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LIEB–THIRRING INEQUALITY FOR THE 2D PAULI OPERATOR

RUPERT L. FRANK AND HYNEK KOVAŘÍK

Abstract. By the Aharonov–Casher theorem, the Pauli operator P has no zero eigenvalue when the nor-

malized magnetic flux α satisfies |α| < 1, but it does have a zero energy resonance. We prove that in this

case a Lieb–Thirring inequality for the γ-th moment of the eigenvalues of P + V is valid under the optimal

restrictions γ ≥ |α| and γ > 0. Besides the usual semiclassical integral, the right side of our inequality involves

an integral where the zero energy resonance state appears explicitly. Our inequality improves earlier works

that were restricted to moments of order γ ≥ 1.

1. Introduction and main result

1.1. Background. We are interested in quantitative information on the negative eigenvalues of the opera-

tor

P + V in L
2(R2,C2) ,

where P is the Pauli operator,

P =

(
H+ 0

0 H−

)
, H± = (−i∇ +A)2 ±B . (1.1)

Here A : R2 → R2 is a vector field and the function B : R2 → R is defined by

B = curlA = ∂1A2 − ∂2A1 .

For simplicity we restrict ourselves to the case where V : R2 → R is scalar, that is, acts trivially on the C2

part of L
2(R2,C2). Both B and V are assumed to be sufficiently regular and to decay in a suitable sense at

infinity, as will be made precise later on.

Physically, the operator P + V describes a quantum particle moving in a plane in the presence of a magnetic

field of strength B pointing orthogonal to this plane and in the presence of an electric field with potential V .

The matrix structure of P and the ±B term in P come from the interaction of the spin of the particle with

the magnetic field. This spin-orbit coupling is neglected when considering the magnetic Schrödinger operator.

This simplifies the model, but has the effect of destroying some of the structure of the Pauli operator. In

particular, zero modes are removed and the bottom of the spectrum is stabilized. In our study we will not

neglect the spin-orbit coupling and we will pay special attention to effects coming from the low energy part of

the operator P .

When B and V are sufficiently regular and sufficiently fast decaying (we will be more precise later on), the

differential expression P + V can be realized as a self-adjoint, lower bounded operator in the Hilbert space

L
2(R2,C2) and the negative spectrum of this operator consists only of eigenvalues with finite multiplicities and
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with zero as their only possible accumulation point. Labelling these eigenvalues as Ej , where multiplicities

are taken into account, we are interested in bounding sums

∑

j

|Ej |γ = Tr(P + V )γ
−

from above for different choices of the parameter γ > 0. These upper bounds shall involve integrals over R2

of powers of V and quantities defined in terms of the magnetic field B. The prototype of such bounds are

the Lieb–Thirring inequalities, which in the nonmagnetic case state that for any γ > 0 there is a universal

constant Lγ such that for all real V ∈ L
1
loc(R

2) one has

Tr(−∆ + V )γ
− ≤ Lγ

∫

R2

V (x)γ+1
− dx . (1.2)

Here a± := max{±a, 0}, so that a = a+ − a−. The bound (1.2) goes back to the work of Lieb and Thirring

[33] and has created a huge literature. For further reading on this topic we refer to the monograph [20], the

review [18] and references therein.

One feature about (1.2) that will be relevant for our discussion is that the inequality gets stronger as γ gets

smaller. This is formalized by the Aizenman–Lieb argument [3] (see also [20, Lemma 5.2]), which says that

the validity of inequality (1.2) for some γ = γ0 implies its validity for all γ ≥ γ0.

Turning our attention back to magnetic fields, it is not difficult to see that (1.2) remains valid when −∆ is

replaced by (−i∇ + A)2; see [20, Theorem 4.61], [16] and references therein. More precisely, for any γ > 0

there is a constant L̃γ such that for any real V ∈ L
1
loc(R

2) and any A ∈ L
2
loc(R

2,R2) the analogue of (1.2)

holds with constant L̃γ . Note that the right side in the resulting inequality is independent of A.

The situation is quite a bit more complicated for the Pauli operator, that is, when the spin-orbit coupling is

taken into account. There have been many works addressing this question and we will review them in some

detail later in this introduction. For the present discussion the following two features are important. First,

there can be no bound of the form (1.2) with a right side that is independent of A. Second, previous works are

restricted to the range γ ≥ 1. Both phenomena are related to the existence of zero modes of the Pauli operator.

The existence of the latter and their structure is described by the Aharonov–Casher theorem [2].

What we shall show in the present paper is that if the normalized magnetic flux

α :=
1

2π

∫

R2

B(x) dx < ∞ (1.3)

satisfies

|α| < 1 , (1.4)

then a Lieb–Thirring inequality holds for P + V whenever γ ≥ α and γ > 0. Moreover, we shall show that

this restriction on γ is optimal.

According to the Aharonov–Casher theorem [2] (see also [6]), assumption (1.4) implies that the Pauli operator

P does not have a zero eigenvalue. Heuristically, this eliminates the reason for the restriction γ ≥ 1 in earlier

works. The Pauli operator P does, however, have a zero energy resonance, that this, there is a function ψ0

with Pψ0 = 0 which decays at infinity, but not fast enough to be square integrable. The decay of this function

will be what dictates the optimal condition γ ≥ α on the exponent in the Lieb–Thirring inequality. Our

Lieb–Thirring inequality will have two terms on the right side, the first one being the standard term from

(1.2) and the second one involving explicitly the resonance function ψ0.
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1.2. Definitions and main result. We now turn to a precise formulation of our result, beginning with a

careful definition of the Pauli operator P . The standard definition of P assumes that A ∈ L
2
loc(R

2,R2) and

proceeds from the quadratic forms
∫

R2

|(Π1 + iΠ2)ψ+|2 dx+

∫

R2

|(Π1 − iΠ2)ψ−|2 dx

where Πj := −i∂j +Aj and where the form is defined for all (ψ+, ψ−) ∈ L
2(R2,C2) for which the distributions

(Π1 + iΠ2)ψ+ and (Π1 − iΠ2)ψ− belong to L
2(R2). We will not adapt this definition, although the one we

choose is equivalent to this standard definition in situations with enough regularity. The reason is that our

assumptions are more naturally formulated in terms of the magnetic field B (and a quantity defined in terms

of it) rather than in terms of the vector potential A, on which the standard definition is based.

The approach that we follow was promoted by Erdős and Vougalter and investigated in detail in their paper

[14]. To motivate it, we assume that there is a real function h ∈ L
2
loc(R2) such that A1 = −∂2h and A2 = ∂1h.

Then a computation shows that
∫

R2

|(Π1 + iΠ2)ψ+|2 dx =

∫

R2

e2h|(∂1 + i∂2)e−hψ+|2 dx ,
∫

R2

|(Π1 − iΠ2)ψ−|2 dx =

∫

R2

e−2h|(∂1 − i∂2)ehψ−|2 dx .

The basic idea is to use the right sides to define the Pauli operator. Note that if such a function h exists, then

∆h = ∂1A2 − ∂2A1 = B.

We now proceed to the actual definition of P , following [14]. We assume that µ is a signed real regular

Borel measure on R2 with µ({x}) = 0 for all x ∈ R2. Then, by [14, Theorem 2.7] for any p < 2 there is an

h ∈ W 1,p
loc (R2) such that

∆h = µ in R
2 .

Fixing any such h, the quadratic form
∫

R2

e2h |(∂1 + i∂2)e−hψ+|2 dx+

∫

R2

e−2h |(∂1 − i∂2)ehψ−|2 dx , (1.5)

defined for all (ψ+, ψ−) ∈ L
2(R2,C2) for which the integrals are finite, is nonnegative and closed in L

2(R2,C2)

[14, Theorem 2.5] and therefore generates a selfadjoint, nonnegative operator P in L
2(R2,C2). This operator

depends on the choice of the function h, but one can show that for two different choices of functions h the

resulting operators are unitarily equivalent by a gauge transformation [14, Theorem 2.5]. Clearly, for two

functions h differing by an additive constant the corresponding operators coincide. Moreover, if there is

an A ∈ L
2
loc(R

2,R2) with ∂1A2 − ∂2A1 = µ (in the sense of distributions), then the operator P is unitarily

equivalent to the Pauli operator defined via the standard approach outlined above [14, Proposition 2.10].

We can now formulate our assumptions on the magnetic field. It is formulated in terms of the auxiliary

function h that appears in the definition of the Pauli operator.

Assumption 1.1. There is an α ∈ (−1, 1) and an R > 0 such that the two numbers

m± := ess sup
x∈R2

e±h(x)

(1 + |x|/R)±α
(1.6)

are both finite.

The number R will play a minor role in what follows and is only introduced for dimensional consistency. In

contrast the number α does play an important role. We emphasize that, if µ is absolutely continuous with

B = dµ
dx ∈ L

1(R2), then the validity of Assumption 1.1 implies that the number α is necessarily given by the

expression (1.3). We provide a proof of this claim in Lemma A.1.
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A simple case where Assumption 1.1 is satisfied is µ = (α/R)H1
∂B(0,R), with H1

∂B(0,R) denoting surface measure

on the circle ∂B(0, R) of radius R centered at the origin. In this case we can choose h = α ln+(|x|/R) and we

see that (1.6) is satisfied with the given α and R.

We emphasize that, while we can treat µ that are not absolutely continuous, our main interest is in the

absolutely continuous case with B = dµ
dx ∈ L

1(R2). For instance it is easy to see that if B satisfies

|B(x)| ≤ CR−2(1 + |x|/R)−ρ with some C > 0 and ρ > 2 , (1.7)

then (1.6) holds with α given by (1.3) and the given R. The numbers m± are bounded in terms of C and ρ. In

Lemma A.2 we show that Assumption 1.1 is satisfied under rather weak integrability assumptions on B.

We are now ready to formulate our main result.

Theorem 1.2. Let Assumption 1.1 be satisfied. Then for any γ ≥ |α| with γ > 0 there are constants L1(γ, µ)

and L2(γ, µ) such that for every real V ∈ L
1
loc(R

2) one has

Tr(P + V )γ
− ≤ L1(γ, µ)

∫

R2

V (x)γ+1
− dx+ L2(γ, µ)

∫

R2

e−2(sgn α)(h(x)−h0) V (x)
γ+1−|α|
− dx .

Here

h0 :=

{
limε→0 ess infB(0,ε) h if α > 0 ,

limε→0 ess supB(0,ε) h if α < 0 .

The constants L1(γ, µ) and L2(γ, µ) can be chosen such that

L1(γ, µ) ≤ C(|α|, γ) (m+m−)2(γ+1) ,

L2(γ, µ) ≤ C(|α|, γ)R−2|α| (m+m−)2(γ−|α|+2) ,

where C(|α|, γ) depends only on |α| and γ.

Remarks 1.3. Some comments on the above theorem are in order.

(a) When α 6= 0 there are two different terms on the right side. These two terms capture the correct

order in the strong and weak coupling limit where V is replaced by λV and either λ → ∞ or λ → 0.

Indeed, the first term on the right side grows like λγ+1 as λ → ∞, which is optimal in view of the

Weyl asymptotics

lim
λ→∞

λ−1−γ Tr(P + λV )γ
− =

1

2π (γ + 1)

∫

R2

V (x)γ+1
− dx .

In the weak coupling limit with γ = |α| > 0 the second term on the right side vanishes linearly as

λ → 0, which is optimal since according to [23, 28] one has

lim
λ→0+

λ− γ

|α| Tr(P + λV )γ
− =

(
−4|α|−1 Γ(|α|)
π Γ(1 − |α|)

∫

R2

V (x) e−2(sgn α)h(x)dx

) γ

α

, (1.8)

provided the integral on the right side is nonpositive and h is chosen in a certain canonical way.

We emphasize that this argument also shows that the function e−2(sgn α)h in our bound captures

quantitatively the relevant quantity in the weak coupling limit.

