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We study Active Model B+, a scalar field theory extending the paradigmatic Model B for equilib-
rium coexistence through including terms that do not arise from an underlying free energy functional
and thus break detailed balance. In the first part of the manuscript, we provide a pedagogical and
self-contained introduction to one-loop dynamic renormalization. We then address the technical
challenge of complex vertex functions through developing a symbolic computer algebra code that
allows us to obtain the graphical corrections of model parameters. We argue that the additional
terms of Active Model B+ imply the generation of, potentially relevant, higher-order terms; strongly
restricting the parameter regime in which we can apply a perturbative renormalization scheme.
Moreover, we elucidate the role of the cubic coefficient, which, in contrast to passive Model B, is
incessantly generated by the new terms. Analyzing its behavior with and without field shift near
the Wilson-Fisher fixed point, we find that additional fixed points in the one-loop flow equations are
likely artifacts. Additionally, we characterize the renormalization flow of perturbatively accessible
field theories derived from Active Model B+.

I. INTRODUCTION

In statistical physics, we often encounter dynamic (or
“kinetic”) equations of the type

∂tϕ = F (ϕ,∇ϕ, . . . ;x) + η (1)

describing the stochastic evolution of a real-valued scalar
field ϕ(r, t) in d dimensions (r ∈ D ⊆ Rd). This could
be the density change of a monocomponent fluid, related
to the composition of a binary mixture, or the (relative)
height of a film covering a surface. The details of the
specific model under scrutiny are encoded in the function
F (ϕ,∇ϕ, . . . ;x) of the field and its derivatives, which we
assume can be parametrized by a set of model parameters
x = (x1, . . . ). Since ϕ(r, t) is already a coarse-grained
description of the microscopic degrees of freedom it is
accompanied by a noise field η(r, t).
We might want to quantify the behavior of Eq. (1) at

large scales, at which many details of the microscopic in-
teractions are irrelevant. A paradigmatic example is the
(noisy) Navier-Stokes equation (for the vectorial velocity
field), which is characterized by a single material param-
eter, the viscosity, and constrained by conservation and
symmetry laws. A systematic tool is renormalization [1],
which proceeds through the step-wise coarse-graining of
the field ϕ(r, t) through integrating small-scale features,
relating the reduction of degrees of freedom to changes of
the model parameters x(ℓ) as a function of a scale vari-
able ℓ. Based on their scaling dimensions, the relevant
model parameters can be identified. Renormalization in
statistical physics is of course closely connected to the
understanding of critical phenomena, which have posed
a major theoretical challenge due to the crucial role of
fluctuations caused by a diverging correlation length.

One flavor of renormalization is dynamic renormaliza-
tion, which operates directly on the level of the evolu-
tion equation (1). Originally developed in the context
of ferromagnets [2] and turbulence [3], it is well suited
for non-equilibrium systems lacking a free energy func-
tional and has been applied to a wide range of systems

out of equilibrium such as surface growth models [4–7],
polymers in random media [8], reaction-diffusion mod-
els [9], population dynamics [10], chemotaxis of bac-
teria [11, 12], and more [13–15]. More recently, non-
equilibrium systems in which detailed balance is broken
on the level of individual constituents, often summarized
as “active matter”, have moved into the focus. For ex-
ample, active fluids composed of millions of self-propelled
or self-spinning particles can now be realized in experi-
ment [16, 17], displaying a wealth of collective phenom-
ena. On the modeling side, great effort has been invested
into deriving continuum models that capture the collec-
tive behavior and allow to isolate the underlying mech-
anisms. A number of these continuum descriptions have
been studied through renormalization techniques: po-
lar alignment into flocks and swarms [18–23], coupled to
birth and death processes [24], active nematics [25, 26],
active membranes [27, 28], and non-aligning active par-
ticles [29, 30].

