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ABSTRACT
The advent of massive broad-band photometric surveys enabled photometric redshift estimates for unprecedented numbers of
galaxies and quasars. These estimates can be improved using better algorithms or by obtaining complementary data such as
narrow-band photometry, and broad-band photometry over an extended wavelength range. We investigate the impact of both
approaches on photometric redshifts for quasars using data from S-PLUS DR4, GALEX DR6/7, and unWISE in three machine
learning methods: Random Forest (RF), FlexCoDE, and Bayesian Mixture Density Network (BMDN). Including narrow-band
photometry improves the root-mean-square error by 11% in comparison to a model trained with only broad-band photometry.
Narrow-band information only provided an improvement of 3.8% when GALEX and WISE colours were included. Thus narrow
bands play a more important role for objects that do not have GALEX or WISE counterparts, which respectively makes 92%
and 25% of S-PLUS data considered here. Nevertheless, the inclusion of narrow-band information provided better estimates
of the probability density functions obtained with FlexCoDE and BMDN . We publicly release a value-added catalogue of
photometrically-selected quasars with the photo-z predictions from all methods studied here. The catalogue provided with this
work covers the S-PLUS DR4 area (∼ 3000deg2), containing 645 980, 244 912, 144 991 sources with the probability of being a
quasar higher than, 80%, 90%, 95% up to 𝑟 < 21.3 and good photometry quality in the detection image. More quasar candidates
can be retrieved from the S-PLUS database by considering less restrictive selection criteria.

Key words: Methods: statistical – Catalogues – Surveys – quasars: general

1 INTRODUCTION

Quasars are known to be the most energetic objects in the Universe
(Kormendy & Ho 2013). Since the first quasar discovery by Schmidt
(1963), the number of confirmed quasars increased to almost a mil-
lion. Among many surveys that have contributed to the discovery
of new quasars, the Sloan Digital Sky Survey (SDSS; York et al.
2000) has provided the largest number of confirmed quasars with
the SDSS-I/II/III/IV phases, including the extended Baryon Oscilla-
tion Spectroscopic Survey (eBOSS; Dawson et al. 2016). The SDSS

★ Email: lilianne.nakazono@usp.br

DR16 quasar catalogue from DR16 (DR16Q; Lyke et al. 2020) in-
cludes objects from all SDSS programs and contains 920 110 spectro-
scopic observations of 750 414 quasars. The SDSS success in finding
quasars is due to multiple efficient techniques for candidate quasar
selection and redshift estimation based on optical and mid-infrared
colours (see Myers et al. 2015 for an overview).

Information needed to select candidate quasars for follow-up spec-
troscopic observations is typically provided by photometric sky sur-
veys. Furthermore, if adequate colours are available, quasars red-
shifts can be estimated using photometry alone, thus bypassing the
need for expensive spectroscopic observations. Techniques to esti-
mate redshifts using photometric observations (photometric redshifts
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or photo-zs) are well studied in the literature, but they remain an ac-
tive research topic. There are two main approaches to photo-zs: SED
(spectral energy distribution) template fitting (e.g. Salvato et al. 2009,
Babbedge et al. 2004) and empirical methods based on training sam-
ples (e.g. Wu & Jia 2010, Brescia et al. 2013, Nakoneczny et al.
2021, Yang & Shen 2022), each with their own pros and cons. In
general, machine learning as an empirical approach provides more
accurate photo-z predictions than SED template fitting (e.g. Schmidt
et al. 2020). However, the robust performance of such methods is
limited to the parameter space of the training set, while SED tem-
plate fitting has no such limitations (see Brescia et al. 2021 for further
discussion).

In this work, we analyze the performance of photometric redshift
estimates based on 12-band photometric data from the Southern
Photometric Local Universe Survey (S-PLUS; Mendes de Oliveira
et al. 2019). S-PLUS is a large-area sky survey that will cover ∼9300
deg2 of the Southern Sky with the same optical system used in the
Javalambre Photometric Local Universe Survey (J-PLUS; Cenarro
et al. 2019). This optical system consists of seven narrow bands and
five 𝑢𝑔𝑟𝑖𝑧 broad bands (𝑔𝑟𝑖𝑧 are similar to the SDSS bands; Fukugita
et al. 1996), providing effectively low-resolution spectra that are ex-
pected to improve photometric redshift estimates compared to those
based on broad-band photometry alone. We also extend S-PLUS
data with photometry from GALEX (Martin et al. 2005) and WISE
(Wright et al. 2010) surveys to study how photo-z estimates improve
due to an extended wavelength range compared to improvements due
to the addition of narrow-band photometry. We focus here on photo-z
techniques based on machine learning.

We tested three different and independent machine learning al-
gorithms: Random Forest, FlexCoDE, and Bayesian Mixture Den-
sity Network. We discuss the advantages and disadvantages of each
method, and in particular assess the importance of the narrow-
band photometry for the photo-z regression. Using three independent
methods allows us to check for consistency in the interpretation of
our results. We provide a value-added catalogue of quasar candidates
for spectroscopic follow-up with their assigned probabilities of be-
ing a quasar (obtained from the star/quasar/galaxy classification by
Nakazono et al. 2021) and their estimated photometric redshifts from
this work. Estimates from all three methods are provided separately
in the catalogue.

This paper is organised as follows: data sets used to estimate photo-
zs are described in Section 2 and photo-z methods are described in
Section 3. We present our results in Section 4 and how to select quasar
candidates in Section 5. Finally, our main findings are discussed in
Section 6.

2 PHOTOMETRIC SURVEYS AND DATASETS

In this section, we describe three photometric surveys, S-PLUS,
WISE and GALEX, that provided photometry for photo-z estimation.
In addition, a reliable sample of known quasars with spectroscopic
redshifts is needed for training supervised machine learning methods
and we used the SDSS DR16Q quasar catalogue (Lyke et al. 2020).
In Table 1, we list the bands used in this work together with their
effective wavelength, width and magnitude depth.

2.1 The Southern Photometric Local Universe Survey (S-PLUS)

The S-PLUS survey is an ongoing survey that, by the end, will
cover ∼9300 deg2 of the Southern Sky with the T80-South telescope
located at Cerro Tololo Interamerican Observatory (CTIO), Chile.