(b) The assumption γ ≥ |α| for α 6= 0 is optimal. Indeed, by the weak coupling asymptotics (1.8),

Tr(P + λV )γ
− behaves like λ

γ

|α| , while the second term on the right side behaves like λ1+γ−|α|. This

shows that for 0 < |α| < 1 the assumption γ ≥ |α| is necessary. Similarly, in [23, 28] there are weak

coupling asymptotics for α = 0, which show that in this case the assumption γ > 0 is necessary.
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(c) Concerning the condition |α| < 1 in Assumption 1.1 we remark that our bound cannot hold for |α| > 1.

This follows again from weak coupling asymptotics in [23, 28], which state that Tr(P + λV )γ
− behaves

like λγ when |α| ≥ 1. Meanwhile, the second term on the right side of our bound behaves like λ1+γ−|α|,

showing that the bound can only hold when |α| ≤ 1. This leaves open the case |α| = 1 for which

one might expect a bound for γ ≥ 1. As discussed in the next subsection, under somewhat different

assumptions on the magnetic field such a bound was indeed shown in [38], which is why we did not

investigate it further.

(d) The function e−(sgn α)(h−h0) coincides, up to a phase factor, with the zero energy resonance function

ψ0 mentioned in Subsection 1.1. Also, since the operator P does not change if a constant is added to

h, the difference h− h0 that appears in our bound is indeed a natural quantity. When h is continuous

at the origin, we clearly have h0 = h(0). The particular way of how to define h0 in the discontinuous

case is dictated mostly by technical convenience. We emphasize that h0 is finite in view of (1.6). The

fact that the point 0 is singled out in the definition of h0 reflects that this point is singled out in (1.6).

(e) Our bound depends on the ‘magnetic field’ µ only via the function h and this dependence is only via

the quantities α, R and m± from Assumption 1.1. In particular, note that

m+m− = ess sup
x∈R2

eh(x)

(1 + |x|/R)α
ess sup

x∈R2

e−h(x)

(1 + |x|/R)−α
≥ 1 .

In the weak field limit where B is replaced by λB and λ → 0, the function h is replaced by λh and α by

λα, while R remains unchanged. The product m+m− is replaced by (m+m−)λ, which tends to 1. Our

proof will show that for fixed γ > 0, the constant C(|λα|, γ) remains bounded as λ → 0; see Remark

3.2. Thus, our bound is stable in the limit λ → 0 and reproduces the nonmagnetic Lieb–Thirring

inequality (1.2). This property is not shared, for instance, by the bound from [38] discussed in the

next subsection.

(f) We have been somewhat cavalier about our assumptions on V . Here is a more precise statement: If

V ∈ L
1
loc(R

2) is real and if the right side in the bound in the theorem is finite, then V− is infinitesimally

form bounded with respect to P and for the operator P + V , defined via quadratic forms, the stated

bound holds. This follows by standard argument from our proof. The same statement holds for all

Lieb–Thirring-type inequalities in this paper and will not be repeated each time.

(g) Assume that V is a locally integrable function on R2 taking values in the Hermitian 2×2-matrices. Then

the corresponding inequality holds for the operator P +V , provided on the right side we replace V (x)p
−

by TrC2(V(x)p
−) for p ∈ {1 + γ, 1 + γ− |α|}. This simply follows from the inequality V(x) ≥ −‖V(x)−‖

(with ‖ · ‖ the operator norm on C2), our bound in the scalar case and the bound ‖V(x)−‖p ≤
TrC2(V(x)p

−). For this reason we restrict ourselves to the case of a scalar electric potential.

(h) Our inequality comes with explicit values for the constants C(|α|, γ), but since they are far from

optimal we do not state them explicitly.

1.3. Previous results. Let us review some previous works on Lieb–Thirring inequalities for Pauli operators

and compare them with our new results. Throughout we focus on the two-dimensional case and leave out

many important advances in the three dimensional case, starting with Erdős’s foundational work [11] and

reviewed in [12, 4].

Lieb, Solovej and Yngvason [32] showed that when B is constant, then

Tr(P + V )− ≤ C
( ∫

R2

V (x)2
− dx+ |B|

∫

R2

V (x)− dx
)
.
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This was generalized by Erdős and Solovej [13, Thm. 3.2] (based on the strategy in [11]), who showed that for

any γ ≥ 1 there is a constant Cγ such that

Tr(P + V )γ
− ≤ Cγ

( ∫

R2

V (x)γ+1
− dx + ‖B‖∞

∫

R2

V (x)γ
− dx

)
. (1.9)

More relevant for us is an earlier work of Sobolev [38], where it was shown under fairly general conditions on

B that for any γ ≥ 1 there is a constant Cγ such that

Tr(P + V )γ
− ≤ Cγ

(∫

R2

V (x)γ+1
− dx+

∫

R2

b(x)V (x)γ
− dx

)
. (1.10)

Here b denotes a “smeared” modification of B, see [38, Sec. 2] for details. It should be noted that b is not

uniquely defined. The relevance of a smeared magnetic field was pointed out in [11].

The assumptions on B in [38] are somewhat implicit. In order to compare the results with ours, we assume

that B satisfies the pointwise decay condition (1.7). Then it is easily verified that an effective magnetic field

b in the sense of [38] can be constructed in such a way as to satisfy

b(x) ≤ CB (1 + |x|)−2 ∀x ∈ R
2,

see [38, Eqs. (2.7)-(2.11)]. Inequality (1.10) then implies that for any γ ≥ 1,

Tr(P + V )γ
− ≤ C1,γ

∫

R2

V (x)γ+1
− dx+ C2,γ(B)

∫

R2

(1 + |x|)−2 V (x)γ
− dx . (1.11)

Let us compare (1.9) and (1.11) with our bound in Theorem 1.2. Importantly, (1.9) and (1.11) do not have

a restriction on the normalized flux α of B. Meanwhile, they are restricted to values γ ≥ 1. When |α| < 1,

Hölder’s inequality yields that
∫

R2

(1 + |x|)−2αV (x)
γ+1−|α|
− dx ≤

(∫

R2

(1 + |x|)−2V (x)γ
− dx

)|α|(∫

R2

V (x)γ+1
− dx

)1−|α|

.

Since e−2h ≤ (m−)2(1 + |x|)−2α, we see that our bound in Theorem 1.2 implies (1.11) for |α| < 1.

In the strong coupling regime, where V is replaced by λV with λ → ∞, the bounds (1.9), (1.11) and our

bound all reproduce the optimal λγ+1 growth.

In the weak coupling regime, where V is replaced by λV with λ → 0+, Tr(P + λV )γ
− vanishes like λγ when

|α| ≥ 1, so both (1.9) and (1.11) are order-sharp in this case. However, Tr(P + λV )γ
− vanishes like λ

γ

α when

0 < |α| < 1, and in this regime (1.9) and (1.11) are no longer order-sharp, while the bound from Theorem 1.2

is.

Concerning the regime of a weak magnetic field, where B is replaced by λB with λ → 0, we see that (1.9)

turns into the ordinary Lieb–Thirring inequality (for γ ≥ 1), as does the bound in Theorem 1.2 (for γ > 0).

Meanwhile, as pointed out in [38, p. 614], inequalities (1.10) and (1.11) are not applicable in the regime of the

weak magnetic field.

These observations suggest that Theorem 1.2 improves over both (1.9) and (1.11) in the small flux regime

|α| < 1. It displays not only the sharp behavior in the strong coupling limit, but also in the weak coupling

limit and allows for a smooth passage to inequality (1.2) in the limit of a vanishing magnetic field. This is

made possible by replacing the integrand (1 + |x|)−2V (x)γ
− in (1.11) by (1 + |x|)−2|α|V (x)

γ+1−|α|
− .

It is also interesting to view our results from the point of view of Lieb–Thirring inequalities in the presence

of zero energy resonances (aka virtual levels). Lieb–Thirring inequalities when a critical Hardy weight is

subtracted from the Laplacian were shown in [8, 9, 22, 17]. In these cases, like in the present one, there is

an algebraically decaying zero energy resonance function. The resulting inequality, however, only has a single
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term in contrast to our bound for P when α 6= 0, which has two terms. This is connected with the fact

that eigenvalues for the Hardy operator are exponentially small in the limit of a vanishing coupling constant.

Hardy–Lieb–Thirring inequalities for fractional Pauli operators in three dimensions were studied in [4].

Lieb–Thirring inequalities in the presence of a resonance function that is bounded from above and away from

zero were studied in [24]. The resulting inequality has only a single term. This is relevant in the present case

in the simplest case α = 0.

In [10, 19] we investigated Lieb–Thirring inequalities in the context of Schrödinger operators on continuous

graphs that are sparse in some sense. The Lieb–Thirring inequalities in this case have two terms, reflecting

the different behavior in the strong and the weak coupling limit; for the latter see [27]. Compared with [19]

the results in the present paper are substantially more precise, as we are able to prove the Lieb–Thirring

inequality in the critical case γ = |α| > 0, while the corresponding question is left open in [19]. Nevertheless

some techniques from [19] will play a role in our analysis of subcritical cases; see Section 3.

Our result also shows similarities to the logarithmic Lieb–Thirring inequality for the two-dimensional Schrö-

dinger operator [29], where again two terms appear on the right side. Our proof in the critical case uses

some ideas from [29] (and [8]); see Section 4. An important conceptual difference, however, is that in the

relevant bound on the lowest eigenvalue in Proposition 4.5 still two terms appear while there is only one term

in the corresponding bound in [29, Lemma 1]. This leads to substantial technical difficulties that need to be

overcome; see Appendix B for a proof of the fact that both terms are necessary.

Finally, we mention the works [40, 23, 28, 5, 15] that quantify different aspects of the instability of the

bottom of the spectrum of the Pauli operator. Some of the techniques developed there will be relevant for us

here.

1.4. Strategy of the proof. Since the Pauli operator is block diagonal, Theorem 1.2 is an immediate con-

sequence of two theorems concerning the individual blocks. These two operators are defined by the first and

the second quadratic form on the right side of (1.5) and are denoted by H+ and H−, respectively. They

are operators acting in the space L
2(R2) of complex-valued functions. When µ is absolutely continuous with

sufficiently regular density B = dµ
dx , these operators coincide with those given by (1.1).

The block-diagonality of P and the spin-independence of V imply

Tr L2(R2,C2)(P + V )γ
− = Tr L2(R2)(H

+ + V )γ
− + Tr L2(R2)(H

− + V )γ
− . (1.12)

In what follows we solely discuss the operators H+ and H−, rather than P .

It will turn out that for α 6= 0 only one of the two operators H+ and H− is ‘critical’ while the other one is

‘subcritical’. (One could give a mathematical definition of what we mean by ‘critical’ and ‘subcritical’, but

since we do not need anything from the corresponding theory, we will use these terms only in a colloquial

sense and refer to [40, 35] for some background.) In order to discuss the distinction between H+ and H−, we

shall assume that

α ≥ 0 .

This is no loss of generality, since replacing µ by −µ can be compensated by replacing h by −h and then

replacing α by −α in (1.6). Of course this is also consistent with the expression (1.3) for α in the regular case.

The product m+m− that appears in our bounds is invariant under this replacement.

With this convention in place, the operator H− is ‘critical’, while H+ is ‘subcritical’ for α > 0. The following

result says that for the subcritical operator a Lieb–Thirring inequality holds for arbitrarily small γ > 0.
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Theorem 1.4. Let Assumption 1.1 be satisfied with α ≥ 0. Then for any γ > 0 there is a constant L(γ, µ)

such that for every real V ∈ L
1
loc(R

2) one has

Tr(H+ + V )γ
− ≤ L(γ, µ)

∫

R2

V (x)γ+1
− dx .

The constant L(γ, µ) can be chosen such that

L(γ, µ) ≤ C(α, γ) (m+m−)2(γ+1) ,

where C(α, γ) depends only on α and γ. The same assertion holds for the operator H− if α = 0.

Theorem 1.5. Let Assumption 1.1 be satisfied with α > 0. Then for any γ ≥ α there are constants L1(γ, µ)

and L2(γ, µ) such that for every real V ∈ L
1
loc(R

2) one has

Tr(H− + V )γ
− ≤ L1(γ, µ)

∫

R2

V (x)γ+1
− dx+ L2(γ, µ)

∫

R2

e−2(h(x)−h0) V (x)γ+1−α
− dx .

