
IEEE TRANSACTIONS AND JOURNALS TEMPLATE 1

Flow-Based Synthesis of Reactive Tests for Discrete
Decision-Making Systems with Temporal Logic

Specifications
Josefine B. Graebener∗, Apurva S. Badithela∗, Denizalp Goktas, Wyatt Ubellacker, Eric V. Mazumdar,

Aaron D. Ames, Richard M. Murray

Abstract—Designing tests to evaluate if a given autonomous
system satisfies complex specifications is challenging due to
the complexity of these systems. This work proposes a flow-
based approach for reactive test synthesis from temporal logic
specifications, enabling the synthesis of test environments con-
sisting of static and reactive obstacles and dynamic test agents.
The temporal logic specifications describe desired test behavior,
including system requirements as well as a test objective that
is not revealed to the system. The synthesized test strategy
places restrictions on system actions in reaction to the system
state. The tests are minimally restrictive and accomplish the test
objective while ensuring realizability of the system’s objective
without aiding it (semi-cooperative setting). Automata theory
and flow networks are leveraged to formulate a mixed-integer
linear program (MILP) to synthesize the test strategy. For a
dynamic test agent, the agent strategy is synthesized for a GR(1)
specification constructed from the solution of the MILP. If the
specification is unrealizable by the dynamics of the test agent,
a counterexample-guided approach is used to resolve the MILP
until a strategy is found. This flow-based, reactive test synthesis is
conducted offline and is agnostic to the system controller. Finally,
the resulting test strategy is demonstrated in simulation and
experimentally on a pair of quadrupedal robots for a variety
of specifications.

Index Terms—Test and Evaluation, Reactive Test Synthesis,
Formal Methods, Network Flows, Optimization

I. INTRODUCTION

Safety is imperative for a wide range of autonomous sys-
tems, from self-driving vehicles, to autonomous flight and
space missions, to assistive robotics, and medical devices. To
ensure safety, various challenges need to be addressed [1]. For
example, these systems need to be aware of their own state
and adapt their behavior in response to the environment, which
requires reasoning over both discrete and continuous inputs
and states. Deployment of these safety-critical autonomous

This work was supported in by the U.S. Air Force Office of Scientific
Research (AFOSR) under Grant FA9550-22-1-0333 and Grant FA9550-19-1-
0302.

∗ These authors contributed equally. Corresponding author: A.S. Badithela.
J.B. Graebener is with the Graduate Aerospace Laboratories of Cal-

ifornia Institute of Technology, Pasadena CA 91125 USA (e-mail:
jgraeben@caltech.edu).

A.S. Badithela, W. Ubellacker, A.D. Ames, R.M. Murray are affiliated with
Control and Dynamical Systems, California Institute of Technology, Pasadena
CA 91125 USA. (e-mail: {apurva, wubellac, ames, murray}@caltech.edu).

D. Goktas is with the Department of Computer Science, Brown University,
Providence RI 02912 USA (e-mail: denizalp goktas@brown.edu).

E.V. Mazumdar is with the Department of Computing and Mathematical
Sciences, California Institute of Technology, Pasadena CA 91125 USA (e-
mail: mazumdar@caltech.edu).

systems requires thorough testing, both in simulation and in
the operating environment, which is crucial to validating the
system’s performance. Typically, test cases are designed to
uncover bugs and corner cases in the system design that lead to
safety-critical errors. However, for these tests to be successful,
executing them requires setting up a test environment that is
consistent with the test case while also allowing for correct
system implementations. To make this process efficient, it
is equally important to automatically synthesize these test
environments for the desired test case, i.e., automatically
synthesize test environments that reveal corner cases.

In this work, we focus on synthesizing test environments
(e.g., placement of obstacles, agent strategies) to test the
discrete decision-making logic in an autonomous system. Tests
are synthesized from temporal logic descriptions of desired test
behavior which encodes aspects of the test unknown to the
system (test objective) in addition to the system requirements
(system objective). The test objective is meant to capture the
“challenging” aspect of the test in terms of high-level decision-
making, and is not revealed to the system. The purpose of
testing is to check that the system can take correct decisions
despite being given opportunities to fail, i.e., verify correct
decision in the presence of “hard tests” or corner cases. Our
framework routes the system to the test objective while also
giving the system freedom to make decisions and ensuring
that the test is fair (i.e., system can satisfy its requirements
if it makes correct decisions). Therefore, we synthesize tests
that minimally restrict the system’s decision-making to realize
the desired test behavior. Fig. 1 provides an overview of the
flow-based test synthesis framework.

A. Background on Test and Evaluation
Tests are typically manually designed by test engineers —

identifying challenging test cases and manually constructing
the test environments either from expert experience or failure
reports. Examples of this include the qualification tests in
the DARPA Urban Challenge, track testing by self-driving
car companies [2], [3], and constructing test scenarios in
simulation using tools such as CARLA [4] or Scenic [5],
for which test engineers either partially specify the scenarios
or recreate them from crash reports [3], [6], [7]. Due to the
time-intensive nature of this endeavor, automatically finding
challenging tests for safety-critical systems is an active area
of research [8], [9]. For self-driving vehicles, there is ongoing
effort to standardize the testing process [10], [11].

ar
X

iv
:2

40
4.

09
88

8v
1

 [
cs

.F
L

]
 1

5
A

pr
 2

02
4

IEEE TRANSACTIONS AND JOURNALS TEMPLATE 2

Fig. 1: Overview of the flow-based test synthesis framework which consists of three key parts: i) graph construction, ii) routing
optimization, and iii) test environment synthesis (e.g., reactive test strategy / test agent strategy, static obstacles).

Black-box optimization algorithms [12] and reinforcement
learning [13], [14] have been used to search over a specified
input domain to find a falsifying input that leads to a trajectory
that violates a metric of mission success. This metric can be
derived from formal temporal logic specifications [15]–[21]
or from control barrier functions [22]. However, falsification
algorithms typically require a well-defined test environment,
and find a falsifying trace by fine-tuning the parameters in that
scenario. The framework proposed in this paper is complemen-
tary to these approaches — our focus is on synthesizing high-
level strategies for the test environment, and continuous pa-
rameters of the synthesized test environment (e.g., continuous
pose values of test agents, friction coefficients, exact timing of
events) can be inputs to falsification algorithms for fine-tuning.

Typically, high-level choices of autonomous robotic systems
exhibit discrete decision-making [23], [24]. The use of linear
temporal logic (LTL) model checkers for testing has been
explored in [25]–[28]. In these works, counterexamples from
model-checking are used to construct test cases for deter-
ministic systems and are inconclusive if the system behavior
deviates from the expected test case. However, since robotic
systems are often reactive, and because we want to generate
tests without specific knowledge of the system controller, the
generated tests must be able to adapt or react to system
behavior at runtime. Our test synthesis procedure is gray-box
in the sense that it requires knowledge of a nondeterministic
model of the system but is agnostic to the high-level controller
of the system and is completely black-box to models and
controllers at lower levels of abstraction.

Adaptive specification-based testing using discrete logics
has been explored in [29]–[33]. Particularly in [29], an adap-
tive test strategy is synthesized using reactive synthesis [34]
from LTL specifications of the system and the fault model,
both of which are specified by the test engineer. This adaptive
test strategy ensures that the resulting test trace demonstrates
a fault if the system implementation is faulty according to
the fault model. However, these fault models must be care-
fully specified over the outputs of the system. While this is
incredibly useful for specifying and catching sub-system level
faults, it becomes intractable for specifying complex system-

level faults resulting from multiple outputs. Our test synthesis
framework is also specification-based and adaptive, but we
specify desired test behavior in the form of test objectives
instead of specifying system-level faults. Furthermore, in [29],
the adaptive test strategies are synthesized from fault models
that are designed for coverage goals corresponding to speci-
fication coverage, without accounting for the freedom of the
system to satisfy its own requirements. We seek to synthesize
reactive test strategies that demonstrate the test objective while
placing minimal restrictions on the system. The automata-
theoretic tools used in this paper build on concepts used in
correct-by-construction synthesis and model checking [35],
[36]. This background is covered in Section II.

In [37], testing of reactive systems was introduced as a game
between two players, where the tester and the system try to
reveal and hide faults, respectively. Similarly, in [38] the test
strategy is found by reasoning over a game graph to optimize
reachability and coverage metrics. Testing in cooperative game
settings has been explored in [39], [40]. However, the reactive
test synthesis problem we consider is neither fully adversarial
nor fully cooperative — a well-designed system is cooperative
with the test environment in realizing the system objective,
but since the system is agnostic to test objective, it need not
cooperate with the test environment in realizing it.

We consider test environments that can consist of the
following: static obstacles that restrict the system throughout
the test, reactive obstacles and a dynamic test agent that
is reactive to system behavior at runtime. In particular, we
leverage flow networks to pose the test synthesis problem as a
mixed-integer linear program (MILP). In recent years, network
flow optimization frameworks with tight convex relaxations
have led to massive computational speed-ups in solving robot
motion planning problems [41], [42]. Network flow-based
mixed integer programs have also been to synthesize playable
game levels in video games [43], which was then applied to
construct playable scenarios in robotics settings [44].

In previous work [45], we formulated this problem in a
semi-cooperative setting as a min-max Stackelberg game with
coupled constraints. Despite being defined over continuous
variables with an affine objective and affine constraints, the
prior formulation resulted in slow runtimes and did not guar-

IEEE TRANSACTIONS AND JOURNALS TEMPLATE 3

antee that the optimal solution would realize the test objective.
Furthermore, it could only reactively restrict system actions,
and did not characterize how to translate these restrictions to
the choice of a test agent strategy. In this work, we present a
simpler formulation of the routing optimization as an MILP,
which led to an improvement in runtime. Test strategies from
optimal solutions of the MILP are guaranteed to realize the
test objective in a least restrictive fashion. Finally, we present
a formal approach to restricting system actions in the form of
static/reactive obstacles and dynamic test agent strategies, in-
cluding a counterexample-guided approach to synthesize a test
agent strategy from the solution of the routing optimization.

B. Contributions
In this work, we study the problem of synthesizing a reactive

test strategy for a test environment for discrete decision-
making systems given a formal test objective, unknown to the
system under test. In particular, we ask whether such a test
strategy exists without making it impossible for the system to
meet its specification.

To obtain the main results of this paper, we first characterize
system and test objectives using a variety of specification pat-
terns commonly used in robotic missions [46]. We formalize
both the restrictiveness and the feasibility of a test strategy,
i.e., a system should have freedom to make decisions and
a correct system should be able to pass the test. Secondly,
these conditions are translated into a routing optimization on a
flow network to capture the requirement that all test executions
that satisfy the system objective should demonstrate the test
objective. For each test environment, we set up an MILP to
find cuts, corresponding to restrictions on system actions, on
the flow network. For static and reactive obstacles, the solution
of the MILP is realized in the form of an obstacle placement
test strategy. We prove that the optimal solutions to the MILPs
solve the aforementioned routing requirement. Third, in the
case of dynamic agents, we match the restrictions on system
actions to a test agent strategy via GR(1) synthesis [35],
[47]. Furthermore, we use a counterexample-guided approach
to exclude unrealizable solutions from the MILP until we
find a realizable test agent strategy. We prove that test agent
strategies synthesized in this manner exactly correspond to the
test strategy found from the MILP. In the extended version,
we prove that the routing problem is NP-hard via a reduction
from 3-SAT. Despite this, our framework can reliably handle
medium-sized problems with thousands of integer variables.
Empirical runtimes for parametrized problems are also pro-
vided.

Finally, the test synthesis framework is demonstrated on
simulated grid world settings and on hardware with a pair
of quadrupedal robots. For all experiments, our framework
synthesizes test strategies that place the fewest possible re-
strictions on the system over the course of the test either
by obstacle placement or a dynamic agent. In experiments
with reactive obstacles and dynamic agents, the reactive test
strategy results in a different test execution depending on
system behavior. Despite this, the system is always routed
through the test objective (e.g., being put in low-fuel state
or having to walk over challenging terrain).

II. PRELIMINARIES

This section introduces concepts from automata theory and
network flows that are relevant to this work.

A. Automata Theory and Temporal Logic

Definition 1 (Finite Transition System). A finite transition
system (FTS) is the tuple

TS := (S,A, δ, S0, AP, L),

where S denotes a finite set of states, A is a finite set of
actions, δ : S × A → S the transition relation, S0 the set of
initial states, AP the set of atomic propositions, and L : S →
2AP denotes the labeling function. We denote the transitions in
TS as TS.E := {(s, s′) ∈ S×S | if ∃a ∈ A s.t. δ(s, a) = s′}.
We refer to the states of TS as TS.S, and similarly denote
the other elements of the tuple. An execution σ is an infinite
sequence σ = s0s1 . . . , where s0 ∈ S0 and sk ∈ S is the
state at time k. We denote the finite prefix of the trace σ
up to the current time k as σk. A strategy π is a function
π : (TS.S)∗TS.S → TS.A.

Definition 2 (System). The system under test is modeled as a
finite transition system Tsys with a single initial state, that is,
|Tsys.S0|= 1. Furthermore, at least one of the system states is
terminal (i.e., no outgoing edges).

The system designers provide the states S, actions A,
transitions δ, and a set of possible initial conditions S0, set of
atomic propositions, APsys and a corresponding label function
Lsys : S → 2APsys . We require a unique initial condition
s0 ∈ S0 to synthesize the test. If the test designer wishes to
select an initial condition, then they can synthesize the test for
each s0 ∈ S0 and choose accordingly. In addition to APsys, the
test designer can choose additional atomic propositions APtest
and define a corresponding labeling function L : S → 2AP ,
where AP := APsys ∪ APtest. For test synthesis, the system
model is Tsys = (S,A, δ, {s0}, AP, L) is defined for the
specific initial condition s0 chosen by the test designer. The
terminal state is used for defining test termination when the
system satisfies its objective.

Assumption 1. Except for sink states, transitions between
states of the system are bidirectional: ∀(s, s′) ∈ Tsys.E where
s′ is not a terminal state, we also have (s′, s) ∈ Tsys.E.

This assumption is for a simpler presentation, and the
framework can be extended to transition systems without this
assumption (see Remark 7).

Definition 3 (Test Harness). A test harness is used to constrain
a state-action (s, a) pair of the system in the sense that the
system is prevented from taking action a from state s ∈ Tsys.S.
Let the actions AH ⊆ Tsys.A denote the subset of system
actions that can be restricted by the test harness. The test
harness H : Tsys.S → 2AH maps states of the transition system
to actions that can be restricted from that state.

In the examples in this paper, every state of the system has a
self-loop transition corresponding to stay-in-place action, but
the proposed framework does not require this. Note that in our
examples, AH does not contain self-loop actions.

IEEE TRANSACTIONS AND JOURNALS TEMPLATE 4

Definition 4 (Test Environment). The test environment con-
sists of one or more of the following: static obstacles, reactive
obstacles, and dynamic test agents. A static obstacle on
(s, s′) ∈ Tsys.E is a restriction on the system transition (s, s′)
that remains in place for the entire duration of the test. A
reactive obstacle on (s, s′) ∈ Tsys.E is a temporary restriction
on the system transition (s, s′) that can be enabled/disabled
over the course of the test. A dynamic test agent can occupy
states in Tsys.S, thus restricting the system from entering the
occupied state.

In this work, we synthesize tests for high-level decision-
making components of the system under test and therefore
model it as a discrete-state system. Linear temporal logic
(LTL) has been effective in formally specifying safety and
liveness requirements for discrete-decision making [48]–[50].
For our problem, we use LTL to capture the system and test
objectives.