Active matter systems are sometimes classified by the
degree of the emerging order: nematic, polar, and scalar.
The latter can thus be described by a single scalar field,
typically related to density, and among others applies to
fluids of non-aligning self-propelled particles. The in-
terplay of directed motion with volume exclusion gives
rise to motility-induced phase separation [31, 32], a dy-
namic instability in which the effective propulsion speed
is reduced as the local density increases. Even in the
absence of cohesive forces, coexistence of dense domains
with an active gas is observed. This coexistence termi-
nates in a critical point, which has been reported to fall
into the same Ising universality as passive fluids governed
by attractive forces [33, 34], with Refs. [35, 36] reporting
deviations from the expected Ising critical exponents in
two dimensions. Motility-induced phase separation su-
perficially resembles passive phase separation captured
by the continuum “Model B” (which stems from the fa-
mous classification of Hohenberg and Halperin [37], see
Table I therein). This is the premise for Active Model
B+, which adds the lowest-order derivatives of the field
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that cannot be derived as a functional derivative of a free
energy [38]. One-loop dynamic renormalization has been
applied to Active Model B+ by Caballero and Cates [29],
reporting two relevant fixed points in addition to the
Wilson-Fisher fixed point [39]. Their analysis left out
several graphs [cf. Fig. 7] and was based on an invariant
ratio of model parameters that we cannot confirm. More
importantly, however, we will argue that Active Model
B+ is “incomplete”, which necessitates an expansion of
vertex functions in model parameters in addition to the
ε-expansion.

Here we revisit Active Model B+ from the perspec-
tive of dynamic renormalization. Alternatively, stochas-
tic dynamic equations [such as Eq. (1)] can be trans-
formed into a stochastic action (known as Doi-Peliti [40,
41] and Martin-Siggia-Rose-DeDominicis-Janssen [42–44]
formalisms), for which methods from (quantum) field
theory are more directly applicable [45]. It has been ap-
plied successfully in particular to systems with discrete
“chemical” events such as reaction-diffusion models [46–
49], percolation [50], and the voter model [51, 52]. How-
ever, the field involved in this action no longer corre-
sponds to the physical field ϕ and alternative formula-
tions loose the simple structure that makes the action
amenable for perturbative renormalization [53]. More-
over, the “graphical language” needed for bookkeeping
terms is more complex than for dynamic renormalization.

Our manuscript is organized as follows. In Sec. II, we
give a brief and concise introduction to dynamic renor-
malization and directed graphs as a tool to represent in-
tegrals. The purpose of this section is to expose the min-
imal “machinery” to obtain one-loop flow equations and
to study their properties. By no means is it a replace-
ment for more detailed reviews [37], lecture notes [45, 54],
and books [1, 55] on renormalization. In Sec. III, we then
revisit Active Model B+ and find new non-linear terms
(Secs. III B and III C). We then describe two possible
ways to analyze the resulting flow equations (Sec. IIID).
Finally, in Sec. IV we apply dynamic renormalization
to two scalar field theories: a surface growth field the-
ory which, to the best of our knowledge, has not been
studied before (Sec. IVA) and a neural network model
(Sec. IVB).

II. DYNAMIC RENORMALIZATION

A. Linear theory

As for any perturbative approach, we need a reference
around which we expand exploiting small parameters.
In the case of dynamic renormalization, this reference is
the linear theory obtained through neglecting non-linear
terms with F0 = −(i∇)α(aϕ − κ∇2ϕ). We switch to
Fourier space through

ϕ(r, t) =

∫
dω

2π

∫
ddq

(2π)d
eiq·r−iωtϕ(ω,q), (2)

where we use the same symbol for the field but with dif-
ferent arguments. The linearized evolution equation (1)
then reads

−iωϕ = −qα(a+ κq2)ϕ+ η (3)

with solution ϕ(ω,q) = G0(ω, q)η(ω,q), where we have
defined the bare propagator

G0(ω, q) ≡
1

−iω + qα(a+ κq2)
=

1

−iω + h(q)
(4)

with h(q) ≡ qα(a + κq2) for later use. Throughout, we
will write q for the magnitude of the wave vector q (and
analogously for other wave vectors). For the noise corre-
lations, we will employ