The constants L1(γ, µ) and L2(γ, µ) can be chosen such that

L1(γ, µ) ≤ C(α, γ) (m+m−)2(γ+1) ,

L2(γ, µ) ≤ C(α, γ)R−2α (m+m−)2(γ−α+2) ,

where C(α, γ) depends only on α and γ.

As we already mentioned, in view of (1.12), Theorem 1.2 is an immediate consequence of Theorems 1.4 and

1.5. Most of the remarks following Theorem 1.2 have analogues for Theorems 1.4 and 1.5, showing in particular

their optimality. We omit the details.

We will prove Theorems 1.4 and 1.5 only in the case

R = 1 .

This is no loss of generality, according to the following simple scaling argument. If µ satisfies Assumption 1.1

for some R and α, then we can define a measure µ̃ on R2 that satisfies Assumption 1.1 with the same α, but

with R = 1. For absolutely continuous µ the corresponding densities B and B̃ are related by B̃(y) := R2B(Ry),

and this relation is extended in the natural sense to measures. When passing from µ to µ̃, the function h

is replaced by the function h̃(y) := h(Ry), which proves our claim about Assumption 1.1. Denoting by H̃±

the operators corresponding to µ̃, we see that the operators H± + V are unitarily equivalent to the operators

R−2(H̃± + Ṽ ) with Ṽ (y) := R2V (Ry). As a consequence, Theorems 1.4 and 1.5 for H̃± + Ṽ (with R = 1)

imply the corresponding theorems for the original operator H± + V (with arbitrary R > 0).

2. Passage to weighted spaces

In this section we will show that Lieb–Thirring inequalities for H± follow from corresponding Lieb–Thirring

inequalities for certain operators H± that act in a weighted L
2 space and are defined through a weighted

Dirichlet integral. For this argument it is crucial that α < 1.

2.1. Lower bound on Q±. Let

Q±[ψ] :=

∫

R2

e±2h |(∂1 ± i∂2)e∓hψ|2 dx

denote the quadratic form of the operator H±.

The simple pointwise bound |(∂x1 ± i∂x2)ϕ|2 ≤ 2 |∇ϕ|2, together with (1.6) (recall our convention R = 1),

shows that

Q±[e±hϕ] ≤ 2 (m±)2

∫

R2

(1 + |x|)±2α|∇ϕ|2 dx . (2.1)
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This holds irrespectively of the value of α, as long as (1.6) is valid. The following proposition shows that,

under the assumption |α| < 1, the reverse bound holds, up to changing the value of the constant. This will

be one of the main technical tools in the proof of our results.

Proposition 2.1. Let Assumption 1.1 be satisfied with α ≥ 0 and R = 1. Then for all ϕ ∈ C1
c (R2),

Q±[e±hϕ] ≥ qα(m∓)−2

∫

R2

(1 + |x|)±2α|∇ϕ|2 dx , (2.2)

where

qα =
2−2α−1(1 − α)2

2α+ 2−2α−1(1 − α)2
. (2.3)

To prove Proposition 2.1 we will need some classical results on doubly weighted one-dimensional Hardy in-

equalities. For the proof we refer to [34, 39], see also [21] and references therein.

Lemma 2.2. Let U,W be nonnegative, measurable functions on (0,∞) and let f be a locally absolutely

continuous function on (0,∞). Then the inequality
∫ ∞

0

W (t) |f(t)|2 dt ≤ C(U,W )

∫ ∞

0

U(t) |f ′(t)|2 dt (2.4)

holds

(a) if lim inft→∞ |f(t)| = 0 with

C(U,W ) = 4 sup
s>0

( ∫ ∞

s

U(t)−1 dt
)(∫ s

0

W (t) dt
)
. (2.5)

(b) if lim inft→0 |f(t)| = 0 with

C(U,W ) = 4 sup
s>0

( ∫ s

0

U(t)−1 dt
)(∫ ∞

s

W (t) dt
)
. (2.6)

We now turn to the proof of the main result of this section. The argument has some similarities with one used

in [15], but our focus is different.

Proof of Proposition 2.1. By the bounds (1.6), we have

Q±[e±hϕ] ≥ (m∓)−2

∫

R2

(1 + |x|)±2α|(∂1 ± i∂2)ϕ|2 dx .

For α = 0, the assertion follows immediately from the fact that
∫

R2

|(∂1 ± i∂2)ϕ|2 dx =

∫

R2

|∇ϕ|2 dx .

For α > 0 we introduce polar coordinates x = (r cos θ, r sin θ) and expand ϕ(r ·) into a Fourier series,

ϕ(x) =
∑

m∈Z

eimθ ϕm(r) , ϕm(r) =
1

2π

∫ 2π

0

e−imθ v(r, θ) dθ .

A computation (see also [40, Section 10]) shows that
∫ 2π

0

|(∂1 ± i∂2)ϕ|2 dθ =
∑

m∈Z

∣∣∣ϕ′
m(r) ∓ mϕm(r)

r

∣∣∣
2

(2.7)

and ∫ 2π

0

|∇ϕ|2 dθ =
∑

m∈Z

(
|ϕ′

m(r)|2 +
m2

r2
|ϕm(r)|2

)
. (2.8)
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Thus, the assertion will follow if we can prove that for each m ∈ Z,
∫ ∞

0

(1 + r)±2α
∣∣∣ϕ′

m(r) ∓ mϕm(r)

r

∣∣∣
2

r dr ≥ qα

∫ ∞

0

(1 + r)±2α

(
|∂rϕm(r)|2 +

m2

r2
|ϕm(r)|2

)
r dr . (2.9)

Integrating by parts we find
∫ ∞

0

(1 + r)±2α
∣∣∣ϕ′

m(r) ∓ mϕm(r)

r

∣∣∣
2

r dr =

∫ ∞

0

(1 + r)±2α
(

|ϕ′
m|2 +

m2 |ϕm|2
r2

+ 2αm
|ϕm|2

(1 + r)r

)
r dr . (2.10)

When m ≥ 0 the last term on the right side is nonnegative and we arrive at (2.9), even with constant 1 instead

of qα. (Note that qα ≤ 1.)

From now on we assume that m ≤ −1. The basic idea is to prove a Hardy inequality that allows us to absorb

the last term on the right side of (2.10) into the left side. We will apply Lemma 2.2 with

f(r) = r∓mϕm(r) , U(r) = r±2m+1(1 + r)±2α , W (r) = r±2m−1(1 + r)±2α .

Note that the left side of (2.10) is equal to
∫∞

0 U(r)|f ′(r)|2 dr. In order to bound the constant in Lemma 2.2,

we distinguish two cases according to the sign.

Case of the upper sign. In this case we have lim inft→0 |f(t)| = 0, so we aim at applying part (b) of Lemma

2.2. We have
∫ s

0

U(t)−1 dt =

∫ s

0

t−2m−1(1 + t)−2α dt ≤ s−2m

2|m| 1(0,1](s) +
s−2m−2α

2(|m| − α)
1(1,∞)(s) (2.11)

and
∫ ∞

s

W (t) dt =

∫ ∞

s

t−1+2m(1 + t)2α dt ≤ 22α
[ s2m

2|m| +
1

2(|m| − α)

]
1(0,1](s) + 22α s2m+2α

2(|m| − α)
1(1,∞)(s).

Hence

sup
0<s≤1

( ∫ s

0

U(t)−1 dt
)(∫ ∞

s

W (t) dt
)

≤ 22α

4m2
+

22α

4|m|(|m| − α)
≤ 22α+1

4m2(1 − α)
,

where we have used the elementary bound

(k − α)2 ≥ k2 (1 − α)2 0 < α < 1, k ∈ Z.

Similarly,

sup
1<s<∞

(∫ s

0

U(t)−1 dt
)( ∫ ∞

s

W (t) dt
)

≤ 22α

4(|m| − α)2
≤ 22α

4m2(1 − α)2
.

Altogether we deduce from Lemma 2.2 that
∫ ∞

0

(1 + r)2α
∣∣∣ϕ′

m − mϕm

r

∣∣∣
2

r dr ≥ 2−2α−1 (1 − α)2 m2

∫ ∞

0

(1 + r)2α

r2
|ϕm|2 rdr . (2.12)

Case of the lower sign. In this case we have lim inft→∞ |f(t)| = 0, so we aim at applying part (a) of Lemma

2.2. Note that
∫∞

s
U(t)−1 dt in the present case coincides with

∫∞

s
W (t) dt in the case of the upper sign and

similarly
∫ s

0
W (t) dt in the present case coincides with

∫ s

0
U(t)−1 dt in the case of the upper sign. Therefore

we obtain from the previous bounds

sup
0<s≤1

( ∫ ∞

s

U(t)−1 dt
)(∫ s

0

W (t) dt
)

≤ 22α+1

4m2(1 − α)
,

and

sup
1<s<∞

(∫ ∞

s

U(t)−1 dt
)(∫ s

0

W (t) dt
)

≤ 22α

4m2(1 − α)
.
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Altogether we deduce from Lemma 2.2 that
∫ ∞

0

(1 + r)−2α
∣∣∣ϕ′

m +
mϕm

r

∣∣∣
2

r dr ≥ 2−2α−1 (1 − α)2 m2

∫ ∞

0

(1 + r)−2α

r2
|ϕm|2 rdr . (2.13)

Conclusion of the proof. We combine the integration by parts identity (2.10) with the Hardy inequalities

(2.12) and (2.13) and obtain, for any ϑ ∈ [0, 1],
∫ ∞

0

(1 + r)±2α
∣∣∣ϕ′

m(r) ∓ mϕm(r)

r

∣∣∣
2

r dr ≥ (1 − ϑ)

∫ ∞

0

(1 + r)±2α
(

|ϕ′
m|2 +

m2 |ϕm|2
r2

)
r dr

+
(
(1 − ϑ)2αm+ ϑ2−2α−1 (1 − α)2 m2

) ∫ ∞

0

(1 + r)±2α |ϕm|2
(1 + r)r

r dr .

Here in the Hardy inequalities, we estimated r−2 ≥ (r(1 + r))−1. We now choose

ϑ =
2α|m|

2α|m| + 2−2α−1(1 − α)2m2
,

so that the last term vanishes. The constant in front of the first term is equal to

1 − ϑ =
2−2α−1(1 − α)2m2

2α|m| + 2−2α−1(1 − α)2m2
.

Since this is monotone increasing in |m|, a lower bound is obtained by setting m = −1, which gives the

constant qα. This proves (2.9). �

Remark 2.3. The assumption α < 1 in Proposition 2.1 is optimal. Indeed, the inequality
∫

R2

(1 + |x|)−2α |(∂1 − i∂2)ϕ|2 dx ≥ c

∫

R2

(1 + |x|)−2α |∇ϕ|2 dx ∀ϕ ∈ C1
c (R2) (2.14)

fails to hold, for any c > 0, as soon as α ≥ 1. Indeed, by density it would then also hold for the functions

ϕ(R), R > 0, given by

ϕ(R)(r cos θ, r sin θ) :=

{
re−iθ if r ≤ R ,

R2

r e−iθ if R < r .

A short calculation using (2.7) and (2.8), however, shows that

lim
R→∞

∫
R2 (1 + |x|)−2α |(∂1 − i∂2)ϕ(R)|2 dx∫

R2 (1 + |x|)−2α |∇ϕ(R)|2 dx = 0 ,

which obviously contradicts (2.14).

Meanwhile, inequality (2.2) with the upper sign can be extended to all α such that 1 < α 6∈ Z. Since we will

not use this bound, we omit its proof.

2.2. Equivalence of quadratic forms. So far we have worked with the operators H± in the space L
2(R2).

Now we pass to certain operators H± in the weighted spaces L
2(R2, (1+|x|)±2α dx) and show that Lieb–Thirring

inequalities for the new operators imply Lieb–Thirring inequalities for the original operators.

We consider the quadratic form ∫

R2

(1 + |x|)±2α |∇ϕ|2 dx

in the Hilbert space L
2(R2, (1 + |x|)±2α dx). The form domain consists of functions ϕ ∈ H1

loc(R
2) ∩ L

2(R2, (1 +

|x|)±2α dx) for which the form is finite. It is easy to see that this form is closed in L
2(R2, (1 + |x|)±2α dx). We

denote the resulting selfadjoint, nonnegative operator in L
2(R2, (1 + |x|)±2α dx) by H±.