Definition 5 (Linear Temporal Logic [36]). Linear temporal
logic (LTL) is a temporal logic specification language that
allows reasoning over linear-time trace properties. The syntax
of LTL is given as:

φ ::= True | a | φ1 ∧ φ2 |¬φ | ⃝φ | φ1Uφ2,

with a ∈ AP , where AP is the set of atomic propositions,
∧ (conjunction) and ¬ (negation) are the Boolean connectors
from which other Boolean connectives such as → can be
defined, and⃝ (next) and U (until) are temporal operators. Let
φ be an LTL formula over AP . We can define the operators
□ (eventually) and □ (always) as □φ = True Uφ and
□φ = ¬ □¬φ. For an execution σ = s0s1 . . . and an LTL
formula φ, si ⊨ φ iff φ holds at i ≥ 0 of σ. More formally,
the semantics of LTL formula φ are inductively defined over
an execution σ = s0s1 . . . as follows,

for a ∈ AP , si ⊨ a iff a evaluates to True at si,
si ⊨ φ1 ∧ φ2 iff si ⊨ φ1 and si ⊨ φ2,
si ⊨ ¬φ iff ¬(si ⊨ φ),
si ⊨⃝φ iff si+1 ⊨ φ, and
si ⊨ φ1Uφ2 iff ∃k ≥ i, sk ⊨ φ2 and sj ⊨ φ1, for all
i ≤ j < k.

An execution/trace σ = s0s1 . . . satisfies formula φ, denoted
by σ |= φ, iff s0 |= φ. A strategy π is correct (satisfies formula
φ), if the trace σπ resulting from the strategy satisfies φ.

Every LTL formula can be transformed into an equivalent
non-deterministic Büchi automaton, which can then be con-
verted to a deterministic Büchi automaton [36].

Definition 6 (Deterministic Büchi Automaton). A non-
deterministic Büchi automaton (NBA) [36], [51] is a tuple
B := (Q,Ω, δ, Q0, F), where Q denotes the states, Ω := 2AP

is the set of alphabet for the set of atomic propositions AP ,
δ : Q × Ω → Q denotes the transition function, Q0 ⊆ Q
represents the initial states, and F ⊆ Q is the set of acceptance
states. The automaton is a deterministic Büchi automaton
(DBA) iff |Q0|≤ 1 and |δ(q, A)|≤ 1 for all q ∈ Q and A ∈ Ω.

Remark 1. We use deterministic Büchi automata since each
input word corresponding to an execution should have a

unique run on the automaton. While there are several different
automata representations, deterministic Büchi automata are a
natural choice for LTL specifications.

A product of two deterministic Büchi automata, B1 and B2
over the alphabet Ω, is defined as B1⊗B2 := (Q,Ω, δ, Q0, F),
with states Q := B1.Q × B2.Q, initial state Q0 := B1.Q0 ×
B2.Q0, acceptance states F := B1.F × B2.F . The transition
relation δ is defined as follows, for all (q1, q2) ∈ Q, for all
A ∈ Ω, δ((q1, q2), A) = (q′1, q

′
2) where B1.δ(q1, A) = q′1 and

B2.δ(q2, A) = q′2.
The desired test behavior can be captured via sub-tasks

that are defined over atomic propositions AP . Table I lists
the sub-task specification patterns that are considered. These
specification patterns are commonly used to specify robotic
missions [46]. The desired test behavior is characterized by
the system and test objectives, defined over the set of atomic
propositions AP that can be evaluated on system states Tsys.S.

TABLE I: Sub-task specification patterns defined on atomic
propositions.

Name Formula

Visit
m∧
i=1

□ pi (s1)

Sequenced Visit □(p0 ∧ (□(p1 ∧ . . . □ pm))) (s2)

Safety □¬p (s3)

Instantaneous Reaction □(p → q) (s4)

Delayed Reaction □(p → □ q) (s5)

Definition 7 (Test Objective). The test objective φtest consists
of at least one visit or sequenced visit sub-task or a conjunction
of these sub-tasks. The Büchi automaton Btest corresponds to
the test objective φtest.

Definition 8 (System Objective). The system objective φsys
consists of at least one visit or sequenced visit sub-task.
The final visit proposition should be a terminal state of
the system. In addition, it can also contain some conjuction
of safety, instantaneous and/or delayed reaction, and visit
and/or sequenced visit sub-tasks. The Büchi automaton Bsys
corresponds to the system objective φsys. We say that the
system reaches its goal or that the test execution satisfies the
system objective if the system trace is accepted Bsys.

Typically, some aspects of a test are not revealed to the
system until test time such as testing the persistence of a robot
or prompting it to exhibit a difficult maneuver by placing
obstacles in its path. This is formalized as a test objective
which is not known to the system. In contrast, the system is
aware of the system objective, which captures its requirements.
For example, to test for safety, the system should know to
avoid unsafe areas (s3). To test a reaction, □(p → q), the
system needs to be aware of the reaction requirement (s4),
and the test objective needs to contain the corresponding
visit requirement □ p to trigger the reaction. Furthermore, the
test objective can contain standalone reachability (visit and/or

IEEE TRANSACTIONS AND JOURNALS TEMPLATE 5

sequenced visit) sub-tasks that are not associated with a system
reaction sub-task, but require the system to reach/visit certain
states. The test objective is accomplished by restricting system
actions in reaction to the system state.

In addition to the system objective, the system must inter-
act safely with the test environment. The system must also
obey the initial condition set by the test designer. For each
obstacle/agent of the test environment, the system controller
must respect the corresponding restrictions on its actions
(i.e., cannot crash into obstacles/agents). Furthermore, for
a valid system implementation, all lower-level planners and
controllers of the system must simulate transitions on Tsys.

Definition 9 (System Guarantees). The system guarantees
are a conjunction of the system objective, initial condition,
safe interaction with the test environment, and a system
implementation respecting the model Tsys.

Definition 10 (System Assumptions). The system assumes
that the test environment satisfies the following conditions:
A1. The test environment can consist of: i) static obstacles
(e.g., wall), ii) reactive obstacles (e.g., door), and iii) test
agents whose dynamics are provided to the system.
A2. The test environment will not take any action that will
inevitably lead to unsafe behavior (e.g., not restricting a system
action after the system has committed to it, test agents not
colliding into the system).
A3. The test environment will not take any action that will
inevitably block all paths for the system to reach its goal (e.g.,
restrictions will not completely the enclose the system or block
it from progressing to its goal).
A4. If the system and test environment are in a livelock, the
system will have the option to break the livelock and take a
different path toward its goal.

A correct system strategy satisfies the system guarantees
when the test environment satisfies the system assumptions.
This full system specification cannot always be expressed
as an LTL formula. This is because, in an LTL synthesis
setting, the system can assume that the test environment can
behave in a worst-case manner and will never synthesize a
satisfying controller. However, the system can assume that the
test environment will always ensure that a path to achieving the
system specification remains. For many examples, expressing
that a satisfying path exists is not possible in LTL.

Definition 11 (Specification Product). The specification prod-
uct is the product Bπ := Bsys ⊗ Btest, where Bsys is the
Büchi automaton corresponding to the system specification,
and Btest is the Büchi automaton corresponding to the test
objective. The states (qsys, qtest) ∈ Bπ.Q, where qsys ∈ Bsys.Q
and qtest ∈ Btest.Q, capture the event-based progression of the
test and are referred to as history variables.

The system reaching its goal would typically mark the end
of a test execution. However, the test engineer can also decide
to terminate the test if the system appears to be stuck or
enters an unsafe state. Tests that are terminated prematurely
might result in inconclusive results [52], so we rely on the test
engineer to determine the termination condition. We assume

T

I

I

S

T

I

(a) Example 1.

I1

S

T

I2

(b) Example 2.

Fig. 2: Grid world layouts for examples.

that the test engineer gives the system a reasonable amount of
time to complete the test. Upon test termination in state sn, we
augment the trace σ with the infinite suffix sωn for evaluation
purposes.

Remark 2. As tests have a defined start and end point,
we need to bridge the gap between the finiteness of test
executions and the infinite traces that are needed to evaluate
LTL formulae. Augmenting the trace with the infinite suffix
allows us to leverage useful tools available for LTL. Other
research on interpreting LTL over finite traces can be found
in [29], [53], [54].

Remark 3. The states of the specification product automaton
track the states of the individual Büchi automata, Bsys and Btest,
in the form of the Cartesian product to remember accepting
states of the individual automata, which will be necessary for
our framework (see Definitions 11, 19).

Example 1. The system under test can transition (N-S-E-W)
on the grid world as illustrated in Fig. 2a. The initial condition
of the system is marked by S, and the system is required to
visit one of the terminal goal states marked by T , φsys = □T .
The test objective is to observe the system visit at least one
of the I states before the system reaches its goal, encoded as
φtest = □ I .

Example 2. In this example, the system under test can
transition (N-S-E-W) on the grid world as illustrated in Fig. 2b.
The initial condition of the system is marked by S, and the
system objective is to visit terminal state T , φsys = □T . The
test objective is to observe the system visit states I1 and I2:
φtest = □ I1 ∧ □ I2. The corresponding Büchi automata are
illustrated in Fig. 3.

The synchronous product operator is used to construct a
product of a transition system and a Büchi automaton. In
particular, we will use this operator to construct the virtual
product graph and the system product graph (see Section III).

Definition 12 (Synchronous Product). The synchronous prod-
uct of a DBA B and a FTS Tsys, where the alphabet of B is the

IEEE TRANSACTIONS AND JOURNALS TEMPLATE 6

labels of Tsys, is the transition system P := Tsys ⊗ B, where:

P.S := Tsys.S × B.Q,

P.δ((s, q), a) := (s′, q′) if ∀s, s′ ∈ Tsys.S, ∀q, q′ ∈ B.Q,

∃a ∈ Tsys.A, s.t. Tsys.δ(s, a) = s′ and B.δ(q, Tsys.L(s
′)) = q′,

P.S0 := {(s0, q) | s0 ∈ Tsys.S0, ∃q0 ∈ B.Q0 s.t.
B.δ(q0, Tsys.L(s0)) = q},

P.AP := B.Q,

P.L((s, q)) := {q}, ∀(s, q) ∈ P.S.

We denote the transitions in P as P.E := {(s, s′) | s, s′ ∈
P.S if ∃a ∈ P.A s.t. P.δ(s, a) = s′}. An infinite se-
quence on P corresponds to a state-history trace ϑ =
(s, q)0, (s, q)1, . . . (s, q)

ω
n . We refer to (s, q) ∈ P.S as the

state-history pair and define the corresponding path to be the
finite prefix: ϑn = (s, q)0, (s, q)1, . . . , (s, q)n.

B. Network Flows

Definition 13 (Flow Network [55]). A flow network is a tuple
N = (V,E, (Vs, Vt)), where V denotes the set of nodes, E ⊆
V × V the set of edges excluding self-loops, Vs ⊆ V the
source nodes, and Vt ⊆ V the sink nodes. We assume unit
capacity for all edges. On the flow network N , we can define
the flow vector f ∈ R|E|

≥0 to satisfy the following constraints:
i) the capacity constraint

0 ≤ fe ≤ 1,∀e ∈ E, (6)

ii) the conservation constraint∑
u∈V

f (u,v) =
∑
u∈V

f (v,u),∀v ∈ V \ {Vs, Vt}, and (7)

iii) no flow into the source or out of the sink

f (u,v) = 0 if u ∈ Vt or v ∈ Vs. (8)

The flow value on the network N is defined as

F :=
∑

(u,v)∈E,
u∈Vs

f (u,v). (9)

III. PROBLEM STATEMENT

In this section, we will state the test environment synthesis
problem. The test engineer provides a system objective and
a test objective, which describes the desired test behavior.
Then, we find a reactive test strategy for which every test
execution that satisfies the system objective also satisfies the
test objective.

Definition 14 (Reactive Test Strategy). A reactive test strategy
πtest : (Tsys.S)

∗Tsys.S → 2AH defines the set of restricted
system actions at each state during its execution σ. For some
finite prefix s0 . . . si of execution σ starting from initial state
s0 ∈ Tsys.S0, πtest(s0 . . . si) ⊆ H(si) is the set of actions that
the system cannot take from state si. A test environment is
said to realize a reactive test strategy πtest if it restricts system
actions according to πtest.

(a) Bsys

(b) Btest

q0

q1

q2

q3

q4 q5

q6 q7

(c) Bπ

Fig. 3: Automata for Example 2. Yellow • and blue • nodes
in Bsys and Btest are the respective accepting states. In the
product Bπ , we continue to track these states for the system
and test objectives. States in the product Bπ that are accepting
to both objectives (e.g., q1) are also shaded yellow.

Let Σfin := (Tsys.S)
∗Tsys.S be the set of all finite prefixes

of system traces. At each time step k ≥ 0, a correct system
strategy πsys : Σfin → Tsys.A \ πtest(Σfin) must pick from
available actions at state sk. The resulting execution is denoted
as σ(πsys × πtest).

Remark 4. Note that the test environment externally blocks
system transitions, and as a consequence, restricts correspond-
ing actions that the system can safely take. When actions are
restricted by the test environment, the system strategy πsys
should select from the available actions at each state. Since
these restrictions can be placed during the test execution, the
system might have to re-plan and choose a different action
than originally planned.

Definition 15 (Feasibility of a Test Strategy). Given a test
environment, system Tsys, system and test objectives, φsys and
φtest, a reactive test strategy πtest is said to be feasible iff: i)
the test environment can realize πtest, ii) there exists a correct
system strategy πsys, and iii) any execution corresponding
to a correct πsys satisfies the system and test objectives:
σ(πsys × πtest) ⊨ φtest ∧ φsys.

Note that the test strategy is not aiding the system in
achieving the system objective; it only restricts system actions
such that the test objective is realized. That is, the system is
free to choose an incorrect strategy, in which case there are no
guarantees. Furthermore, the test strategy should allow the sys-
tem to make multiple decisions at each step of the execution,
if possible, as opposed to leaving a single allowed action. For
any system trace σ = s0s1 . . . , every finite prefix of σ maps
to a history variable q ∈ Bπ.Q. For each σ, we can define
a corresponding state-history trace ϑ = (s, q)0, (s, q)1, . . .,
where history variable q at time step i corresponds to the
prefix of s0 . . . si of σ. From now on, we will refer to σ and
the associated ϑ as the test execution, and clarify the context
if necessary.

Definition 16 (Restrictiveness of a Test Strategy). State-
history traces ϑ1 and ϑ2 are unique if they do not share any
consecutive state-history pairs. For a feasible πtest, let Σ be the

IEEE TRANSACTIONS AND JOURNALS TEMPLATE 7

set of all executions corresponding to correct system strategies,
and let Θ be the set of all state-history traces corresponding
to Σ. Let Θu ⊆ Θ be a set of unique state-history traces. A
test strategy πtest is least restrictive if the cardinality of Θu is
maximized.

Remark 5. Note that the set of all state history traces Θ can
be infinite. However, the set Θu is finite because: i) the system
has a finite number of states and the specification product has
a finite number of history variables, and ii) every state-history
trace in Θu is unique with respect to any other trace in Θu.

Problem 1 (Finding a Reactive Test Strategy). Given a high-
level abstraction of the system model Tsys, test harness H ,
system objective φsys, test objective φtest, find a feasible,
reactive test strategy πtest that is least restrictive.

The restrictions on system actions placed by the test strategy
can be realized in several ways in the test environment.
For example, a dynamic test agent, together with any static
obstacles, can be used to enforce the test strategy. This leads
to the second problem of synthesizing a reactive strategy for
a test agent to realize the test strategy. That is, at each time
step of the test execution, the test environment consisting of an
agent and static obstacles restricts the system actions according
to πtest.

Problem 2 (Reactive Test Agent Strategy Synthesis). Given
a high-level abstraction of the system model Tsys, test harness
H , system objective φsys, test objective φtest, and a test agent
modeled by transition system TTA. Find the test agent strategy
πTA and the set of static obstacles Obs that: i) satisfy the
system’s assumptions on its environment, and ii) realize a
reactive test strategy πtest that is least-restrictive and feasible.

IV. GRAPH CONSTRUCTION

To reason about executions of the system in relation to the
system and test objectives, we leverage automata theory to
construct the following graphs.

Definition 17 (Virtual Product Graph and System Product
Graph). A virtual product graph is the product transition
system G := Tsys ⊗ Bπ . Similarly, the system product graph
is defined as Gsys := Tsys ⊗ Bsys.