K(q̂, q̂′) ≡ ⟨η(q̂)η(q̂′)⟩ = 2Dqα(2π)d+1δd(q+q′)δ(ω+ω′),
(5)

where, for ease of notation, we have combined frequency
ω and wave vector q into the single vector q̂ ≡ (ω,q)
with d+1 components. Note that for a conserved field the
factor q2 suppresses fluctuations of the integrated field as
required. The strength of the noise is quantified by the
coefficient D. For dynamics obeying detailed balance,
the fluctuation-dissipation theorem constraints D to be
related to the temperature but in the following we will
mostly treat it as another free model parameter.
It is now straightforward to calculate the field correla-

tions

⟨ϕ(q̂)ϕ(q̂′)⟩ = (2π)d+1C0(q̂)δ
d+1(q̂ + q̂′) (6)

with the dynamic structure factor

C0(ω, q) ≡ 2DqαG0(ω, q)G0(−ω, q) =
2Dqα

ω2 + [h(q)]2
. (7)

The static structure factor follows immediately as

S0(q) ≡
∫ ∞

−∞

dω

2π
C0(ω, q) =

D

a+ κq2
(8)

independent of α. Clearly, we can construct one length
scale, ξ = (a/κ)−1/2, which is the correlation length gov-
erning the exponential decay of correlations in real space.
With this correlation length, the static structure factor
becomes

S0(q) =
(D/κ)ξ2

1 + (ξq)2
. (9)

For a → 0 the correlation length ξ → ∞ diverges with
S0(q) = (D/κ)q−2.

B. Basic idea of renormalization

Our model is useful down to a length scale Λ−1 (typ-
ically related to the particle size or the lattice spacing)
below which we have no further information. In Fourier
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FIG. 1. Sketch of the renormalization procedure in real space.
(a) We start with a system of length L, microscopic cut-off
Λ−1, and correlation length ξ. After integrating out degrees of
freedom on the smallest scales the cut-off length is increased
to bΛ−1. (b) We now zoom out by the factor b to look at
a larger portion of the system with restored cut-off Λ−1 and
reduced correlation length ξ/b.

space this implies that ϕ(ω, q ⩾ Λ) = 0. Let us collect
the model parameters into the vector x = x(Λ) depend-
ing on the microscopic cut-off. Now we integrate out
spatial features on length scales smaller than bΛ−1 with
a factor b > 1. We thus lose microscopic information
(corresponding to large q ∼ Λ) and consequently will
need new parameters x 7→ x′ = x(Λ/b) to describe the
evolution of the field.

Before we repeat this step to get to an even coarser
scale, let us “zoom out” by the factor b and look at a
larger portion of our system (Fig. 1). Holding the ab-
solute size L fixed, this means that coordinates r in our
original system have shrunk to r/b. Moreover, the size of
any “structure” has shrunk by the same factor, in partic-
ular the correlation length ξ 7→ ξ′ = ξ/b. Note that this
step restores the size of the smallest discernible features
to Λ−1 (with respect to L).1 Repeating this procedure
induces an evolution, a “flow” in model space, during
which we zoom out further and further. For an infinites-
imal step b = 1 + δℓ we find

x′i = xi(Λ/b) = xi(Λ) + βi(x)δℓ+O(δℓ2) (10)

with flow equations ∂ℓxi = βi(x) implying the solution
x(ℓ) of model parameters as a function of ℓ. Keeping
explicitly track of the scale b(ℓ+ δℓ) = b(ℓ)(1+ δℓ) yields
b = eℓ and thus Λ(ℓ) = Λ0e

−ℓ is the actual value of the
cut-off with initial value Λ0.
The remaining task is to find the functions βi. Of

particular interest are fixed points βi(x
∗) = 0 and the

1 As an analogy, consider looking at the system through a micro-
scope at maximal magnification. You then reduce the magnifi-
cation by a factor b looking at a larger portion but with fixed
field of view L and fixed resolution Λ−1 (say, the size of a pixel).
An excellent visualization for the Ising model can be found here:
https://www.youtube.com/watch?v=MxRddFrEnPc.

evolution around these fixed points. Their importance
can be appreciated by noting that any initial correlation
length 0 < ξ0 < ∞ will flow to ξ(ℓ) = ξ0e

−ℓ → 0 except
for points in our model space where the correlation length
ξ → ∞ diverges, which will be mapped to critical fixed
points.