From Proposition 2.1 we deduce the following upper bound on the Riesz means that we are interested in.
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Corollary 2.4. Let Assumption 1.1 be satisfied with α ≥ 0 and R = 1. Then for any γ > 0,

Tr L2(R2,dx) (H± + V )γ
−

≤ qγ
α Tr L2(R2,(1+|x|)±2α dx)

(
H± − q−1

α (m+m−)2V−

)γ

−

with the constants qα from Proposition 2.1 and m± from (1.6).

Proof. According to Proposition 2.1 we have for all ϕ ∈ C1
c (R2)

Q±[e±hϕ] +

∫

R2

V e±2h|ϕ|2 dx

≥ qα(m∓)−2

(∫

R2

(1 + |x|)±2α |∇ϕ|2 dx− q−1
α (m±m∓)2

∫

R2

(1 + |x|)±2αV−|ϕ|2 dx
)

and ∫

R2

e±2h|ϕ|2 dx ≥ (m∓)−2

∫

R2

(1 + |x|)±2α|ϕ|2 dx .

We know from [14, Theorem 2.5] that the set e±hC1
c (R2) is a form core for the operator H±. It is also easy

to see that C1
c (R2) is a form core for H±. Therefore these inequalities imply, by the variational principle

N(H± + V + τ) ≤ N(H± − q−1
α (m±m∓)2V− + q−1

α τ) for all τ ≥ 0 .

Here, N(T ) denotes the number of negative eigenvalues, counting multiplicities, of a selfadjoint operator T .

Using the identity

TrT γ
− = γ

∫ ∞

0

N(T + τ) τγ−1 dτ ,

we obtain the claimed inequality. �

Remark 2.5. If instead of Proposition 2.1 one uses inequality (2.1), one can argue similarly to prove the

‘reverse’ inequality

Tr L2(R2,(1+|x|)±2α dx) (H± + V )
γ
−

≤ 2γ Tr L2(R2,dx)

(
H± − 2−1(m−m+)2V−

)γ

−

In this sense the problem of proving Lieb–Thirring inequalities for H± + V is equivalent, up to constants, to

proving such inequalities for H± + V . From now on we will deal with the latter problem.

3. Proof of Theorem 1.4

In this section we prove the first one of our main results, Theorem 1.4. This is substantially simpler than the

second one, Theorem 1.5, since either the operators are subcritical (H+ with α > 0), or they are critical, but

the endpoint value of γ is excluded (H± with α = 0).

3.1. Proof of Theorem 1.4 for α = 0. While the approach in the following subsection works for α = 0 as

well, one can already at this point finish easily the proof in this case by adapting the argument in [24].

Proof of Theorem 1.4 for α = 0. By the argument at the end of Subsection 1.4 we may assume R = 1. For

α = 0, the operators H± coincide with the Laplacian −∆ in L
2(R2). Therefore, Corollary 2.4, together with

the usual Lieb–Thirring inequality in R2, see (1.2), implies that for any γ > 0

Tr L2(R2,dx) (H± + V )
γ
−

≤ Tr L2(R2,dx)

(
−∆ − (m+m−)2V−

)γ

−
≤ Lγ(m+m−)2(γ+1)

∫

R2

V (x)γ+1
− dx .

This is the claimed inequality. �
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3.2. Proof of Theorem 1.4 for general α. We will use of method of Lieb [30] of proving Lieb–Thirring

inequalities, which is based on a pointwise upper bound on the heat kernel. Such pointwise bounds have been

studied in great generality by Grigor’yan, Saloff-Coste and others; see [36, 26, 25, 37] and references therein.

The usefulness of Grigor’yan–Saloff-Coste theory in the context of Lieb–Thirring inequalities was observed

in [19].

In order to apply the results of Grigor’yan and Saloff-Coste it is convenient to exchange the weight (1+ |x|)±2α

with the smooth weight (1+ |x|2)±α. Strictly speaking, this replacement is not necessary, as one can verify that

the relevant results of Grigor’yan–Saloff-Coste theory remain valid for our weight that this smooth away from

a point and Lipschitz near that point. However, to shorten the presentation we will make this replacement at

the expense of a further, controlled deterioration of the constant.

We consider the quadratic form ∫

R2

(1 + |x|2)±α |∇ϕ|2 dx

in the Hilbert space L
2(R2, (1+|x|2)±α dx). This form, with form domain consisting of functions ϕ ∈ H1

loc(R
2)∩

L
2(R2, (1 + |x|2)±α dx) for which the form is finite, is nonnegative and closed. We denote the resulting

selfadjoint, nonnegative operator in L
2(R2, (1 + |x|2)±α dx) by K±.

Using the bounds

2− 1
2 (1 + |x|) ≤ (1 + |x|2)

1
2 ≤ 1 + |x|

and proceeding as in the proof of Corollary 2.4, we find that

Tr L2(R2,(1+|x|)±2αdx) (H± + V )
γ
−

≤ Tr L2(R2,(1+|x|2)±αdx) (K± − 2α V−)
γ
−
,

Tr L2(R2,(1+|x|2)±αdx) (K± + V )
γ
−

≤ Tr L2(R2,(1+|x|)±2αdx) (H± − 2α V−)
γ
−
.

(3.1)

In view of these inequalities we will now prove Lieb–Thirring inequalities for the operator K±. Let

p±(t;x, y) := e−tK±

(x, y)

denote the heat kernel generated by K±. According to [26, Equation (4.10)], for any 0 ≤ α < 1 there is a

constant C such that

p±(t;x, x) ≤ C t−1 (1 + |x| +
√
t)∓2α ∀ t > 0, ∀x ∈ R

2 . (3.2)

Let us comment on the bound (3.2). The result in [26] is much more general. It gives matching upper and

lower bounds for p±(t;x, y) for general x, y ∈ R2. Also in the case of the upper sign the restriction α < 1 is

not necessary. When comparing (3.2) with [26, Equation (4.10)], note that our ±2α plays the role of their α.

We also note that there is a typographical error in [26, Equation (4.10)], which we have corrected in (3.2).

(Indeed, inserting the formula for µα(B(x, r)) before [26, Equation (4.10)] into [26, Theorem 2.7], we see that

α there needs to be replaced by α/2.)

Lieb’s method [30] yields the upper bound

Tr (K± + V )
γ
−

≤ Ka,γ

∫

R2

∫ ∞

0

p±(t;x, x) t−1−γ (t V (x) + a)− dt (1 + |x|2)±α dx , (3.3)

valid for any parameter a > 0, with constant

Ka,γ = Γ(γ + 1)

(
e−a − a

∫ ∞

a

s−1 e−s ds

)−1

. (3.4)

We now turn to the proof of our first main result.
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Proof of Theorem 1.4. Inequality (3.2) implies

p+(t;x, x) ≤ Cα

t
(1 + |x|)−2α ∀ t > 0, ∀x ∈ R

2 . (3.5)

Inserting this into (3.3) we obtain, for any γ > 0,

Tr(K+ + V )γ
− ≤ Cα Ka,γ

∫

R2

∫ ∞

0

t−2−γ (t V (x) + a)− dt dx =
Cα Ka,γ

aγ γ(γ + 1)

∫

R2

V (x)γ+1
− dx .

Combining this with the bounds from Corollary 2.4 and from (3.1) we obtain (for R = 1, as we may assume)

Tr L2(R2,dx) (H+ + V )γ
−

≤ qγ
α Tr L2(R2,(1+|x|)2α dx)

(
H+ − q−1

α (m+m−)2V−

)γ

−

≤ qγ
α Tr L2(R2,(1+|x|2)α dx)

(
K+ − q−1

α 2α (m+m−)2V−

)γ

−

= q−1
α 2α(γ+1) Cα Ka,γ

aγ γ(γ + 1)
(m+m−)2(γ+1)

∫

R2

V (x)γ+1
− dx ,

which is the claimed Lieb–Thirring inequality for H+ + V . The proof for H− + V when α = 0 is similar. �

Remark 3.1. It is interesting to note that the inequality in Theorem 1.5 can be obtained by the same method

for γ > α. Indeed, inequality (3.2) implies

p−(t;x, x) ≤ Cα

(
t−1 (1 + |x|)2α + tα−1

)
∀ t > 0, ∀x ∈ R

2 . (3.6)

Inserting this into (3.3) we obtain, for any γ > α,

Tr(H− + V )γ
− ≤ Cα Ka,γ

aγ γ(γ + 1)

∫

R2

V (x)γ+1
− dx

+
Cα Ka,γ

aγ−α (γ − α)(γ − α+ 1)

∫

R2

(1 + |x|)−2α V (x)1+γ−α
− dx .

Combining this with the bound from Corollary 2.4, we obtain Theorem 1.5 for γ > α. Note that in the second

term on the right side, we estimate

(1 + |x|)−2α ≤ (m+m−)2 e−2(h(x)−h0) .

(Indeed, e−h(x) ≤ m−(1 + |x|)−α, so e‖h‖L∞(B(0,ε)) ≤ m+(1 + ε)α, which according to our convention means

that eh0 ≤ m+.)

Remark 3.2. We claim that for any fixed γ > 0 the limsup of the constants in the Lieb–Thirring inequalities

in Theorems 1.4 and 1.5 remains finite as α → 0. This follows from the proofs that we have just given, together

with the fact that the constants Cα in (3.5) and (3.6) remain bounded as α → 0. The latter claim follows

from the explicit nature of the bounds in the Grigar’yan–Saloff-Coste theory. The basic ingredients, namely

the volume doubling property and the Poincaré inequality (see [26, Theorem 2.7]), hold with constants that

remain bounded as α → 0.

4. Proof of Theorem 1.5

In this section we prove the second of our main results, Theorem 1.5. We will assume throughout that

0 < α < 1 and will prove this theorem only in the critical case γ = α. This implies the result in the full regime

γ ≥ α, either by the Aizenman–Lieb argument [3] or by Remark 3.1. Moreover, according to Corollary 2.4 it

suffices to prove the corresponding inequality for H− rather than H−.
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4.1. Reduction to radial functions. For a function f on R2 let

Pf(x) := (2π)−1

∫ 2π

0

f(|x| cos θ, |x| sin θ) dθ

and P⊥ := 1 − P . For any radial weight w on R2, P is the orthogonal projection onto radial functions in

L
2(R2, w(x)dx). The operator P commutes with H−. Moreover, by the Schwarz inequality we have

V− ≤ 2PV−P + 2P⊥V−P⊥ .

From this, we conclude that

Tr(H− + V )γ
− ≤ Tr(P(H− − 2V−)P)γ

− + Tr(P⊥(H− − 2V−)P⊥)γ
− . (4.1)

We will treat the two terms on the right side separately. In this subsection we will treat the second term.

We note that the first term, which will be treated in the remaining subsections, corresponds essentially to an

operator in one dimension.

Proposition 4.1. For any γ > 0,

Tr(P⊥(H− + V )P⊥)γ
− ≤ 9

8 Lγ

∫

R2

V (x)γ+1
− dx .

Proof. We shall show that

Tr L2(R2,(1+|x|)−2αdx)(P⊥(H− − V )P⊥)γ
− ≤ Tr L2(R2,dx)

(
P⊥
(

− 8
9 ∆ − V

)
P⊥
)γ

−

,

where we make the fact explicit that the traces on the two sides are in different Hilbert spaces. Once we have

shown this inequality, we can appeal to the standard Lieb–Thirring inequality (1.2) to deduce the bound in

the proposition.

We consider the unitary operator U : L
2(R2, dx) → L

2(R2, (1+ |x|)−2αdx), ψ 7→ (1+ |x|)αψ. Since U commutes

with P and V , it suffices to show that

U∗P⊥H−P⊥U ≥ 8
9 P⊥(−∆)P⊥ .

That is, we need to show that, if Pψ = 0, then
∫

R2

(1 + |x|)−2α|∇((1 + |x|)αψ)|2 dx ≥ 8
9

∫

R2

|∇ψ|2 dx .