The S-PLUS optical filter system includes five broad bands: 𝑢, 𝑔, 𝑟, 𝑖,
𝑧 (similar to the SDSS filter system, except for the 𝑢 band) and seven
narrow-band filters: J0378, J0395, J0410, J0430, J0515, J0660 and
J0861, centred on [OII], Ca H+K, H𝛾, G-band, Mgb triplet, H𝛼 and
Ca triplet features, respectively (Marín-Franch et al. 2012).

We use aperture fluxes computed within a circular diameter of
3 arcsecs and corrected for the fraction of the flux falling outside
this limit (see Almeida-Fernandes et al. 2022 for more details). The
procedure for data reduction and calibration of S-PLUS Data Re-
lease 4 (DR4), used in this work, is the same as used for S-PLUS
DR2 (Almeida-Fernandes et al. 2022) and DR3. The S-PLUS DR4
comprises ∼3000 deg2, including the area from past S-PLUS data
releases. There are 645 980, 244 912, 144 991 sources photometri-
cally classified as quasars with 80%, 90%, and 95% probabilities in
S-PLUS with 𝑟 < 21.3 and good photometry flag in the detection
image (SEX_FLAGS_DET = 0). We corrected the data for redden-
ing using dust maps from Schlegel et al. (1998) and the extinction
law from Cardelli et al. (1989)

In Fig. 1 we show the SEDs of five examples of quasars from our
sample with redshifts of 1.639, 2.238, 2.516, 3.207, and 4.435. The
figure shows how the S-PLUS SEDs are shaped when one or more
emission lines fall in the region of a narrow band. For instance, for
𝑧 ∼ 1.63, CIV is detected in J0410; for 𝑧 ∼ 2.24, Ly𝛼 is detected
in J0395; for 𝑧 ∼ 2.52, Ly𝛼 is detected in J0430; for 𝑧 ∼ 3.21,
Ly𝛼 is detected in J0515. At the red side of the optical wavelength
range, S-PLUS has the J0660 narrow band with a magnitude limit
of about 21.4 mag, which is deeper than all other narrow bands, and
deeper than the 𝑧 band (see Table 1). Note from the bottom panel
of Fig. 1 that the Ly𝛼 can be detected at the J0660 band in 𝑧 ∼ 4.4.
Considering the large area of the southern sky that will be surveyed
by S-PLUS, it will play an important role in finding quasar candidates
that are under-represented in the SDSS spectroscopic sample.

2.2 The Wide-field Infrared Survey Explorer (WISE)

The Wide-field Infrared Survey Explorer (WISE; Wright et al. 2010)
is an all-sky infrared survey that obtained photometry in four bands,
in the wavelength range from 3.4 𝜇m to 22 𝜇m. In this work, we
use the W1 and W2 bands from the unWISE catalog (Schlafly et al.
2019), with effective wavelengths 3.4 𝜇m and 4.6 𝜇m, respectively.
The addition of these two infrared bands is known to significantly im-
prove the performance of photo-zs for quasars (e.g. Bovy et al. 2012,
Brescia et al. 2013, DiPompeo et al. 2015, Yang et al. 2017). WISE
magnitudes are reported on the Vega System and their conversion to
AB system is given by Eq. 1:

𝑚AB = 𝑚vega + Δ𝑚, (1)

where Δ𝑚 = 2.699 and Δ𝑚 = 3.339 for W1 and W2, respectively.
It is recommended to subtract a 4 mmag and a 32 mmag offset
to the unWISE measurements (Schlafly et al. 2019). The Vega to
AB offsets, as constants, do not affect machine learning photo-z
methods as long as the feature space for the training set and for the
unlabelled data are defined in the same way. Therefore, we do not
convert these magnitudes to the AB system for this work. To apply
our trained models in all sources observed in S-PLUS, we perform
a CDS crossmatch with the unWISE catalogue within 2′′. There
are 75% out of 39 168 373 (14 < 𝑟 < 21.3) sources with WISE
counterpart in the S-PLUS DR4 area but only 54% have detection in
the W2 band.

MNRAS 000, 1–13 (2023)
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Table 1. Optical filter system characterization of GALEX (5𝜎, Morrissey
et al. 2007), S-PLUS (peak of the magnitude distribution at S/N > 3, Almeida-
Fernandes et al. 2022) and WISE (50% completeness at S/N > 5, Schlafly
et al. 2019). The effective wavelengths and widths are given in Angstroms,
and the depths are given in AB magnitudes.

Survey Band Effective Wavelength Width Depth

GALEX FUV 1528 442 19.90
NUV 2310 1060 20.80

S-PLUS
(broad bands)

u 3536 352 21.0
g 4751 1545 21.3
r 6258 1465 21.3
i 7690 1506 20.9
z 8831 1182 20.1

S-PLUS
(narrow bands)

J0378 3770 151 20.4
J0395 3940 103 19.9
J0410 4094 201 20.0
J0430 4292 201 20.0
J0515 5133 207 20.2
J0660 6614 147 21.1
J0861 8611 408 19.9

WISE W1 34000 6600 20.72
W2 46000 10400 19.97

2.3 The Galaxy Evolution Explorer (GALEX)

The Galaxy Evolution Explorer (GALEX; Martin et al. 2005) is an
all-sky ultraviolet survey that obtained photometry in two bands: far-
UV (FUV) and near-UV (NUV). We retrieved data for both bands
from GALEX DR6+7 (Bianchi et al. 2017) using CDS cross-match
within 2′′. The addition of these two UV bands is known to signif-
icantly improve the performance of photo-zs for quasars (e.g. Ball
et al. 2008, Bovy et al. 2012, Brescia et al. 2013). There are 8% out
of 39 168 373 (14 < 𝑟 < 21.3) sources with GALEX counterpart in
the S-PLUS DR4 area but only 2% have measurements in the FUV
band.