C. Scaling dimensions

The change x 7→ b∆xx of a quantity x under this rescal-
ing procedure defines its scaling dimension ∆x. If a scal-
ing dimension ∆x < 0 is negative then it is called irrel-
evant : Going to larger scales (large b) the influence of x
is diminished and eventually vanishes. Correspondingly,
∆x > 0 is called relevant and the borderline ∆x = 0
marginal. Of particular importance is the Gaussian fixed
point (G) at which all non-linear terms become irrele-
vant and we are left with the linear theory introduced in
Sec. II A.
We already know the scaling dimension ∆ξ = −1 of the

correlation length. For the model parameters, we can de-
rive a number of relations through constraining the form
of the evolution equation to remain invariant. Imple-
menting the rescaling step amounts to defining new wave
vectors q′ = bq together with ω′ = bzω, where z is the
dynamical exponent. Inserting both rescaled quantities
into the bare propagator [Eq. (4)] yields

G0(ω
′/bz, q′/b;κ, a) = bzG0(ω

′, q′;κ′ = b∆κκ, a′ = b∆aa)
(11)

with ∆κ = z − α − 2 and ∆a = z − α. While the
functional form of G0 is the same, the model parame-
ters have changed. Clearly, the correlation length ξ′ =
(κ′/a′)1/2 = ξ/b then indeed transforms as a length. De-
manding that the dynamic equation (1) is invariant leads
to another relation: the left side acquires a factor bz+∆ϕ

and, therefore, the noise term scales with b(∆D+α+d+z)/2

[cf. Eq. (5)] and thus ∆D = 2∆ϕ − d+ z − α.
To get a different view on scaling we briefly return to

real space. The Fourier transform of S0(q) [Eq. (8)] yields
the static correlations

⟨ϕ(r)ϕ(r′)⟩ ∼ 1

|r− r′|d−2
(12)

for |r − r′| ≪ ξ ignoring numerical factors. If we de-
mand that the functional form of these correlations does
not change–we say that they are scale invariant–then a
rescaling r 7→ r/b of lengths on the right-hand side has
to be compensated by a rescaling of the field, ϕ 7→ b∆ϕϕ,
with “naive” scaling dimension ∆0

ϕ = (d− 2)/2. In gen-
eral, the scaling dimension of the field is

∆ϕ =
d− 2 + η

2
(13)

with η known as the anomalous dimension (not to be
confused with the noise field). Assuming that D is con-
stant (as in thermal equilibrium, ∆D = 0) yields the

https://www.youtube.com/watch?v=MxRddFrEnPc
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(a)

q

k2

k1

(b) (c)

q q − k q

k −k

(d) (e)

FIG. 2. Constructing a graph. (a) Initial bare vertex with n = 2 fields as outgoing lines. (b) Here we replace the upper line by
the linear solution ϕ+ (indicated with a crossed dot) and attach a new vertex to the lower line. In the second step, we replace
one of the two fields by ϕ+. (c) We now join the two ϕ+ lines so that their wave vectors cancel, which completes this graph.
The last step is to label all lines with their wave vectors. There are 2 × 2 = 4 ways to arrive at this graph. (d) Correlation
function C0 and (e) its first graphical correction due to two 2-vertices.

known relation z = 2+α− η [37]. Plugging in the above
relations, we see that η = ∆D −∆κ stems from the mis-
match between the scaling dimensions of noise strength
D and κ.
From the scaling dimensions, we can extract critical

exponents for measurable observables. One scenario is
that we need to tune a control parameter τ (typically
the reduced temperature) to a specific value (τ = 0). The
correlation length then diverges as ξ ∼ |τ |−ν approach-
ing the critical point, whereby the exponent ν = 1/∆τ

follows from ∆ξ = −1. The order parameter behaves as
⟨ϕ⟩ ∼ (−τ)β with exponent β = ν∆ϕ. And finally, the
susceptibility S0(q → 0) ∼ |τ |−γ ∼ ξ2−η diverges with
exponent γ = ν(2− η), cf. Eq. (9).