We compute

(1 + |x|)−2α|∇((1 + |x|)αψ)|2 = (1 + |x|)−2α|(1 + |x|)α∇ψ + α(1 + |x|)α−1 x
|x|ψ|2

= |∇ψ|2 + α2(1 + |x|)−2|ψ|2 + α(1 + |x|)−1 x
|x| · ∇(|ψ|2) .

Integrating by parts, we obtain
∫

R2

(1 + |x|)−2α|∇((1 + |x|)αψ)|2 dx =

∫

R2

(|∇ψ|2 − (α∇ · ((1 + |x|)−1 x
|x|) − α2(1 + |x|)−2)|ψ|2) dx

=

∫

R2

(|∇ψ|2 − α(1 + |x|)−2(|x|−1 − α)|ψ|2) dx .

We introduce polar coordinate x = (r cos θ, r sin θ). Since P⊥(−∂2
θ )P⊥ ≥ P⊥, we have, if Pψ = 0,

∫

R2

(1 + |x|)−2α|∇((1 + |x|)αψ)|2 dx =

∫

R2

(
(1 + |x|)−2α|∂r(1 + |x|)αψ|2 + |x|−2|∂θψ|2

)
dx

≥
∫

R2

|x|−2|ψ|2 dx .
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Combining the previous two equations we find, for any ϑ ∈ [0, 1],
∫

R2

(1 + |x|)−2α|∇((1 + |x|)αψ)|2 dx ≥ ϑ

∫

R2

|∇ψ|2 dx

+

∫

R2

((1 − θ)|x|−2 − ϑα(1 + |x|)−2(|x|−1 − α))|ψ|2 dx .

We can choose ϑ ∈ [0, 1] (depending on α) such that

(1 − ϑ)|x|−2 − ϑα(1 + |x|)−2(|x|−1 − α) ≥ 0 for all x ∈ R
2 .

More precisely, we choose

ϑ :=

(
sup
r>0

(
1 + α(1 + r)−2r(1 − αr)

))−1

.

The supremum is attained at r = 1/(2α+ 1), which leads to

ϑ =
4(α+ 1)

5α+ 4
≥ 8

9
.

This proves the claimed inequality. �

We note that the inequality α < 1 that we assume throughout this section was only used at the very end of

the previous proof when we bounded ϑ from below. Thus, an analogue of Proposition 4.1 is valid even for

α ≥ 1, but with a constant that depends on α.

4.2. Reduction to the lowest eigenvalue. In the previous subsection we have treated the second term

on the right side of (4.1). In this subsection we treat the first term, that is, we deal with the operator

P(H− + V )P .

We let h− denote the operator in L
2(R+, (1 + r)−2αr dr) generated by the quadratic form

∫ ∞

0

(1 + r)−2α|ϕ′(r)|2r dr ,

defined on locally absolutely continuous functions ϕ on R+ belonging to L
2(R+, (1 + r)−2αr dr) for which the

integral is finite. If for a given function V on R2 we let

v(r) :=
1

2π

∫ 2π

0

V (r cos θ, r sin θ) dθ , (4.2)

then the nontrivial part of the operator P(H− + V )P is equal to h− + v and, in particular,

Tr L2(R2,(1+|x|)−2αdx) (P(H− + V )P)
γ
−

= Tr L2(R+,(1+r)−2αr dr) (h− + v)
γ
−
. (4.3)

In the remainder of this section we will treat v as a given function on R+, ignoring that there is an underlying

function V on R2.

Our strategy to bound the right side of (4.3) will be to impose a Dirichlet boundary condition at r = 1. This

will result in two operators h−

0 and h−
∞ in L

2((0, 1), (1 + r)−2αr dr) and L
2((1,∞), (1 + r)−2αr dr), respectively.

These operators act in the same way as h−, but functions in their form domain vanish at the point r = 1. Since

imposing a Dirichlet boundary condition is a rank one perturbation of the resolvent, it follows that

Tr L2(R+,(1+r)−2αr dr) (h− + v)γ
−

≤ Tr L2((0,1),(1+r)−2αr dr) (h−

0 + v)
γ
−

+ Tr L2((1,∞),(1+r)−2αr dr) (h−

∞ + v)
γ
−

+ (inf spec (h− + v))
γ
−
. (4.4)

In the following two propositions we will treat the first two terms on the right side, respectively. The third

term will be treated in the next subsection.
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Proposition 4.2. For any γ > 0,

Tr L2((0,1),(1+r)−2αr dr) (h−

0 + v)
γ
−

≤ 22α(γ+1) Lγ 2π

∫ 1

0

v(r)γ+1
− r dr .

Proof. For functions ϕ in the form domain of h−

0 we bound
∫ 1

0

(1 + r)−2α|ϕ′(r)|2r dr +

∫ 1

0

v(r)|ϕ(r)|2(1 + r)−2αr dr ≥ 2−2α

∫ 1

0

|ϕ′(r)|2r dr −
∫ 1

0

v(r)−|ϕ(r)|2r dr

and ∫ 1

0

(1 + r)−2α|ϕ(r)|2r dr ≥ 2−2α

∫ 1

0

|ϕ(r)|2r dr .

By a similar argument as in the proof of Corollary 2.4, this implies

Tr L2((0,1),(1+r)−2αr dr) (h−

0 + v)
γ
−

≤ Tr L2((0,1),r dr)

(
−r−1∂rr∂r − 22αv−

)γ

−
,

where the operator −r−1∂rr∂r − 22αv− is considered with a Dirichlet boundary condition at r = 1. Note

that this operator coincides with the nontrivial part of P(−∆ − 22αv(| · |)−)P acting in L
2(B(0, 1), dx) with

a Dirichlet boundary condition. Extending the operator to all of R2 and removing the projection P does not

decrease the Riesz means and therefore we have, by the standard Lieb–Thirring inequality (1.2),

Tr L2((0,1),r dr)

(
−r−1∂rr∂r − 22αv−

)γ

−
≤ Tr L2(R2,dx)

(
−∆ − 22α

1B(0,1)v(| · |)−

)γ

−

≤ 22α(γ+1) Lγ

∫

B(0,1)

v(|x|)γ+1
− dx

= 22α(γ+1) Lγ 2π

∫ 1

0

v(r)γ+1
− r dr .

Combining this with the previous inequality yields the assertion. �

Proposition 4.3. For any γ > 0,

Tr L2((1,∞),(1+r)−2αr dr) (h−
∞ + v)

γ
−

≤ Cα,γ

∫ ∞

1

v(r)γ+1
− r dr .

Proof. Arguing similarly as at the beginning of the previous proof we find that

Tr L2((1,∞),(1+r)−2αr dr) (h−

0 + v)
γ
−

≤ Tr L2((1,∞),r−2α+1 dr)

(
−r2α−1∂rr

−2α+1∂r − 22αv−

)γ

−
,

where the operator −r2α−1∂rr
−2α+1∂r − 22αv− is considered with a Dirichlet boundary condition at r = 1.

Extending the operator to all of R+ we will consider

Tr L2(R+,r−2α+1 dr)

(
−r2α−1∂rr

−2α+1∂r + ṽ
)γ

−
,

where ṽ = −22αv− on (1,∞) and ṽ = 0 on (0, 1). The operator −r2α−1∂rr
−2α+1∂r acts with a Dirich-

let boundary condition at the origin. More precisely, it is defined as the closure of the quadratic form∫∞

0
r−2α+1|ϕ′(r)|2 dr defined for ϕ ∈ C1

c (R+). (We emphasize that R+ = (0,∞), so functions in C1
c (R+)

vanish in a neighborhood of the origin.)

We consider the unitary operator U : L
2(R+, dr) → L

2(R+, r
−2α+1dr), η 7→ rα− 1

2 η. Let us set ϕ(r) = Uη(r) =

rα− 1
2 η(r) and compute

|ϕ′(r)|2 =
∣∣∣rα− 1

2 η′(r) + (α− 1
2 )rα− 3

2 η(r)
∣∣∣
2

= r2α−1|η′(r)|2 + 2(α− 1
2 )r2α−2 Re η′(r)η(r) + (α − 1

2 )2r2α−3|η(r)|2

= r2α−1|η′(r)|2 + (α− 1
2 )r2α−2

(
|η(r)|2

)′
+ (α− 1

2 )2r2α−3|η(r)|2 ,
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leading to
∫ ∞

0

|ϕ′(r)|2r−2α+1 dr =

∫ ∞

0

(
|η′(r)|2 + (α2 − 1

4 )r−2|η(r)|2
)
dr .

Thus, we have shown that the operator −r2α−1∂rr
−2α+1∂r in L

2(R+, r
−2α+1dr) is unitarily equivalent to the

operator −∂2
r + (α2 − 1

4 )r−2 in L
2(R+, dr). It follows that

Tr L2(R+,r−2α+1 dr)

(
−r2α−1∂rr

−2α+1∂r + ṽ
)γ

−
= Tr L2(R+ dr)

(
−∂2

r + (α2 − 1
4 )r−2 + ṽ

)γ

−
,

For a lower bound we drop the term α2r−2 and recognize the operator −∂2
r − 1

4r
−2 as being unitarily equivalent

to the radial part of the Laplace operator in R2. It follows that

Tr L2(R+ dr)

(
−∂2

r + (α2 − 1
4 )r−2 + ṽ

)γ

−
≤ Tr L2(R+ dr)

(
−∂2

r − 1
4r

−2 + ṽ
)γ

−

= Tr L2(R2,dx) (P(−∆ + ṽ(| · |))P)γ
−

≤ Tr L2(R2,dx) (−∆ + ṽ(| · |))γ
−

≤ Lγ

∫

R2

ṽ(|x|)γ+1
− dx

= Lγ2π

∫ ∞

0

ṽ(r)γ+1
− r dr .

Here we used the standard Lieb–Thirring inequality (1.2) on R2. Combining the previous inequalities yields

the assertion. �

Remark 4.4. There is an alternative way of finishing the proof without appealing to the Lieb–Thirring

inequality (1.2). Namely, when α ≥ 1
2 one can drop the term (α2 − 1

4 )r−2 for a lower bound and for 0 < α < 1
2

one can drop this term at the expense of reducing the constant 1 in front of −∂2
r by Hardy’s inequality. One

arrives at having to bound Tr L2(R+,dr)(−θα∂
2
r + ṽ)γ

− with θα := min{1, 4α2}. This is possible in view of bounds

by Egorov and Kondratiev [7, Sec. 8.8].

A drawback of the proof that we just sketched is that the constant diverges as α → 0 because of the presence

of θα. This can be remedied by using more refined one-dimensional inequalities that take the Hardy term into

account [9].

In this connection it is interesting to note that for 0 < α ≤ 1
2 and γ ≥ α, the above proof also gives the bound

Tr L2((1,∞),(1+r)−2αr dr) (h−

∞ + v)
γ
−

≤ C̃α,γ

∫ ∞

1

v(r)1+γ−α
− r−2α+1 dr .

This follows from the fact, proved in [9], that the inequality

Tr L2(R+,dr)(−∂2
r − 1

4r
−2 + w)γ

− ≤ Lγ,a

∫ ∞

0

w(r)
γ+ 1+a

2
− ra dr

is valid for γ = 1−a
2 when 0 ≤ a < 1. We apply this inequality with a = 1 − 2α.

4.3. Bound on the lowest eigenvalue. In the previous subsection we have bounded the first and second

term on the right side of (4.4). In this subsection we discuss the third term, that is, we discuss a lower bound

on the lowest eigenvalue for h− + v. We shall prove the following bound

Proposition 4.5. For any 0 < α < 1 there is a constant Cα such that

(inf spec (h− + v))α
−

≤ Cα

(∫ ∞

0

v(r)1+α
− r dr +

∫ ∞

0

v(r)− (1 + r)−2α r dr

)
.
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It is natural to wonder whether in the bound in the proposition a single term on the right side suffices. This

is not the case, as will be discussed in Appendix B.