2.4 Spectroscopic quasar sample

We cross-matched SDSS DR16Q with S-PLUS DR4 within 1′′ ra-
dius, using data from the SDSS Stripe 82 equatorial region for
our analysis (∼300 deg2) resulting in 33 151 matches. Stripe 82
region dominates the current overlap between SDSS DR16Q and
S-PLUS DR4, and represents the best-studied region in the SDSS
footprint. We selected a total of 33 151 quasars with 𝑟 ≤ 22 and
𝑧 ≤ 5 for our analyses, which were cross-matched with unWISE and
GALEX within 2′′. A fraction of 93.1% and 85.9% out of 33 151
have detection in W1 and W2 bands from unWISE, respectively.
For GALEX, only 30.8% and 11.1% have detection in NUV and
FUV bands, respectively. Note that GALEX does not provide full
sky coverage and therefore some of the missing-band values are
due to non-observation. Ideally, non-detection and non-observation
cases should be distinguished in the training process but determining
the exact fraction of non-observation is not a trivial task. For the
time being, we treat all non-observation missing values as they were
non-detection (see §3.4 for further details).

3 METHODS

In this work, we assess the importance of narrow-band photometry
in improving the quality of quasar photo-z’s predictions. First, we

Figure 1. Spectral energy distribution of five quasars with spectroscopic
redshifts of 1.639, 2.238, 2.516, 3.207, and 4.435 (top to bottom) showing
an emission line being detected at an S-PLUS narrow band. In gray, we plot
the spectra observed by the SDSS programs, with the identified emission
lines being plotted in vertical dashed lines. The coloured triangles (squares)
represent the flux measured in the S-PLUS narrow (broad) bands, from left
to right: 𝑢, J0378, J0395, J0410, J0430, 𝑔, J0515, 𝑟 , J0660, 𝑖, J0861, 𝑧. The
filter responses are shown accordingly. Empty triangles/squares represent the
error in AB magnitude above 0.5 or non-detection at that particular band.

MNRAS 000, 1–13 (2023)



4 L. Nakazono & R. R. Valença et al.

Figure 2. Distributions of spectroscopic redshift for the training and testing
samples.

discuss how much is the photo-z prediction improved when narrow-
band photometry is added into a feature space that only contains
broad-band photometry. In order to answer this question, we compare
single-point estimates from Random Forest experiments trained with
fixed hyperparameters and datasets using two different feature colour
spaces:

• broad: 𝑢 − 𝑟, 𝑔 − 𝑟 , 𝑟 − 𝑖, 𝑟 − 𝑧

• broad+narrow: the above four broad-band colours extended
with the following seven narrow-band colours: 𝐽0378− 𝑟, 𝐽0395− 𝑟 ,
𝐽0410 − 𝑟, 𝐽0430 − 𝑟, 𝐽0515 − 𝑟, 𝑟 − 𝐽0660, and 𝑟 − 𝐽0861.

We then discuss how the improvement factor changes when the
GALEX and WISE broad-band photometry is also available. Sim-
ilarly, as before, we compare two experiments trained with the fol-
lowing feature spaces:

• broad+GALEX+WISE: 𝑢−𝑟, 𝑔−𝑟, 𝑟−𝑖, 𝑟− 𝑧, 𝐹𝑈𝑉−𝑟, 𝑁𝑈𝑉−𝑟 ,
𝑟 −𝑊1, 𝑟 −𝑊2

• broad+GALEX+WISE+narrow: the above eight broad-band
colours extended with the same seven narrow-band colours as in
the first case.

As GALEX and WISE bands improve photo-z’s predic-
tions even when narrow-band colours are not included (see
Section 4), we only consider the broad+GALEX+WISE and
broad+GALEX+WISE+narrow feature spaces for further analyses.
Testing three independent methods allows us to check the consis-
tency of our conclusions about the importance of narrow-band pho-
tometry. Moreover, different methods can generally learn different
patterns from the data and thus we also evaluate an ensemble of the
three methods. Lastly, we also estimate photo-z’s probability density
functions (PDFs) using FlexCoDE and Bayesian Mixture Density
Network.

The quasar sample described in Section 2 is randomly split into
training (75%) and testing (25%) sets. Their spectroscopic redshift
distribution is shown in Fig. 2. Note that there are only few objects
in the testing set for 𝑧 > 4.2, which may affect the performance
estimation in this range. Here we introduce the methods used in
this work: Random Forest (§3.1), FlexCoDE (§3.2), and Bayesian
Mixture Density Network (§3.3). In §3.4 we discuss how we handled
missing-band values and outliers. Finally, in §3.5 we discuss the
metrics considered in this work to evaluate our model performance.

3.1 Random Forest

Random Forest (RF) is a non-parametric method that is robust to
outliers, noise and over-fitting. Moreover, it is fast-learning, and, in

some sense, interpretable due to the computation of feature impor-
tance. These characteristics and its known ability to provide high
accuracy in diverse fields of study make RF an attractive algorithm.
Since RF has been extensively used in astronomy, for more details
we simply refer the reader to Breiman (2001). Regarding the specific
task of estimating photometric redshifts, please see: Carliles et al.
2010 (galaxies), Henghes et al. 2021 (galaxies), and Nakoneczny
et al. 2021 (quasars).

We use the Python implementation of RF in
scikit-learn1 (version 1.1.3) package. We utilized
the complete colour space (broad+GALEX+WISE+narrow)
to run a grid search, resulting in the following config-
uration: n_estimators=400, min_samples_split=2,
min_samples_leaf=2, max_depth=None, bootstrap=True.
The photometric redshift is estimated as the mean value of the
400 predictions. We set random_state to 47 for all processes,
in order to enable reproducibility. The remaining hyperparameters
were kept at default values of scikit-learn v1.3.0. In this work,
we do not provide an estimated probability density function for the
photometric redshift with RF.

3.2 FlexCoDE

FlexCoDE (Flexible Nonparametric Conditional Density Estimation;
Izbicki & Lee 2017; Dalmasso et al. 2020) is a non-parametric
method that estimates conditional densities. FlexCoDE was applied
to estimate photometric redshift distributions in the mock data pro-
duced for Vera Rubin Observatory’s LSST (Schmidt et al. 2020),
providing the best Conditional Density Estimation (CDE) loss (see
§3.5 for details) among several other methods. It is implemented in
R (Izbicki & Pospisil 2019, the implementation used in this work),
and Python (Pospisil et al. 2019).

