
Parametric Sensitivities of a Wind-driven Baroclinic Ocean Using
Neural Surrogates

Yixuan Sun
yixuan.sun@anl.gov

Mathematics and Computer Science
Division, Argonne National

Laboratory
Lemont, Illinois, USA

Elizabeth Cucuzzella
Tufts University

419 Boston Ave., Massachusetts, USA
Elizabeth.Cucuzzella@tufts.edu

Steven Brus
Mathematics and Computer Science

Division, Argonne National
Laboratory

Lemont, Illinois, USA
sbrus@anl.gov

Sri Hari Krishna Narayanan
Mathematics and Computer Science

Division, Argonne National
Laboratory

Lemont, Illinois, USA
snarayan@anl.gov

Balasubramanya Nadiga
Los Alamos National Laboratory
Los Alamos, California, USA

balu@lanl.gov

Luke Van Roekel
Los Alamos National Laboratory
Los Alamos, New Mexico, USA

lvanroekel@lanl.gov

Jan Hückelheim
Mathematics and Computer Science

Division, Argonne National
Laboratory

Lemont, Illinois, USA
jhuckelheim@anl.gov

Sandeep Madireddy
Mathematics and Computer Science

Division, Argonne National
Laboratory

Lemont, Illinois, USA
smadireddy@anl.gov

Patrick Heimbach
University of Texas at Austin

Austin, Texas, USA
heimbach@oden.utexas.edu

ABSTRACT
Numerical models of the ocean and ice sheets are crucial for un-
derstanding and simulating the impact of greenhouse gases on the
global climate. Oceanic processes affect phenomena such as hur-
ricanes, extreme precipitation, and droughts. Ocean models rely
on subgrid-scale parameterizations that require calibration and
often significantly affect model skill. When model sensitivities to
parameters can be computed by using approaches such as auto-
matic differentiation, they can be used for such calibration toward
reducing the misfit between model output and data. Because the
SOMA model code is challenging to differentiate, we have created
neural network-based surrogates for estimating the sensitivity of
the ocean model to model parameters. We first generated perturbed
parameter ensemble data for an idealized ocean model and trained
three surrogate neural network models. The neural surrogates ac-
curately predicted the one-step forward ocean dynamics, of which
we then computed the parametric sensitivity.

KEYWORDS
Ocean Modeling, Adjoints, Neural Opeartor

1 INTRODUCTION
The oceans are important in mitigating anthropogenic climate
change, primarily by absorbing significant amounts of carbon diox-
ide and heat. Concurrently, oceanic processes redistributing mass,
heat, and salt are key drivers in phenomena such as hurricanes, ex-
treme precipitation, and droughts. Therefore, much effort is devoted
to modeling and understanding the behavior of the ocean under

various scenarios [7, 19, 41, 46]. Of particular interest are the long-
term changes in critical ocean circulation patterns, which could
have wide-ranging climate impacts. Understanding the stability of
the circulation is critical to our ability to predict the conditions that
could cause its weakening.

We consider theModel for Prediction Across ScalesMPAS-Ocean,
a numerical model designed for the simulation of the ocean system
from time scales of days to millennia and spatial scales from sub-1
km to global circulations [12, 35, 39]. Being able to represent interac-
tions across a wide range of scales, it can directly capture mesoscale
ocean activity at sufficiently high resolutions or be used to study
anthropogenic climate change when used as part of a comprehen-
sive climate or Earth system model. In this context, subgrid-scale
parameterization, for example, of unresolved eddies or vertical mix-
ing, plays an important role. We are interested in understanding
the sensitivities of MPAS-Ocean’s output to the model parameters.
Estimating this sensitivity is time- and resource-consuming by run-
ning the model multiple times while varying each parameter in
isolation. Other approaches include the use of Gaussian process,
which suffers greatly from the curse of dimensionality [4, 16], and
parameter study methods [2].

Alternatively, adjoint models have shown great promise in un-
covering the sensitivity of the model to its parameters [8, 9, 28, 29].
They simultaneously calculate the derivatives of a single model
output with respect to all model parameters. Adjoint models can be
created manually or via automatic differentiation (AD), a technique
to compute the adjoints of mathematical functions expressed as
source code [13]. The reverse mode of AD, which computes ad-
joints, is also known as backpropagation and underpins machine
learning [3]. Most popular machine learning frameworks such as

ar
X

iv
:2

40
4.

09
95

0v
1

 [
ph

ys
ic

s.
ao

-p
h]

 1
5

A
pr

 2
02

4

https://orcid.org/

Sun et al.

PyTorch [33], which are used to build neural networks, provide the
ability to perform the reverse mode of AD and thus compute ad-
joint sensitivity with little effort on the part of the end user. While
AD tools exist for several programming languages, an AD tool can
be challenging to apply for highly parallel, pre-existing codes, in-
cluding MPAS-Ocean. The resulting derivative computation may
exhibit poor performance and can be difficult to validate [18].

Neural networks (NNs), as universal function approximators [17],
create models of physical processes from observational or simula-
tion data andmay act as surrogates for numerical models [30, 42, 43].
Once trained, NNs can infer outcomes at unseen parameter points
compatible with the training data. Recently, adjoints obtained by
differentiation of the surrogate NN model have been shown to
match the accuracy of those obtained by conventional AD of the
original forward simulation code in particular settings that were
considered [6, 14]. We therefore explore how to generate an accu-
rate NN surrogate for the idealized Simulating Ocean Mesoscale
Activity (SOMA) test case within MPAS-Ocean [1]. We then use
our NN model to generate adjoint versions of the original model to
obtain parametric sensitivities.

The contributions of this work can be summarized as follows.
(1) We generated a SOMA perturbed parameter ensemble dataset
for deep learning model development and benchmarking; (2) we
trained neural network surrogates with large-scale distributed train-
ing, aiming to recreate the timestepping behavior of the forward
(true) model; and (3) we computed and verified neural adjoints
from the neural surrogates and gained insight into the model sen-
sitivity to four parameters. The rest of this paper is organized as
follows. Section 2 presents the SOMA simulation, problem setting,
and neural network surrogate generation. Section 3 presents the
experiment setup, and Section 4 presents the results and discussion.
Section 5 concludes the paper with a summary and a brief look at
future work.

2 METHODS
This section describes the default SOMA configuration of MPAS-
Ocean, problem formulation, and neural network surrogate.

2.1 SOMA Configuration
The SOMA configuration is designed to investigate equilibrium
mesoscale eddy activity in a setting similar to how ocean climate
models are deployed. SOMA simulates an idealized, eddying, mid-
latitude, double-gyre ocean basin with latitudes ranging from 21.58
to 48.58N and longitudes ranging from 16.58W to 16.58E [45]. The
circular basin features curved coastlines with a 150 km wide, 100
m deep continental shelf and slope (see Figure 1). SOMA can be
run at four different resolutions, where a coarser resolution is more
granular: 4 km, 8 km, 16 km, and 32 km.

We have chosen to run SOMA at a resolution of 32 km. At this res-
olution, the mesoscale eddy field is unresolved and is parametrized
instead. The diagnostic output is computed from five prognostic
outputs (layer thickness, salinity, temperature, zonal velocity, and
meridional velocity) that, in turn, are influenced by four model
parameters. The parameterization of mesoscale tracer transport em-
ployed in SOMA is a combination of isopycnal diffusion known as
Redi parameterization [38], with an associated parameter 𝜅𝑟𝑒𝑑𝑖 , and

eddy-induced advection known as Gent–McWilliams parameteriza-
tion [10, 11], with an associated parameter𝜅𝐺𝑀 . The vertical mixing
model uses the Richardson number–based parameterization [32],
with an associated parameter 𝜅𝑏𝑔 . Bottom drag parameterization,
with an associated parameter𝐶𝐷 , is used to extract energy supplied
by wind forcing. The prognostic variables whose temporal evolu-
tion we are interested in emulating are layer thickness, salinity,
meridional velocity, zonal velocity, and temperature.

The original SOMA simulation runs for constant values of the
scalar parameters that are being studied. For training our NN surro-
gates, we are interested in varying the parameters. Figure 2 shows
the variation in ocean temperature for different values of the Gent–
McWilliams parametrization. Significant variation in output for
different parameter values is clearly observed. The SOMA setup is
therefore suitable for creating a perturbed parameter ensemble, as
described in Section 3.1.

2.2 Problem Setting
This section describes the problem setup. We use x to denote the
state variables, 𝑝 the physical model parameters, and 𝜃 the learnable
parameters in the neural network.