Proposition 4.5 is in some sense the main step in the proof of our main result. It is certainly the most technical

step and, indeed, in this subsection we only show how to reduce the proof to a technical lemma that will be

verified in the following section. This lemma is stated in terms of the operator Tα in L
2(R+, dr) that is defined

through the closure of the quadratic form
∫ ∞

0

|η′(r)|2 dr − α|η(1)|2 − 1

4

∫ 1

0

|η(r)|2
r2

dr +
(
α2 − 1

4

)∫ ∞

1

|η(r)|2
r2

dr (4.5)

defined for η ∈ C1
c (R+). We denote by (Tα + κ2)−1(r, r′), r, r′ ∈ R+, the integral kernel of the operator

(Tα + κ2)−1. In the following lemma we bound the difference between these kernels at α and at 0.

Lemma 4.6. For any α ∈ (0, 1) there is a constant Cα such that for all κ > 0 and all r, r′ ∈ R+ one has
∣∣(Tα + κ2)−1(r, r′) − (T0 + κ2)−1(r, r′)

∣∣ ≤ Cα κ
−2α

√
rr′ (1 + r)−α (1 + r′)−α .

Accepting this lemma for the moment, let us prove the main result of this subsection.

Proof of Proposition 4.5. The proof will consist of two steps. In the first step we will prove the bound

(inf spec (Tα + v))
α
−

≤ C′
α

(∫ ∞

0

v(r)1+α
− r dr +

∫ ∞

0

v(r)− (1 + r)−2α r dr

)
. (4.6)

and in a second step we will show that this inequality implies that in Proposition 4.5.

Step 1. Let us denote

G0(κ) := (T0 + κ2)−1 and Γα(κ) := (Tα + κ2)−1 − (T0 + κ2)−1 . (4.7)

By the variational principle, for the proof of (4.6) we may assume that v ≤ 0. We denote

κ∗ := (inf spec (Tα + v))
1
2
−
.

We may assume that κ∗ > 0, for otherwise (4.6) is trivially true.

From the Birman–Schwinger principle we deduce that

1 =
∥∥∥v

1
2

− (Tα + κ2
∗)−1 v

1
2

−

∥∥∥ ≤
∥∥∥v

1
2

− G0(κ∗) v
1
2

−

∥∥∥+
∥∥∥v

1
2

− Γα(κ∗) v
1
2

−

∥∥∥ , (4.8)

where ‖ · ‖ denotes the operator norm in L
2(R+). We distinguish two cases depending on the size of the first

term on the right side of (4.8).

Assume first that
∥∥∥v

1
2

− G0(κ∗)v
1
2

−

∥∥∥ ≤ 1
2 . Then, by (4.8),

∥∥∥v
1
2

− Γα(κ∗) v
1
2

−

∥∥∥ ≥ 1

2
. (4.9)

Meanwhile, it follows from Lemma 4.6 that
∥∥∥v

1
2

− Γα(κ) v
1
2

−

∥∥∥
HS

≤ Cακ
−2α

∫ ∞

0

v(r)−(1 + r)−2α r dr ,

for all κ > 0, where ‖ · ‖HS denotes the Hilbert–Schmidt norm in L
2(R+). Estimating the Hilbert–Schmidt

norm from below by the operator norm and setting κ = κ∗, we obtain
∥∥∥v

1
2

− Γα(κ∗) v
1
2

−

∥∥∥ ≤ Cακ
−2α
∗

∫ ∞

0

v(r)−(1 + r)−2α r dr .
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Combining this with (4.9), we obtain

κ2α
∗ ≤ 2Cα

∫ ∞

0

v(r)−(1 + r)−2α r dr ,

which implies (4.6).

If, on the contrary,
∥∥∥v

1
2

− G0(κ∗)v
1
2

−

∥∥∥ > 1
2 , then the Birman-Schwinger principle implies that

inf spec
(
T0 − 2v−

)
< −κ2

∗ .

Since T0 is unitarily equivalent to the radial part of the Laplace operator in R2, cf. (4.5), so we infer that

inf spec
(

− ∆ − 2v(| · |)−

)
< −κ2

∗ .

Combining this with the usual Lieb–Thirring inequality (1.2), we obtain

κ2α
∗ ≤ Tr

(
− ∆ − 2v(| · |)−

)α

−
≤ 2α+1 Lα2π

∫ ∞

0

v(r)α+1
− r dr ,

which implies (4.6). (Note that instead of the Lieb–Thirring inequality (1.2) the so-called one-particle Lieb–

Thirring inequality, that is, a Sobolev interpolation inequality [20, Subsection 5.1.2], would suffice.) This

completes the proof of (4.6).

Step 2. We now deduce the bound in the proposition from the bound (4.6). This is achieved by bringing the

weight (1 + r)−2αr appearing for the operator h− into a more canonical form and then applying a unitary

transformation to remove this more canonical weight. We define

w(r) :=




r if 0 < r ≤ 1 ,

r1−2α if 1 < r < ∞ .
(4.10)

We denote by hα the operator in L
2(R+, w(r)dr) associated with the quadratic form

∫ ∞

0

|ϕ′(r)|2 w(r) dr , (4.11)

defined on functions ϕ ∈ L
2(R+, w(r)dr) that are locally absolutely continuous on R+ and for which the

quadratic form is finite. Using the bounds

2−2α w(r) ≤ (1 + r)−2αr ≤ w(r) ,

we find, similarly as in the proof of Corollary 2.4,
(

inf specL2(R+,(1+r)−2αrdr) (h− + v)
)

−

≤
(

inf specL2(R+,w(r)dr)

(
hα − 22αv−

))

−

.

This reduces the proof of the bound in the proposition to the proof of the bound for hα − 22αv−.

The unitary mapping U : L
2(R+, dr) → L

2(R+, w(r)dr) given by Uη(r) := w(r)− 1
2 η(r) satisfies

∫ ∞

0

|(Uη)′|2w(r) dr =

∫ ∞

0

|η′(r)|2 dr − α|η(1)|2 − 1

4

∫ 1

0

|η(r)|2
r2

dr +
(
α2 − 1

4

)∫ ∞

1

|η(r)|2
r2

dr .

Clearly, the form core C1
c (R+) of Tα is mapped into the form domain of hα. Conversely, arguing as in [20,

Lemma 2.33] one can show that C1
c (R+) is a form core of hα, and the image of it under U−1 is in the form

domain of Tα. These facts imply that

U−1 hα U = Tα .

As a consequence, for any ṽ (in particular, for ṽ = −22αv−)

inf spec
L

2(R+,w(r)dr) (hα + ṽ) = inf spec
L

2(R+,dr) (Tα + ṽ) .

This concludes the proof of the proposition. �
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4.4. Proof of Theorem 1.5. We finally put all the ingredients from this section together and prove our

second main result.

Proof of Theorem 1.5. Given a sufficiently regular real function V on R2 we define the function v on R+

by (4.2). Combining (4.3), (4.4) and Propositions 4.2, 4.3 and 4.5, we see that for each 0 < α < 1 there is a

constant Cα such that

Tr L2(R2,(1+|x|)−2αdx) (P(H− + V )P)α
−

≤ Cα

(∫ ∞

0

v(r)1+α
− r dr +

∫ ∞

0

v(r)− (1 + r)−2α r dr

)

≤ Cα

2π

(∫

R2

V (x)1+α
− dx+

∫

R2

V (x)− (1 + |x|)−2α dx

)
.

The last inequality comes from Hölder’s inequality for the angular integration. Combining this inequality with

(4.1) and Proposition 4.1, we see that for each 0 < α < 1 there is a constant C′
α such that

Tr L2(R2,(1+|x|)−2αdx) (H− + V )α
−

≤ C′
α

(∫

R2

V (x)1+α
− dx+

∫

R2

V (x)− (1 + |x|)−2α dx

)
.

Under Assumption 1.1 with R = 1 (and, as everywhere in this section, α > 0), we can use the same argument

as in Remark 3.1 to replace the weight (1 + |x|)−2α in the second term by (m+m−)2 e−2(h(x)−h0). The claimed

inequality in Theorem 1.5 for γ = α then follows from Corollary 2.4. Note that this yields, in particular, the

claimed dependence of the constants on the product m+m−. As we have already mentioned at the beginning

of this section, the claimed inequality for γ > α follows either from the inequality for γ = α by the Aizenman–

Lieb argument [3] or by Remark 3.1. Finally, the case R 6= 1 can be reduce to the case R = 1 by scaling as we

already observed. �

5. Proof of Lemma 4.6

In this section we will give the proof of Lemma 4.6. We use the notation Γα(κ) from (4.7) for the resolvent

difference. Thus, we are looking for a pointwise bound on the integral kernel of the operator Γα(κ).

Our first goal is to find an explicit formula for this integral kernel. Let

Aα(κ) := κI0(κ)Kα+1(κ) + κI1(κ)Kα(κ) − 2αI0(κ)Kα(κ) ,

Bα(κ) := κI0(κ)Iα+1(κ) − κI1(κ)Iα(κ) + 2αI0(κ)Iα(κ) ,

Dα(κ) := κK1(κ)Kα(κ) − κK0(κ)Kα+1(κ) + 2αK0(κ)Kα(κ) ,

(5.1)

and put

fα(κ) :=
Dα(κ)

Aα(κ)
and gα(κ) :=

Bα(κ)

Aα(κ)
.

It will turn out that Aα(κ) 6= 0, so fα(κ) and gα(κ) are well defined.

Lemma 5.1. One has Aα(κ) 6= 0 for all κ > 0. Moreover, for all κ > 0, α ∈ (0, 1] and 0 < r ≤ r′ < ∞,

Γα(r, r′;κ) =
√
rr′ ×






fα(κ)I0(κr)I0(κr′) if 0 < r ≤ r′ ≤ 1 ,

Kα(κr′)Iα(κr) − I0(κr)K0(κr′) + gα(κ)Kα(κr)Kα(κr′) if 1 < r ≤ r′ ,

I0(κr)
(
A−1

α (κ)Kα(κr′) −K0(κr′)
)

if 0 < r ≤ 1 ≤ r′ .

(5.2)

The same formula is valid when r > r′, provided the variables r and r′ are interchanged.
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Proof. We begin by deriving a formula for the integral kernel of (Tα +κ2)−1 for α ∈ [0, 1]. By Sturm–Liouville

theory it can be written in terms of two solutions v1 and v2 of the system

−v′′ − 1
4 r

−2v = −κ2v in (0, 1) ,

−v′′ + (α2 − 1
4 ) r−2v = −κ2v in (1,∞) ,

v(1−) = v(1+)

v′(1−) = v′(1+) + αv(1+) .

(The jump condition at r = 1 comes from the term α|η(1)|2 in the quadratic form (4.5) of the operator Tα.)

The solution v1 is supposed to lie in the form domain of Tα near the origin and the solution v2 is supposed to

be square-integrable at infinity.

Using standard facts about Bessel’s equation [1, Sec. 9], we find that these two solutions are given by

v1(r) =
√
r ×




I0(κr) if 0 < r ≤ 1 ,

Ãα(κ)Iα(κr) + B̃α(κ)Kα(κr) if 1 < r < ∞ ,
(5.3)

and

v2(r) =
√
r ×




D̃α(κ)I0(κr) + C̃α(κ)K0(κr) if 0 < r ≤ 1 ,

Kα(κr) if 1 < r < ∞ ,
(5.4)

with coefficients Ãα(κ), B̃α(κ), C̃α(κ) and D̃α(κ) that are determined by the continuity and jump conditions

at r = 1. (We will give explicit expressions later in this proof.) Using the Wronski relation [1, Eq. 9.6.15] for

the Bessel functions, viz.

W
{
Kν(z), Iν(z)

}
= Iν(z)Kν+1(z) +Kν(z)Iν+1(z) =

1

z
, (5.5)

we obtain

W
{
v1, v2

}
= C̃α(κ) = Ãα(κ) .

Let us show that Ãα(κ) 6= 0 for all κ > 0. Indeed, if we had Ãα(κ0) = 0 for some κ0 > 0, then v1 would be an

eigenfunction of Tα with eigenvalue −κ2
0, but this contradicts the fact that Tα is a nonnegative operator. The

latter fact follows from Step 2 in the proof of Proposition 4.5, where we showed that Tα is unitarily equivalent

to the manifestly nonnegative operator hα.