Let 𝑓 (𝑧 |x) be the probability density function of the redshift 𝑧 of
a quasar with photometric covariates x. The key idea of FlexCoDE
is to project 𝑓 (𝑧 |x) on an orthonormal basis (𝜙𝑖)𝑖∈N (we use the
Fourier basis):

𝑓 (𝑧 |x) =
∑︁
𝑖∈N

𝛽𝑖 (x)𝜙𝑖 (𝑧), (2)

where 𝛽𝑖 (x) are the expansion coefficients. By construction, these
coefficients are given by

𝛽𝑖 (x) = ⟨ 𝑓 (·|x), 𝜙𝑖⟩ =
∫
R
𝜙𝑖 (𝑧) 𝑓 (𝑧 |x)𝑑𝑧 = E[𝜙𝑖 (𝑍) |x], (3)

and thus each coefficient 𝛽𝑖 can be estimated by regressing 𝜙𝑖 (𝑍) on x
using the spectroscopic sample. In this paper, we use Random Forests
to estimate each of these coefficients. The estimated density is then
given by 𝑓 (𝑧 |x) =

∑𝐼
𝑖=1 𝛽𝑖 (x)𝜙𝑖 (𝑧), where 𝐼 is a hyperparameter

that defines the total number of expansion coefficients in the model.
In practice, we choose the value of 𝐼 that minimizes the CDE loss
function computed on a validation set (Equation 9). The single-point
estimate is derived as the mode of the estimated probability density
function.

3.3 Bayesian Mixture Density Network

We call as Bayesian Mixture Density Network (BMDN) the combina-
tion of two types of architectures: a Bayesian Neural Network (Bishop

1 https://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.RandomForestRegressor.html
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Figure 3. Architecture of the Bayesian Mixture Density Network. The
input layer is followed by three blocks of DenseVariational and
BachNormalization layers and a Dense layer. The numbers represent the
number of neurons in that layer. The output layer (a MixtureNormal, in red)
returns 7 weights (𝑤), means (𝜇) and standard deviations (𝜎).

1997) and a Mixture Density Network (Bishop 1994). BMDN is
similar to a Dense network, where all neurons from one layer are
connected to all neurons in the previous and following layers. The
strength of these connections is given by weights, represented as
single values.

In the Bayesian framework, these single-value weights are re-
placed by probability distributions. In our case, we assume a Gaus-
sian distribution. For the implementation, we used the Tensorflow
Probability (Dillon et al. 2017). The Mixture Density section of
the network is what allows the estimation of distributions as output.
This combination of architectures enables the network to represent
arbitrary probability distributions while also allowing for an estima-
tion of the epistemic (due to the model) and aleatoric (due to the data
collection process) uncertainties, and provides a way to deal with the
colour-redshift degeneracy (see §4.2). The architecture used in this
work is shown in Fig. 3.

The MixtureNormal layer of the network outputs 7 Gaussian
functions described by 2 parameters: the mean (𝜇) and the stan-
dard deviation (𝜎). Each Gaussian has an associated weight (𝑤), so
the photo-z’s probability density function is a combination of these
Gaussian functions. For each object, we also derive a single-point
estimate by computing the mode of the estimated probability density
function.

3.4 Dealing with missing-band values

Missing-band values are intrinsic to astronomical data. We assume
that any missing data in a non-detection case is "missing not at ran-
dom" (MNAR; see Rubin 1976 for more information). An example of
MNAR is a high-redshift quasar that is not detected in the blue bands
due to the Lyman Break (e.g., see the two bottom panels in Fig. 1).
These missing values have physical meaning and cannot be ignored.
For MNAR, the removal of objects from our training set (also known
as the complete-case method), or the mean/median imputation would
bias our models (Dong & Peng 2013).

For tree-based methods (such as Random Forest and FlexCoDE),
we can handle the non-ignorable missing-band values by replacing
them with an arbitrary out-of-the-range value (e.g., 99). The colours
are calculated after the missing-band replacements.

For the Bayesian Mixture Density Network, we first replace any
missing-band values in S-PLUS by the minimum magnitude of a

non-detection given in the error column for each band. Then, we
standardize the data and re-scale them to the range [0,1], without
taking into consideration the missing-band values in GALEX and
unWISE. The last scaling process is motivated by the suggested
procedure from Chollet (2017) of replacing missing features by zeros.
Since this can only be done if the value zero is not meaningful for the
problem, and since colours can have this value, we use this second
scaling function to shift the distribution. After the scaling processes,
we replace any missing-band values in GALEX and unWISE by
zeros.

3.5 Model Evaluation

Here we present the performance metrics considered in this work. Let
𝑧 be the (true) spectroscopic redshift and 𝑧, the estimated photometric
redshift (sometimes, especially in figures, we also refer to them as
zspec and zphot, respectively).

Defining 𝛿𝑧 = 𝑧 − 𝑧, 𝛿𝑧norm = 𝛿𝑧/(1+ 𝑧) and considering 𝑁 being
the number of evaluated objects, we define the following performance
metrics for the single-point predictions:

• Root-mean-squared error:

𝜎RMSE =

√√√
1
𝑁

𝑁∑︁
𝑖=1

(𝛿𝑧𝑖)2, (4)

• Normalized median absolute deviation:

𝜎NMAD = 1.48 × median
( |𝛿𝑧 − median(𝛿𝑧) |

1 + 𝑧spec

)
(5)

• Bias:

𝜇 = 𝛿𝑧 =

∑𝑁
𝑖=1 𝛿𝑧𝑖

𝑁
, (6)

• Fraction of objects with residual above a cutoff 𝑐:

𝜂𝑐 =
𝑁 | 𝛿𝑧norm |>𝑐

𝑁
. (7)

The 𝜎NMAD is commonly used to evaluate redshift estimates as it
is less sensitive to outliers (Salvato et al. 2019). Photo-z single-point
estimates are better when these metrics are closer to zero.