On a high level, SOMA starts with the initial state, x0, and the
model parameter(s), 𝑝 , and solves for the state x(𝑡) (i.e., the prog-
nostic variables) at time 𝑡 . The initial value problem, 𝑑x(𝑡, 𝑝)/𝑑𝑡 =
𝑓 (x(𝑡)), with x(0) = x0, leads to the solution at time 𝑡 , x𝑡 =

x0 +
∫ 𝑡

0 𝑓 (x(𝜏, 𝑝))𝑑𝜏 . The solution at the discrete time step 𝑡 + 1 can
be expressed as

x(𝑡 + 1) = x(𝑡) +
∫ 𝑡+1

𝑡

𝑓 (x(𝜏, 𝑝))𝑑𝜏 . (1)

Building neural surrogates aims to model the one-step solving
process in (1). We aim to use a neural network N𝜃 , parameterized
by the neural network trainable parameters 𝜃 to approximate the
solution operator. In particular, we trained the neural network to
approximate the following mapping,

x𝑡+1 = N𝜃 (x𝑡 , 𝑝), (2)

where x is the state variable vector, 𝑡 represents the current time,
and 𝑝 is the parameter that impacts the trajectories of state vari-
ables. The dataset D, obtained from each ensemble with vary-
ing 𝑝 , described in Section 3.1, contains the input-output pairs
{[x(𝑘)𝑡 , 𝑝 (𝑘)], x(𝑘)

𝑡+1}
𝑁
𝑘=1. Now, the learning objective is to minimize

the empirical loss function,

L(𝜃 ;D) = 1
𝑁

𝑁∑︁
𝑘=1

∥x(𝑘)
𝑡+1 − N𝜃 (x

(𝑘)
𝑡 , 𝑝 (𝑘))∥2

2, (3)

where 𝑁 is the number of data points in the training set. We expect
the trained neural network to accurately predict the state variables
one step forward. Furthermore, with an accurate neural surrogate
for the forward process, we are interested in understanding the
adjoint sensitivity of the model with respect to the parameter 𝑝 ,
𝜕N𝜃 /𝜕𝑝 , which can be easily calculated through backpropagation,
once a skillful, trained neural network is available. Because the
SOMA simulation is not readily differentiable using AD, we verify
the calculation of neural adjoints by performing a dot-product test,
described in Section 4.2.1, as the first step toward matching the

Parametric Sensitivities of a Wind-driven Baroclinic Ocean Using Neural Surrogates

Figure 1: SOMA domain shown with the 32 km mesh. Below is the depth profile of the basin, along with the horizontally
constant initial temperature and salinity profiles. To the right is the longitudinally constant (zonal-mean) imposed wind stress
forcing.

GM = 200.00 GM = 584.00 GM = 949.00 GM = 1262.00 GM = 1605.00

12 13 14 15 16 17 18
Temperature [C]

Figure 2: Variation shown in temperature with different val-
ues of Gent–McWilliams (GM) parameterization. The tem-
perature at a depth of approximately 43 m at the end of
simulations of the same initial condition is shown.

model true adjoint 𝜕M/𝜕𝑝 , when a differentiable physical model
M is available.

2.3 Neural Network Surrogates
We trained three types of NNs that are commonly used in learning
dynamical systems [5, 31]—U-Net [40], ResNet [15], and FNO [24]—
to learn the forward dynamics of the simulation. The values of

normalized root mean square error (NRMSE) of the predicted prog-
nostic variables from the three NNs trained for 𝜅𝐺𝑀 , listed in Ta-
ble 1, show that the Fourier neural operator (FNO) greatly out-
performs (with lower NRMSEs) the other two NNs. We therefore
primarily adopted FNO as the surrogate model to train on data from
the dynamics of all varied parameters. FNO aims to learn the oper-
ator between infinite-dimensional function spaces and can handle
high-dimensional data efficiently in the spectral space. FNO has
had many successes in modeling physical systems [25, 34, 37]. In
particular, FourCastNet [34], powered by FNO backbones, achieved
outstanding performance in short- to mid-range global weather
forecasting. The key component of FNO is the kernel integral op-
erator implemented as a convolution in the Fourier domain. By
compositing such kernel integral operators along with nonlinear
lift and projection operations, FNO effectively approximates such
an operator and can generalize beyond the data resolution in the
training set. Figure 3 shows the data flow with FNO in our prob-
lem, where the input consists of 3D representations of the state
variables and the external parameter, x, 𝑝 . The output is the same
state variables at the next time step. We zero-padded the region
outside the circular domain, mitigating the edge effect and avoiding
artifacts from the periodic boundary assumption for the fast Fourier
transform.

Sun et al.

Table 1: The normalized root mean square error (%) of the predicted prognostic variables from U-Net, ResNet, and FNO trained
for 𝜅𝐺𝑀 .

Layer Thickness Salinity Temperature Zonal Velocity Meridional Velocity

U-Net 0.8961 0.6288 2.190 0.8679 0.5518
ResNet 4.273 3.978 3.889 1.624 1.914
FNO 0.2944 0.1706 0.2176 0.3195 0.2059

<latexit sha1_base64="09KE/f15uvV/YG1bteYQLQhoLJY=">AAACGXicbVDJSgNBFOxxN25Rj14ag+BBwoy4HUUvHiOaKCQhvOm8SRp7FrrfBMMwfoYXf8WLB0U86sm/sbMc3AoaiqpX9HvlJ0oact1PZ2Jyanpmdm6+sLC4tLxSXF2rmTjVAqsiVrG+9sGgkhFWSZLC60QjhL7CK//mdOBf9VAbGUeX1E+wGUInkoEUQFZqFd0G4S1lFwSEvAdagk0aDsRJhpjf0c5dIwTq+kF2m7cyylvFklt2h+B/iTcmJTZGpVV8b7RjkYYYkVBgTN1zE2pmoEkKhXmhkRpMQNxAB+uWRhCiaWbDy3K+ZZU2D2JtX0R8qH5PZBAa0w99OznY0vz2BuJ/Xj2l4KiZyShJCSMx+ihIFaeYD2ribalRkOpbAkJLuysXXdAgyJZZsCV4v0/+S2q7Ze+gvH++Vzo+GdcxxzbYJttmHjtkx+yMVViVCXbPHtkze3EenCfn1XkbjU4448w6+wHn4wuVrKHx</latexit>

State variables at time t, xt

<latexit sha1_base64="W1q9EyzaFSxKjjWNbkrucvolUHI=">AAAB7HicbVDLSsNAFL2pr1pfVZduBovgqiTia1l047KCsYU2lMl00g6dTMLMjVBCv8GNC0Xc+kHu/BunbRbaemDgcM49zL0nTKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LR7dRvPXFtRKIecJzyIKYDJSLBKFrJ7/YTNL1qza27M5Bl4hWkBgWaveqXzbEs5gqZpMZ0PDfFIKcaBZN8UulmhqeUjeiAdyxVNOYmyGfLTsiJVfokSrR9CslM/Z3IaWzMOA7tZExxaBa9qfif18kwug5yodIMuWLzj6JMEkzI9HLSF5ozlGNLKNPC7krYkGrK0PZTsSV4iycvk8ezundZv7g/rzVuijrKcATHcAoeXEED7qAJPjAQ8Ayv8OYo58V5dz7moyWnyBzCHzifP/Sojsw=</latexit>. . .
<latexit sha1_base64="EF/9xBVYGwajWx4CQDc6SHn/1Lw=">AAACCHicbVDJSgNBEO1xjXGLevRgYxA8hRlxOwa9eAoRzQJJCD2dStKkZ3rorlHDkKMXf8WLB0W8+gne/Bs7y0ETHxQ83quiqp4fSWHQdb+dufmFxaXl1Ep6dW19YzOztV02KtYcSlxJpas+MyBFCCUUKKEaaWCBL6Hi9y6HfuUOtBEqvMV+BI2AdULRFpyhlZqZvTrCAyYFiDWTtAB4r3SP3sRaqw5DGDQzWTfnjkBniTchWTJBsZn5qrcUjwMIkUtmTM1zI2wkTKPgEgbpemwgYrzHOlCzNGQBmEYyemRAD6zSom2lbYVIR+rviYQFxvQD33YGDLtm2huK/3m1GNvnjUSEUYwQ8vGidiwpKjpMhbaEBo6ybwnjWthbKe8yzTja7NI2BG/65VlSPsp5p7mT6+Ns/mISR4rskn1ySDxyRvLkihRJiXDySJ7JK3lznpwX5935GLfOOZOZHfIHzucPiJ6aUQ==</latexit>