The virtual product graph G tracks the test execution in
relation to both the system and test objectives while the
system product graph Gsys tracks the system objective. We
will find the restrictions on system actions on G, while Gsys
represents the system’s perspective concerning the system
objective during the test execution. For each node u = (s, q) ∈
G.S, we denote the corresponding state in s ∈ Tsys.S as
u.s := s. Similarly, the state corresponding to v ∈ Gsys.S is
denoted by v.s := s. For practical implementation, we remove
nodes on the product graphs that are not reachable from the
corresponding initial states, G.S0 or Gsys.S0.

Definition 18 (Projection). We map states from G to Gsys
using the projection PG→Gsys : G.S → Gsys.S as

PG→Gsys(s, (qsys, qtest)) = (s, qsys). (10)

These projections help us to reason about how restrictions
found on G map to the system Tsys and the system product
graph Gsys. We can now define the edges on G that we can
restrict with the test harness as follows,

EH ={((s, q), (s′, q′)) ∈ G.E| ∀s ∈ Tsys.S,

∀a ∈ H(s) s.t. s′ = Tsys.δ(s, a)}.
(11)

Lemma 1. For every path (s, qsys)0, (s, qsys)1, . . . , (s, qsys)n
on Gsys, there exists at least one corresponding path on G.

Proof. Suppose there exists some qtest 0, . . . , qtest n ∈ Btest.Q
such that (s, (qsys, qtest))0, . . . , (s, (qsys, qtest))n is a path on
G. Then, by construction, there exists a path on Gsys where
(s, (qsys, qtest))k maps to (s, qsys)k for all 0 ≤ k ≤ n.

Paths on the virtual product graph G correspond to possible
test executions. We identify the nodes on G that capture the
acceptance conditions for the system and test objectives.

Definition 19 (Source, Intermediate, and Target Nodes). The
source node S represents the initial condition of the system.
The intermediate nodes I correspond to system states in which
the test objective acceptance conditions are met. Finally, the
target nodes T represent the system states for which the
acceptance condition for the system objective is satisfied.
Formally, these nodes are defined as follows,

S := {(s0, q0) ∈ G.S | s0 ∈ Tsys.S0, q0 ∈ Bπ.Q0},
I := {(s, (qsys, qtest)) ∈ G.S | qtest ∈ Btest.F, qsys /∈ Bsys.F},
T := {(s, (qsys, qtest)) ∈ G.S | qsys ∈ Bsys.F}.
In addition, we define the set of states corresponding to

the system acceptance condition on Gsys as Tsys := {(s, q) ∈
Gsys.S | q ∈ Bsys.F}.

Proposition 1. Every test execution corresponds to a path
ϑn = (s, q)0, (s, q)1, . . . , (s, q)n on G where (s, q)0 ∈ S. The
corresponding system trace σn satisfies the system objective,
σ |= φsys iff (s, q)n ∈ T. Furthermore, if σ |= φtest, then
the path ϑn contains a state-history pair (s, q)i ∈ I for some
0 ≤ i ≤ n.

Provided that there exists a path on G from S to T,
identifying a feasible reactive test strategy corresponds to
identifying edges to cut on G. These edge cuts correspond
to restricted system actions. In particular, these edge cuts are
such that all paths on G from source S to target T visit the
intermediate I.

V. NETWORK FLOW OPTIMIZATION FOR IDENTIFYING
RESTRICTIONS ON SYSTEM ACTIONS

To identify which edges to cut on G, we use network
flow optimization, a commonly used paradigm for flow-cut
problems on graphs. On G, which characterizes all possible
test executions, all paths from the initial condition S to the
system goal T must be routed through the intermediate I.
Furthermore, the edge cuts should be least-restrictive and
such that the system can satisfy the test objective and system
objective. Maximum flow can be a proxy for freedom of the
system under test to make decisions — a higher network flow
corresponds to more unique paths on G. Since we use flow

IEEE TRANSACTIONS AND JOURNALS TEMPLATE 8

(a) Virtual product graph G.
(b) G

(q0,s3)
sys (c) G

(q6,s1)
sys (d) G

(q7,s11)
sys

Fig. 4: Virtual product graph and system product graphs for Example 2. Fig. 4a shows the virtual product graph G, with the
source S (magenta •), the intermediate nodes I (blue •), and the target nodes (yellow •). Edge cut values for each edge in G
are grouped by their history variable q and projected to the corresponding copy of Gsys. Red dashed lines indicate edge cuts.
Figs. 4b-4d show the copies of Gsys with their source (s3, s6 or s11 in orange •) and target nodes (yellow •). The graphs
in Figs. 4b-4d correspond to the history variables q0, q6, and q7 from Bπ shown in Fig. 3c. The constraints (c6)-(c8) ensure
that the edge cuts are such that a path from each source to the target node exists for each history variable q.

networks with unit edge capacities, a realization of maximum
flow corresponds to a set of paths that do not share an edge.
Furthermore, this flow should be achieved with the fewest
possible cuts to not unnecessarily restrict system actions. A
high network flow with the minimum possible edge cuts
corresponds to a least restrictive test for the system.

A. Optimization Setup

We define the flow network G := (V,E, (S, T)), where V :=
G.S, E := G.E, source and target nodes correspond to S and
T, with the corresponding flow f ∈ R|E|. For simplicity, we
use the same notation to refer to nodes and edges on the graph
and the corresponding flow network. The Boolean edge cut
vector d ∈ B|E| represents whether edges are cut or not. That
is, de = 1 refers to edge e ∈ E being cut, and de = 0 implies
that edge e is not cut,

de ∈ {0, 1}, ∀e ∈ E, and de = 0, ∀e /∈ EH . (c1)

The edges into and out of the intermediate I nodes are denoted
as E(I) := {(u, v) ∈ E |u ∈ I or v ∈ I}. To solve Problem 1,
we formulate a mixed-integer linear program (MILP).

Objective. To find the least restrictive test, we want to
maximize the system’s freedom in satisfying the test objective.
To capture this, we optimize for edge cuts that maximize the
flow value on G. However, a realization of maximum flow on a
network is not unique. To ensure that we do not cut any edges
unnecessarily, we subtract the sum of the edge cuts from the
flow value: ∑

(u,v)∈E,
u∈S

f (u,v) − 1

|E|
∑
e∈E

de. (12)

The regularizer 1
|E| on the sum of edge cuts is chosen such

that it will not compete with the maximum flow value on the
network. The weighted sum 1

|E|
∑

e∈E de is always between 0
and 1, and binary edge cuts and unit capacity will always result

in maximum flow being integer-valued. Thus, the optimization
will always favor increasing the maximum flow value rather
than reducing edge cuts.

Network flow constraints. First, the network flow optimiza-
tion is subject to the following standard constraints on flow
f :

Flow constraints (6), (7), and (8) on flow network G. (c2)

An edge that is cut restricts flow completely, while an edge
that is not cut may or may not have flow,

∀e ∈ E, de + fe ≤ 1. (c3)

Partition constraints. The following constraints ensure that
all flow across the network will be routed through I. To
accomplish this, we adapt the partitioning conditions given
in [56] as follows. Except for the I nodes, we divide the
remaining nodes into two groups defined by the partition
variable µ ∈ R|V \I|, and ensure that the nodes S belong to
one group, and T belong to the other:

0 ≤ µv ≤ 1, µS − µT ≥ 1,∀v ∈ V \ I. (c4)

The two groups are partitioned by the edge cut vector d, where
this constraint is only defined over the edges that do not go
into or out of nodes in I,

d(u,v) − µu + µv ≥ 0, ∀(u, v) ∈ E \ E(I). (c5)

Feasibility constraints. To ensure that the test is not impossi-
ble from the system’s perspective, we map restrictions found
on G to Gsys via the following feasibility constraints. For each
history variable q ∈ Bπ.Q, we define the set of state-history
pairs that captures the possible first observations of the history
variable in a test execution via the function SG : Bπ.Q→ G.S
defined as follows,

SG(q) :={(s, q) ∈ G.S |
∀((s̄, q̄), (s, q)) ∈ G.E, q̄ ̸= q}.

(13)

IEEE TRANSACTIONS AND JOURNALS TEMPLATE 9

These sets of states are mapped to Gsys as follows:

SGsys(q) :={u ∈ Gsys.S | u = PG→Gsys(v),

v ∈ SG(q), and ∃ path(u, Tsys)},
(14)

where this set is empty if no path from the node u to Tsys exists
on Gsys. For each q ∈ Bπ.Q, for each source in s ∈ SGsys(q),
we define a flow network G(q,s)sys := (Vsys, Esys, c, (s, Tsys)),
where Vsys := Gsys.S, and Esys := Gsys.E, with the corre-
sponding flow variable f

(q,s)
sys . For each of these flow networks,

we define a flow subject to the standard flow constraints:

∀q ∈ Bπ.Q,∀s ∈ SGsys(q),

Flow constraints (6), (7), and (8) on network G(q,s)sys .
(c6)

For each G(q,s)sys , we map the edge cuts d and check that there
is still a path from s to some node in Tsys. This ensures that
reactively placing restrictions on system actions does not make
it impossible for a correct system strategy to make progress
toward its goal. Intuitively, the edge cuts are grouped by the
history variable q and checked to ensure that the system has
a feasible path when these restrictions are placed on system
actions. The edges are grouped by their history variable using
the mapping Gr : Bπ.Q→ 2G.E , defined as follows:

Gr(q) := {((s, q), (s′, q′)) ∈ G.E}. (15)

The edge cuts are mapped onto the corresponding G(q,s)sys to
cut the corresponding flow f

(q,s)
sys as follows:

∀q ∈ Bπ.Q,∀s ∈ SGsys(q),∀(u, v) ∈ Gr(q),∀(u′, v′) ∈ Esys,

d(u,v) + f (q,s)
sys

(u′,v′)
≤ 1, if u′.s = u.s and v′.s = v.s.

(c7)

Since we are agnostic to the system controller, we need to
ensure that a path to the system’s goal exists at all times during
the test execution. To enforce this, we require a flow of at least
1 on each system flow network G(q,s)sys ,∑

(s,v)∈Esys

f (q,s)
sys

(s,v)
≥ 1, ∀q ∈ Bπ.Q, ∀s ∈ SGsys(q). (c8)

These feasibility cuts correspond to the reactive constraint
setting since edge cuts are placed on G and depend on the his-
tory variable q. For an illustrated explanation for Example 2,
refer to Fig. 4. Finally, the optimization to identify edge cuts
for the reactive test strategy is characterized by the following
mixed-integer linear program (MILP) with the cuts d as the
integer variables, and the flow and partition variables taking
continuous values.

MILP-REACTIVE:

max
f ,d,µ,

f (q,s)sys ∀q∈Bπ.Q ∀s∈SGsys (q)

F − 1

|E|
∑
e∈E

de

s.t. (c1)-(c3), (c4)-(c5), (c6)-(c8).

(16)

Static Constraints. We can simplify the feasibility constraints
in the case of static obstacles. This corresponds to the re-
quirement that any transition that is restricted will remain
restricted for the entire duration of the test. From the system’s
perspective, the restrictions will not change depending on the
history variable q. That is, edges in G corresponding to the
same transition in Tsys.E are grouped and share the same cut
value:

d(u,v) = d(u
′,v′), ∀(u, v), (u′, v′) ∈ E,

if u.s = u′.s and v.s = v′.s.
(c9)

Similarly, the optimization to find edge cuts in a static setting
is as follows.

MILP-STATIC:

max
f ,d,µ

F − 1

|E|
∑
e∈E

de

s.t. (c1)-(c3), (c4)-(c5), (c9).
(17)

Lemma 2. For the case of static constraints, due to (c9), en-
suring feasibility from the system’s perspective is guaranteed
by checking F > 0 on G. That is, F > 0 on G is equivalent
to checking (c6)-(c8).

Proof. Under (c9), the edge groupings Gr(q) become the
same for all q ∈ Bπ.Q. Thus, the constraints (c6)-
(c8) can be reduced onto a single flow network Gsys =
(Vsys, Esys, (Ssys, Tsys)), where Ssys := Gsys.I . Equation (c8)
being satisfied on Gsys implies that there is a path on G from
S to T via Lemma 1. Additionally, if there is a path on G
from S to T with the static constraints (c9), then it must be
that there exists a path from Ssys to Tsys on Gsys.

Remark 6. For the reactive constraint setting, we can re-
place the feasibility constraints (c6)-(c8) by several static
constraints. That is, we introduce a copy of G for each history
variable q ∈ Bπ.Q and each source s ∈ SG(q), denoted
G(q,s) = (V,E, s, T), and require a path from s to T to exist
under a static mapping of the edges in the group Gr(q) by
constraint (c9). We choose the former since it reduces the
number of variables and constraints in the optimization.

Mixed Constraints. In some cases, it might be desirable to
define specific transitions Tsys.Estatic ⊆ Tsys.E which require
static constraints. The mixed setting of reactive and static
transition restrictions can be implemented by enforcing the
feasibility constraints (c6)-(c8), and the static constraints (c9)
on edges (u, v) ∈ E, where the corresponding transition
(u.s, v.s) ∈ Tsys.Estatic. Finally, the optimization for the mixed
constraint setting is as follows.

MILP-MIXED:

max
f ,d,µ,

f (q,s)sys ∀q∈Bπ.Q ∀s∈SGsys (q)

F − 1

|E|
∑
e∈E

de

s.t. (c1)-(c3), (c4)-(c5), (c6)-(c8), (c9).

(18)

IEEE TRANSACTIONS AND JOURNALS TEMPLATE 10

Auxiliary Constraints. Additional constraints can be added
to the optimization depending on the test harness or the desired
test setup. For example, it might be required to enforce that if
an edge is cut, the transition will be blocked in both directions.
This can be enforced as follows,

d(u,v) = d(u
′,v′), ∀(u, v), (u′, v′) ∈ E,

if u.s = v′.s and v.s = u′.s.
(c14)

Algorithm 1: Finding the test strategy πtest

1: procedure FINDTESTSTRATEGY(Tsys, H, φsys, φtest)
Input: transition system Tsys, test harness H , system

objective φsys, test objective φtest
Output: test strategy πtest

2: Bsys ← BA(φsys) ▷ System Büchi automaton
3: Btest ← BA(φtest) ▷ Tester Büchi automaton
4: Bπ ← Bsys ⊗ Btest ▷ Specification product
5: Gsys ← Tsys ⊗ Bsys ▷ System product
6: G← Tsys ⊗ Bπ ▷ Virtual Product Graph
7: S, I, T← IDENTIFYNODES(G,Bsys,Btest)
8: G ← DEFINENETWORK (G, S, T)
9: G← set() ▷ System Perspective Graphs

10: for q ∈ Bπ.Q do
11: for s ∈ SGsys(q) do
12: G(s,q)sys ← DEFINENETWORK(Gsys, s, Tsys)

13: G← G ∪ G(s,q)sys

14: d∗ ← MILP(G, Tsys,G, I, H) ▷ Reactive, static, or
mixed.

15: C ← {(u, v) ∈ G.E |d∗(u,v) = 1} ▷ Cuts on G

16: πtest ← Define test strategy according to equation (20)
17: return πtest

B. Characterizing Optimization Results

The flow value (Eq. (9)) of the network is always integer-
valued since the edge cuts are binary and edges have unit
capacities, and therefore, any strictly positive flow value cor-
responds to at least one valid test execution. In the following
cases, the problem data are inconsistent and a flow value ≥ 1
cannot be found.
Case 1: There is no path from S to T on G (and equivalently,
no path from Ssys to Tsys on Gsys). In this case, the optimization
will not have to place any cuts because the only possible
maximum flow value is 0.
Case 2: There is a path from S to T on G, but there is no
path S to T in G visiting an intermediate node in I. In this
case, the partition constraints will cut all paths from S to T,
while by Lemma 1 the feasibility constraints require a path to
exist from S to T—a contradiction. The routing optimization
is infeasible in this instance.