By Sturm–Liouville theory, it follows from the above facts that for any κ > 0, the integral kernel of (Tα +κ2)−1

is given by

(Tα + κ2)−1(r, r′) =
√
rr′ ×






K0(κr′)I0(κr) + f̃α(κ)I0(κr)I0(κr′) if 0 < r ≤ r′ ≤ 1 ,

Kα(κr′)Iα(κr) + g̃α(κ)Kα(κr)Kα(κr′) if 1 < r ≤ r′ ,

Ã−1
α (κ) I0(κr)Kα(κr′) if 0 < r ≤ 1 ≤ r′ ,

(5.6)

where we have denoted

f̃α(κ) :=
D̃α(κ)

Ãα(κ)
and g̃α(κ) :=

B̃α(κ)

Ãα(κ)
.

As usual, the formula for r > r′ follows by interchanging the variables.

Note also that Ã0(κ) = C̃0(κ) = 1 and D̃0(κ) = B̃0(κ) = 0, so, in particular,

f̃0(κ) = g̃0(κ) = 0 .

Thus, recalling the definition (4.7), we see that (5.6) implies the formula in the lemma, except that the untilded

quantities appear there rather than the tilded ones. Thus, to complete the proof we need to show that the
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former coincide with the latter. To do so, we replace the derivatives of Bessel functions appearing in the

jump condition at r = 1 using [1, Eq. 9.6.26] in terms of Bessel functions without derivatives. Solving the

corresponding system of four linear equations with four unknown, we see that Ãα(κ), B̃α(κ), D̃α(κ) are given by

the expressions on the right side of (5.1), as claimed. (Note that we have already shown that C̃α(κ) = Ãα(κ),

which is confirmed by the solution of the system of linear equations.) �

Next, we bound the quantities appearing in Lemma 5.1.

Lemma 5.2. Let α ∈ (0, 1]. The following bounds hold for all κ > 0 with an implicit constant depending

possibly on α:

|Aα(κ)−1 − 1| . κ−2α
1(0,1)(κ) + κ−1

1[1,∞)(κ) ,

|fα(κ)| . κ−2α
1(0,1)(κ) + κ−1e−2κ

1[1,∞)(κ) ,

|gα(κ)| . 1(0,1)(κ) + κ−1e2κ
1[1,∞)(κ) .

In fact, in the following proof we will establish the asymptotic behavior of the three quantities in the lemma

for κ → 0 and κ → ∞. The above bounds, however, are all that we need.

For the proof we make use of the following asymptotic facts about Bessel functions:

Kν(z) =





− ln z + C + O(z2| ln z|) if ν = 0 ,
(

z
2

)−ν 1
2 Γ(ν) −

(
z
2

)ν 1
2ν Γ(1 − ν) + O(z2−ν) if 0 < ν < 1 ,

z−1 + O(z| ln z|) if ν = 1 ,
(

z
2

)−ν 1
2 Γ(ν) + O(z2−ν) if ν > 1 ,

as z → 0 ,

Iν(z) =
(z

2

)ν

Γ(ν + 1)−1 + O(z2+ν) as z → 0 ,

(5.7)

see [1, (9.6.10) and (9.6.2)], and

Kν(z) =

√
π

2z
e−z
(

1 +
4ν2 − 1

8z
+ O(z−2)

)
as z → ∞ ,

Iν(z) =

√
1

2πz
ez
(

1 − 4ν2 − 1

8z
+ O(z−2)

)
as z → ∞ .

(5.8)

see [1, (9.7.1) and (9.7.2)]. The constant in (5.7) for ν = 0 is known, but its value is irrelevant for our

purposes.

In addition, we use the following global properties of Bessel functions: Kν and Iν are positive. Moreover, I0

is decreasing. (In fact, Iν is decreasing and Kν is increasing for any ν ≥ 0, but we will not need this.)

Proof. Step 1. Asymptotics at the origin. From (5.7) we deduce that, as κ → 0,

Aα(κ) = 2−αΓ(1 − α)κα + O(κ2−α) ,

Bα(κ) = 21−αΓ(α)−1 κα + O(κ2+α) ,

Dα(κ) = 2−1−αΓ(α)κ−α + O(κα lnκ) .

We note in this computation there is a cancellation at order κ−α for Aα(κ) and at order κ−α ln κ for Dα(κ).
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These asymptotics imply that, as κ → 0,

fα(κ) =
Γ(α)

2 Γ(1 − α)
κ−2α + O(| ln κ| + κ2−4α) ,

gα(κ) =
2

Γ(α) Γ(1 − α)
+ O(κ2−2α) .

Step 2. Asymptotics at infinity. From (5.8) we deduce that, as κ → ∞,

Aα(κ) = 1 + O(κ−1) ,

Bα(κ) =
α

2πκ
e2κ
(
1 + O(κ−1)

)
,

Dα(κ) =
απ

2κ
e−2κ

(
1 + O(κ−1)

)
.

These asymptotics imply that, as κ → ∞,

fα(κ) =
απ

2κ
e−2κ

(
1 + O(κ−1)

)
,

gα(κ) =
α

2πκ
e2κ
(
1 + O(κ−1)

)
.

Step 3. Uniform bounds. The asymptotics in Steps 1 and 2 imply that the claimed bounds in the lemma hold

for all sufficiently small and all sufficiently large κ. Since Aα(κ), Bα(κ) and Dα(κ) are continuous functions of

κ and since Aα(κ) does not vanish according to Lemma 5.1, we obtain the claimed bounds for all κ > 0. �

After these preparations we are ready to prove the claimed pointwise bound on the the integral kernel of

Γα(κ).

Proof of Lemma 4.6. By selfadjointness, it suffices to prove the bound for r ≤ r′, which we will assume

throughout the proof. We split the integral kernel Γα(r, r′;κ) of Γα(κ) as

Γα(r, r′;κ) =
√
rr′ (S(r, r′;κ) + R(r, r′;κ)) (5.9)

with

S(r, r′;κ) =






fα(κ)I0(κr)I0(κr′) if 0 < r ≤ r′ ≤ 1 ,

gα(κ)Kα(κr)Kα(κr′) if 1 < r ≤ r′ ,

I0(κr)
(
A−1

α (κ)Kα(κr′) −K0(κr′)
)

if 0 < r ≤ 1 ≤ r′ ,

(5.10)

and

R(r, r′;κ) =





Kα(κr′)Iα(κr) − I0(κr)K0(κr′) if 1 < r ≤ r′ ,

0 elsewhere ,
(5.11)

and show that both pieces satisfy the bound claimed in the lemma. This is the content of the following two

respective steps.

To simplify the notation, we shall use the symbol . to indicate the existence of a constant such that the

inequality holds when the right side is multiplied by this constant. The constant may depend on α ∈ (0, 1],

but is independent of 0 < r ≤ r′ < ∞ and κ > 0.

Step 1. In this step we show that |S(r, r′;κ)| . κ−2α (1 + r)−α(1 + r′)−α for all 0 < r ≤ r′ < ∞.

We distinguish three cases.
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First, let 0 < r ≤ r′ ≤ 1. We claim that

sup
κ>0, ρ≤1

κ2α|fα(κ)|I2
0 (κρ) < ∞ . (5.12)

Once we have shown this, we deduce that

|S(r, r′;κ)| = |fα(κ)|I0(κr)I0(κr′) . κ−2α . κ−2α(1 + r)−α(1 + r′)−α ,

which is the claimed bound.

To prove (5.12), we first assume κ ≤ 1. Then, by (5.7), I0(κρ)2 . 1 for all ρ ≤ 1 and, by Lemma 5.2,

|fα(κ)| . κ−2α. This proves (5.12) for κ ≤ 1. Now let κ ≥ 1. Then, by (5.8) and the monotonicity of I0,

I0(κρ)2 ≤ I0(κ)2 . κ−1e2κ . κ−2α+1e2κ for all ρ ≤ 1. Moreover, by Lemma 5.2, |fα(κ)| . κ−1e−2κ. This

proves (5.12) for κ ≥ 1.

Next, let 1 ≤ r ≤ r′. We claim that

sup
κ>0, ρ≥1

(κρ)2α|gα(κ)|K2
α(κρ) < ∞ . (5.13)

Once we have shown this, we deduce that

|S(r, r′;κ)| = |gα(κ)|Kα(κr)Kα(κr′) . (κr)−2α(κr′)−2α . κ−2α(1 + r)−α(1 + r′)−α ,

which is the claimed bound.

To prove (5.13), we first assume κ ≤ 1. Then, by Lemma 5.2, |gα(κ)| . 1. Meanwhile, it follows from (5.7)

and (5.8) that

sup
z>0

zαKα(z) < ∞ .

(We emphasize that α > 0.) This proves (5.13) for κ ≤ 1. Now let κ ≥ 1. Then, by Lemma 5.2, |gα(κ)| .
κ−1e2κ. Moreover, by (5.8), Kα(κρ)2 . (κρ)−1e−2κρ for all ρ ≥ 1. Thus,

(κρ)2α|gα(κ)|K2
α(κρ) . (κρ)2α−1κ−1e2κe−2κρ .

The function z 7→ z2α−1e−z is decreasing on ((2α− 1)+,∞). Since κρ ≥ 1 > (2α− 1)+, we deduce that

(κρ)2α−1κ−1e2κe−2κρ ≤ κ2α−2 ≤ 1 .

This proves (5.13) for κ ≥ 1.

Finally, let r ≤ 1 ≤ r′. It follows from (5.7) and (5.8) that

sup
z>0

max{zα, z2}I0(z)
∣∣Kα(z) −K0(z)

∣∣ < ∞ (5.14)

and

sup
z>0

max{zα, z}I0(z)Kα(z) < ∞ . (5.15)

We use the monotonicity of I0, together with (5.14) and (5.15), to bound

|S(r, r′;κ)| = I0(κr)
∣∣A−1

α (κ)Kα(κr′) −K0(κr′)
∣∣

≤ I0(κr′)
∣∣A−1

α (κ)Kα(κr′) −K0(κr′)
∣∣

≤ I0(κr′)|Kα(κr′) −K0(κr′)| + |1 −A−1
α (κ)| I0(κr′)Kα(κr′)

. min{(κr′)−α, (κr′)−2} + min{(κr′)−α, (κr′)−1}
[
κ−α

1(0,1)(κ) + κ−1
1[1,∞)(κ)

]
.

We claim that the right side is bounded by κ−2α(r′)−α. Since (r′)−α . (1 + r′)−α(1 + r)−α for r ≤ 1 ≤ r′,

this implies the claimed bound.
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For the first term on the right side, we bound min{(κr′)−α, (κr′)−2} ≤ (κr′)−2α ≤ κ−2α(r′)−α, as desired.

For the second term we distinguish according to the size of κ. For κ < 1 we bound

min{(κr′)−α, (κr′)−1} κ−α ≤ κ−2α(r′)−α ,

and for κ ≥ 1 we bound, using κr′ ≥ 1,

min{(κr′)−α, (κr′)−1} κ−1 ≤ (κr′)−1κ−1 ≤ (κr′)−ακ−α = κ−2α(r′)−α .

This completes the proof of the bound that we claimed at the beginning of this step.

Step 2. In this step we show that |R(r, r′;κ)| . (κr′)−2α for all 1 ≤ r ≤ r′. Since (r′)−2α ≤ (1+r)−α (1+r′)−α

for all such r, r′, we obtain the claimed bound for R(r, r′;κ).

To prove this claim, we decompose R(r, r′;κ) with 1 ≤ r ≤ r′ further as

R(r, r′;κ) = Ra(r, r′;κ) − Rb(r, r′;κ)

with

Ra(r, r′;κ) := I0(κr)
(
Kα(κr′) −K0(κr′)

)

and

Rb(r, r′;κ) := Kα(κr′)
(
I0(κr) − Iα(κr)

)
.

By (5.14) (together with max{zα, z2} ≥ z2α) and monotonicity of I0 it follows that, if 1 ≤ r ≤ r′, then

|Ra(r, r′;κ)| = I0(κr)
∣∣Kα(κr′) −K0(κr′)

∣∣ ≤ I0(κr′)
∣∣Kα(κr′) −K0(κr′)

∣∣ . (κr′)−2α ,

which is the claimed bound.