Neural Network Surrogate

<latexit sha1_base64="JQVDxrR+zOUYarh5mxvNtcThtNk=">AAAB+3icbVDJSgNBEO1xjXEb49FLYxA8hRlxOwa9eIxgFkiG0NOpJE16FrprJGEYP8WLB0W8+iPe/Bs7yRw08UHB470qqur5sRQaHefbWlldW9/YLGwVt3d29/btg1JDR4niUOeRjFTLZxqkCKGOAiW0YgUs8CU0/dHt1G8+gtIiCh9wEoMXsEEo+oIzNFLXLnUQxpjWmGIBIKjsKe7aZafizECXiZuTMslR69pfnV7EkwBC5JJp3XadGL2UKRRcQlbsJBpixkdsAG1DQ7NJe+ns9oyeGKVH+5EyFSKdqb8nUhZoPQl80xkwHOpFbyr+57UT7F97qQjjBCHk80X9RFKM6DQI2hMKOMqJIYwrYW6lfGhi4CYFXTQhuIsvL5PGWcW9rFzcn5erN3kcBXJEjskpcckVqZI7UiN1wsmYPJNX8mZl1ov1bn3MW1esfOaQ/IH1+QP7E5UR</latexit>

Parameter p
<latexit sha1_base64="W1q9EyzaFSxKjjWNbkrucvolUHI=">AAAB7HicbVDLSsNAFL2pr1pfVZduBovgqiTia1l047KCsYU2lMl00g6dTMLMjVBCv8GNC0Xc+kHu/BunbRbaemDgcM49zL0nTKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LR7dRvPXFtRKIecJzyIKYDJSLBKFrJ7/YTNL1qza27M5Bl4hWkBgWaveqXzbEs5gqZpMZ0PDfFIKcaBZN8UulmhqeUjeiAdyxVNOYmyGfLTsiJVfokSrR9CslM/Z3IaWzMOA7tZExxaBa9qfif18kwug5yodIMuWLzj6JMEkzI9HLSF5ozlGNLKNPC7krYkGrK0PZTsSV4iycvk8ezundZv7g/rzVuijrKcATHcAoeXEED7qAJPjAQ8Ayv8OYo58V5dz7moyWnyBzCHzifP/Sojsw=</latexit>. . .

<latexit sha1_base64="2U1sGAYvctZu9jhorcXBCBM+lnM=">AAACHXicbVDLSgNBEJz1bXxFPXoZDIKghF2Jj6PoxaOiiYEkhN5Jrw7OPpjpDQnL+iFe/BUvHhTx4EX8GycxB18FA0VVF9NdfqKkIdf9cMbGJyanpmdmC3PzC4tLxeWVmolTLbAqYhXrug8GlYywSpIU1hONEPoKL/2b44F/2UVtZBxdUD/BVghXkQykALJSu1hpEvYoOycg5F3QEmzScCBOMsT8lra8bd4Mga79IOvl7cwKebtYcsvuEPwv8UakxEY4bRffmp1YpCFGJBQY0/DchFoZaJJCYV5opgYTEDdwhQ1LIwjRtLLhdTnfsEqHB7G2LyI+VL8nMgiN6Ye+nRzsaX57A/E/r5FScNDKZJSkhJH4+ihIFaeYD6riHalRkOpbAkJLuysX16BBkC20YEvwfp/8l9R2yt5eefesUjo8GtUxw9bYOttkHttnh+yEnbIqE+yOPbAn9uzcO4/Oi/P6NTrmjDKr7Aec90/0DaJz</latexit>

State variables at time t + 1,xt+1

Lift Integral
Kernel Projection

<latexit sha1_base64="Ibua1aYxArZH30cSEyikCrpwkaQ=">AAAB63icbVDLSgNBEOz1GeMr6tHLYBDiJeyKr2PQi8cI5gHJEmYns8mQmdllZjYYlvyCFw+KePWHvPk3ziZ70MSChqKqm+6uIOZMG9f9dlZW19Y3Ngtbxe2d3b390sFhU0eJIrRBIh6pdoA15UzShmGG03asKBYBp61gdJf5rTFVmkXy0Uxi6gs8kCxkBJtMGleeznqlslt1Z0DLxMtJGXLUe6Wvbj8iiaDSEI617nhubPwUK8MIp9NiN9E0xmSEB7RjqcSCaj+d3TpFp1bpozBStqRBM/X3RIqF1hMR2E6BzVAvepn4n9dJTHjjp0zGiaGSzBeFCUcmQtnjqM8UJYZPLMFEMXsrIkOsMDE2nqINwVt8eZk0z6veVfXy4aJcu83jKMAxnEAFPLiGGtxDHRpAYAjP8ApvjnBenHfnY9664uQzR/AHzucPiA+N6w==</latexit>

v(x)

<latexit sha1_base64="U5NgBVzIfpRXf++zdbcOGRje1VE=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjPia1kUxGUF+4DpUDJppg3NJENyRyhDP8ONC0Xc+jXu/Bsz7Sy09UDgcM695NwTJoIbcN1vp7Syura+Ud6sbG3v7O5V9w/aRqWashZVQuluSAwTXLIWcBCsm2hG4lCwTji+zf3OE9OGK/kIk4QFMRlKHnFKwEp+LyYwokRkd9N+tebW3RnwMvEKUkMFmv3qV2+gaBozCVQQY3zPTSDIiAZOBZtWeqlhCaFjMmS+pZLEzATZLPIUn1hlgCOl7ZOAZ+rvjYzExkzi0E7mEc2il4v/eX4K0XWQcZmkwCSdfxSlAoPC+f14wDWjICaWEKq5zYrpiGhCwbZUsSV4iycvk/ZZ3busXzyc1xo3RR1ldISO0Sny0BVqoHvURC1EkULP6BW9OeC8OO/Ox3y05BQ7h+gPnM8feyeRZg==</latexit>F
<latexit sha1_base64="HOqEWEuUyQDclFYBagEiiAWbrFw=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBHcWBLxtSwK4rKCfUAby2Q6aYdOJmFmUighf+LGhSJu/RN3/o2TNgttPTBwOOde7pnjx5wp7Tjf1tLyyuraemmjvLm1vbNr7+03VZRIQhsk4pFs+1hRzgRtaKY5bceS4tDntOWPbnO/NaZSsUg86klMvRAPBAsYwdpIPdvuhlgPCebpXfaUnrpZz644VWcKtEjcglSgQL1nf3X7EUlCKjThWKmO68TaS7HUjHCalbuJojEmIzygHUMFDqny0mnyDB0bpY+CSJonNJqqvzdSHCo1CX0zmedU814u/ud1Eh1ceykTcaKpILNDQcKRjlBeA+ozSYnmE0MwkcxkRWSIJSbalFU2JbjzX14kzbOqe1m9eDiv1G6KOkpwCEdwAi5cQQ3uoQ4NIDCGZ3iFNyu1Xqx362M2umQVOwfwB9bnD1qrk30=</latexit>

F�1

<latexit sha1_base64="LZOWmj8y6SJAhtIS6fY2JecQAxk=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68ZiAeUCyhNlJbzJmdnaZmRXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivVW71S2a24M5Bl4uWkDDlqvdJXtx+zNEJpmKBadzw3MX5GleFM4KTYTTUmlI3oADuWShqh9rPZoRNyapU+CWNlSxoyU39PZDTSehwFtjOiZqgXvan4n9dJTXjjZ1wmqUHJ5ovCVBATk+nXpM8VMiPGllCmuL2VsCFVlBmbTdGG4C2+vEya5xXvqnJZvyhXb/M4CnAMJ3AGHlxDFe6hBg1ggPAMr/DmPDovzrvzMW9dcfKZI/gD5/MHt3WM5Q==</latexit>