For each MILP, the set of edges that are cut are found
from the optimal d∗ as follows, C := {(u, v) ∈ E \
E(I) | d∗(u,v) = 1}, resulting in the cut network Gcut =
(V,E \ C, S, T). The bypass flow value is computed on the
network Gbyp := (Vbyp, Ebyp, S, T), where Vbyp := V \ I, and
Ebyp := E \ (E(I)∪C). A strictly positive bypass flow value

indicates the existence of a Path(S, T) on Gcut that does not
visit an intermediate node in I.

Theorem 1. For each MILP, the optimal cuts C result in a
bypass flow value of 0.

Proof. The partition constraints (c4) and (c5) partition the
set of vertices V \ I into two groups: nodes with potential
µ = 0 (e.g., T) and nodes with potential µ = 1 (e.g., S).
On any path v0 . . . vk on Gbyp, where v0 = S and vk = T, the
difference in potential values can be expressed as a telescoping
sum:

∑k−1
i=0 (µ

i − µi+1) = µS − µT. Then, by partition
constraints (c4) and (c5),

k−1∑
i=0

d(vi,vi+1) ≥
k−1∑
i=0

(µi − µi+1) = µS − µT ≥ 1.

Therefore, for at least one edge (vi, vi+1) on the path, where
0 ≤ i ≤ k − 1, the corresponding cut value is d(vi,vi+1) = 1.
These edges belong to the set of cut edges C. Thus, the flow
value on Gbyp is zero.

Theorem 2. For each MILP, the optimal cuts C are such
that there always exists a path to the goal from the system’s
perspective.

Proof. First, consider the MILP in the reactive setting. The
optimal cuts C satisfy the feasibility constraints (c6), (c7),
and (c8). These constraints ensure that for each history variable
q ∈ Bπ.Q, there exists a path for the system from each state
s ∈ SGsys(q) to Tsys on Gsys. The edge cuts C are grouped
by their history variable (see equation (15)) and mapped to
the corresponding G(q,s)sys (see equation (c7)). Then, each copy
G(q,s)sys represents all the cuts that can be simultaneously applied
when the state of the test execution is at history variable
q. Thus, all restrictions on system actions at history q are
captured by the cuts on G(sysq, s). Since this is true for every q
and every source state s at which the test execution enters into
q, there always exists a path to the goal by equation (c8). The
proof for the static and mixed settings follows similarly.

Lemma 3. For each MILP, the optimal cuts C correspond to
maximizing the cardinality of Θu.

Proof. By construction, a realization of the flow f on G cor-
responds to a set of unique state-history traces Θu. The MILP
objective maximizes the flow, and therefore the cardinality of
Θu is maximized.

VI. TEST STRATEGY SYNTHESIS

In this section, we will outline how to find the reactive test
strategy from the optimization result in the different settings.

A. Test Environments with Static and/or Reactive Obstacles

For each setting (static, reactive, and mixed), the optimal
cuts from solving the corresponding MILP are used to realize a
test strategy with static and/or reactive obstacles. The optimal
cuts C for each MILP are parsed into a reactive map C :
Bπ.Q→ Tsys.E, where

C(q) := {(s, s′) ∈ Tsys.E | ((s, q), (s′, q′)) ∈ C}. (19)

IEEE TRANSACTIONS AND JOURNALS TEMPLATE 11

T

I

I

S

T

I

(a) Static obstacles in black. (b) Virtual product graph with edge cuts in dashed red.

Fig. 5: Static obstacles in (a) corresponding to edge cuts found on the virtual product graph (b) for Example 1. States marked
S, I , and T illustrated in (a) correspond to states S (magenta •), I (blue •), and T (yellow •) on G as shown in (b).

I1

S

T

I2

’q7’

I1

S

T

I2

’q6’

I1

S

T

I2

’q0’

Reactive Constraints

(a) q0

I1

S

T

I2

’q7’

I1

S

T

I2

’q6’

I1

S

T

I2

’q0’

Reactive Constraints

(b) q6

I1

S

T

I2

’q7’

I1

S

T

I2

’q6’

I1

S

T

I2

’q0’

Reactive Constraints

(c) q7

Fig. 6: Test environment implementation of a reactive test
strategy for Example 2.

The set C(q) captures cuts that will be used to restrict the
system when the state of the test execution is at the history
variable q. When the test execution ϑ reaches a state-history
pair (s, q) at time step k ≥ 0, and C(q) contains a system
transition (s, s′) ∈ Tsys.E, then the reactive test strategy πtest
will restrict the system action corresponding to this transition.
That is, the set of restrictions on the system is given by

πtest(σk) := {a ∈ Tsys.A |
s′ ∈ Tsys.δ(s, a) and (s, s′) ∈ C(q)}.

(20)

In practice, the reactive test strategy can be realized by
the test environment by placing obstacles during the test
execution. The set of active obstacles Obs(σk) at time step
k ≥ 0 is defined as the set of all state-action restrictions at
time k. The test environment uses the test strategy πtest to
determine Obs in the following settings.
Instantaneous: In this setting, the test environment
instantaneously places obstacles for the current history
variable q. For any k ≥ 0, let (s, q) be the state-
history pair at time step k of the test execution.
Therefore, the set of active obstacles at σk is given as,
Obs(σk) = {(s′, a) | ∀s′′ ∈ Tsys.δ(s

′, a) and (s′, s′′) ∈ C(q)}.
Accumulative: In this setting, the test environment
accumulates obstacles according to the system state during
the test execution. For any k ≥ 0, let (s̄, q̄) and (s, q) be
the state-history pairs at time steps k − 1 and k of the test
execution, respectively. If q̄ ̸= q, we set active obstacles to
be Obs(σk) = {(s, a) | ∀a ∈ πtest(σk)}. As the test execution
progresses to state-history pair (s′, q) at time step l > k,
any transition restricted by the test strategy is added to
the set of active obstacles Obs(σl) =

⋃l
i=k Obs(σi) and is

restricted by the test environment. These obstacles remain
in place until the test execution reaches a state history pair

(s′′, q′) at time step m > k, where q ̸= q′, at which point
the test environment resets the set of active obstacles to be
Obs(σm) = {(s′′, a) | ∀a ∈ πtest(σm)} and restrictions are
accumulated until a different history variable is reached.

Remark 7. Assumption 1 can be relaxed if we can ensure that
cuts C do not introduce any livelocks, in which the system
has no path the goal. The feasibility constraints ensure that
there always exists a path to the goal from every source
s ∈ SGsys(q) for every history variable q, and under the
bidirectional setting of Assumption 1, the system can navigate
back to the corresponding source. Without Assumption 1 we
need to check for every cut that the MILP returns, that a path to
the goal still exists. If that is not the case, we can exclude the
solution and re-solve the MILP in a counterexample-guided
search similar to the approach presented in Section VI-B.

Proposition 2. In both the instantaneous and accumulative
settings, as long as no new restrictions that are not in C(q) are
introduced, the flow value F remains the same.

Example 2 (Small Reactive (continued)). Fig. 6 illustrates
the test environment implementing a reactive test strategy.
The reactive test strategy is constructed from the optimal
cuts (as depicted in Fig. 4a) on G found by solving MILP
(REACTIVE). The test starts in history variable q0 and the
system transitions are restricted according to Fig. 6a. If the
system decides to visit I1 first, the test execution moves to
history variable q6 shown in Fig. 6b, whereas if the system
decides to visit I2 first, the test execution moves to q7, as
depicted in Fig. 6c. This test environment can be implemented
in either the instantaneous or the accumulative setting.

Static and Mixed Test Environments. The cuts found from
MILP-STATIC result in a reactive map C in which C(q) =
C(q′) for all q, q′ ∈ Bπ.Q. That is, restrictions on system
actions remain in place for the entire duration of the test, and
do not change depending on the history variable q. In this
fully static setting, every edge is in the static area, that is
Tsys.Estatic = Tsys.E. Therefore, the test environment realizes
the test strategy by restricting all system actions corresponding
to any cut in C(q) for all q ∈ Bπ.Q with static obstacles
simultaneously,

Obs := {(u.s, v.s) ∈ Tsys.Estatic | (u, v) ∈ C}. (21)

IEEE TRANSACTIONS AND JOURNALS TEMPLATE 12

In the mixed setting of static and reactive obstacles, the
test strategy resulting from MILP-MIXED is implemented
similarly to the reactive setting, except for system transitions
in Tsys.Estatic that are blocked by static obstacles.

Example 1 (continued). For the grid world example, Fig. 5a
illustrates the static test on the grid world, and Fig. 5b shows
the corresponding cuts C∗ on the virtual product network G.
Here, the 14 cuts on G map to 4 static obstacles since multiple
edges on G correspond to the same transition in Tsys. The
optimal flow value is F ∗ = 3 and there is no bypass flow.
Thus, as the system navigates from source S to target T, it
must visit at least one of the intermediate nodes I.

Remark 8. The instantaneous and accumulative implemen-
tations of the test environment guide when the obstacles are
placed by the test environment. However, this does not have
to be the same as when the system senses or observes these
restrictions on its actions. We assume that the system can
observe all restricted actions on its current state before it
commits to an action.

The graph construction, network flow optimization, and
finding the reactive test strategy are summarized in Algo-
rithm 1.

Theorem 3. If the problem data are not inconsistent (see Sec-
tion V-B), the reactive test strategy πtest found by Algorithm 1
solves Problem 1.

Proof. The test environment informs the choice of the MILP
(static, reactive, or mixed). Therefore, the resulting πtest will be
realizable by the test environment. By construction of Gsys, any
correct system strategy corresponds to a Path(Ssys, Tsys). By
Theorem 2, at any point during the test execution, if the system
has not violated its guarantees, there exists a path on Gsys
to Tsys. Therefore, there exists a correct system strategy πsys,
and resulting trace σ(πsys × πtest), which corresponds to the
path ϑsys,n = (s, q)0 . . . (s, q)n on Gsys, where (s, q)0 ∈ Ssys
to (s, q)n ∈ Tsys. By Lemma 1 any Path(Ssys, Tsys) on Gsys
has a corresponding Path(S, T) on G and by Theorem 1, the
cuts ensure that all such paths on G are routed through the
intermediate I. Therefore, for a correct system strategy πsys,
the trace σ(πsys × πtest) |= φsys ∧ φtest. Thus, πtest is feasible
and by Proposition 2 and Lemma 3, πtest is least-restrictive.
Thus, Problem 1 is solved.

This framework results in a test that is not impossible (with
respect to the system objective) for a correctly implemented
system. On the other hand, a poorly designed system can still
fail since the system is not aided in satisfying its guarantees.

B. Synthesizing a Dynamic Test Strategy

In some test scenarios, it might be beneficial to make use
of an available dynamic test agent. Thus, the challenge is to
find a test agent strategy that corresponds to C while ensuring
that the system’s operational environment assumptions are
satisfied. To accomplish this, we adapt the MILP-MIXED
using information about the dynamic test agent. Then, we find

Algorithm 2: Reactive Test Synthesis

1: procedure TEST SYNTHESIS(Tsys, TTA, H, φsys, φtest)
Input: system Tsys, test agent TTA, test harness H ,

system objective φsys, test objective φtest
Output: test agent strategy πTA

2: Tsys.Estatic ← Define from Tsys, TTA ▷ Static area
(Eq. (22)

3: G,G, I, G← Setup arguments ▷ Lines 2-13 in Alg. 1
4: Cex ← ∅ ▷ Initialize empty set of excluded solutions
5: while True do
6: d∗ ←Solve MILP-AGENT(G,G, I, Tsys, H, Cex)
7: if STATUS(MILP) = infeasible then
8: return infeasible

9: C ← {(u, v) ∈ G.E |d∗(u,v) = 1} ▷ Cuts on G

10: Obs← Define from C ▷ Static Obstacles (Eq. (21))
11: R ←Define from C ▷ Reactive map (Eq. (23))
12: A ← Assumptions (a1)–(a5) from Tsys, TTA, G,

φsys
13: G ← Guarantees (g1)–(g7) from Tsys, TTA, R
14: φ← (A→ G) ▷ Construct GR(1) formula
15: if REALIZABLE(φ) then
16: πTA ← GR1Solve(φ)
17: return πTA, Obs
18: Cex ← Cex ∪ C

the test agent strategy using reactive synthesis and counter-
example guided search. From the optimal cuts of MILP-
MIXED and the resulting reactive map C, we can find states
that the test agent must occupy in reaction to the system state.
Then, we synthesize a strategy for the dynamic test agent using
the Temporal Logic and Planning Toolbox (TuLiP) [57]. If
we cannot synthesize a strategy, we use a counterexample-
guided approach to exclude the current solution and resolve the
MILP to return a different set of optimal cuts until a strategy
can be synthesized. Suppose we are given a test agent whose
dynamics are given by the finite transition system TTA, where
TTA.S contains at least one state that is not in Tsys.S, denoted
as park. During the test execution, the test agent can navigate
to these park states, if necessary. These states are required to
synthesize a test agent strategy. From the test agent’s transition
system TTA, we determine which states in Tsys the test agent
can occupy. From these states, we can define the static area
as,

Tsys.Estatic := {(u, v) ∈ Tsys.E | v /∈ TTA.S}. (22)

Adapting the MILP: Since an agent can only occupy a single
state at a time, we incentivize solutions in which multiple edge
cuts can be realized by occupying the same state. For this, we
introduce the variable dstate ∈ R|V |

+ , which represents whether
an incoming edge into a state is cut. This is captured by the
constraint

∀(u, v) ∈ E, d(u,v) ≤ dvstate, (c10)

where dvstate ≥ 1 corresponds to at least one incoming edge

IEEE TRANSACTIONS AND JOURNALS TEMPLATE 13

being cut. The adapted objective is then defined as

F − 1

|E|
∑
v∈V

dvstate −
1

|E|2
∑
e∈E

de.

The objective is chosen such that the number of states that
need to be blocked is minimized with the fewest possible
edge cuts. The regularizers are chosen to reflect this order
of priority. The optimal cuts from the resulting MILP are
used to synthesize a reactive test agent strategy as follows.
From the optimal cuts C, we find the set of static obstacles
Obs ⊆ Tsys.Estatic according to Eq. (21) and the reactive map
R : Bπ.Q→ Tsys.E as follows:

R(q) := {(s, s′) ∈ Tsys.E | (s, s′) /∈ Tsys.Estatic and
((s, q), (s′, q′)) ∈ C}.

(23)

The reactive map R is used to synthesize a strategy for the test
agent. If no strategy can be found, a counter-example guided
approach is used to resolve the MILP.
Reactive Synthesis: From the solution of the MILP, we
now construct the specification to synthesize the test agent
strategy using TuLiP. In particular, we construct a GR(1)
formula with assumptions being our model of the system and
the guarantees capturing requirements on the test agent. Note
that we are synthesizing a strategy for the test agent, where
the environment is the system under test. The variables needed
to define the GR(1) formula consist of variables capturing the
system’s state xsys ∈ Tsys.S and qhist ∈ Bπ.Q, which track
how system transitions affect the history variable q. The test
agent state is represented in the variable xTA ∈ TTA.S.