Now, let 𝑓 be the estimated probability density function, and let �̂�
be the estimated cumulative density function. In order to evaluate the
probability density functions estimated by FlexCoDE and Bayesian
Neural Networks, we use the following metrics:

• Probability Integral Transform (PIT), which should be uni-
formly distributed if the density is well calibrated (Freeman et al.
2017; Polsterer et al. 2016; Zhao et al. 2021; Dey et al. 2022):

𝑃𝐼𝑇 ( 𝑓 , 𝑧) = 1 − �̂� (𝑧 | x) = 1 −
∫ 𝑧

0
𝑓 (𝑧 | x)𝑑𝑧, (8)

• Conditional Density Estimate (CDE) loss function (Izbicki &
Lee 2016; Izbicki et al. 2017), �̂� ( 𝑓 , 𝑓 ), which is an estimate of:

𝐿 ( 𝑓 , 𝑓 ) =
∫ ∫ (

𝑓 (𝑧 | x) − 𝑓 (𝑧 | x)
)2

𝑑𝑧𝑑𝑃(x). (9)

4 RESULTS

In this section, we analyze the importance of the narrow-band pho-
tometry for estimating quasar photometric redshifts using RF, Flex-
CoDE, and BMDN, because different methods might learn different
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Table 2. Performances from cross-validation with Random Forest algorithm in terms of the root-mean-squared error (𝜎RMSE), normalized median absolute
deviation (𝜎NMAD), bias (𝜇), and the fraction of sources with residual above 0.15 (𝜂0.15) and 0.3 (𝜂0.3). Standard deviations are typically of order 10−3.

Colour space 𝜎RMSE 𝜎NMAD 𝜇 𝜂0.15 𝜂0.3

broad 0.647 0.217 0.001 0.492 0.225
broad+narrow 0.576 0.179 0.001 0.428 0.185
broad+GALEX+WISE 0.425 0.102 -0.001 0.228 0.070
broad+GALEX+WISE+narrow 0.410 0.093 0.001 0.217 0.066

Table 3. This table shows the mean performance improvement in per cent due
to the addition of narrow-band information for the subset of sources without
GALEX (FUV and NUV) or WISE (W1 and W2) counterparts. Here we only
compare broad+narrow and broad colour spaces. The improvements are
slightly below the 11% (𝜎RMSE) and 17% (𝜎NMAD) calculated from Table
2. For completeness, we also show the results for the complementary subsets.

Sample Subset Decrease in
𝜎RMSE (%)

Decrease in
𝜎NMAD (%) Sample size

Without GALEX 9.6 14.1 3405∼3478
With GALEX 15.6 25.4 1494∼1567
Without WISE 9.2 16.5 288∼301
With WISE 11.2 17.6 4642∼4684

underlying relations between the colour space and the true redshift.
We first use RF with a 5-fold cross-validation method to evaluate all
feature spaces described in Section 3. After narrowing the possible
choices of feature spaces, we then evaluate the single-point estimates
of all the three methods (see §4.1). In §4.2 we evaluate the estimated
probability density functions from FlexCoDE and BMDN. Finally, in
§4.3 we show the feature importances obtained from the tree-based
models.

4.1 Assessing the importance of narrow-band photometry

Here, we compare the performance of Random Forest experiments
trained on different feature spaces with fixed hyperparameters and
fixed training/validation sets. With the choice of feature spaces de-
scribed in Section 3, we aim to provide insights into the importance
of narrow-band photometry for this regression problem. The quan-
titative comparisons were done with 𝜎RMSE, 𝜎NMAD, 𝜇, 𝜂0.15, and
𝜂0.3 under a 5-fold cross validation scheme. These metrics are shown
in Table 2.

When narrow-band colours are added to the broad-band colour
space, there is a decrease in the values of 𝜎RMSE and 𝜎NMAD by
about 11% and 17%, respectively. As is discernible from Table 2,
in all cases 𝜎RMSE is much larger than 𝜎NMAD due to the influence
of outliers. The impact of outliers is also well-tracked through 𝜂

metrics. The 𝜂0.15 metric decreased from 49% to 43%, while 𝜂0.3
also decreased from 23% to 19%. The biases are sufficiently small
for all cases with an order of 10−3.

These improvements are smaller than the improvements observed
when GALEX and WISE colours are added to broad-band colours
(i.e., without using narrow-band colours). As shown in Table 2, the
extended wavelength range due to the addition of GALEX and WISE
colours improve 𝜎NMAD and 𝜂0.15 metrics by as much as about
a factor of two. When all the data are used, broad-band colours,
GALEX and WISE colours and narrow-band colours, only slight
additional improvements are observed. These improvements are vi-
sualized using the histograms of the residuals (𝑧spec − 𝑧phot) in Fig.
4; the residual distribution is more concentrated around zero when
information from all bands is included in our model. Figure 5 shows

Figure 4. Distribution of the residuals (𝑧phot − 𝑧spec) from the Ran-
dom Forest model trained with broad (blue), broad+narrow (orange),
broad+GALEX+WISE (green), broad+GALEX+WISE+narrow (pink).

how 𝜎RMSE and 𝜂0.30 vary with the apparent magnitude 𝑟. The ad-
dition of narrow-band and/or GALEX and WISE colours improves
the regression performance, especially for brighter objects.

As discussed above, the addition of GALEX and WISE colours
to broad-band colours improves the performance of photo-z more
than the addition of narrow-band colours to broad-band colours.
However, we emphasize that GALEX and WISE bands are effectively
shallower than the S-PLUS bands and for faint objects, only narrow-
band photometry is available, besides broad-band photometry. To
address these cases where narrow-band photometry will play a more
important role, we calculate the metrics on subsets of the validation
folds that do not have GALEX or WISE counterparts (see Table
3). For 𝜎RMSE the improvement is of an order of ∼9% for both
cases. Regarding 𝜎NMAD, the improvement is 14.1% for sources
without GALEX counterpart, and 16.5% for sources without WISE
counterpart.