W

<latexit sha1_base64="Iz/d/4amKZ833Dhq/F4IWbnbN+8=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8cIxgSSJcxOZpMh81hmZoWw5CO8eFDEq9/jzb9xNtmDJhY0FFXddHdFCWfG+v63V1pZXVvfKG9WtrZ3dveq+wePRqWa0BZRXOlOhA3lTNKWZZbTTqIpFhGn7Wh8m/vtJ6oNU/LBThIaCjyULGYEWye1e4YNBa70qzW/7s+AlklQkBoUaParX72BIqmg0hKOjekGfmLDDGvLCKfTSi81NMFkjIe066jEgpowm507RSdOGaBYaVfSopn6eyLDwpiJiFynwHZkFr1c/M/rpja+DjMmk9RSSeaL4pQjq1D+OxowTYnlE0cw0czdisgIa0ysSygPIVh8eZk8ntWDy/rF/XmtcVPEUYYjOIZTCOAKGnAHTWgBgTE8wyu8eYn34r17H/PWklfMHMIfeJ8/1iKPQQ==</latexit>�
<latexit sha1_base64="Age47FzHBvUqYGPEEfH8g0BXt4k=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXfB2DXjwmYB6QhDA76U3GzM4uM7NCWPIFXjwo4tVP8ubfOEn2oIkFDUVVN91dfiy4Nq777eRWVtfWN/Kbha3tnd294v5BQ0eJYlhnkYhUy6caBZdYN9wIbMUKaegLbPqju6nffEKleSQfzDjGbkgHkgecUWOl2lmvWHLL7gxkmXgZKUGGaq/41elHLAlRGiao1m3PjU03pcpwJnBS6CQaY8pGdIBtSyUNUXfT2aETcmKVPgkiZUsaMlN/T6Q01Hoc+rYzpGaoF72p+J/XTkxw0025jBODks0XBYkgJiLTr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfHmZNM7L3lX5snZRqtxmceThCI7hFDy4hgrcQxXqwADhGV7hzXl0Xpx352PemnOymUP4A+fzB3TFjLk=</latexit>

+

<latexit sha1_base64="zNC/zJI4csy9VhE6er8HiMeVNRE=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRjcsq9gHToWTSTBuaSYYkI5Shn+HGhSJu/Rp3/o2ZdhbaeiBwOOdecu4JE860cd1vp7Syura+Ud6sbG3v7O5V9w/aWqaK0BaRXKpuiDXlTNCWYYbTbqIojkNOO+H4Nvc7T1RpJsWjmSQ0iPFQsIgRbKzk92JsRgTz7GHar9bcujsDWiZeQWpQoNmvfvUGkqQxFYZwrLXvuYkJMqwMI5xOK71U0wSTMR5S31KBY6qDbBZ5ik6sMkCRVPYJg2bq740Mx1pP4tBO5hH1opeL/3l+aqLrIGMiSQ0VZP5RlHJkJMrvRwOmKDF8YgkmitmsiIywwsTYliq2BG/x5GXSPqt7l/WL+/Na46aoowxHcAyn4MEVNOAOmtACAhKe4RXeHOO8OO/Ox3y05BQ7h/AHzucPjWORcg==</latexit>R

Figure 3: Fourier neural operator surrogate schematic for one-step forward forecasting of prognostic variables. The input state
variable fields and parameters are in 3D representations. The lift block performs pointwise projection to raise the dimensions
of the input. A Fourier layer performs fast Fourier transform (FFT) of the input and conducts convolution operations in
the frequency domain. The high-frequency modes from the convolution are truncated. At the end of the Fourier layer, an
inverse FFT transforms the data onto its original physical domain. Another layer of pointwise projection then aligns with the
dimension of the solution function.

In the Fourier layer, the integral kernel performs convolution in
the frequency domain, capturing global dependencies. In particular,
high-frequency modes are filtered out to preserve the main struc-
ture of the solution, increasing the generalization ability. Because
of the high-dimensional nature of our data (three-dimensional in
space with multiple variables), we use a variant of FNO, called
TFNO [23], which incorporates Tucker decomposition for more
efficient learning. Tucker decomposition essentially does a prin-
cipal component analysis for higher-order tensors [22], reducing
the complexity of the trainable parameters in the FNO backbones,
resulting in better training efficiency and generalization [23].

3 EXPERIMENTS
This section describes the data generation and postprocessing, neu-
ral network training, and evaluation metrics for the trained surro-
gate models.

3.1 Perturbed Parameter Ensemble Data
Generation and Transformation

We derived from the literature a set of reasonable ranges for per-
turbing the parameters. Table 2 lists the parameters and maximum
and minimum values for uniform sampling. We independently per-
turbed each parameter in the list and performed simulations to
form one ensemble per parameter. For each ensemble, we trained
a neural network surrogate. For each parameter, using uniformly
sampled values in the range, we created 100 forward runs. In each
run, we executed the simulation from the same initial condition
with different parameter configurations for three years and saved
the daily snapshots of the last year. At the 32 km resolution, there
are 8,521 hexagonal cells on the grid, each with 60 vertical levels.
Each month resulted in over 15 million (8521×60×30) cell values for
each spatially and temporally varying output variable in the data
set. Each run of the simulation was done with 128 cores via MPI.
The problem setup and simulation code can be found on GitHub.

The generated data with its original fidelity and representation
posed challenges for training FNO-based models. Therefore, the

https://github.com/anl-ecucuzzella/SOMAForwardCode

Parametric Sensitivities of a Wind-driven Baroclinic Ocean Using Neural Surrogates

Table 2: Range of Perturbed Parameter Values.

SOMA Parameter Symbol Minimum Maximum

GM_constant_kappa 𝜅𝐺𝑀 200.0 2000.0
Redi_constant_kappa 𝜅𝑟𝑒𝑑𝑖 0.0 3000.0
cvmix_background_diff 𝜅𝑏𝑔 0.0 1e-4
implicit_bottom_drag 𝐶𝐷 1e-4 1e-2

data generated for the mesh grid was converted to a standard lati-
tude and longitude grid through spatial interpolation, and the values
were populated to standard array entries. As a result, we obtained
the data represented with regular grids and stored as arrays, each
instance of shape (6, 60, 100, 100). The first dimension contains the
five prognostic variables and one model parameter, and the last
three dimensions represent the spatial axes of the domain. We post-
processed the first month of saved data for neural surrogate training
and evaluation purposes. In total, we have 3,000 data instances (30
time steps × 100 runs) for the ensemble per perturbed parameter.

3.2 Neural Surrogate Training
We implemented the data loaders, data transformations, and TFNOs
in PyTorch [33]. The data loaders streamed the input-output pairs
in batches, alleviating memory usage. Based on independent runs
of SOMA, the data was randomly split into training, validation, and
testing sets with a ratio of 0.6, 0.2, and 0.2. That is, the training set
contained 60 forward runs, and 20 forward runs for both validation
and testing sets. Our objective was to predict all five prognostic
variables from a single model simultaneously. The state variables
lie in dramatically different ranges. The range difference can cause
the learning to be biased toward certain variables. Therefore, we
normalized the data to ensure the resulting values had similar
ranges. In particular, we used the minimum and maximum variable
values from the simulation instances to perform the normalization
with a target range of [0, 1]. With the high dimensionality of
the data and complexity of the neural network, we distributed
the training and data loader onto ten computing nodes equipped
with 4 Nvidia A100 GPUs each. We trained all four models with a
batch size of 10, 𝐿2 norm as loss function, and Adam optimizer [21]
for over 2,000 epochs with observed convergence. Then, based on
the validation loss, we selected the best model snapshot with the
lowest validation loss for further evaluation with the testing set.
The implementation and training scripts are available on GitHub.

3.3 Metrics
We use three metrics to evaluate the predictions of the model based
on ground truth: coefficient of determination (𝑅2), NRMSE, and
anomaly correlation coefficient (ACC). 𝑅2 is defined as 𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠/𝑆𝑆𝑡𝑜𝑡 , where 𝑆𝑆𝑟𝑒𝑠 =

∑(𝑦 − 𝑦)2; 𝑆𝑆𝑡𝑜𝑡 =
∑(𝑦 − 𝑦)2; and

𝑦, 𝑦, and 𝑦 are true values, predicted value, and the average of
true values, respectively. It describes the proportion of variance
in the target that the model can explain. A number closer to 1 is
associated with a better model. NRMSE is defined as 𝑁𝑅𝑀𝑆𝐸 =
1
𝑁

√︁∑(𝑦 − 𝑦)2/(𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛). The NRMSE accounts for the average
percentage deviation of the predicted values from the true values.
It is normalized by using the true data range to compare different

models and predictions for different state variables fairly. The third
metric, ACC, implies the similarity between two state variable
fields, including the pattern-contrast variations. It is defined as
𝐴𝐶𝐶 =

∑(𝑦−𝑦) (𝑦−𝑦)/
√︁∑(𝑦 − 𝑦)2 (𝑦 − 𝑦)2 [44]. ACC ranges from

-1 to 1, with 1 indicating a perfect positive correlation between the
anomalies from predicted and true values. All three metrics are
robust to state variable types and scales.