First, we set up the subformulae constituting the assump-
tions on the system model. The initial conditions of the system
are defined as

(xsys = s0 ∧ qhist = q0), (a1)

where s0 ∈ Tsys.S0 and Bπ.Q0. We define the dynamics of the
system and the history variable for each state (s, q) ∈ G.S as
follows:

□
(
(xsys = s∧qhist = q)→

∨
(s′,q′)∈
succ(s,q)

⃝(xsys = s′∧qhist = q′)
)
,

(a2)
where succ(s, q) denotes the successors of state (s, q) ∈ G.S.
For simplicity, we choose a turn-based setting, in which each
player will only take their action if it is their turn. To track this,
we introduce the variable turn ∈ B as a test agent variable.
For the system, this is encoded as remaining in place when
turn = 1:∧

s∈Tsys.S

□
(
(xsys = s ∧ turn = 1)→⃝(xsys = s)

)
. (a3)

If a turn-based setup is not used, we need to synthesize a
Moore strategy for the test agent since it should account for
all possible system actions. The system objective φsys can be
encoded as the formula

□ □(xsys = xgoal) ∧ φaux, (a4)

where xgoal is the terminal state of the system and a reachabil-
ity objective specified in φsys. The other objectives specified

in φsys are transformed to their respective GR(1) forms in
φaux. This transformation of LTL formulae into GR(1) form is
detailed in [58]. In addition, the system is expected to safely
operate in the test agent’s presence. The set of states where
collision is possible is denoted by S∩ := Tsys.S∩TTA.S. Thus,
the safety formula encoding that the system will not collide
into the tester is given as:∧

s∈S∩

□
(
xTA = s→⃝¬(xsys = s)

)
. (a5)

Equations (a1)– (a5) represent the test agent’s assumptions on
the system model. Next, we describe the subformulae for the
guarantees of the GR(1) specification. The initial conditions
for the test agent are ∨

s∈TTA.S0

xTA = s. (g1)

The test agent dynamics are represented by

□
(
(xTA = s)→

∨
(s,s′)∈TTA.E

⃝(xTA = s′)
)
. (g2)

The test agent can also move only in its turn and will remain
stationary when turn = 0:∧

s∈TTA.S

□
(
(xTA = s ∧ turn = 0)→⃝(xTA = s)

)
. (g3)

The turn variable alternates at each step:

(turn = 1)→⃝(turn = 0) ∧
(turn = 0)→⃝(turn = 1).

(g4)

To satisfy the system assumptions (Def. 10), the test agent
should not adversarially collide into the system. This is
captured via the following safety formula,∧

s∈S∩

□
(
xsys = s→⃝¬(xTA = s)

)
. (g5)

Now, we enforce the optimal cuts found from the MILP.
To enforce cuts reactively during the test execution, the states
occupied by the system are defined as follows,∧
q∈Bπ.Q

∧
(s,s′)∈R(q)

□
(
(xsys = s ∧ qhist = q ∧ turn = 0)

→ (xTA = s′)
)
.

(g6)

Essentially, for some history variable q, if (s, s′) ∈ R(q) is an
edge cut, then the test agent must occupy the state s′ when the
system is in the state s when the test execution is at history
variable q. However, the test agent should not introduce any
additional restrictions on the system, which is formulated as∧

q∈Bπ.Q

∧
(s,s′)∈Tsys.E

(s,s′) ̸∈R(q)

□
(
(xsys = s ∧ qhist = q ∧ turn = 0)

→ ¬(xTA = s′)
)
.

(g7)

Intuitively, this corresponds to the requirement that the tester
agent shall not restrict system transitions that are not part of the

IEEE TRANSACTIONS AND JOURNALS TEMPLATE 14

reactive map R. A test agent strategy that satisfies the above
specifications is guaranteed to not restrict any system action
unnecessarily. However, the test agent can occupy a state that
is not adjacent to the system and block all paths to the goal
from the system’s perspective. This could lead the system to
not making any progress towards the goal at all, resulting in a
livelock. To avoid this, we characterize the livelock condition
as a safety constraint that the test agent must satisfy (e.g., if it
occupies a livelock state, it must not occupy it in the next step).
The specific safety formula that captures the livelock depends
on the example. We find the states where the tester would
block the system from reaching its goal Tsys.Sblock ⊆ TTA.S.
The following condition ensures that it will only transiently
occupy blocking states:∧

s∈Tsys.Sblock

□
(
xTA = s→⃝¬(xTA = s)

)
. (g8)

Therefore, we synthesize a test agent strategy πTA for the
GR(1) formula with assumptions (a1)–(a5) and guarantees
(g1)–(g8).

Counterexample-guided Approach: The MILP can have
multiple optimal solutions, some of which may not be realiz-
able for the test agent. If the GR(1) formula is unrealizable,
we exclude the solution and re-solve the MILP until we find
a realizable GR(1) formula. In particular, every new set of
optimal cuts C that is unrealizable is added to the set Cex.
Then, the MILP is resolved with an additional set of affine
constraints as follows,∑

e∈C

de ≤ |C|−1, ∀C ∈ Cex. (c15)

This corresponds to preventing all edges in an excluded
solution C from being cut at the same time. The adapted MILP
is then defined as follows:

MILP-AGENT:

max
f ,d,dstate,µ,

f (q,s)sys ∀q∈Bπ.Q,

∀s∈SGsys (q).

F − 1

|E|
∑
v∈V

dvstate −
1

|E|2
∑
e∈E

de

s.t. (c1)-(c9), (c10), (c15).

(24)

This process is repeated until a strategy is synthesized or
the MILP-AGENT becomes infeasible.

Lemma 4. Let πTA be the test agent strategy and let Obs be the
set of static obstacles synthesized from the optimal solution
C∗ of MILP-AGENT according to the GR(1) formula with
assumptions (a1)–(a5) and guarantees (g1)–(g8). Let πtest be
the reactive test strategy corresponding to the optimal cuts C∗.
Then πTA and Obs realize πtest.

Proof. By construction in Eqs. (19), (21), (23), we have that
C(q) = R(q) ∪ Obs for all history variables q ∈ Bπ.Q. Due
to guarantee (g6), the synthesized test agent strategy restricts
the transitions in R(q). The test agent is also prohibited
from restricting any other transitions by the guarantee (g7).
Therefore, at each step of the test execution, the system actions

restricted as a result of πTA and static obstacles Obs exactly
correspond to those restricted by the test strategy πtest.

Theorem 4. Algorithm 2 solves Problem 2.

Proof. The test agent strategy is synthesized to satisfy guaran-
tees (g1)-(g8). The guarantees (g1)-(g4) specify the dynamics
of the test agent, which satisfies A1. The safety guarantee (g5)
satisfies A2. Guarantees (g6) and (g7) realize the optimal cuts
from MILP-AGENT. Due to constraint (c8) the optimal cuts
ensure that there always exists a path on Gsys. Together with
guarantee (g8), this results in πTA satisfying assumptions A3
and A4. By Lemma 4, πTA is a realization of a least-restrictive
feasible πtest.

The test agent strategy and obstacles, πTA and Obs corre-
spond to the least-restrictive reactive test strategy πtest possible
for that test environment. Other test environments might result
in different least-restrictive reactive test strategies.

VII. COMPLEXITY

Our framework comprises three parts: i) graph construction,
ii) routing optimization, and iii) reactive synthesis. For graph
construction, we first need to construct Büchi automata from
specifications. In the worst case, this construction has doubly-
exponential complexity, 22

|ϕ|
, in the length of the formula

ϕ [36]. Then, graph construction involves computing a Carte-
sian product of two graphs Tsys and Bπ , and has a worst-case
time complexity of O(|Tsys.S|2·|Bπ.Q|2). For a more efficient
implementation, we construct this product by expanding into
states that are reachable from the source S. In the reactive
synthesis part of the framework, we use GR(1) synthesis which
is known to have a complexity of O(|N |)3, where N is the
number of states required to define the formula. In this section,
we will establish the computational complexity of the routing
optimization and show that the associated decision problem is
NP-hard.

To prove the computational complexity of finding the cuts
on the graph, we first prove the computational complexity in
the special case of static obstacles. As defined in sections IV
and V, the problem data is a graph G = (V,E) with node
groups S, I, T, and the corresponding flow network G. For
some edge e ∈ E \ E(I), the binary variable de indicates
whether the edge is cut: de = 1. The set C ⊂ E represents
the set of edges with de = 1. For static obstacles, the edges are
grouped by the corresponding transition in Tsys. The grouping
Grstatic : Tsys.E → G.E, and defined as follows,

Grstatic((s, s
′)) := {(u, v) ∈ G.E | u.s = s, v.s = s′}. (25)

For some (s, s′) ∈ Tsys.E, all edges e ∈ Grstatic((s, s
′)) have

the same de value, i.e., if de = 1 for some edge e in the
group, then all edges in this group will have de set to 1. A
bypass path on G is some Path(S, T) which does not visit
the intermediate I. The flow value F on G is defined from the
source S to target T, with each edge having unit capacity. A
valid set of edge cuts C is such that i) there does not exist a
bypass path, ii) there exists a path from S to T, and iii) edges
respect the grouping Grstatic.

IEEE TRANSACTIONS AND JOURNALS TEMPLATE 15

S

I

T
FT

S

I

T
FT

(a) Graphs matching formu-
lae with a single variable x.

S
T

T FF
T

T
TS

FF

T

(b) Graph resulting from a reduction of the 3-SAT formula F (x1, . . . , x5), where the resulting
edge cuts correspond to the truth assignment of the variables x1, . . . , x5.

Fig. 7: Graphs constructed from a 3-SAT formula, where a truth assignment for the variables can be found using the network
flow approach for static obstacles.

S
T

T FF
T

T

T FF
T

Reactive Diagram

S

(a) Graph G according to Construction 3 for the reactive case.

S
T

T FF
T

T

T FF
T

Reactive Diagram

S

(b) Graph Gsys according to Construction 2.

Fig. 8: Graphs G and Gsys constructed from a 3-SAT formula, where a truth assignment for the variables can be found using
the flow approach for reactive obstacles.

Problem 3 (Static Obstacles Optimization Problem). Given a
graph G, find a valid set of edge cuts C such that the resulting
maximum flow F is maximized over all possible sets of edge
cuts, and such that |C| is minimized for the flow F .

This corresponds to finding the valid set of edge cuts C
that as first priority, maximizes the flow F , and subsequently
chooses the set of edge cuts C with the smallest cardinality |C|
(i.e. breaking ties between all valid edge cuts that realize F).
For static obstacles, Problem 3 corresponds to the following
decision problem.

Problem 4 (Static Obstacles Decision Problem). Given a
graph G and an integer M ≥ 0, does there exist a valid set of
edge cuts C such that |C| ≤M?

Lemma 5. Any solution to Problem 3 can be used to construct
a solution for Problem 4 in polynomial time.

Lemma 5 implies that if there exists a polynomial-time
algorithm to compute a solution to Problem 3, then there also
exists a polynomial-time algorithm to solve Problem 4. Thus,
if we can show that Problem 4 belongs to the class of NP-
hard problems (i.e., there exists a polynomial-time reduction
from any arbitrary problem in NP to Problem 4), that would
imply that there exists a polynomial-time algorithm to solve
Problem 4 only if P = NP . This in turn would support
the MILP approach we provide to solve Problem 3. To show

that Problem 4 is NP-hard, we construct a polynomial-time
reduction from 3-SAT to Problem 4. This polynomial-time
reduction maps any instance of 3-SAT to Problem 4 such
that the solution of the constructed instance of Problem 4
corresponds to a solution of the instance of the 3-SAT problem.

Definition 20 (3-SAT [59]). Let f(x1, . . . , xn) :=
∧m

j=1 cj
be a propositional logic formula over Boolean propositions
x1, . . . , xn in conjunctive normal form (CNF) in which each
clause cj is a disjunction of three Boolean propositions or their
negations. A solution to the 3-SAT problem is an algorithm
that returns True if there exists a satisfying Boolean assign-
ment to f(x1, . . . , xn) and False otherwise.

We first introduce a construction which maps any clause
in a propositional logic formula to some sub-graph of a
graph. We will then connect these sub-graphs to obtain the
graph which will allows a reduction of any instance of 3-SAT
to Problem 4. In turn, we will show that we can use any
algorithm that solves Problem 4 to solve the 3-SAT problem,
showing that Problem 4 is polynomial-time only if there exists
a polynomial-time algorithm to solve 3-SAT, implying P=NP.

Construction 1 (Clause to Sub-graph). Given a 3-SAT clause
cj , we can construct a sub-graph representing this clause
as follows. For each clause cj , we introduce nodes sj−1

and sj . Then, we add the nodes x1,j , . . . xn,j corresponding

IEEE TRANSACTIONS AND JOURNALS TEMPLATE 16

to variables x1, . . . , xn in the 3-SAT formula. We add the
following directed edges for each xi,j node — an incoming
edge from node sj−1 to xi,j , and an outgoing edge from xi,j

node to node sj . Then we add two nodes, denoted by IT,j and
IF,j , to this sub-graph. If xi appears in the clause cj , then we
connect the IT,j node by bypassing the edge from xi,j to xj ,
and if x̄i appears in cj , then we connect IF,j to bypass the
edge from sj−1 to xi,j (as shown in Fig. 7a).

Constructing a sub-graph for a clause cj via Construction 1
allows us to relate the edge cuts to the Boolean assignment for
the variables x0, . . . , xn. If the incoming edge into xi,j is cut,
then the corresponding Boolean assignment to xi is False, and
if the outgoing edge from xi,j is cut, then the corresponding
Boolean assignment to xi is True. This ensures that a satisfying
assignment for the clause corresponds to edge cuts such that
all Paths(sj−1, sj) are routed through intermediate nodes
{IT,j , IF,j}. An assignment that evaluates the clause cj to
False corresponds to edge cuts in the sub-graph such that there
is no path from sj−1 to sj .

Construction 2 (Reduction of 3-SAT to Problem 4). Suppose
we have an instance of the 3-SAT problem with n variables
x1, . . . , xn and m clauses c1, . . . cm. First, we construct the
sub-graphs for each clause according to Construction 1. Let
M := m×n. We denote the node s0 as the source S, and sm
as the sink T. The resulting graph is a series of sub-graphs
representing each clause cj of the 3-SAT formula. For every
variable xi in the formula, we maintain two groups of edges:
i) incoming edges {(sj−1, xi,j) |1 ≤ j ≤ m}, and ii) outgoing
edges {(xi,j , sj) | 1 ≤ j ≤ m}. All edges in a group share the
same edge cut value, corresponding to Grstatic. This ensures
that every variable has the same Boolean assignment across
clauses.

This allows us to construct a graph corresponding to a 3-
SAT formula in polynomial time via the procedure outlined in
Construction 2, also illustrated in Fig. 7.

Theorem 5. Problem 4 is NP-complete.

Proof. We will show that Problem 4 is NP-hard by showing
that Construction 2 is a correct polynomial-time reduction
of the 3-SAT problem to Problem 4 i.e., any polynomial-
time algorithm to solve Problem 4 can be used to solve 3-
SAT in polynomial-time. Consider the graph constructed by
Construction 2 for any propositional logic formula. The valid
set of edge cuts C on this graph with cardinality |C|≤ M
is a witness for Problem 4. A witness for the 3-SAT formula
is an assignment of the variables x1, . . . , xn. A witness to a
problem is satisfying if the problem evaluates to True under
that witness. Next, we show that a valid set of edge cuts C
is a satisfying witness for Problem 4 iff the corresponding
assignment to variables x1, . . . , xn is a satisfying witness for
the 3-SAT formula.

First, consider a satisfying witness for Problem 4. By
Construction 2, the cardinality of the witness, |C|= m × n
will be exactly M , which is the minimum number of edge cuts
required to ensure no bypass paths on the constructed graph.
This implies that each variable xi has a Boolean assignment.

By Construction 1, a strictly positive flow on the sub-graph
of clause cj implies that cj is satisfied. By Construction 2,
a strictly positive flow through the entire graph implies that
all clauses in the 3-SAT formula are satisfied. Therefore, a
satisfying witness to the 3-SAT formula can be constructed in
polynomial-time from a satisfying witness for an instance of
Problem 4.

Next, we consider a satisfying witness for the 3-SAT
formula. The Boolean assignment for each variable xi cor-
responds to edge cuts on the graph (see Fig. 7b). Any
Boolean assignment ensures that there is no bypass path on
the graph since either all incoming edges or all outgoing
edges for each variable xi are cut. This also corresponds to
the minimum number of edge cuts required to cut all bypass
paths, corresponding to |C|= m × n. By Construction 1, a
satisfying witness corresponds to a Path(sj−1, sj) on the sub-
graph for each clause cj . By Construction 2, observe that
there exists a strictly positive flow on the graph. Thus, we
can construct a satisfying witness to an instance of Problem 4
in polynomial time from a satisfying witness to the 3-SAT
formula. Therefore, any 3-SAT problem reduces to an instance
of Problem 4, and thus, Problem 4 is NP-hard. Additionally,
Problem 4 is NP-complete since we can check the cardinality
of C, and whether C is a valid set of edge cuts in polynomial
time.