For further analyses that include FlexCoDE and
BMDN, we only consider the broad+GALEX+WISE and
broad+GALEX+WISE+narrow colour spaces. In Table 4 we
show the metrics for all three methods; they all show small
improvements from the addition of narrow bands regarding 𝜎RMSE,
𝜂0.15, and 𝜂0.30. There is an interesting behaviour observed for
𝜎NMAD: without narrow bands, all three methods have similar
performance but when narrow bands are added, FlexCoDE and
BMDN outperform RF method by a factor of two, approximately.
On the other hand, RF method achieves about an order of magnitude
smaller bias in comparison to FlexCoDE and BMDN for all models,
except for the BMDN with the narrow bands. When we average the
predictions from these three models, 𝜎RMSE and 𝜂0.30 are improved
compared to each individual model. Note that the first two rows in
Table 4 are not identical to the last two rows in Table 2 because the
former is based on the testing set while the latter is based on the
validation sets.
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Figure 5. Median performance (± 1𝜎) of Random Forest experiments trained on: broad, broad+narrow, broad+GALEX+WISE, and
broad+GALEX+WISE+narrow. (a) 𝜎RMSE per magnitude 𝑟 and (b) 𝜂0.30 per magnitude 𝑟 .

Table 4. Final performances calculated on the test set for Random Forest, FlexCoDE and Bayesian Mixture Density Network. The last two rows correspond to
the performance when we average the single-point estimates from these three models. The best metric values are highlighted in bold.

Feature Space 𝜎RMSE 𝜎NMAD 𝜇 𝜂0.15 𝜂0.30

Random Forest Without narrow bands 0.423 0.100 -0.002 0.225 0.068
With narrow bands 0.408 0.090 0.003 0.220 0.066

FlexCoDE Without narrow bands 0.477 0.084 0.044 0.222 0.084
With narrow bands 0.455 0.039 0.016 0.209 0.078

Bayesian Mixture Density Network Without narrow bands 0.458 0.083 0.025 0.212 0.074
With narrow bands 0.427 0.048 10−4 0.187 0.068

Average Without narrow bands 0.420 0.086 0.023 0.204 0.063
With narrow bands 0.392 0.058 0.006 0.188 0.058

4.2 Probability density functions

Performance analyses from single-point estimates, however, do not
account for the uncertainties in the photo-z predictions. It is ex-
pected that the photo-z’s PDFs can be multi-modal due to the colour-
redshift degeneracy, which can be seen in Figure 6 for a random
selection of 9 quasars from the test set at different ranges of spec-
troscopic redshift and magnitude. For instance, the colours of the
quasar SDSS J232043.35-003049.3 are related to, approximately, two
apart single-point estimates for FlexCoDE narrow-band model (i.e.
broad+GALEX+WISE+narrow in pink curves), for which the PDF’s
second highest peak is the one centred on the correct value. Neverthe-
less, the PDFs’ primary peak from FlexCoDE with the narrow-band
model covers well the “true” redshift for most of the examples shown.

In comparison with BMDN, the FlexCoDE PDFs are generally
more accurate for these particular model and examples. It is notable,
however, that the PDFs are less certain on the predicted photo-z
(i.e. distributions present more peaks) for the cases in the tail of the
spectroscopic redshift distribution of the training sample beyond the
𝑟 magnitude depth of S-PLUS (𝑟 > 21.3). This behaviour is also
seen with the broad-band model (i.e. broad+GALEX+WISE, in green
curves) and therefore might be related to the increasing photometric
uncertainties at fainter magnitudes. Although the PDFs show more
confusion at this range, the single-point prediction still agrees fairly
well to the “true” redshift but only with the narrow-band model.

Other quantitative comparisons should also be considered in order
to evaluate the whole PDF information, such as the PIT distribution
and the CDE loss function. As we have seen in Fig. 6, narrow-band

model PDFs are generally sharper than broad-band model PDFs
for both FlexCoDE and BMDN, suggesting that the predicted dis-
tribution is more precise (but not necessarily more accurate) when
narrow-band information is included in the model. On the other hand,
this could mean that the predictive uncertainties are not being prop-
erly accounted for and the distributions are sharper than they should
be. The high edges (U-shape) of the PIT distributions shown in Fig. 7
agree with the suggestion of underdispersed PDFs. From this figure,
we see that the narrow-band PDFs are more underdispersed than the
broad-band PDFs. It then requires a better calibration of these PDFs
that can either be achieved with a different machine learning archi-
tecture or with a re-calibration process (e.g. Dey et al. 2021), which
is planned to be pursued in future work.

Nevertheless, we showed good evidence that the inclusion of
narrow-band photometry is valuable for the precision of photomet-
ric redshift estimates. This is also supported by the calculated CDE
losses, for which each individual PDF is evaluated (note that the
loss can be estimated even if the true PDF is unknown). The CDE
loss functions for FlexCoDE are -3.27 and -1.36 when trained with
and without narrow bands, respectively. For BMDN, these values
are -2.47 and -1.31. Therefore the FlexCoDE narrow-band model
provided the best photo-z predictions during the testing process.

Given that the feature space and the training sample are the same,
the differences in PDF shapes are model intrinsic. Different algo-
rithms can learn different underlying patterns from the data, hence
these PDFs could be combined to provide more powerful informa-
tion. Assessing the possible combination of these PDFs is beyond the
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Figure 6. Density estimations 𝑝 (𝑧) and single-point estimates from FlexCoDE and BMDN for the photometric redshift of 12 quasars sampled from the testing
set. The spectroscopic redshift is pointed out with a triangle marker. Curves in green represent the model trained with broad+GALEX+WISE, while curves in pink
represent the model trained with broad+GALEX+WISE+narrow. The single-point estimates are shown with dashed vertical lines.
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Figure 7. PIT distribution for (a) FlexCoDE trained with-
out narrow bands (broad+GALEX+WISE) and with narrow bands
(broad+GALEX+WISE+narrow); (b) BMDN trained without narrow
bands and with narrow bands. The PDFs are considered well-calibrated if
the distribution of PIT is described by a Uniform distribution.

scope of this paper but we provide the PDFs from both methods in
our value-added catalogue (see Section 5). Based on the CDE loss,
the FlexCoDE trained with narrow bands delivered the best photo-zs
and is our general recommendation for broad usage.

