretical analyses
such as [53] it is an important direction of consideration.
As noted in [68] there is a marked correlation between
translational motion and κ2. This can be further em-
phasized by the considerations of Sections II B and IIC
wherein one may couple the orientational rigid body dy-
namics and the dynamics of the elastic pendulum. Such a
system is known to have non-trivial coupling in the clas-
sical case that is likely to remain in the overdamped case.
These considerations, however, increase the difficulty of
analysis and simulation considerably as one must con-
sider the dynamics of a full state space model on the
non-compact, non-abelian Euclidean group SE(3) [75]

rather than independent processes as used here and in
[53].

Furthermore, the work shown here provides an impor-
tant framework for analyzing other sources of the dy-
namic shift. The algorithms used to simulate the ex-
periments can easily be scaled to incorporate another
timescale. This opens the door to studying the influence
of protein dynamics on the dynamic shift. By using reac-
tion coordinate Langevin models, one may investigate the
influence of differing energy landscapes on the dynamic
shift, as well as the influence of a more dynamic inter-dye
distance vector. This can be done swiftly due to the low
computational cost incurred by the stochastic simulation
of the FRET process. Additionally, by introducing a new
form for the dynamic shift, distributional quantities may
be accessed more readily, providing a new tool to analyze
the motion of underlying molecules of interest as well as
dye dynamics. Additionally, while our simulated exper-
iments were conducted in the confocal environment the
results carry over to TIRF measurements as well.

In conclusion, this work has demonstrated the impor-
tance of time-inhomogeneities in the FRET process and
their influence on resulting measurements. The path de-
pendence of the FRET efficiency, as well as the influence
of a time-varying Förster radius during the FRET pro-
cess, is shown to be non-negligible. In order to conduct
optimal uncertainty quantification for smFRET measure-
ments the path dynamics of κ2, not just the average val-
ues, must first be understood. Therefore, the anisotropic
behaviors of fluorescent dyes are of vital importance. By
gaining an understanding of the orientational dynamics
of fluorescent dyes, better uncertainty quantification for
FRET measurements can be done. Additionally, this re-
lationship between the full state space dynamics of a flu-
orescent dye and resulting smFRET measurements em-
phasizes the need for more stochastic geometric mechan-
ical considerations in fluorescent measurements and biol-
ogy.
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