Corollary 1. Problem 3 is NP-hard [60].

Proof. By Theorem 5, Problem 4 is NP-complete, and there-
fore by Lemma 5, Problem 3 is NP-hard.

Additionally, we can identify the computational complexity
for the reactive setting. For the reactive setting, a valid set of
edge cuts is similar to the static setting, except in how edges
are grouped, which is discussed in Remark 6. Fig. 8 illustrates
the graphs used for establishing the computational complexity
in this setting. The optimization problem and its corresponding
decision problem can be stated as follows.

Problem 5 (Reactive Obstacles Optimization Problem). Given
a graph G, identify a valid set of edge cuts C such that the
resulting flow F is maximized over all possible sets of edge
cuts, and such that |C| is minimized for the flow F.

Note that a valid set of edge cuts for the reactive problem is
different from a valid set of edge cuts for the static problem.

Problem 6 (Reactive Obstacles Decision Problem). Given a
graph G, and an integer M ≥ 0, does there exist a valid set
of cuts C such that |C|≤M?

Once again, we prove a reduction from 3-SAT, but to an
instance of Problem 6 with a single history variable q. Given
a 3-SAT formula, the construction of the graph follows from
the static setting, but with a few key differences.

Construction 3 (Reduction from 3-SAT to Problem 6 with
single history variable q). Suppose we have an instance of the
3-SAT problem with n variables x1, . . . , xn and m clauses
c1, . . . cm. Let M := n. Using Construction 2, setup two
graphs: G and a copy G(q,S) for source S and the single
history variable q. The key difference is that G(q,S) follows

IEEE TRANSACTIONS AND JOURNALS TEMPLATE 17

Construction 2 exactly, while in G, edges in a group need
not have the same cut value. Furthermore, for each group in
G(q,S), the cut value is set to the maximum edge-cut value in
the corresponding group in G.

Theorem 6. Problem 6 is NP-complete and Problem 5 is NP-
hard.

Proof. The proof follows similarly from Theorem 5. In this
setting, a witness for Problem 6 comprises the maximum edge
cut value of each group in G. Construction 3 relates edge
cuts on G and G(q,S). This implies that edge cuts on G are
found under the condition that there is a strictly positive flow
on G(q,S) under a static mapping of edges. The minimum
set of edge cuts which ensures no bypass paths on G has
cardinality n, corresponding to only one of the sub-graphs
having edge cuts. Furthermore, for each xi, there will be one
edge-cut in one of the two groups (incoming or outgoing
edges). Therefore, for each xi, only the incoming or the
outgoing edge group will have a maximum edge cut value of 1,
corresponding to the Boolean assignment for xi. A minimum
cut on G found under the conditions of no bypass paths on G
and a positive flow on G(q,S) results in a Boolean assignment
that is a satisfying witness to the 3-SAT formula. Thus, we
have polynomial-time construction of a satisfying witness to
the 3-SAT formula from a satisfying witness to Problem 6.
This follows similarly to Theorem 5.

Likewise, a satisfying witness to the 3-SAT formula can be
mapped to edge cuts on one of the sub-graphs of G. These
edge cuts will be such that there is no bypass path on G,
and will be the minimum set of edge cuts to accomplish this
task, corresponding to |C|= n. Additionally, by construction
of the graphs, this will correspond to a strictly positive flow
on G(q,S). Thus, we can construct a satisfying witness to
Problem 6 in polynomial time from a satisfying witness of
the 3-SAT formula. Therefore, any 3-SAT problem reduces
to an instance of Problem 6. As a result, Problem 6 is NP-
complete and following similarly to Corollary (1), Problem 5
is NP-hard.

VIII. EXPERIMENTS

In this section, we demonstrate our framework on simulated
and hardware experiments, and include runtime analysis. In the
following experiments, examples with static test environments
solve the routing optimization MILP-STATIC to find the test
strategy. Similarly, examples with reactive test environments
solve MILP-REACTIVE, and those with reactive dynamic
agents solve MILP-AGENT, unless otherwise stated. These
optimizations are solved using Gurobipy [61]. The reactive
test agent strategies are synthesized using the temporal logic
planning toolbox TuLiP [47].

In simulations and hardware experiments, we utilize Unitree
A1 quadrupeds as both the system and test agents. The low-
level control of the quadruped is managed through a motion
primitive layer, which abstracts the underlying dynamics and
facilitates transitions between primitives as described in [62].
This includes behaviors such as lying down, standing, walking,
jumping, and reduced-order model-based waypoint tracking

using a unicycle or single integrator model. These behaviors
can be directly commanded by the autonomy layer provided by
TuLiP. Individual motion primitives are implemented within
our C++ motion primitive framework, with control laws,
sensing, and estimation executed at 1kHz.

A. Simulation

Reactive Test Environment: The following two reactive
examples were demonstrated on hardware in previous work
in [45]. The updated framework in this paper resulted in
simulated test traces (see Figs. 9a, 9b) that are qualitatively
similar to the hardware demo in [45]. Additionally, using the
updated framework reduced the time to solve the optimization
by three orders of magnitude.

1) Beaver Rescue: The quadruped’s task is to rescue the
beaver from the hallway and return it to the lab. The system
objective is given as φsys = □(beaver ∧ □ goal), where
‘beaver’ corresponds to the quadruped reaching the beaver, and
‘goal’ corresponds to the quadruped and the beaver reaching
the safe location in the lab. The test objective is given as
φtest = □ door1 ∧ □ door2, ensuring that the quadruped will
use different doors on the way to the beaver and back into
the lab. The resulting test execution first shows the quadruped
using door2 to exit the lab into the hallway, then after it reaches
the beaver, door2 is shut and the quadruped walks to door1
to finally return to the lab. The reactive aspect here can be
observed as follows — if the quadruped chose to enter the
hallway through door1, then the resulting test execution would
constrain access to door1 when the quadruped is attempting
to re-enter the lab with the beaver. The simulated test trace is
shown in Fig. 9a.

2) Motion Primitive Example: In this example, we test the
motion primitives of the quadruped given as ‘lie’, ‘jump’, and
‘stand’. The goal for the quadruped is to reach the beaver in
the hallway. The test objective is given as φtest = □ jump ∧
□ lie ∧ □ stand, which ensures that each motion primitive

is tested at least once; and the system objective is φsys =

□ goal, where ‘goal’ corresponds to the beaver location. The
test setup includes doors that might be unlocked by the system
demonstrating specific motion primitives. Our framework will
decide whether the doors will be locked or unlocked according
to which motion primitives have already been observed during
the test. This is where the reactivity of this framework becomes
apparent, if the quadruped chose a different set of doors and
motion primitives, the resulting test execution would have been
different. The simulated test trace is shown in Fig. 9b.

Test Environment with Dynamic Agent
3) Maze 1: The system (gray quadruped) wants to reach

its goal location in the top left corner of the grid, and the
test agent wants to route it through a series of states, labeled
I1, I2, and I3, shown in Fig. 9c. The system specification and
test objective are given as φsys = □ goal and φtest = □ I1 ∧
□ I2 ∧ □ I3. The test agent (yellow quadruped) can move up

on the center column of the grid, and its strategy is found using
the flow-based synthesis framework. Observe that it blocks
specific cells such that the quadruped cannot directly navigate
to its goal through the center of the grid. Instead, the system

IEEE TRANSACTIONS AND JOURNALS TEMPLATE 18

(a) Beaver rescue. (b) Motion primitive example.

(c) Maze 1.

(d) Simulated alternative trace, Maze 2.

Fig. 9: Simulated experiment results. Yellow boxes are obstacles to indicate states that are not navigable in Tsys. Gray quadruped
is the system, and yellow quadruped in (c) and (d) is the test agent. In (b), system demonstrates primitives in the order: stand
(1), stand (2), jump (3), and lie (4), before advancing to goal (5). In (c) and (d), the test agent chooses to navigate off-grid
after the test objective is realized.

quadruped is forced to visit the labeled cells, and only then,
the test agent moves into the parking state off the grid to not
excessively constrain the system. The resulting test execution
is shown in Fig. 9c.

B. Hardware Experiments

Fig. 10: Refueling example experiment trace with yellow
boxes representing static obstacles Obs.

Static Test Environment:
1) Running Example: For this experiment we implemented

Example 1 on the quadruped. The resulting test trace is shown
in Fig. 12.

For the following two examples, the system state also con-
tains the fuel level. Thus, the auxiliary bidirectional constraints
in MILP-STATIC are such that the fuel level is abstracted
away, meaning if a transition is cut for a specific fuel level, it
is cut for all fuel levels.

2) Refueling: This example highlights that intermediate
nodes need not always represent poses of the system. In
addition to the coordinates x = (x, y), the quadruped state
also tracks the fuel level f . A full fuel tank consists of 10
units of fuel. Every move on the grid reduces the fuel level
by 1 and reaching the refueling station (in the bottom right
corner of the grid) resets the fuel tank to full. The desired
test behavior is to have the system visit a state that is too far
away to reach the goal state with its available fuel, specifically
we want to see the system be in the lower three rows of the
grid with a fuel level of lower than 2. The system objective
is given as φsys = □ goal∧□¬(f = 0) and the test objective
is φtest = □(y < 4 ∧ f < 2). Note that this test objective
also includes states where the fuel tank is empty, f = 0,
but the MILP will not route the test execution through these
unsafe states, but will automatically only route it through the
states where f = 1 instead. Snapshots and the trace of the
test execution are shown in Fig. 10. The color of the trace
corresponds to the fuel level, and we observe that the obstacle
configuration is such that for the quadruped to successfully
reach its goal location it is required to visit the refueling
station.

3) Mars Exploration: In this example the system is tested
for a combination of reachability, reaction and avoidance sub-
tasks. This example is inspired by a planetary rover’s explo-
ration of the Martian surface. Consequently, the grid world
has states designated as ‘rock’, ‘ice’, and ‘drop-off’, denoting
sample locations and the drop-off position, respectively. In
addition to the coordinates x, the quadruped state also contains
the fuel level f that decreases by 1 for every transition on the
grid. The maximum fuel capacity is 10 units and is reset to
full at the refueling locations labeled ‘R’. The system objective
states that the quadruped must reach its goal location, labeled
‘T’, and if it picks up a sample, it shall drop it off at the drop-
off location, while not running out of fuel. This is captured in

IEEE TRANSACTIONS AND JOURNALS TEMPLATE 19

(a) Mars exploration experiment trace. (b) Mars exploration experiment snapshots.

Fig. 11: Resulting test execution on the Unitree A1 quadruped for static test environments.

Fig. 12: Experiment trace for Example 1.

the system objective

φsys = □T ∧□¬(f = 0) ∧□(ice ∨ rock→ □ drop-off).

The test objective corresponds to the triggers of the reaction
sub-task. Specifically, the quadruped is required to collect a
‘rock’ sample and an ‘ice’ sample, and is routed such that a
successful run requires the quadruped to refuel:

φtest = □ rock ∧ □ ice ∧ □(d > f),

where d = |x − xgoal| is the distance to the goal and f
is the fuel level. The experiment trace and snapshots of the
hardware test execution are shown in Figs. 11a and 11b. From
the experiment trace, the static obstacles are placed such that
the quadruped has to pick up rock and ice samples, refuel
twice, and then drop off samples before reaching its goal. The
test environment for the hardware run in Fig. 11 corresponds
to a sub-optimal solution of MILP-STATIC with a flow of
1. This sub-optimal solution still ensures that the system is
routed in a manner that the test objective is still satisfied. In
Table V, we list the runtimes for getting the optimal solution
for this example.

Reactive Dynamic Agent:
4) Patrolling: This example is similar to the static refueling

example, except that the test environment now consists of a
test agent and static obstacles (see Fig. 1). The system (gray
quadruped) starts in the lower right corner and must reach

its goal in the lower left corner of the grid without running
out of fuel, which is encoded in the system objective: φsys =

□T ∧ □¬(f = 0). The refueling station is denoted ‘R’ in
Fig. 1. Once again, the test objective routes the system through
a state from which a successful test execution requires it to
refuel,

φtest = □(d > f),

where d = |x − xgoal| is the distance to the goal. The test
agent can move up and down the third column of the grid,
and can leave the grid from the first and last rows to a parking
state. As shown in the trace and hardware snapshots in Fig. 1,
our framework chooses to place a static obstacle near the
start state, and the test agent blocks the system from directly
navigating to the goal (see panels 2, 3 and 4 in Fig. 1) until
its fuel level is low enough, thus requiring it to refuel. For this
experiment, we solve MILP-AGENT with the objective (12)
for numerical stability in Gurobi.

5) Maze 2: In this example, the system quadruped starts
in the bottom left corner of the grid, and must reach its goal
location in the top right corner. The grid world is a 5×5 grid,
with a symmetric obstacle configuration shown in yellow in
Fig. 13a. In this example, the test environment consists of a
test agent that can traverse along the center row and center
column of the grid. While the test environment can also place
static obstacles, it realizes the test strategy entirely via the test
agent. The system objective is given as follows φsys = □T .
The test objective consists of two visit tasks in arbitrary order,
encoded as

φtest = □ I1 ∧ □ I2,

where I1 and I2 correspond to the designated locations on
the grid. The specification product is the same as shown in
Fig. 3c, we can see that to route the test execution through
the test objective acceptance states, we need to find cuts for
the history variables q0, q6, and q7. The reactive cuts found
by the flow-based synthesis procedure are shown in Figs. 13b-
13d. The trace and snapshots of the resulting test execution
is shown in Figs. 14a and 14b. We observe that the system
quadruped decides to take the top path first, visits I2 (see
panel 2 in Fig. 14b), and is blocked by the test agent (see

IEEE TRANSACTIONS AND JOURNALS TEMPLATE 20

(a) Grid world layout.

I2

S

T

I1

’q7’

I2

S

T

I1

’q6’

I2

S

T

I1

’q0’

Reactive Constraints

(b) Reactive cuts in q0.

I2

S

T

I1

’q7’

I2

S

T

I1

’q6’

I2

S

T

I1

’q0’

Reactive Constraints

(c) Reactive cuts in q6.

I2

S

T

I1

’q7’

I2

S

T

I1

’q6’

I2

S

T

I1

’q0’

Reactive Constraints

(d) Reactive cuts in q7.

Fig. 13: (a) Grid world layout with cells traversible by the test agent marked. Dark gray cells are not traversible by either agent.
(b) Black edges indicate reactive cuts corresponding to the history variables for the Maze 2 experiment. Note that the cuts are
not bidirectional. The history variable states q0, q6, and q7 can be inferred from Bπ illustrated in Fig. 3c, and correspond to
initial state, visiting I1 first, and visiting I2 first.

(a) Maze 2 trace. (b) Maze 2 experiment snapshots.

Fig. 14: Resulting test execution for the Maze 2 experiment with a dynamic test agent.

panel 3). It then decides to try navigating through the center
of the grid, and is again blocked by the test agent (see panel 4).
Subsequently, it decides to try the bottom path, visits I1 (see
panel 5), and successfully reaches the goal without any further
test agent intervention. If the system decided to visit I1 first,
the adaptive test agent strategy would have blocked the system
from reaching the goal directly from I1 until it visits I2. This
is an example with a maximum flow of F = 2, corresponding
to the two unique ways for the system to reach the goal. For
an alternative system controller in which the system chooses
to approach the goal through I1, the simulated trace resulting
from the test agent strategy is shown in Fig. 9d.

C. Runtimes
Table V showcases runtimes for simulated and hardware

experiments involving static or reactive obstacles. Table VI
shows runtimes for simulated and hardware experiments with
a dynamic test agent. The size of the automata and graphs
reported in these tables corresponds to the tuple (|V |, |E|),
where V is the number of nodes, and E the number of edges.
To evaluate the scalability of this framework, we include
runtimes on randomized grid worlds for specification sub-
tasks in Table IV for static obstacles, and in Table III for

reactive obstacles. These experiments were conducted on an
Apple M2 Pro with 16 GB of RAM. The Mars exploration
example corresponds to solving an MILP with over 13, 000
binary variables, for which the solver takes 46.6s to find the
optimal solution. For examples involving a dynamic agent
such as Maze 1 and Maze 2, our framework iterates through
counterexamples that are not dynamically feasible for the test
agent until it finds a solution.