4.3 Feature importances from tree-based models

In Fig. 8 we show the estimated feature importances for the Random
Forest and the FlexCoDE models. In both models, the top two most
important features for the quasar photo-z estimation are the same or
strongly correlated. In first place, we have 𝑟 −𝑊1 for RF, and 𝑟 −𝑊2
for FlexCoDE. These two features are strongly correlated with Pear-
son correlation of 0.98. In the second place, the colour 𝑢 − 𝑟 appears
for both methods. These features (𝑟 −𝑊1, 𝑟 −𝑊2, and 𝑢−𝑟) measure
the overall shape of the SED over the wide wavelength range. Be-
yond the second place, there is no interpretation agreement between
the two models. While the first narrow-band (𝐽0378 − 𝑟) appears
in 8th place for Random Forest, this same colour is the third most
influential feature for FlexCoDE. This difference could be explained
by the correlations between some of the colours, which can mislead
the interpretation of the feature importances and does not necessarily
mean that less important features are not relevant. Interestingly, not
only do narrow-band colours have higher importances for FlexCoDE
but also the overall importances are more equally distributed than

(a) (b)

Figure 8. Average estimated importances and standard deviation for (a) Ran-
dom Forest and (b) FlexCoDE.

RF. The importances shown in this figure might also be closely re-
lated to the relative depths of each band (see Table 1) but further
investigation would be needed. Note that the interpretation of these
importances is limited to understanding what features had the most
influence in these particular prediction models and no physical or
general conclusions can be taken from those. Nevertheless, there are
good indications of the narrow-band importance in predicting more
accurate photo-zs, as suggested by the FlexCoDE importances esti-
mates and, especially, considering the CDE loss estimates discussed
in the last section.

5 QUCATS: THE QUASAR CATALOGUE FOR S-PLUS

The Quasar Catalogue for S-PLUS (QuCatS) provided with this paper
contains 645 980 quasar candidates with classification probabilities
above 80% up to the photometric depth of 𝑟 band (𝑟 < 21.3) and
good photometry quality in the detection image (SEX_FLAGS_DET
= 0) that comes from SExtractor. For the selection of quasar candi-
dates, we use the star/quasar/galaxy classification probabilities from
Nakazono et al. 2021 that were obtained with a Random Forest fit
on S-PLUS and WISE magnitudes, and morphological parameters
extracted from the S-PLUS images. Sources observed in the CCD
borders that were observed in multiple fields were removed from this
catalogue via an internal cross-match in RA and Dec within 1′′. Our
catalogue covers a total of 1414 fields from S-PLUS DR4, totalling
approximately 3 000 deg2 of the southern sky. This value-added cata-
logue is downloadable athttps://splus.cloud/files/QuCatS_
Nakazono_and_Valenca_2024.csv and its columns are described
in Table 5. We do not make any cuts in photometric errors for the
catalogue we provide in this paper but we advise users to make proper
cuts for their specific science cases.

Below, we show an example of an ADQL query2. The selection

2 Query can be executed directly at the https://splus.cloud platform,
via Python using the splusdata package, or using TAP service with the
following address https://splus.cloud/public-TAP/tap
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Figure 9. Performances in terms of 𝜎RMSE (panels a, b, c), 𝜎NMAD (panels d, e, f) , 𝜇 (panels g, h, i), and 𝜂0.30 (panels j, k, l) per bin of magnitude r (left
panels), colour g − r middle panels), and spectroscopic redshift (right panels). The curves shown in the plots refer to the Random Forest (blue), FlexCoDE
(orange), and Bayesian Mixture Density Network (green) trained with the broad+GALEX+WISE+narrow colour space. We show in red colour the performance
when we average the predictions from the three methods.

criteria can be easily modified in this query to retrieve more (or less)
sources, where [columns]3 are defined by the user. We strongly
recommend that a “WHERE det.Field = [field]4” condition is

3 List of columns can be found at https://splus.cloud/catalogtools/
tap.
4 List of all unique field names and their central position can be ob-
tained through https://splus.cloud/files/documentation/iDR4/
tabelas/iDR4_pointings.csv

added to this query in order to run one query per field, as big queries
can overload the server. Note that one can relax the selection criteria
and retrieve more quasar candidates from the S-PLUS database, as
we derived photo-z estimations for all objects in each field regardless
of their classification. Likewise, one can be more conservative with
the selection criteria in order to improve the purity of the selected
sample.

SELECT [columns] from dr4_vacs.dr4_qso_photoz as z
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Figure 10. Density maps of photometrically selected quasar in S-PLUS DR4 with classification probabilities above 80% (Nakazono et al. 2021) and photometric
redshift estimated with RF, BMDN, FlexCoDE, and the average of these three methods. Only sources with good photometry flag (SEX_FLAGS_DET = 0) and
𝑟 < 21.3 are plotted. The colour map indicates the number of quasar candidates in bins of 0.1 for both apparent magnitude 𝑟 and photo-z. In the upper panels,
we show the number of quasar candidates per squared degree for 0.1 bins of photo-z.
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Figure 11. Distribution of photometric redshift for the sources that are photometrically classified as quasars in S-PLUS with a probability above 0.8, 0.9, and
0.95. Only sources with good photometry flag (SEX_FLAGS_DET = 0) and 𝑟 < 21.3 are plotted. We can note that different estimation methods are leading to
more alike photo-z distributions for high-confident quasar candidates (PROB_QSO > 0.95). The median of each distribution is given in the legend.