4 RESULTS AND DISCUSSION
This section discusses the accuracy of our trained NNs and the
computation of adjoints.

4.1 Forward Prediction
Table 3 shows the performance metrics of the TFNOs for each out-
put prognostic variable (layer thickness, salinity, temperature, zonal
velocity, and meridional velocity) with varying parameters. The
trained models, overall, accurately predict the prognostic variables
one step in the future. The model performance on zonal and merid-
ional velocities among the four trained networks is less accurate
than other variables. In particular, the network taking varying 𝜅𝑏𝑔
is the least performant in predicting zonal and meridional velocities.
One possible reason is that zonal and meridional velocities have
high contrast profiles in small regions, whereas other variables lack
sharp changes in values. Since we trained the network to mini-
mize the total loss for all variables, it was more challenging for the
network to capture high-frequency features present in zonal and
meridional velocity profiles.

Figure 4 shows the true, predicted, and absolute error for one-step
forward values for the prognostic variables of the trained TFNO for
the parameter, 𝜅𝐺𝑀 . The predicted profiles follow the same range
of variable values and closely resemble the actual distribution, with
a slight loss of details. Moreover, we are interested in the model
performance for more extended horizon rollout, where the trained
networks predict prognostic variables in an autoregressive way.
Figure 5 presents the four neural surrogates’ rollout performance
on the testing set. The NRMSE indicates accurate rollout from
three of the four surrogates more than 10 steps (days), and the
model taking varying 𝜅𝑟𝑒𝑑𝑖 has the least accumulated error for
temperature and meridional velocity profiles. The model taking 𝜅𝑏𝑔
exhibits the fastest error accumulation compared with other models,
holding up a relatively accurate rollout of only about 5 steps. This
could be due to the trained neural surrogate not fully capturing
the possibly more intricate and nonlinear interactions between the
prognostic variables and 𝜅𝑏𝑔 , resulting in a small error (comparable
to other models) in single-step forward prediction but large error
accumulation in the multistep rollout.

4.2 Neural Adjoints
We are focused on understanding how sensitive the prognostic vari-
ables are to the parameter using the neural surrogates. Using the
accurate neural surrogate makes it possible to determine the adjoint
sensitivity through backpropagation. We have computed the sen-
sitivity of the neural surrogates to the parameters of the physical
model by calculating the Jacobian of the surrogate’s output w.r.t.
the parameter. The output field is of shape x𝑡+1 ∈ R𝑛×60×100×100,
where 𝑛 is the number of state variables (five in our case). The

https://github.com/iamyixuan/DeepAdjoint

Sun et al.

Table 3: Single-step forward prediction results (TFNO): Varying 𝜅𝐺𝑀 , 𝜅𝑟𝑒𝑑𝑖 , 𝜅𝑏𝑔, and 𝐶𝐷 .

𝜅𝐺𝑀 𝜅𝑟𝑒𝑑𝑖

𝑅2 NRMSE (%) ACC 𝑅2 NRMSE (%) ACC

Layer Thickness 0.9999 0.2944 0.9999 0.9987 0.6119 0.9993
Salinity 0.9999 0.1706 1.000 0.9993 0.4992 0.9997
Temperature 0.9999 0.2176 1.000 0.9921 0.1028 0.9960
Zonal Vel. 0.9611 0.3195 0.9806 0.9314 0.2007 0.9806
Meridional Vel. 0.9928 0.2059 0.9969 0.9346 0.1903 0.9969

𝜅𝑏𝑔 𝐶𝐷

𝑅2 NRMSE (%) ACC 𝑅2 NRMSE (%) ACC

Layer Thickness 0.9997 0.3463 0.9998 0.9997 0.4050 0.9990
Salinity 0.9998 0.3439 0.9999 0.9999 0.2281 1.000
Temperature 0.9998 0.3649 0.9999 0.9998 0.3652 0.9999
Zonal Vel. 0.9789 0.4271 0.9894 0.9546 0.4780 0.9799
Meridional Vel. 0.9838 0.4020 0.9919 0.9828 0.3749 0.9914

<latexit sha1_base64="9Th4EesR8LHl7i3oUyXikdkyt/4=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV3xdQx68RghL0iWMDvpTYbM7iwzvWJY8hlePCji1a/x5t84SfagiQUNRVU33V1BIoVB1/12VlbX1jc2C1vF7Z3dvf3SwWHTqFRzaHAllW4HzIAUMTRQoIR2ooFFgYRWMLqb+q1H0EaouI7jBPyIDWIRCs7QSp0uwhNmdZ3CpFcquxV3BrpMvJyUSY5ar/TV7SueRhAjl8yYjucm6GdMo+ASJsVuaiBhfMQG0LE0ZhEYP5udPKGnVunTUGlbMdKZ+nsiY5Ex4yiwnRHDoVn0puJ/XifF8MbPRJykCDGfLwpTSVHR6f+0LzRwlGNLGNfC3kr5kGnG0aZUtCF4iy8vk+Z5xbuqXD5clKu3eRwFckxOyBnxyDWpkntSIw3CiSLP5JW8Oei8OO/Ox7x1xclnjsgfOJ8/5OeRqw==</latexit>

True

<latexit sha1_base64="6OIeiWbwNCl+kZ5kvKVTMTEmcpQ=">AAAB+XicbVDJSgNBEO1xjXEb9eilMQiewoy4HYNePEYwCyRD6OmpSZr0LHTXBMOQP/HiQRGv/ok3/8ZOMgdNfFDweK+Kqnp+KoVGx/m2VlbX1jc2S1vl7Z3dvX374LCpk0xxaPBEJqrtMw1SxNBAgRLaqQIW+RJa/vBu6rdGoLRI4kccp+BFrB+LUHCGRurZdhfhCfO6gkBwhGDSsytO1ZmBLhO3IBVSoN6zv7pBwrMIYuSSad1xnRS9nCkUXMKk3M00pIwPWR86hsYsAu3ls8sn9NQoAQ0TZSpGOlN/T+Qs0noc+aYzYjjQi95U/M/rZBjeeLmI0wwh5vNFYSYpJnQaAw2EAo5ybAjjSphbKR8wxUwGSpdNCO7iy8ukeV51r6qXDxeV2m0RR4kckxNyRlxyTWrkntRJg3AyIs/klbxZufVivVsf89YVq5g5In9gff4AJneUAg==</latexit>

Predicted

<latexit sha1_base64="8IgzE4bgW55iNeN67bXKe83Raio=">AAAB+nicbVDJSgNBEO2JW4zbRI9eGoPgKcyI2zGoB48RzAJJCD2dmqRJz0J3jRrGfIoXD4p49Uu8+Td2kjlo4oOCx3tVVNXzYik0Os63lVtaXlldy68XNja3tnfs4m5dR4niUOORjFTTYxqkCKGGAiU0YwUs8CQ0vOHVxG/cg9IiCu9wFEMnYP1Q+IIzNFLXLrYRHjG9Fr4PCkIO465dcsrOFHSRuBkpkQzVrv3V7kU8CSBELpnWLdeJsZMyhYJLGBfaiYaY8SHrQ8vQkAWgO+n09DE9NEqP+pEyFSKdqr8nUhZoPQo80xkwHOh5byL+57US9C86qQjjBM1bs0V+IilGdJID7QkFHOXIEMaVMLdSPmCKcTRpFUwI7vzLi6R+XHbPyqe3J6XKZRZHnuyTA3JEXHJOKuSGVEmNcPJAnskrebOerBfr3fqYteasbGaP/IH1+QPVZpRj</latexit>

Di↵erence

Figure 4: One-step forward predictions from the trained TFNO for all five prognostic variables at a depth of approximately 43
m and at timestep 15 (days). Units are (from left to right column): m, g/kg, ◦C, m/s, m/s.

input physical model parameters, which do not vary spatially, have
the shape of 𝑝 ∈ R𝑚 , where 𝑚 = 1 is the number of model pa-
rameters in our case. The Jacobian, 𝜕N𝜃

𝜕 (xt,𝑝) ,of the the trained NNs,

N𝜃 : R(𝑛+𝑚)×60×100×100 ↦→ R𝑛×60×100×100, is computationally
expensive to compute given its size. However, to obtain the adjoint
sensitivity to the parameter, 𝜕N𝜃