For randomized experiments, we time out if the Gurobi
fails to find a feasible solution to the MILP within 10 min.
If it finds a feasible solution within 10 minutes, we allocate
an additional minute for the optimizer reach the optimal,
otherwise terminating the optimization with a feasible solution.
For these experiments, we increase the length of the system
and test objective for the following three classes of specifi-
cation patterns: i) reachability, ii) reachability and reaction,
and iii) reachability and safety. For reachability patterns, the
set AP comprises of atomic propositions needed to describe
the system and test objectives as follows, φsys = □ p0
and φtest =

∧n
i=1 □ pi, and the total number of atomic

propositions are |AP |= |{p0, . . . , pn}|= n + 1. Similarly,
for reachability and reaction patterns (case ii), we have
φsys = □ p1 ∧

∧n
i=2 □(pi → □ qi) and φtest = □ p0 ∧

IEEE TRANSACTIONS AND JOURNALS TEMPLATE 21

TABLE II: Graph Construction Runtimes (with mean and standard deviation) for Random Grid World Experiments

Experiment 5× 5 10× 10 15× 15 20× 20

|AP | |Bπ | Graph Construction [s]

Reachability:

2 (4, 9) 0.046± 0.001 0.224± 0.0056 0.554± 0.009 1.078± 0.011

3 (8, 27) 0.344± 0.007 1.661± 0.022 4.004± 0.048 7.376± 0.061

4 (16, 81) 1.997± 0.077 9.895± 0.109 23.512± 0.179 43.188± 0.454

Reachability & Reaction:

3 (6, 21) 0.090± 0.001 0.424± 0.016 1.037± 0.004 2.044± 0.013

5 (20, 155) 1.628± 0.087 7.560± 0.023 18.019± 0.129 33.539± 0.144

7 (68, 1065) 44.809± 0.996 209.612± 1.732 488.611± 6.308 869.060± 16.870

Reachability & Safety:

3 (6, 18) 0.102± 0.002 0.508± 0.010 1.278± 0.022 2.557± 0.023

4 (6, 18) 0.116± 0.002 0.590± 0.009 1.485± 0.024 2.918± 0.046

5 (6,18) 0.179± 0.027 0.960± 0.037 2.329± 0.072 4.482± 0.116

TABLE III: Run Times (with mean and standard deviation) for Random Grid World Experiments solving MILP-REACTIVE

Experiment 5× 5 10× 10 15× 15 20× 20

|AP | |Bπ | Optimization[s], Success Rate (%)

Reachability:

2 (4, 9) 5.63± 13.43 100 64.62± 38.75 100 67.38± 25.47 100 68.63± 31.12 100

3 (8, 27) 23.36± 38.15 100 61.68± 35.12 100 91.54± 31.41 100 117.82± 34.89 100

4 (16, 81) 22.49± 36.33 100 83.52± 29.25 100 171.49± 50.72 100 317.62± 89.08 100

Reachability & Reaction:

3 (6, 21) 5.97± 13.21 100 61.06± 34.67 100 71.64± 41.03 100 85.20± 19.49 100

5 (20, 155) 17.19± 25.51 100 78.44± 34.71 100 159.91± 76.63 100 279.86± 148.23 90

7 (68, 1065) 52.71± 41.23 100 331.32± 187.28 90 585.21± 67.58 15 600.00± 0.00 0

Reachability & Safety:

3 (6, 18) 0.76± 1.52 100 70.82± 89.70 100 63.68± 27.54 100 80.58± 20.79 100

4 (6, 18) 0.15± 0.29 100 71.47± 80.61 100 59.59± 38.92 100 76.02± 27.11 100

5 (6, 18) 0.12± 0.18 100 94.68± 88.04 100 71.34± 30.89 100 82.54± 22.69 100

TABLE IV: Run Times (with mean and standard deviation) for Random Grid World Experiments solving MILP-STATIC.

Experiment 5× 5 10× 10 15× 15 20× 20

|AP | |Bπ | Optimization [s], Success Rate (%)

Reachability:

2 (4, 9) 8.17± 13.14 100 54.07± 17.98 100 60.17± 0.12 100 60.17± 0.10 100

3 (8, 27) 27.78± 21.71 100 60.17± 0.10 100 60.48± 0.86 100 74.02± 38.70 100

4 (16, 81) 52.60± 14.05 100 60.42± 0.34 100 82.02± 41.26 100 265.41± 203.51 80

Reachability & Reaction:

3 (6, 21) 10.62± 14.85 100 60.09± 0.06 100 60.23± 0.24 100 60.34± 0.46 100

5 (20, 155) 20.41± 19.21 100 67.77± 31.90 100 95.31± 116.65 95 268.50± 222.14 75

7 (68, 1065) 36.64± 23.34 100 110.63± 92.81 100 419.77± 214.30 55 556.38± 131.06 10

Reachability & Safety:

3 (6, 18) 1.27± 1.47 100 60.08± 0.06 100 57.27± 12.61 100 60.32± 0.24 100

4 (6, 18) 0.17± 0.23 100 60.06± 0.05 100 60.14± 0.10 100 60.30± 0.19 100

5 (6, 18) 0.11± 0.16 100 54.15± 17.80 100 60.17± 0.09 100 60.29± 0.26 100

IEEE TRANSACTIONS AND JOURNALS TEMPLATE 22

TABLE V: Runtimes for Simulated and Hardware Experiments showing sizes of the automata and graphs

Experiment |Bπ | |Tsys| |G| G[s] |BinVars| |ContVars| |Constraints| Opt[s] Flow |C|

Example 1 (4, 9) (15, 53) (27, 96) 0.0270 73 87 540 0.0003 3.0 14

Refueling (6, 18) (265, 1047) (332, 1346) 0.6655 1014 1261 19819 0.8682 2.0 199

Mars Exploration (36, 354) (376, 1522) (4073, 17251) 75.8313 13178 16604 1646480 46.6209 2.0 1641

Example 2 (8, 27) (6, 17) (20, 56) 0.0452 25 115 409 0.0003 2.0 4

Beaver Rescue (12, 54) (7, 19) (15, 39) 0.0470 8 154 441 0.0001 2.0 2

Motion Primitives (16, 81) (15, 42) (72, 207) 0.4286 106 761 2606 0.0005 3.0 15

TABLE VI: Runtimes for Simulated and Hardware Experiments with Dynamic Agents

Experiment |Bπ | |Tsys| |G| G[s] | BinVars | Opt[s] Controller[s] |Cex| Flow |C|

Maze 1 (16, 81) (26, 80) (196, 604) 1.6226 355 0.0007 68.7052 3 1.0 3

Patrolling (6, 18) (386, 1539) (210, 831) 0.4573 621 6.0535 16.1191 0 1.0 13

Maze 2 (8, 27) (21, 66) (80, 252) 0.2195 176 0.0160 5.0072 5 2.0 8

∧n
i=2 □ pi, with |AP |= |{p0, . . . , pn, q2, . . . , qn}|= 2n. In

the reachability and safety case (iii), only the length of the
system objective changes: φsys = □ p1 ∧

∧n
i=2 □¬pi and

φtest = □ p0, with |AP |= |{p0, . . . , pn}|= n + 1. Improving
the runtimes for graph construction and controller synthesis
subroutines is orthogonal to the focus of this paper. Since the
test synthesis framework is carried out offline, we observe
reasonable runtimes for medium-sized problems with hundreds
to thousands of integer variables. An interesting direction for
future research involves identifying good convex relaxations
of the MILPs to further improve scalability.

IX. COMPARISON TO REACTIVE SYNTHESIS

We presented an approach to solve Problems 1 and 2
leveraging tools from automata theory and network flow
optimization. In particular, for Problem 2, we rely on the
optimization solution to construct a GR(1) specification to
reactively synthesize a test agent strategy. One indication of
the optimization step being necessary is the computational
complexity of the problem. If the problem data are consistent,
there exists a GR(1) specification for the test agent that would
solve the problem, but directly expressing this specification
is impractical. Essentially, the challenge is in finding the
restrictions on system actions, which are then captured in
the sub-formulae of the GR(1) specification. In this section,
we argue that we cannot solve Problems 1 and 2 solely via
synthesis from an LTL specification.

To the authors’ knowledge, directly capturing the different
perspectives of the system and the test agent in this neither
fully adversarial nor fully cooperative setting is not possible
with current state-of-the-art approaches in GR(1) synthesis.
Particularly in the reactive setting, the test strategy must ensure
that from the system’s perspective, there always exists a path
to the system goal. To capture this constraint, we reason over
a second product graph that represents the system perspective.
It is not obvious how this semi-cooperative setting can be
directly encoded as a synthesis problem in common temporal
logics.

In the static setting, the problem can be posed on a single
graph. However, it is difficult to find the set of static obstacles

directly from GR(1) synthesis. Every state in the winning
set describes an edge-cut combination, but qualitative GR(1)
synthesis cannot maximize the flow or minimize the cuts.
Furthermore, the winning set can include states that vacuously
satisfy the formula, i.e., not allowing the system any path to
the goal. Finally, the combinatorial complexity of the problem
would manifest as follows. Although the time complexity of
GR(1) synthesis is O(N3) in the number of states N , we
require an exponential number of states to characterize the
GR(1) formula. For example, in Figure 15, this is illustrated
for the GR(1) formula:

□φdyn
sys ∧□ □ T→ □φdyn

test ∧□φaux dyn
test ∧□ □ Iaux,

where φdyn
sys captures the system transitions on the grid world,

φdyn
test are the dynamics of the test environment, and φaux dyn

test
and Iaux capture the □ I condition in GR(1) form. In this
example, each edge in the system transition system Tsys can
take 0/1 values, and once an edge is cut, it remains cut and the
system cannot take a transition that corresponds to a cut edge.
Due to this, the number of states N to describe the GR(1)
formula includes the 2|Tsys.E| states that characterize the edge
cuts. As seen in Figure 15, the direct GR(1) synthesis approach
returns a trivial solution corresponding to an impossible setting
for the system. Finally, even when an acceptable solution
is returned, the problem being at least NP-hard will result
in the combinatorial complexity manifesting in the synthesis
approach.

One key advantage of the network flow optimization is
reasoning over flows as opposed to paths, which allows for
tractable implementations. These insights from network flow
optimization in this work can help in driving further research
along these directions.

X. CONCLUSION AND FUTURE WORK

We presented a framework to synthesize least-restrictive
strategies for test environments according to specified system
and test objectives. To do this, we formulate a network flow-
based MILP corresponding to the types of agents available
in the test environment. In the case of a dynamic test agent,

IEEE TRANSACTIONS AND JOURNALS TEMPLATE 23

Fig. 15: Solution returned by GR(1) synthesis and the network
flow optimization in the case of static constraints

we parse the solution of the MILP to synthesize a test
agent strategy via reactive synthesis. Furthermore, we use
a counterexample-guided approach to find a realizable test
agent strategy. Our problem is shown to be NP-hard, yet the
MILP can handle medium-sized problem instances. Our test
strategies are such that the system is minimally restricted while
routing the test execution through the test objective without
creating a livelock. Therefore, a test execution in which the
system fails to meet the system objective is solely the fault of
the system, and not due to the test environment.

There are several exciting future directions. First, we aim
to extend this framework to automatically select dynamic test
agents from a library. This selection can optimized to meet
user-defined metrics such as testing effort or cost. Secondly,
we wish to improve the runtime of our algorithm by using
symbolic methods to speed up graph construction and explor-
ing convex relaxations to the MILP. More broadly, we want to
investigate how to incorporate test metrics such as coverage
and difficulty into our framework.

ACKNOWLEDGMENT

The authors acknowledge Emily Fourney, Chris Umans,
Scott Livingston, Joel Burdick, Ioannis Filippidis, Mani
Chandy, and Lijun Chen for useful discussions.

REFERENCES

[1] I. S. Organization, “Road vehicles: Safety of the intended functionality
(ISO Standard No. 21448:2022),” 2022. https://www.iso.org/standard/
77490.html, Last accessed on 2024-04-11.

[2] Zoox, “Putting Zoox to the test: preparing for the challenges of the
road,” 2021. https://zoox.com/journal/structured-testing/, Last accessed
on 2024-04-11.

[3] N. Webb, D. Smith, C. Ludwick, T. Victor, Q. Hommes, F. Favaro,
G. Ivanov, and T. Daniel, “Waymo’s safety methodologies and safety
readiness determinations,” 2020.

[4] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Conference on Robot
Learning, pp. 1–16, PMLR, 2017.

[5] D. J. Fremont, T. Dreossi, S. Ghosh, X. Yue, A. L. Sangiovanni-
Vincentelli, and S. A. Seshia, “Scenic: a language for scenario specifica-
tion and scene generation,” in Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pp. 63–78, 2019.

[6] A. Gambi, T. Huynh, and G. Fraser, “Generating effective test cases for
self-driving cars from police reports,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pp. 257–267,
2019.

[7] C. Stark, C. Medrano-Berumen, and M. Akbaş, “Generation of au-
tonomous vehicle validation scenarios using crash data,” in 2020 South-
eastCon, pp. 1–6, 2020.

[8] G. Lou, Y. Deng, X. Zheng, M. Zhang, and T. Zhang, “Testing of
autonomous driving systems: where are we and where should we go?,”
in Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
pp. 31–43, 2022.

[9] A. Corso, R. Moss, M. Koren, R. Lee, and M. Kochenderfer, “A survey
of algorithms for black-box safety validation of cyber-physical systems,”
Journal of Artificial Intelligence Research, vol. 72, pp. 377–428, 2021.

[10] H. Winner, K. Lemmer, T. Form, and J. Mazzega, “Pegasus—first
steps for the safe introduction of automated driving,” in Road Vehicle
Automation 5, pp. 185–195, Springer, 2019.

[11] L. Li, W.-L. Huang, Y. Liu, N.-N. Zheng, and F.-Y. Wang, “Intelligence
testing for autonomous vehicles: A new approach,” IEEE Transactions
on Intelligent Vehicles, vol. 1, no. 2, pp. 158–166, 2016.

[12] G. E. Mullins, P. G. Stankiewicz, R. C. Hawthorne, and S. K. Gupta,
“Adaptive generation of challenging scenarios for testing and evaluation
of autonomous vehicles,” Journal of Systems and Software, vol. 137,
pp. 197–215, 2018.

[13] A. Corso, P. Du, K. Driggs-Campbell, and M. J. Kochenderfer, “Adap-
tive stress testing with reward augmentation for autonomous vehicle
validatio,” in 2019 IEEE Intelligent Transportation Systems Conference
(ITSC), pp. 163–168, IEEE, 2019.

[14] S. Feng, H. Sun, X. Yan, H. Zhu, Z. Zou, S. Shen, and H. X. Liu, “Dense
reinforcement learning for safety validation of autonomous vehicles,”
Nature, vol. 615, no. 7953, pp. 620–627, 2023.

[15] Y. Annpureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan, “S-
taliro: A tool for temporal logic falsification for hybrid systems,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pp. 254–257, Springer, 2011.

[16] H. Abbas and G. Fainekos, “Linear hybrid system falsification through
local search,” in International Symposium on Automated Technology for
Verification and Analysis, pp. 503–510, Springer, 2011.

[17] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic spec-
ifications for continuous-time signals,” Theoretical Computer Science,
vol. 410, no. 42, pp. 4262–4291, 2009.

[18] A. Donzé, “Breach, a toolbox for verification and parameter synthesis
of hybrid systems,” in International Conference on Computer Aided
Verification, pp. 167–170, Springer, 2010.