JOIN dr4_vacs.dr4_star_galaxy_quasar
as sqg on sqg.id = z.id
JOIN dr4_dual.dr4_dual_r
as r on r.id = z.id
JOIN dr4_dual.dr4_detection
as det on det.id = z.id
WHERE sqg.PROB_QSO >= 0.8 and
r.r_PStotal < 21.3 and
det.SEX_FLAGS_DET = 0

Density maps for the selected quasar candidates show a multi-
modal distribution of photo-zs for BMDN and FlexCoDE, while RF
deliver a smoother single-peak distribution (Fig. 10). In Fig. 11 we
show the photo-z distribution for the quasar candidates in the cata-
logue provided in this paper with probability of being a quasar down
to 0.8, 0.9, and 0.95. We can see that as we restrict our sample to more
high-confident quasars, there is an increasing convergence among the
photo-z distributions estimated by the different methods considered
in this work. For high-confident quasar candidates (PROB_QSO >

0.95), the distributions have medians at 𝑧phot ∼ 1.55.
Confirming which method is generalising better for unseen data is

not trivial due to the intrinsic biases of using spectroscopic datasets
to train the models. We advise users to use the information we provide
in the catalogue with extra caution for the candidates that extrapo-
late the colour space distribution of the spectroscopic sample (for
instance, see Fig. 12). Although we recommend FlexCoDE as it pre-
sented the lowest CDE loss, some science cases will demand certain
requirements over specific magnitude/redshift ranges. For those, the
performances per bin of magnitude 𝑟, colour 𝑔− 𝑟 and spectroscopic

redshift allow for a more precise decision on which method to use
(Fig. 9). Note that performances are poorer for lower (𝑧 ≲ 0.5) and
higher (𝑧 ≳ 4.2) probably due to the lack of objects in this range
(see Fig. 2). Performances for brighter (𝑟 ≲ 17.5) or bluer/redder
(|𝑔 − 𝑟 | ≳ 0.5) objects are also affected for the same reason (see Fig.
12). The performance decrease as magnitude increases is most likely
related to increasing photometric uncertainties.

6 DISCUSSION AND CONCLUSIONS

Up to this point, S-PLUS is the southern hemisphere survey that
provided data within the largest area (∼3000 square degrees in DR4)
and the highest number of narrow bands. This makes S-PLUS a
good laboratory for empirically evaluating the narrow-band impor-
tance in tasks such as photometric redshift (photo-z) regression. In
this work, we compared three independent methods (Random For-
est, FlexCoDE, Bayesian Mixture Density Network) trained with
S-PLUS, GALEX, and WISE colours to obtain quasar photo-zs.

A reasonable improvement in quasar photo-z predictions was ob-
served when narrow-band colours were included in the model over
training with only broad-band colours. On the other hand, narrow-
band information provided a small impact on the single-point esti-
mates when GALEX and WISE colours were available. Thus narrow
bands play a more important role for objects that do not have GALEX
or WISE counterparts, which respectively makes 92% and 25% of
the S-PLUS data. This conclusion is consistent with all tested algo-
rithms.

As multi-modal photo-z distributions are expected due to the
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Table 5. Description of the information provided in QuCatS. All columns here described are type float32. We also include useful information from the
main survey (ID, Field, RA, DEC, PStotal magnitudes and their corresponding errors) and the classification value-added catalogues (PROB_QSO, PROB_STAR,
PROB_GAL, model_flag). These extra columns are described in https://splus.cloud/documentation/DR4.

Column name Description

z_rf Photo-z estimated with RF
z_bmdn_peak Photo-z estimated with BMDN (peak of the PDF)
z_flex_peak Photo-z estimated with FlexCoDE (peak of the PDF)
z_mean Average of {z_rf, z_bmdn_peak, and z_flex_peak}
z_std Standard deviation of {z_rf, z_bmdn_peak, and z_flex_peak}
n_peaks_bmdn Number of peaks for BMDN’s PDF
z_bmdn_pdf_weight_[1-7] Weight of the [1-7]-th Gaussian distribution estimated with BMDN
z_bmdn_pdf_mean_[1-7] Mean of the [1-7]-th Gaussian distribution estimated with BMDN
z_bmdn_pdf_std_[1-7] Standard deviation of the [1-7]-th Gaussian distribution estimated with BMDN
z_flex_pdf_[1-200] Probability for the [1-200]-th redshift within the interval [0.034, 4.913] estimated with FlexCoDE

(a)

(b)

Figure 12. Distributions of (a) magnitude 𝑟 and (b) colour 𝑔 − 𝑟 for the
full spectroscopic sample (yellow), all quasar candidates in S-PLUS DR4
(purple), and high-confidence quasar candidates with probabilities down to
80% (grey). Sample sizes are 33 075, 15 908 524, and 1 078 149, respectively.
The 𝑔 − 𝑟 histogram comprises 99.2%, 93.1%, and 99.6% of each sample,
respectively, in the plotted range.

colour-redshift degeneracy, it is more appropriate to use the whole
PDF information instead of single-point estimate summaries when
evaluating performances. The models trained with narrow-band pro-
vide sharper distributions than the broad-band models, suggesting
that the prediction uncertainties are not being properly accounted.
This is confirmed through the PIT distributions, which show that the
estimated PDFs are underdispersed for both FlexCoDE and BMDN
(in this work, we do not analyse RF’s PDFs) and a re-calibration
procedure is still needed. Nevertheless, for the scope of this paper,
we have good indications that narrow-band photometry is helping
to provide more accurate photo-zs, based on the CDE loss (which
accounts for the PDF and not only the single-point estimates) and
feature importance estimates for the tree-based models (especially
from FlexCoDE).

Within this paper, we provide a value-added catalogue of pho-

tometric redshifts from all tested methods for 1414 fields (∼3 000
deg2) of S-PLUS DR4. We broadly recommend using the narrow-
band FlexCoDE model as it presents the best CDE loss.

We conclude with a comment about the next-generation survey,
the Rubin Observatory’s Legacy Survey of Space and Time (LSST;
Ivezić et al. 2019). LSST will obtain broad-band photometry for bil-
lions of galaxies and millions of quasars. Given our analysis here,
photometric redshift performance for these objects could be im-
proved in two principal ways. First, the wavelength coverage could
be extended over that accessible to Rubin Observatory using near-
infrared space-based survey facilities such as Euclid (Laureĳs et al.
2011) and Roman Space Telescope (Spergel et al. 2015). Alterna-
tively, narrow-band photometry could be obtained after the initial
10-year broad-band survey is completed using the same telescope
and camera as for LSST, but with an updated filter set as discussed
in e.g., Yoachim et al. (2019) and Kahn et al. (2019).
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