To estimate Rb(r, r′;κ) we will distinguish two cases.

If κr ≥ 1, then we use the upper bound (see (5.8))

Kα(z′)
∣∣I0(z) − Iα(z)

∣∣ . ez−z′

√
z′ z3/2

∀ z, z′ ≥ 1 , (5.16)

which implies that for z′ ≥ 1 we have

sup
1≤z≤z′

Kα(z′)
∣∣I0(z) − Iα(z)

∣∣ . (z′)−2 ≤ (z′)−2α ,

which is the claimed bound.

If κr ≤ 1, then we use the bound

sup
z′>0

(z′)2αKα(z′) < ∞ ,

which follows from (5.7) and (5.8), as well as the bound

sup
0<z≤1

∣∣I0(z) − Iα(z)
∣∣ < ∞ , (5.17)

which follows from (5.7). Combining these two inequalities yields the claimed bound. �

The previous proof relies heavily on the fact that the leading terms in the asymptotic expansion of Kν(z) for

z → ∞ coincide for different ν; see (5.8). This is used in (5.14) and (5.16). This shows that subtracting the

integral kernel of (T0 + κ2)−1 from (Tα + κ2)−1 leads to certain cancelations in the integral kernel of Γα(κ) in

terms of κ−2α
√
rr′ (1 + r)−α(1 + r′)−α. Notice in particular that the bound

(Tα + κ2)−1(r, r′) . κ−2α
√
rr′ (1 + r)−α(1 + r′)−α
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cannot hold. Indeed, if this bound held, we could follow the reasoning in the proof of Proposition 4.5 and

prove the inequality

(inf spec (h− + v))
α
−
.

∫ ∞

0

v(r)− (1 + r)−2α r dr .

This, however, would contradict the results of Appendix B.

Appendix A. On Assumption 1.1

Let us show that the parameter α defined in (1.3) and the parameter α appearing in Assumption 1.1 coincide

when µ is absolutely continuous with integrable density B = dµ
dx . This follows from the following more general

result.

Lemma A.1. Let µ be a signed real Borel measure on R2 of finite total variation and assume that there is an

h ∈ W 1,1
loc (R2) such that ∆h = µ in the sense of distributions. Assume that there is an α ∈ R such that both

numbers m± in (1.6) are finite. Then α = (2π)−1µ(R2).

Proof. For two parameters ρ > 0 and σ > 1 to be specified later, we introduce the function χ on R2 by

χ(x) :=






1 if |x| ≤ ρ ,

1 − (ln σ)−1 ln(|x|/ρ) if ρ < |x| ≤ σρ ,

0 if |x| > σρ .

This function is Lipschitz and has compact support. Since h ∈ W 1,1
loc (R2), we can test the equation ∆h = µ

against χ and obtain ∫

R2

χ(x)dµ(x) = −
∫

R2

∇χ(x) · ∇h(x) dx .

(Strictly speaking, we test the equation against the convolution of χ with a C∞
c mollifier and pass to the limit

in the mollification parameter.) Since µ has finite total variation, dominated convergence implies that the left

side tends to µ(R2) as ρ → ∞ for any fixed σ. Since χ is harmonic in {ρ < |x| < σρ}, we see that the right

side is equal to

−
∫

R2

∇χ · ∇h dx = −
∫

ρ<|x|<σρ

∇χ · ∇h dx = −
∫

|x|=σρ

x

|x| · (∇χ)h ds(x) +

∫

|x|=ρ

x

|x| · (∇χ)h ds(x)

= (ln σ)−1(ρσ)−1

∫

|x|=σρ

h ds(x) − (ln σ)−1ρ−1

∫

|x|=ρ

h ds(x) .

Here ds denotes integration with respect to the surface measure. Assumption 1.1 means that for all x ∈ R2,

− lnm− ≤ h(x) − α ln(1 + |x|/R) ≤ lnm+ .

This implies that for r ∈ {ρ, σρ}, we have

−2πr lnm− ≤
∫

|x|=r

h ds(x) − 2παr ln(1 + r/R) ≤ 2πr lnm+

and therefore ∣∣∣∣−
∫

R2

∇χ · ∇h dx− (ln σ)−12πα ln
1 + σρ/R

1 + ρ/R

∣∣∣∣ ≤ (ln σ)−12π ln(m+m−) .

Letting first ρ → ∞ and then σ → ∞ we easily find that

−
∫

R2

∇χ · ∇h dx → 2πα .

This proves the claimed identity µ(R2) = 2πα. �

Next, we show that Assumption 1.1 is satisfied for a large class of absolutely continuous measures.
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Lemma A.2. Let B ∈ L
1(R2, (1 + ln+ |x|)dx) such that, for some p > 1,

sup
x∈R2

∫

|y−x|<1

|B(y)|p dy < ∞ .

Then

h(x) :=
1

2π

∫

R2

B(y) ln |x− y| dy

belongs to W 1,r
loc (R2) for r = 2p

2−p if p < 2, any r < ∞ if p = 2 and r = ∞ if p > 2. It solves ∆h = B and

satisfies (1.6) with α given by (1.3).

Proof. The facts that h ∈ W 1,1
loc (R2) with

∇h(x) =
1

2π

∫

R2

B(y)
x− y

|x− y|2 dy

and that ∆h = B in the sense of distributions are in [31, Theorem 6.21]. For a given a ∈ R
2 we decompose

the integral giving ∇h into the outside of B(a, 1) and its inside. The part from the outside is bounded in

B(a, 1
2 ) since B ∈ L

1(R2). The part from the inside defines a function in L
r(R2) with r = 2p

2−p if p < 2 by the

weak Young inequality [31, Theorem 4.3] and the fact that B ∈ L
p(B(a, 1)). This also implies the assertion

for p = 2. The fact that the part from the inside is bounded for p > 2 follows from Hölder’s inequality.

It remains to show that x 7→ h(x) − α ln(1 + |x|) is bounded. We begin by noting that, with 1
p + 1

p′ = 1,

∣∣∣∣∣

∫

|y−x|<1

B(y) ln |x− y| dy
∣∣∣∣∣ ≤

(∫

|y−x|<1

|B(y)|p dy
) 1

p
(∫

|z|<1

| ln |z||p′

dz

) 1
p′

.

By assumption the right side is bounded with respect to x. Next, we bound
∣∣∣∣∣

∫

|y|< 1
2 |x|

B(y) ln |x− y| dy − ln |x|
∫

|y|< 1
2 |x|

B(y) dy

∣∣∣∣∣ ≤
∫

|y|< 1
2 |x|

|B(y)| ln
|x− y|

|x| dy .

For |y| < 1
2 |x| we have 1

2 <
|x−y|

|x| < 3
2 , so the integral on the right side is bounded with respect to x. We also

note that if |x| > 2, then
∣∣∣∣∣

∫

|y|< 1
2 |x|

B(y) dy − 2πα

∣∣∣∣∣ ≤
∫

|y|≥ 1
2 |x|

|B(y)| dy ≤ 1

ln(|x|/2)

∫

R2

|B(y)| ln+ |y| dy .

This, when multiplied by ln |x| is bounded for |x| ≥ e, say. Finally, we note that when |x − y| ≥ 1 and

|y| ≥ 1
2 |x|, then 0 ≤ ln |x− y| ≤ ln(|x| + |y|) ≤ ln(3

2 |y|) = ln 3
2 + ln+ |y|. Therefore

∣∣∣∣∣

∫

|y−x|≥1 , |y|≥ 1
2 |x|

B(y) ln |x− y| dy
∣∣∣∣∣ ≤

∫

R2

(ln 3
2 + ln+ |y|)|B(y)| dy .

To summarize, we have shown that h(x) − α ln |x| is bounded for |x| ≥ e. Since α ln |x| − α ln(1 + |x|) is

bounded for |x| ≥ e as well, we have proved the assertion for |x| ≥ e. The boundedness for |x| < e proceeds

along the same lines and we omit the details. �

Appendix B. Failure of a one-term bound on inf spec(h− + v)

In this section we discuss the optimality of the bound in Proposition 4.5. More precisely, we shall show that

for any given 0 < α < 1, neither

(inf spec (h− + v))
α
−

≤ Cα

∫ ∞

0

v(r)1+α
− r dr (B.1)

nor

(inf spec (h− + v))
α
−

≤ Cα

∫ ∞

0

v(r)− (1 + r)−2α r dr (B.2)
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can hold with some constant Cα for all real v ∈ L
1
loc(R+). We recall that the operator h− is defined in

Subsection 4.2.

This failure of (B.1) and (B.2) is in contrast to what happens in other related situations, for instance in [29,

Lemma 1], where the ‘weak coupling term’ is able to control the lowest eigenvalue uniformly. In view of this

failure it is perhaps less surprising that the proof of Theorem 1.5 in the case γ = α is rather involved.

To show the claimed failure we apply the duality argument of Lieb and Thirring [33] (see also [20, Proposition

5.3]). This shows that (B.1) and (B.2) are equivalent to the Sobolev interpolation inequalities
(∫ ∞

0

(1 + r)−2α|ϕ′(r)|2 r dr
) 1

1+α
(∫ ∞

0

(1 + r)−2α|ϕ(r)|2 r dr
) α

1+α

≥ Sα

(∫ ∞

0

(1 + r)−2(1+α)|ϕ(r)|
2(1+α)

α r dr

) α
1+α

(B.3)

and (∫ ∞

0

(1 + r)−2α|ϕ′(r)|2 r dr
)1−α (∫ ∞

0

(1 + r)−2α|ϕ(r)|2 r dr
)α

≥ Sα ess sup
R+

|ϕ|2 , (B.4)

respectively, with some Sα > 0 and for all locally absolutely continuous functions ϕ on R+ for which the two

integrals on the left sides are finite. We shall show that neither (B.3) nor (B.4) holds.

To see that (B.3) fails, consider ϕ(r) = v(εr) with a fixed nice function v and a parameter ε ≪ 1. As ε → 0,

we compute
∫ ∞

0

|ϕ′(r)|2 r dr

(1 + r)2α
= ε2α

∫ ∞

0

|v′(s)|2 s ds

(ε+ s)2α
∼ ε2α

∫ ∞

0

|v′(s)|2s1−2α ds ,

∫ ∞

0

|ϕ(r)|2 r dr

(1 + r)2α
= ε−2(1−α)

∫ ∞

0

|v(s)|2 s ds

(ε+ s)2α
∼ ε−2(1−α)

∫ ∞

0

|v(s)|2s1−2α ds ,

∫ ∞

0

|ϕ(r)|
2(1+α)

α
r dr

(1 + r)2(1+α)
= ε2α

∫ ∞

0

|v(s)|
2(1+α)

α
s ds

(ε+ s)2(1+α)
→ const |v(0)|

2(1+α)
α ,

where the constant on the right side of the final relation is positive. (In fact, it is equal to
∫∞

0
(1+t)−2(1+α) t dt.)

Thus, the left side of (B.3) behaves like ε2α2/(1+α), while the right side remains positive (if v(0) 6= 0). Since

α > 0, we arrive at a contradiction.

To see that (B.4) is fails, consider ϕ(r) = v(Mr) with a fixed, nice function v and a parameter M ≫ 1. As

M → ∞, we compute
∫ ∞

0

|ϕ′(r)|2 r dr

(1 + r)2α
=

∫ ∞

0

|v′(s)|2 s ds

(1 + s/M)2α
→
∫ ∞

0

|v′(s)|2s ds ,
∫ ∞

0

|ϕ(r)|2 r dr

(1 + r)2α
= M−2

∫ ∞

0

|v(s)|2 s ds

(1 + s/M)2α
∼ M−2

∫ ∞

0

|v(s)|2s ds ,

ess sup
R+

|ϕ|2 = ess sup
R+

|v|2 .

Thus, the left side of (B.4) behaves like M−2α, while the right side is independent of M . Since α > 0, we

arrive at a contradiction.
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[27] H. Kovař́ık: Weakly coupled Schrödinger operators on regular metric trees. SIAM J. Math. Anal. 39 (2007), 1135–1149.
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