𝜕𝑝 , by differentiating the NNs in-
volves differentiating w.r.t the state variables as well, because the
parameters and state are stored in a single tensor. Therefore, we
calculated the Jacobians at various randomly selected locations in
the output domain and obtained the gradient with respect to 𝑝 ,
per location, per state variable. It leads to calculating the gradient
of a function, N∗

𝜃
: R(𝑛+𝑚)×60×100×100 ↦→ R1, which is straight-

forward and efficient using backpropagation. Then, we extracted
the portion related to 𝑝 . Because of its spatial uniformity, for a

selected location and prognostic variable, we had 𝐽𝑙𝑜𝑐. ∈ R1×𝑚

as the measure of the sensitivity. These Jacobians were used to
show the sensitivity of output state variables to the physical model
parameters, summarized in Table 4. The values were the averaged
gradient of the state variables to the parameters 𝜅𝐺𝑀 , 𝜅𝑟𝑒𝑑𝑖 , 𝜅𝑏𝑔 ,
and 𝐶𝐷 over 5 randomly selected horizontal locations with a fixed
vertical level in the domain and were extended for over a month in
the testing set. The results suggest, for the trained neural surrogate,
that the outputs are least affected by𝜅𝐺𝑀 since its sensitivity values
are an order of magnitude less than those of the other parameters.
For the neural surrogates with varying 𝜅𝐺𝑀 and 𝜅𝑟𝑒𝑑𝑖 , we observe
higher sensitivities for temperature, zonal, and meridional velocity
values than for layer thickness and salinity. Zonal and meridional
velocity sensitivities to 𝜅𝑏𝑔 are the highest among the prognostic

Parametric Sensitivities of a Wind-driven Baroclinic Ocean Using Neural Surrogates

0 10 20
Time Steps

0

20

40

60

80

100

N
RM

SE

GM

redi

bg

CD

(a) Layer Thickness

0 10 20
Time Steps

0

20

40

60

80

100

N
RM

SE

GM

redi

bg

CD

(b) Salinity

0 10 20
Time Steps

0

20

40

60

80

100

N
RM

SE

GM

redi

bg

CD

(c) Temperature

0 10 20
Time Steps

0

20

40

60

80

100

N
RM

SE

GM

redi

bg

CD

(d) Zonal Velocity

0 10 20
Time Steps

0

20

40

60

80

100

N
RM

SE

GM

redi

bg

CD

(e) Meridional Velocity

Figure 5: Rollout performance, reported in NRMSE, of the trained surrogates for the prognostic variables. The neural surrogates
for varying 𝜅𝐺𝑀 , 𝜅𝑟𝑒𝑑𝑖 , and 𝐶𝐷 make accurate predictions in an autoregressive way up to 20 steps (days) until the error
accumulation starts to rapidly increase. Meanwhile, the performance of neural surrogate for varying 𝜅𝑏𝑔 quickly degrades in
the first few steps.

variables, while temperature takes the lowest value. For the neural
surrogate taking𝐶𝐷 , the sensitivities of all prognostic variables are
at a similar level.

4.2.1 Adjoint Dot-Product Tests. We aim to examine the correct-
ness of the calculated neural adjoints. The Jacobian of the neu-
ral surrogate at a specific spatial location has the form 𝐽𝑙𝑜𝑐 =
𝜕N𝜃

𝜕ℎ𝑁

𝜕ℎ𝑁

𝜕ℎ𝑁 −1
. . .

𝜕ℎ0
𝜕𝑝 ∈ R𝑛×𝑚 , where ℎs are the outputs of the hid-

den layers in the NN. Surrogate adjoints are easily accessible by
reverse-mode differentiation of trained neural networks. Given the
complexity of the neural surrogate and data representations, we
decided to implement a test that compares the neural adjoints with
the Jacobian obtained by direct differentiation (forward differentia-
tion). To this end, we formulated a dot-product test that allows us
to efficiently verify the consistency between the two differentiation
modes, shown in Equation 4. In particular, with random vectors
v ∈ R𝑚 and w ∈ R𝑛 , we tested whether the equality sign holds.
Instead of explicitly calculating the Jacobian matrices, which can
require a large amount of memory and be computationally prohibi-
tive, we focused on computing the vector-Jacobian product (VJP),
associated with adjoint calculation, and the Jacobian-vector prod-
uct (JVP), associated with direct differentiation. We then generated
100 random vector w, v pairs and compared the results from the

left-hand side (LHS) and right-hand side (RHS) of Equation 4.

𝑤⊤ ·
(𝜕N𝜃

𝜕𝑝
𝑣︸︷︷︸

JVP

) ?
=

(
𝑤⊤ 𝜕N𝜃

𝜕ℎ𝑁︸ ︷︷ ︸ 𝜕ℎ𝑁

𝜕ℎ𝑁−1
. . .

𝜕ℎ0
𝜕𝑝︸ ︷︷ ︸

VJP

)
· 𝑣,

(4)

Figure 6 shows the scatter plot of the LHS (direct differentia-
tion) and RHS (adjoint calculation). The data points form a visually
straight line, suggesting the calculated values are close or equal
on both sides. Furthermore, the difference curve (in blue) and per-
centage error curve (in orange) show great alignment of the neural
adjoints and direct differentiation, verifying the neural adjoint sen-
sitivity based on the accurate surrogate.

5 CONCLUSION
Based on perturbed parameters from SOMA runs, the neural sur-
rogates we developed accurately predict the prognostic variables
in one step forward compared with the original SOMA model. Al-
though trained for one-step forward predictions, three of four neu-
ral surrogates can produce accurate rollouts of up to 10 timesteps.
Additionally, we have successfully computed the neural adjoints
from the trained models and obtained initial insights into the sensi-
tivities. The results show that zonal and meridional velocity profiles
are the most sensitive to 𝜅𝐺𝑀 , 𝜅𝑟𝑒𝑑𝑖 , and 𝜅𝑏𝑔 . At the same time, the
temperature is more sensitive to 𝜅𝐺𝑀 and 𝜅𝑟𝑒𝑑𝑖 .

Sun et al.

Table 4: Average adjoint sensitivities computed for the five prognostic variables and the four parameters. The average was
calculated across five randomly selected horizontal locations at a fixed vertical level (depth of approximately 43 m) within the
domain and extended over a period of 30 days.

Layer Thickness Salinity Temperature Zonal Velocity Meridional Velocity

𝜕N/𝜕𝜅𝐺𝑀 1.642e-09 2.353e-09 3.379e-09 2.615e-09 3.014e-09
𝜕N/𝜕𝜅𝑟𝑒𝑑𝑖 1.521e-08 2.319e-08 6.857e-08 9.578e-08 8.248e-08
𝜕N/𝜕𝜅𝑏𝑔 3.920e-08 5.233e-08 2.321e-08 6.345e-08 7.051e-08
𝜕N/𝜕𝐶𝐷 1.886e-08 2.367e-08 1.995e-08 1.848e-08 2.413e-08

4000 2000 0 2000 4000
RHS

4000

2000

0

2000

4000

LH
S

0 20 40 60 80 100
Test Number

0.4

0.2

0.0

0.2

Di
ffe

re
nc

e

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pe
rc

en
ta

ge
 E

rro
r (

%
)

Figure 6: Dot-product test results of the trained neural surrogate. In Equation 4, the right-hand side calculates the neural
adjoints via reverse-mode differentiation. The left-hand side uses forward differentiation to calculate the Jacobian-vector
product. w and v are random vectors. The difference between the two sides and the corresponding percentage error suggest a
good match between the neural adjoint and direct differentiation.

Our future work includes improving adjoint-aware training by
incorporating known physics and investigating the feasibility of
applying our methodology to the MPAS-O code, specifically in
a configuration simulating the AMOC. The governing equations
of MPAS-O are well established. Utilizing known physics in the
training of neural surrogates helps improve accuracy, reduce the
requirement of large data size, and regularize learning for better
generalization [20, 26, 27, 36].

ACKNOWLEDGMENTS
We gratefully acknowledge the computing resources provided on
Bebop, a high-performance computing cluster operated by LCRC at
Argonne National Laboratory. This research used resources from
the NERSC, a U.S. Department of Energy Office of Science User Fa-
cility located at LBNL. Material based upon work supported by the
U.S. Department of Energy, Office of Science, Office of Advanced Sci-
entific Computing Research and Office of BER, Scientific Discovery
through Advanced Computing (SciDAC) program, under Contract
DE-AC02-06CH11357. We are grateful to the Sustainable Horizons
Institute’s Sustainable Research Pathways workforce development
program.