D. Perturbation series and vertex functions

We now include non-linear terms into the evolution
equation (3). The n-th power of the field in Fourier space
becomes

[ϕ(r, t)]n → [ϕ(k̂1) · · ·ϕ(k̂n)]q̂ = [ϕn]q̂

=

[
n∏

i=1

∫
k̂i

ϕ(k̂i)

]
(2π)d+1δ(q̂ −

n∑
i=1

k̂i) (14)

with integral ∫
k̂

≡
∫
|k|<Λ

dΩddk

(2π)d+1
(15)

and k̂ ≡ (Ω,k). Using this bracket notation, the evolu-
tion equation for the field reads

ϕ(q̂) = G0(q̂)η(q̂) +G0(q̂)
∑

n=2,...

[vnϕ
n]q̂ (16)

with vertex functions vn(k1, . . . ,kn|q). The dependence
on wave vectors arises through spatial derivatives of the
field in real space. The rule is to replace ∇ → −iq for ∇’s
acting on everything to their right and ∇ → iki inside

brackets. For example, ∇2ϕ2 → −q2ϕ(k̂1)ϕ(k̂2) while

|∇ϕ|2 → −k1 · k2ϕ(k̂1)ϕ(k̂2). The vertex functions have

to be symmetric with respect to exchanging wave vectors
ki since we have only one field.

Clearly, Eq. (16) is not closed since it contains ϕ on
both sides of the equation. Nevertheless, it can be used
to generate the solution as a series of terms with increas-
ing powers of the vertex strengths through inserting into
itself. Assuming that these strengths are small implies a
perturbation approach close to the Gaussian fixed point.
The problem becomes clear immediately: relevant non-
linear strengths grow under rescaling, taking them away
from the region where the perturbative solution is valid.
Our hope, thus, is to discover new fixed points in the
vicinity of the Gaussian fixed point and to study their
properties.

For consistency, it is helpful to define v1(q) ≡
G0(0, q) = 1/h(q) for the propagator and v0(q) ≡ C0(0, q)
for the correlation function. Here we have already set
ω = 0 since a Taylor expansion with respect to ω simply
generates derivatives with respect to t in the time rep-
resentation, which are absent in the original evolution
equation (1). Inserting the solution Eq. (16), the goal is
to determine how the vertex functions change after inte-
grating out small-scale features, [vnϕ

n]q̂ → [ṽnϕ
n]q̂, with

the change of v0 → ṽ0 and v1 → ṽ1 given through Eq. (6)
and Eq. (16), respectively.

E. Constructing graphs

To keep track of the terms contributing to the solu-
tion it is helpful to employ a graphical language that is
inspired by scalar Feynman diagrams (although it lacks
the interpretation as particles and momenta) [56]. Each
term of the perturbation series is represented as a di-
rected graph Γn. We only need very few graphical ele-
ments: external lines, internal lines connecting vertices,
and a “sink” of internal lines representing the correla-
tion function C0. Each vertex has one incoming line and
n outgoing lines [e.g., Fig. 2(a) for n = 2]. A single
(n = 1) outgoing line represents the propagator while the
correlation function [Fig. 2(d,e)] has only incoming lines

(n = 0). The sum of outgoing wave vectors
∑n

i=1 k̂i = q̂
of each vertex equals the incoming wave vector q̂, which
is enforced by the δ-distribution in Eq. (14).
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To construct the final graph Γn from a bare initial
vertex we iteratively either [Fig. 2(b)]

• replace a line by the linear solution ϕ→ ϕ+ = G0η
or

• attach a vertex to one outgoing line (this line be-
comes the internal incoming line of the new vertex).

Finally, all intermediate ϕ+ lines need to end in an open
dot, which joins exactly two lines so that the sum of their
wave vectors vanishes [Fig. 2(c)]. This step implicitly
performs the average over the noise and the open dot plus
the two lines together represent the correlation function

C0(k̂) [Fig. 2(d)]. It should be easy to see that there
are multiple ways to arrive at the same final graph Γn.
Section A shows how to calculate the multiplicity |Γn|
as the number of permutations in the construction of
the graph. For example, the multiplicity of the graph
Fig. 2(c) is |Γ1| = 2× 2 = 4 because for each of the two
steps there are two possibilities.