[19] D. J. Fremont, E. Kim, Y. V. Pant, S. A. Seshia, A. Acharya, X. Bruso,
P. Wells, S. Lemke, Q. Lu, and S. Mehta, “Formal scenario-based
testing of autonomous vehicles: From simulation to the real world,” in
2020 IEEE 23rd International Conference on Intelligent Transportation
Systems (ITSC), pp. 1–8, IEEE, 2020.

[20] C. E. Tuncali, G. Fainekos, H. Ito, and J. Kapinski, “Simulation-
based adversarial test generation for autonomous vehicles with machine
learning components,” in 2018 IEEE Intelligent Vehicles Symposium
(IV), pp. 1555–1562, IEEE, 2018.

[21] C. Innes and S. Ramamoorthy, “Automated testing with temporal logic
specifications for robotic controllers using adaptive experiment design,”
in 2022 International Conference on Robotics and Automation (ICRA),
pp. 6814–6821, 2022.

[22] P. Akella, M. Ahmadi, R. M. Murray, and A. D. Ames, “Formal test
synthesis for safety-critical autonomous systems based on control barrier
functions,” in 2020 59th IEEE Conference on Decision and Control
(CDC), pp. 790–795, 2020.

[23] T. Wongpiromsarn, M. Ghasemi, M. Cubuktepe, G. Bakirtzis, S. Carr,
M. O. Karabag, C. Neary, P. Gohari, and U. Topcu, “Formal methods
for autonomous systems,” arXiv preprint arXiv:2311.01258, 2023.

[24] G. Fainekos, H. Kress-Gazit, and G. Pappas, “Hybrid controllers for
path planning: A temporal logic approach,” in Proceedings of the 44th
IEEE Conference on Decision and Control, pp. 4885–4890, 2005.

[25] L. Tan, O. Sokolsky, and I. Lee, “Specification-based testing with
linear temporal logic,” in Proceedings of the 2004 IEEE International
Conference on Information Reuse and Integration, 2004. IRI 2004.,
pp. 493–498, IEEE, 2004.

[26] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Falsification of LTL safety
properties in hybrid systems,” International Journal on Software Tools
for Technology Transfer, vol. 15, no. 4, pp. 305–320, 2013.

[27] G. Fraser and F. Wotawa, “Using LTL rewriting to improve the perfor-
mance of model-checker based test-case generation,” in Proceedings of
the 3rd International Workshop on Advances in Model-Based Testing,
pp. 64–74, 2007.

https://www.iso.org/standard/77490.html
https://www.iso.org/standard/77490.html
https://zoox.com/journal/structured-testing/

IEEE TRANSACTIONS AND JOURNALS TEMPLATE 24

[28] G. Fraser and P. Ammann, “Reachability and propagation for LTL
requirements testing,” in 2008 The Eighth International Conference on
Quality Software, pp. 189–198, IEEE, 2008.

[29] R. Bloem, G. Fey, F. Greif, R. Könighofer, I. Pill, H. Riener, and
F. Röck, “Synthesizing adaptive test strategies from temporal logic
specifications,” Formal Methods in System Design, vol. 55, no. 2,
pp. 103–135, 2019.

[30] J. Tretmans, “Conformance testing with labelled transition systems:
Implementation relations and test generation,” Computer Networks and
ISDN Systems, vol. 29, no. 1, pp. 49–79, 1996.

[31] B. K. Aichernig, H. Brandl, E. Jöbstl, W. Krenn, R. Schlick, and S. Tiran,
“Killing strategies for model-based mutation testing,” Software Testing,
Verification and Reliability, vol. 25, no. 8, pp. 716–748, 2015.

[32] R. Hierons, “Applying adaptive test cases to nondeterministic imple-
mentations,” Information Processing Letters, vol. 98, no. 2, pp. 56–60,
2006.

[33] A. Petrenko and N. Yevtushenko, “Adaptive testing of nondeterministic
systems with FSM,” in 2014 IEEE 15th International Symposium on
High-Assurance Systems Engineering, pp. 224–228, IEEE, 2014.

[34] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,”
in Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pp. 179–190, 1989.

[35] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthe-
sis of reactive (1) designs,” Journal of Computer and System Sciences,
vol. 78, no. 3, pp. 911–938, 2012.

[36] C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

[37] M. Yannakakis, “Testing, optimization, and games,” in Proceedings of
the 19th Annual IEEE Symposium on Logic in Computer Science, 2004.,
pp. 78–88, IEEE, 2004.

[38] L. Nachmanson, M. Veanes, W. Schulte, N. Tillmann, and
W. Grieskamp, “Optimal strategies for testing nondeterministic systems,”
ACM SIGSOFT Software Engineering Notes, vol. 29, no. 4, pp. 55–64,
2004.

[39] A. David, K. G. Larsen, S. Li, and B. Nielsen, “Cooperative testing
of timed systems,” Electronic Notes in Theoretical Computer Science,
vol. 220, no. 1, pp. 79–92, 2008.

[40] E. Bartocci, R. Bloem, B. Maderbacher, N. Manjunath, and D. Ničković,
“Adaptive testing for specification coverage in CPS models,” IFAC-
PapersOnLine, vol. 54, no. 5, pp. 229–234, 2021.

[41] T. Marcucci, J. Umenberger, P. Parrilo, and R. Tedrake, “Shortest paths
in graphs of convex sets,” SIAM Journal on Optimization, vol. 34, no. 1,
pp. 507–532, 2024.

[42] T. Marcucci, M. Petersen, D. von Wrangel, and R. Tedrake, “Motion
planning around obstacles with convex optimization,” Science Robotics,
vol. 8, no. 84, p. eadf7843, 2023.

[43] H. Zhang, M. Fontaine, A. Hoover, J. Togelius, B. Dilkina, and S. Niko-
laidis, “Video game level repair via mixed integer linear programming,”
in Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, vol. 16, pp. 151–158, 2020.

[44] M. Fontaine, Y.-C. Hsu, Y. Zhang, B. Tjanaka, and S. Nikolaidis, “On
the Importance of Environments in Human-Robot Coordination,” in
Proceedings of Robotics: Science and Systems, (Virtual), July 2021.

[45] A. Badithela, J. B. Graebener, W. Ubellacker, E. V. Mazumdar, A. D.
Ames, and R. M. Murray, “Synthesizing reactive test environments
for autonomous systems: testing reach-avoid specifications with multi-
commodity flows,” in 2023 IEEE International Conference on Robotics
and Automation (ICRA), pp. 12430–12436, IEEE, 2023.

[46] C. Menghi, C. Tsigkanos, P. Pelliccione, C. Ghezzi, and T. Berger,
“Specification patterns for robotic missions,” IEEE Transactions on
Software Engineering, vol. 47, no. 10, pp. 2208–2224, 2019.

[47] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Murray,
“TuLiP: a software toolbox for receding horizon temporal logic plan-
ning,” in Proceedings of the 14th International Conference on Hybrid
Systems: Computation and Control, HSCC ’11, (New York, NY, USA),
p. 313–314, Association for Computing Machinery, 2011.

[48] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning,” IEEE Transactions on Automatic Control,
vol. 57, no. 11, pp. 2817–2830, 2012.

[49] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-based
reactive mission and motion planning,” IEEE Transactions on Robotics,
vol. 25, no. 6, pp. 1370–1381, 2009.

[50] C. Belta and S. Sadraddini, “Formal methods for control synthesis:
An optimization perspective,” Annual Review of Control, Robotics, and
Autonomous Systems, vol. 2, pp. 115–140, 2019.

[51] J. R. Büchi, On a Decision Method in Restricted Second Order Arith-
metic, pp. 425–435. New York, NY: Springer New York, 1990.

[52] A. Bauer, M. Leucker, and C. Schallhart, “Runtime verification for
LTL and TLTL,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 20, no. 4, pp. 1–64, 2011.

[53] K. Havelund and G. Rosu, “Monitoring programs using rewriting,”
in Proceedings 16th Annual International Conference on Automated
Software Engineering (ASE 2001), pp. 135–143, IEEE, 2001.

[54] A. Morgenstern, M. Gesell, and K. Schneider, “An asymptotically correct
finite path semantics for LTL,” in International Conference on Logic
for Programming Artificial Intelligence and Reasoning, pp. 304–319,
Springer, 2012.

[55] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2022.

[56] V. V. Vazirani, Approximation algorithms, vol. 1. Springer, 2001.
[57] I. Filippidis, S. Dathathri, S. C. Livingston, N. Ozay, and R. M. Murray,

“Control design for hybrid systems with tulip: The temporal logic
planning toolbox,” in 2016 IEEE Conference on Control Applications
(CCA), pp. 1030–1041, IEEE, 2016.

[58] S. Maoz and J. O. Ringert, “GR(1) synthesis for LTL specification
patterns,” in Proceedings of the 2015 10th joint meeting on foundations
of software engineering, pp. 96–106, 2015.

[59] S. A. Cook, “The complexity of theorem-proving procedures,” in Logic,
Automata, and Computational Complexity: The Works of Stephen A.
Cook, pp. 143–152, 2023.

[60] C. H. Papadimitriou, Computational complexity, p. 260–265. GBR: John
Wiley and Sons Ltd., 2003.

[61] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2023.

[62] W. Ubellacker and A. D. Ames, “Robust locomotion on legged robots
through planning on motion primitive graphs,” in 2023 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), preprint, 2023.

IEEE TRANSACTIONS AND JOURNALS TEMPLATE 25

Josefine B. Graebener (Student Member, IEEE)
received a B.Eng. in Aerospace Engineering in 2017
from the Aachen University of Applied Sciences (FH
Aachen) in Aachen, Germany, and a M.S. in Space
Engineering from California Institute of Technology
in 2019. Currently, she is a Ph.D. candidate in Space
Engineering with a minor in Computer Science at
the California Institute of Technology. Her research
interest lies in using formal methods for test and
evaluation of autonomous systems, and system di-
agnostics.

Apurva Badithela (Student Member, IEEE) re-
ceived a Bachelors degree in Aerospace Engineering
and Mechanics in 2018 from the University of Min-
nesota, Twin-Cities. Currently, she is a Ph.D. candi-
date in Control and Dynamical Systems at the Cali-
fornia Institute of Technology. Her dissertation work
focuses on Formal Test Synthesis and System-level
Evaluation for Safety-Critical Autonomous Systems.

Denizalp Goktas (Student Member, IEEE),
Denizalp Goktas is a Ph.D. Candidate in Computer
Science at Brown University. His research focuses
on artificial intelligence, particularly how it
intersects with economics and computer science.
His research seeks to create algorithms for games
and markets, aiming to use these to tackle problems
practical problem such as in economics and
robotics. He is supported by a JP Morgan AI
fellowship. Previously, Denizalp earned his BA in
Computer Science and Statistics from Columbia

University and another BA in Political Science and Economics from Sciences
Po. His past research experience includes internships at Google DeepMind
and JP Morgan, and a visiting scholar position at UC Berkeley’s Simons
Institute.

Apurva Badithela ASL Group Meeting Talk, Stanford (Fall 2023)38

Wyatt Ubellacker (Student Member, IEEE), earned
his B.S. and M.S. degrees in Mechanical Engineer-
ing from the Massachusetts Institute of Technology
in 2013 and 2016, respectively. Prior to joining Cal-
tech in 2019, he was a Robotics Technologist at the
Jet Propulsion Laboratory, where he wrote autonomy
and control algorithms for the Mars Perseverance
Rover.

Currently, he is a Ph.D. candidate in Control
and Dynamical Systems at Caltech. His research
interests focus on control and autonomy for dynamic

platforms, with a special emphasis on robotic morphologies that are capable
of exhibiting a wide variety of behaviors.

Eric V. Mazumdar (Member, IEEE) received a B.S.
degree in Computer Science from the Massachusetts
Institute of Technology (MIT) in 2015, and a Ph.D in
Electrical Engineering and Computer Science from
UC Berkeley in 2021.

Currently he is an Assistant Professor in Com-
puting and Mathematical Sciences and Economics
at Caltech. His research interests lie at the intersec-
tion of machine learning and economics, focusing
on developing theoretical foundations and tools to
confidently deploy machine learning algorithms into

societal systems, particularly in settings with uncertain, dynamic environments
in which learning algorithms interact with strategic agents.

Dr. Mazumdar received the NSF CAREER Award in 2023 as well as a
Research Fellowship for Learning in Games from the Simons Institute for
Theoretical Computer Science.

Apurva Badithela ASL Group Meeting Talk, Stanford (Fall 2023)38

Aaron D. Ames (Fellow, IEEE) received a B.S.
degree in Mechanical Engineering and a B.A. degree
in Mathematics from the University of St. Thomas in
2001, and a M.A. degree in Mathematics and a Ph.D.
in Electrical Engineering and Computer Sciences
from UC Berkeley in 2006.

Currently he is the Bren Professor of Mechanical
and Civil Engineering and Control and Dynamical
Systems at the California Institute of Technology.
Prior to joining Caltech, he was an Associate Pro-
fessor in Mechanical Engineering and Electrical &

Computer Engineering at the Georgia Institute of Technology. He was as
a Postdoctoral Scholar in Control and Dynamical Systems at Caltech from
2006 to 2008, and began is faculty career at Texas A&M University in 2008.
His research interests span the areas of robotics, nonlinear control and hybrid
systems, with a special focus on applications to bipedal robotic walking—both
formally and through experimental validation.

Dr. Ames was the recipient of the 2005 Leon O. Chua Award for
achievement in nonlinear science at UC Berkeley, and the 2006 Bernard
Friedman Memorial Prize in Applied Mathematics. Dr. Ames received the
NSF CAREER award in 2010, and the Donald P. Eckman Award in 2015,
and the 2019 Antonio Ruberti Young Researcher Prize.

Apurva Badithela ASL Group Meeting Talk, Stanford (Fall 2023)38

Richard M. Murray (Fellow, IEEE) received the
B.S. degree in Electrical Engineering from Califor-
nia Institute of Technology in 1985 and the M.S. and
Ph.D. degrees in Electrical Engineering and Com-
puter Sciences from the University of California,
Berkeley, in 1988 and 1991, respectively.

He is currently the Thomas E. and Doris Everhart
Professor of Control & Dynamical Systems and
Bioengineering at Caltech. Murray’s research is in
the application of feedback and control to networked
systems, with applications in synthetic biology and

autonomy. Current projects include design and implementation of synthetic
cells and design, verification, and test synthesis for discrete decision-making
protocols for safety-critical, reactive control systems.

Dr. Murray’s professional awards include the Richard P. Feynman-Hughes
Faculty Fellowship in 1993, awarded annually to an outstanding young faculty
member in Engineering and Applied Science at Caltech, the National Science
Foundation Early Faculty Career Development (CAREER) Award in 1995, the
Office of Naval Research Young Investigator Award in 1995 and the Donald
P. Eckman Award in 1997. He is a Fellow of the Institute for Electrical and
Electronics Engineers (IEEE) and holds an honorary doctorate from Lund
University in Sweden. He is an elected member of the National Academy
of Engineering (2013). Dr. Murray received the IEEE Bode Lecture Prize
in 2016, the IEEE Control Systems Award in 2017, and the AACC John R.
Ragazzini Education Award in 2019.

	Introduction
	Background on Test and Evaluation
	Contributions

	Preliminaries
	Automata Theory and Temporal Logic
	Network Flows

	Problem Statement
	Graph Construction
	Network Flow Optimization for Identifying Restrictions on System Actions
	Optimization Setup
	Characterizing Optimization Results

	Test Strategy Synthesis
	Test Environments with Static and/or Reactive Obstacles
	Synthesizing a Dynamic Test Strategy

	Complexity
	Experiments
	Simulation
	Beaver Rescue
	Motion Primitive Example
	Maze 1

	Hardware Experiments
	Running Example
	Refueling
	Mars Exploration
	Patrolling
	Maze 2

	Runtimes

	Comparison to Reactive Synthesis
	Conclusion and Future Work
	References
	Biographies
	Josefine B. Graebener
	Apurva Badithela
	Denizalp Goktas
	Wyatt Ubellacker
	Eric V. Mazumdar
	Aaron D. Ames
	Richard M. Murray