REFERENCES
[1] [n. d.]. ocean/soma test group. https://mpas-dev.github.io/compass/latest/users_

guide/ocean/test_groups/soma.html. Accessed: 2023-11-29.

[2] Brian M. Adams, William J. Bohnhoff, Keith R. Dalbey, Mohamed S. Ebeida,
John P. Eddy, Michael S. Eldred, Russell W. Hooper, Patricia D. Hough, Kenneth T.
Hu, John D. Jakeman, Mohammad Khalil, Kathryn A. Maupin, Jason A. Mon-
schke, Elliott M. Ridgway, Ahmad A. Rushdi, Daniel Thomas Seidl, John Adam
Stephens, and Justin G. Winokur. 2021. Dakota, A Multilevel Parallel Object-
Oriented Framework for Design Optimization, Parameter Estimation, Uncer-
tainty Quantification, and Sensitivity Analysis: Version 6.15 User’s Manual. (11
2021). https://doi.org/10.2172/1829573

[3] Atılım Günes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and
Jeffrey Mark Siskind. 2017. Automatic Differentiation in Machine Learning: A
Survey. J. Mach. Learn. Res. 18, 1 (Jan. 2017), 5595–5637.

[4] Mickael Binois and NathanWycoff. 2022. A survey on high-dimensional Gaussian
process modeling with application to Bayesian optimization. ACM Transactions
on Evolutionary Learning and Optimization 2, 2 (2022), 1–26.

[5] Boris Bonev, Thorsten Kurth, Christian Hundt, Jaideep Pathak, Maximilian Baust,
Karthik Kashinath, and Anima Anandkumar. 2023. Spherical Fourier Neural Op-
erators: Learning Stable Dynamics on the Sphere. arXiv preprint arXiv:2306.03838
(2023).

[6] Austin Chennault, Andrey A. Popov, Amit N. Subrahmanya, Rachel Cooper,
Anuj Karpatne, and Adrian Sandu. 2021. Adjoint-Matching Neural Network
Surrogates for Fast 4D-Var Data Assimilation. CoRR abs/2111.08626 (2021).
https://arxiv.org/abs/2111.08626

[7] Brad deYoung, Mike Heath, Francisco Werner, Fei Chai, Bernard Megrey, and
Patrick Monfray. 2004. Challenges of Modeling Ocean Basin Ecosystems. Science
304, 5676 (2004), 1463–1466. https://doi.org/10.1126/science.1094858

[8] Ronald M Errico and Tomislava Vukicevic. 1992. Sensitivity analysis using an
adjoint of the PSU-NCAR mesoseale model. Monthly Weather Review 120, 8
(1992), 1644–1660. https://doi.org/10.1175/1520-0493(1992)120<1644:SAUAAO>
2.0.CO;2

[9] David Ferreira, John Marshall, and Patrick Heimbach. 2005. Estimating Eddy
Stresses by Fitting Dynamics to Observations Using a Residual-Mean Ocean
Circulation Model and Its Adjoint. Journal of Physical Oceanography 35, 10
(2005), 1891 – 1910. https://doi.org/10.1175/JPO2785.1

https://mpas-dev.github.io/compass/latest/users_guide/ocean/test_groups/soma.html
https://mpas-dev.github.io/compass/latest/users_guide/ocean/test_groups/soma.html
https://doi.org/10.2172/1829573
https://arxiv.org/abs/2111.08626
https://doi.org/10.1126/science.1094858
https://doi.org/10.1175/1520-0493(1992)120<1644:SAUAAO>2.0.CO;2
https://doi.org/10.1175/1520-0493(1992)120<1644:SAUAAO>2.0.CO;2
https://doi.org/10.1175/JPO2785.1

Parametric Sensitivities of a Wind-driven Baroclinic Ocean Using Neural Surrogates

[10] Peter R. Gent and James C. Mcwilliams. 1990. Isopycnal Mixing in Ocean
Circulation Models. Journal of Physical Oceanography 20, 1 (1990), 150–155.
https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2

[11] Peter R. Gent, JurgenWillebrand, Trevor J. McDougall, and James C. McWilliams.
1995. Parameterizing Eddy-Induced Tracer Transports in Ocean Circulation
Models. Journal of Physical Oceanography 25, 4 (1995), 463 – 474. https://doi.
org/10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2

[12] Jean-Christophe Golaz, Peter M. Caldwell, Luke P. Van Roekel, Mark R. Petersen,
Qi Tang, Jonathan D. Wolfe, Guta Abeshu, Valentine Anantharaj, Xylar S. Asay-
Davis, David C. Bader, Sterling A. Baldwin, Gautam Bisht, Peter A. Bogenschutz,
Marcia Branstetter, Michael A. Brunke, Steven R. Brus, Susannah M. Burrows,
Philip J. Cameron-Smith, Aaron S. Donahue, Michael Deakin, Richard C. Easter,
Katherine J. Evans, Yan Feng, Mark Flanner, James G. Foucar, Jeremy G. Fyke,
Brian M. Griffin, Cécile Hannay, Bryce E. Harrop, Mattthew J. Hoffman, Eliza-
beth C. Hunke, Robert L. Jacob, Douglas W. Jacobsen, Nicole Jeffery, Philip W.
Jones, Noel D. Keen, Stephen A. Klein, Vincent E. Larson, L. Ruby Leung, Hong-
Yi Li, Wuyin Lin, William H. Lipscomb, Po-Lun Ma, Salil Mahajan, Mathew E.
Maltrud, Azamat Mametjanov, Julie L. McClean, Renata B. McCoy, Richard B.
Neale, Stephen F. Price, Yun Qian, Philip J. Rasch, J. E. Jack Reeves Eyre, William J.
Riley, Todd D. Ringler, Andrew F. Roberts, Erika L. Roesler, Andrew G. Salinger,
Zeshawn Shaheen, Xiaoying Shi, Balwinder Singh, Jinyun Tang, Mark A. Tay-
lor, Peter E. Thornton, Adrian K. Turner, Milena Veneziani, Hui Wan, Hailong
Wang, Shanlin Wang, Dean N. Williams, Phillip J. Wolfram, Patrick H. Worley,
Shaocheng Xie, Yang Yang, Jin-Ho Yoon, Mark D. Zelinka, Charles S. Zender,
Xubin Zeng, Chengzhu Zhang, Kai Zhang, Yuying Zhang, Xue Zheng, Tian
Zhou, and Qing Zhu. 2019. The DOE E3SM Coupled Model Version 1: Overview
and Evaluation at Standard Resolution. Journal of Advances in Modeling Earth
Systems 11, 7 (2019), 2089–2129. https://doi.org/10.1029/2018MS001603

[13] Andreas Griewank and Andrea Walther. 2008. Evaluating Derivatives: Principles
and Techniques of Algorithmic Differentiation (2nd ed.). Number 105 in Other
Titles in Applied Mathematics. SIAM, Philadelphia, PA. http://bookstore.siam.
org/ot105/

[14] Sam Hatfield, Matthew Chantry, Peter Dueben, Philippe Lopez, Alan Geer, and
Tim Palmer. 2021. Building Tangent-Linear and Adjoint Models for Data Assimi-
lation With Neural Networks. Journal of Advances in Modeling Earth Systems 13,
9 (2021), e2021MS002521. https://doi.org/10.1029/2021MS002521

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[16] Takeyuki Hida and Masuyuki Hitsuda. 1993. Gaussian processes. Vol. 120. Ameri-
can Mathematical Soc.

[17] Kurt Hornik. 1991. Approximation capabilities of multilayer feedforward net-
works. Neural networks 4, 2 (1991), 251–257.

[18] Jan Hückelheim, Harshitha Menon, William Moses, Bruce Christianson, Paul
Hovland, and Laurent Hascoët. 2023. Understanding Automatic Differentiation
Pitfalls. arXiv:2305.07546 [math.NA]

[19] IPCC. 2021. Climate Change 2021: The Physical Science Basis. Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change. Vol. In Press. Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA. https://doi.org/10.1017/9781009157896

[20] George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan
Wang, and Liu Yang. 2021. Physics-informed machine learning. Nature Reviews
Physics 3, 6 (2021), 422–440. https://doi.org/10.1038/s42254-021-00314-5

[21] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Opti-
mization. arXiv:1412.6980 [cs.LG]

[22] Tamara G Kolda and Brett W Bader. 2009. Tensor decompositions and applica-
tions. SIAM Rev. 51, 3 (2009), 455–500.