F. From graph to integral

The final graph can then be translated into one or sev-
eral nested integrals I(Γn;x). All internal lines connect-

ing two vertices represent G0(k̂) with the corresponding
wave vector. All external outgoing lines represent fields ϕ
with one exception: If there is exactly one outgoing line
(n = 1) then its wave vector is necessarily q̂ and it also
represents G0(q̂). In the following, for the final graphs
we use the convention that the single incoming wave vec-
tor is q, outgoing wave vectors are pi with

∑
i pi = q,

and internal wave vectors are ki that will be integrated
out. Each internal wave vector necessarily implies a cor-
responding loop in the graph. For example, reading the
graph Fig. 2(c) from left to right leads to

I(Γ1;x) = 4

∫
k̂

G0(q̂)v2(k,q− k)C0(k̂)

×G0(q̂ − k̂)v2(q,−k)G0(q̂) (17)

and we need to integrate out k̂ to obtain the lowest-
order correction to the bare propagator G0(0, q). The
pre-factor is the multiplicity of the graph.

Summing over all distinct graphs with the same num-
ber n of outgoing lines yields the “graphical corrections”

ṽn(p1, . . . ,pn;x,Λ) = vn(p1, . . . ,pn;x)

+
∑
m

I(Γ(m)
n ;p1, . . . ,pn;x) (18)

for the vertex functions. We emphasize that the integrals
I(Γn) in general are functions of the outgoing wave vec-
tors pi. To remain within the original model space (as
defined by the function F ), we have to reconstruct the
functional form of the vertex vn neglecting terms involv-
ing higher orders of the wave vectors. The final step is

to determine how the model parameters xi → x̃i change
due to these graphical corrections by comparing the co-
efficients on both sides of Eq. (18). While for simple
vertex functions vn the x̃i can be read off directly, for
functions that involve several outgoing wave vectors the
problem can still be cast as a system of linear equations
(Appendix B).

G. Wilson’s shell renormalization

The arguably most common scheme to implement the
procedure sketched in Fig. 1 is to consider an infinitesimal
“shell” of wave vectors k ∈ [Λ/b,Λ] through setting b =
1 + δℓ and only consider contributions to linear order of
δℓ. The first important consequence is that we only have
to consider graphs with a single loop, and thus a single

internal k̂, since graphs with multiple loops are of higher
order. Assuming that vertex functions are of the form

vn =
∑

i xiv
(i)
n , from Eq. (18) we thus find

x̃i = (1 + ψxiδℓ)xi (19)

with ψxi(x) quantifying the graphical one-loop correc-
tions for xi due to the non-linearities. The next step is
to restore the cut-off Λ/b→ Λ through rescaling, imply-
ing

x′i = b∆xi x̃i = (1 + δℓ)∆xi (1 + ψxi
δℓ)xi

≈ [1 + (∆xi
+ ψxi

)δℓ]xi (20)

to linear order. Wilson’s flow equations thus read

∂ℓxi = (∆xi
+ ψxi

)xi = βi(x). (21)

H. Handling the integrals

At this point we have to face the integral
∫
k̂
. The first

step is to integrate over the internal frequency Ω, which
only involves the bare propagators. The generalization
of Eq. (8) for the product C0(Ω, k)

∏
iG0(siΩ, ki) of the

bare propagators inside the loop reads

∫ ∞

−∞

dΩ

2π

2Dkα

Ω2 + [h(k)]2

p∏
i=1

1

−siiΩ + h(ki)
=

Dkα

h(k)
Q

(p)
s1···sn

p∏
i=1

1

h(k) + h(ki)
(22)

with ki the corresponding wave vector of the loop edge.

Here, si = ±1 is the sign of k̂ within k̂i (remember that
we set all external frequencies to zero). If all signs are
equal then Q(p) = 1. For p = 2 propagators and mixed
signs one finds

Q
(2)
+− = Q

(2)
−+ =

2h(k) + h(k1) + h(k2)

h(k1) + h(k2)
(23)
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with similar but more complicated expressions for p > 2
propagators.