[23] Jean Kossaifi, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, and Anima
Anandkumar. 2023. Multi-Grid Tensorized Fourier Neural Operator for High
Resolution PDEs. https://openreview.net/forum?id=po-oqRst4Xm

[24] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik
Bhattacharya, Andrew Stuart, and Anima Anandkumar. 2021. Fourier Neural
Operator for Parametric Partial Differential Equations. arXiv:2010.08895 [cs.LG]

[25] Zhijie Li, Wenhui Peng, Zelong Yuan, and Jianchun Wang. 2022. Fourier neural
operator approach to large eddy simulation of three-dimensional turbulence.
Theoretical and Applied Mechanics Letters 12, 6 (2022), 100389.

[26] Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede
Liu, Kamyar Azizzadenesheli, and Anima Anandkumar. [n. d.]. Physics-Informed
Neural Operator for Learning Partial Differential Equations. https://doi.org/10.
48550/arXiv.2111.03794

[27] Xin-Yang Liu, Hao Sun, Min Zhu, Lu Lu, and Jian-Xun Wang. 2022. Predict-
ing parametric spatiotemporal dynamics by multi-resolution PDE structure-
preserved deep learning. arXiv:2205.03990 [cs.LG]

[28] Guokun Lyu, Armin Köhl, Ion Matei, and Detlef Stammer.
2018. Adjoint-Based Climate Model Tuning: Application to the
Planet Simulator. Journal of Advances in Modeling Earth Sys-
tems 10, 1 (2018), 207–222. https://doi.org/10.1002/2017MS001194
arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2017MS001194

[29] Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. 2004. Fluid
Control Using the Adjoint Method. ACM Trans. Graph. 23, 3 (aug 2004), 449—-456.
https://doi.org/10.1145/1015706.1015744

[30] Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K. Gupta, and
Aditya Grover. [n. d.]. ClimaX: A foundation model for weather and climate.
arXiv:2301.10343 [cs] http://arxiv.org/abs/2301.10343 version: 1.

[31] Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K Gupta, and Aditya
Grover. 2023. ClimaX: A foundationmodel for weather and climate. arXiv preprint
arXiv:2301.10343 (2023).

[32] R. C. Pacanowski and S. G. H. Philander. 1981. Parameterization of VerticalMixing
in Numerical Models of Tropical Oceans. Journal of Physical Oceanography
11, 11 (1981), 1443–1451. https://doi.org/10.1175/1520-0485(1981)011<1443:
POVMIN>2.0.CO;2

[33] Adam Paszke, SamGross, FranciscoMassa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
PyTorch: An imperative style, high-performance deep learning library. Advances
in Neural Information Processing Systems 32 (2019).

[34] Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh
Chattopadhyay, Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kam-
yar Azizzadenesheli, et al. 2022. FourCastNet: A global data-driven high-
resolution weather model using adaptive Fourier neural operators. arXiv preprint
arXiv:2202.11214 (2022).

[35] Mark R. Petersen, Xylar S. Asay-Davis, Anne S. Berres, Qingshan Chen,
Nils Feige, Matthew J. Hoffman, Douglas W. Jacobsen, Philip W. Jones,
Mathew E. Maltrud, Stephen F. Price, Todd D. Ringler, Gregory J. Streletz,
Adrian K. Turner, Luke P. Van Roekel, Milena Veneziani, Jonathan D.
Wolfe, Phillip J. Wolfram, and Jonathan L. Woodring. 2019. An Eval-
uation of the Ocean and Sea Ice Climate of E3SM using MPAS and
Interannual CORE-II Forcing. Journal of Advances in Modeling Earth
Systems 11, 5 (2019), 1438–1458. https://doi.org/10.1029/2018MS001373
arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2018MS001373

[36] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. [n. d.]. Physics
Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Dif-
ferential Equations. https://doi.org/10.48550/arXiv.1711.10561 arXiv:1711.10561
[cs, math, stat]

[37] Meer Mehran Rashid, Tanu Pittie, Souvik Chakraborty, and NM Anoop Krishnan.
2022. Learning the stress-strain fields in digital composites using Fourier neural
operator. Iscience 25, 11 (2022).

[38] Martha H. Redi. 1982. Oceanic Isopycnal Mixing by Coordinate Rotation. Journal
of Physical Oceanography 12, 10 (1982), 1154–1158. https://doi.org/10.1175/1520-
0485(1982)012<1154:OIMBCR>2.0.CO;2

[39] Todd Ringler, Mark Petersen, Robert L. Higdon, Doug Jacobsen, Philip W. Jones,
and Mathew Maltrud. 2013. A multi-resolution approach to global ocean model-
ing. Ocean Modelling 69 (2013), 211–232. https://doi.org/10.1016/j.ocemod.2013.
04.010

[40] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolu-
tional networks for biomedical image segmentation. InMedical Image Computing
and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference,
Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. Springer, 234–241.

[41] Albert J. Semtner. 1995. Modeling Ocean Circulation. Science 269, 5229 (1995),
1379–1385. https://doi.org/10.1126/science.269.5229.1379

[42] Yixuan Sun, Christian Moya, Guang Lin, and Meng Yue. 2023. DeepGraphONet:
A deep graph operator network to learn and zero-shot transfer the dynamic
response of networked systems. IEEE Systems Journal (2023).

[43] Jeyan Thiyagalingam, Mallikarjun Shankar, Geoffrey Fox, and Tony Hey. 2022.
Scientific machine learning benchmarks. Nature Reviews Physics 4, 6 (2022),
413–420.

[44] Ralph RB von Frese, Michael B Jones, Jeong Woo Kim, and Jeong-Hee Kim. 1997.
Analysis of anomaly correlations. Geophysics 62, 1 (1997), 342–351.

[45] Phillip J. Wolfram, Todd D. Ringler, Mathew E. Maltrud, DouglasW. Jacobsen, and
Mark R. Petersen. 2015. Diagnosing Isopycnal Diffusivity in an Eddying, Idealized
Midlatitude Ocean Basin via Lagrangian, in Situ, Global, High-Performance
Particle Tracking (LIGHT). Journal of Physical Oceanography 45, 8 (2015), 2114–
2133. https://doi.org/10.1175/JPO-D-14-0260.1

[46] Xiaoqin Yan, Rong Zhang, and Thomas R. Knutson. 2018. Underestimated
AMOC Variability and Implications for AMV and Predictability in CMIP Models.
Geophysical Research Letters 45, 9 (2018), 4319–4328. https://doi.org/10.1029/
2018GL077378

https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2
https://doi.org/10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2
https://doi.org/10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2
https://doi.org/10.1029/2018MS001603
http://bookstore.siam.org/ot105/
http://bookstore.siam.org/ot105/
https://doi.org/10.1029/2021MS002521
https://arxiv.org/abs/2305.07546
https://doi.org/10.1017/9781009157896
https://doi.org/10.1038/s42254-021-00314-5
https://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=po-oqRst4Xm
https://arxiv.org/abs/2010.08895
https://doi.org/10.48550/arXiv.2111.03794
https://doi.org/10.48550/arXiv.2111.03794
https://arxiv.org/abs/2205.03990
https://doi.org/10.1002/2017MS001194
https://arxiv.org/abs/https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2017MS001194
https://doi.org/10.1145/1015706.1015744
https://arxiv.org/abs/2301.10343 [cs]
http://arxiv.org/abs/2301.10343
https://doi.org/10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2
https://doi.org/10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2
https://doi.org/10.1029/2018MS001373
https://arxiv.org/abs/https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2018MS001373
https://doi.org/10.48550/arXiv.1711.10561
https://arxiv.org/abs/1711.10561 [cs, math, stat]
https://arxiv.org/abs/1711.10561 [cs, math, stat]
https://doi.org/10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2
https://doi.org/10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2
https://doi.org/10.1016/j.ocemod.2013.04.010
https://doi.org/10.1016/j.ocemod.2013.04.010
https://doi.org/10.1126/science.269.5229.1379
https://doi.org/10.1175/JPO-D-14-0260.1
https://doi.org/10.1029/2018GL077378
https://doi.org/10.1029/2018GL077378

	Abstract
	1 Introduction
	2 Methods
	2.1 SOMA Configuration
	2.2 Problem Setting
	2.3 Neural Network Surrogates

	3 Experiments
	3.1 Perturbed Parameter Ensemble Data Generation and Transformation
	3.2 Neural Surrogate Training
	3.3 Metrics

	4 Results and Discussion
	4.1 Forward Prediction
	4.2 Neural Adjoints

	5 Conclusion
	Acknowledgments
	References