The integral over the internal wave vector k is per-
formed in spherical coordinates,∫

ddk

(2π)d
=
Sd−1

(2π)d

∫ Λ

Λ′
dk kd−1

∫ π

0

dθ sind−2 θ (24)

with polar angle θ, Sd ≡ 2πd/2/Γ(d/2) the surface area of
a unit hypersphere in d dimensions, and Kd ≡ Sd/(2π)

d.
Here, Γ(s) is the gamma function generalizing the fac-
torial to non-integers. Useful angular integrals in the
following are [57]

Sd−1

∫ π

0

dθ sind−2 θ = Sd, (25)

Sd−1

∫ π

0

dθ sind−2 θ cos θ = 0, (26)

Sd−1

∫ π

0

dθ sind−2 θ cos2 θ =
Sd

d
. (27)

Finally, ∫ Λ

Λ/b

dk kd−1h(k) = Λdh(Λ)δℓ+O(δℓ2) (28)

for any function h(k) of the magnitude k.

I. Illustrations

1. Liquid-gas phase separation and coexistence

To demonstrate how dynamic renormalization works
in practice, we first turn to the paradigmatic Model B
describing the coexistence of two phases through the bulk
free energy

f(ϕ) =
a

2
ϕ2 +

u

4
ϕ4. (29)

For a < 0 the free energy exhibits two minima at
ϕ± = ±

√
−a/u. Here, the order parameter field ϕ(r, t) is

related to the density (but could also be composition in
case of a binary mixture). From now on we focus on the
dynamics of a mass-conserving system (setting α = 2),
i.e., any change of ϕ is due to a current j(r, t) with con-
tinuity equation

∂tϕ+∇ · j = η. (30)

Penalizing gradients (giving rise to an interfacial tension)
then leads to the Ginzburg-Landau functional

F [ϕ] =

∫
ddr

[κ
2
|∇ϕ|2 + f(ϕ)

]
(31)

and, assuming a current j = −∇δF/δϕ, to the evolution
equation

∂tϕ = ∇2 δF
δϕ

= ∇2(aϕ+ uϕ3 − κ∇2ϕ) + η. (32)

Φ

τ

0

CP

FIG. 3. Sketch of the phase diagram of Model B following
from the free energy density Eq. (29), where τ denotes the
distance to the critical point (CP). The binodal (solid line)
bounds the coexistence region. After a quench from the ho-
mogeneous into the coexistence region (arrow), the system
becomes inhomogeneous with the coexisting values for the
field ϕ given by the binodal (dashed line and symbols). The
binodal ends in the critical point (CP), which is only reached
for global ϕ = 0.

Let us first see when u becomes irrelevant. Rescaling
aϕ + uϕ3 yields the scaling dimension ∆u = ∆a − 2∆ϕ

and thus ∆0
u = 4−d with ∆0

ϕ = (d−2)/2. In dimensions
d > 4 the non-linear term is irrelevant and the Gaussian
fixed point is attractive. This changes for d < 4 with u(ℓ)
moving away from a small but non-zero initial u0. We
will now determine where it flows to. Model B has one
non-zero vertex v3(q) = −uq2 [Fig. 4(a)], which implies
that graphs can only be constructed from 3-vertices.
We start with the graph in Fig. 4(b), which contributes

I(Γ1) = −3uq2[G0(q̂)]
2

∫
k̂

C0(k̂) (33)

to the propagator with multiplicity |Γ1| = 3 since there
are three ways to connect two out of three lines. The
integral becomes∫

k̂

C0(k̂) =

∫
ddk

(2π)d
S0(k) = KdΛ

dS0(Λ)δℓ (34)

with the static structure factor S0(k) given in Eq. (8).
From ṽ1(q) = v1(q) + I(Γ1) we find

h̃(q) = h(q)

[
1− 3uq2

KdΛ
dS0(Λ)

h(q)
δℓ

]−1

≈ h(q) + 3uq2KdΛ
dS0(Λ)δℓ (35)

expanding again for small δℓ ≪ 1. Plugging in h(q) =
q2(a + κq2), we can now read off the graphical correc-
tions of the model parameters with intermediates κ̃ = κ
(whence ψκ = 0) and

ã = a+ 3uKdΛ
dS0(Λ)δℓ, ψa =

3uD

a

KdΛ
d

a+ κΛ2
(36)

due to Fig. 4(b).
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(a)

q

k1

k2

k3 (b)

q −k

k

q

(c)

q

p1

−kk

(d)

FIG. 4. Relevant graphs of model B. (a) Initial bare 3-vertex. (b) One-loop correction to the propagator. (c) One-loop
correction to the 3-vertex involving two vertices. (d) The first graphical correction to the noise strength is a two-loop integral.

We now turn to the graph in Fig. 4(c). The multiplicity
of this graph is: |Γ3| = 3 (possibilities to insert the new
vertex) ×2 (remaining possibilities to insert a noise) ×3
(possibilities to insert a noise in the new vertex). Reading
from left to right vertex, we have

I(Γ3) = 18v3(q)

∫
k̂

C0(k̂)G0(q̂ − k̂ − p̂1)v3(q− k− p1)

(37)
leaving out the external lines (they are not part of the
function v3). We can immediately set p̂1 → 0 inside the
integral since also ṽ3(q) = −ũq2 will only depend on q.

The frequency integral of C0(k̂)G0(q̂ − k̂) then reads [cf.
Eq. (22)]∫ ∞

−∞

dΩ

2π

2Dk2

Ω2 + [h(k)]2
1

iΩ + h(q− k)

=
Dk2

h(k)[h(k) + h(q− k)]
. (38)

Since the pre-factor in Eq. (37) is already ∝ q2 we can let
q → 0 for the remaining terms inside the integral, which
yields ṽ3(q) = v3(q) + I(Γ3) and thus

ũ = u− 9u2D
KdΛ

d

(a+ κΛ2)2
δℓ, ψu = −9uD

KdΛ
d

(a+ κΛ2)2
.

(39)
A quick look at Fig. 4(d) reveals that the first correction
to D is already a two-loop integral and thus of order (δℓ)2

with ψD = 0.
For the final flow equations we introduce the reduced

“dimensionless” model parameters

ā ≡ a

κΛ2
, ū ≡ uD

κ2
KdΛ

d−4 (40)

leading to

∂ℓū =

(
∂ℓu

u
+
∂ℓD

D
− 2

∂ℓκ

κ

)
ū = (∆u+∆D−2∆κ+ψu)ū

(41)
through inserting their flow equations (21). Note how
this choice removes the unknown exponents since with
the scaling relations derived in Sec. II C we find ∆a −
∆κ = 2 and ∆u +∆D − 2∆κ = 4 − d = ε. Importantly,
at this point the dimension d has become simply a num-
ber and is not necessarily an integer. This freedom is
exploited to introduce the small parameter ε with non-
integer dimension d = 4 − ε close to the upper critical

dimension at which the Gaussian fixed point becomes re-
pulsive. The final flow equations then read

∂ℓā = 2ā+ 3ū
1

ā+ 1
, ∂ℓū =

(
ε− 9ū

1

(ā+ 1)2

)
ū (42)

expressed in the reduced parameters. Besides the Gaus-
sian fixed point (ā = ū = 0) these equations admit an-
other fixed point of order ε, the Wilson-Fisher (WF) fixed
point located at ū∗ = ε/9 and ā∗ = −ε/6 to linear or-
der [39]. The resulting flow of the reduced parameters
is plotted in Fig. 5. For this model, the perturbative
approach thus has been successful since the non-linear
parameter u ∼ ε remains small and does not run off.
To understand the flow around WF, we define τ ≡

ā − ā∗ and δū = ū − ū∗ measuring the distance to the
critical point with new model parameters x = (τ, δū)T .
The coupled linearized flow equations read

∂ℓ

(
τ
δū

)
=

(
2− ε

3 3(1 + ε
6 )

0 −ε

)(
τ
δū

)
(43)

up to linear order of ε. This matrix has two eigenvalues.
The first is ∆δu = −ε and thus becomes irrelevant for
d < 4. As a consequence, the flow of u is repelled from
G and flows towards WF along its eigenvector. The sec-
ond eigenvector is xτ = (1, 0)T so we identify its eigen-
value with ∆τ = 2 − ε/3. We expect the correlation
length to diverge as ξ ∼ |τ |−ν with exponent ν. From
the scaling dimensions (Sec. II C) we immediately find
∆ξ = −ν∆τ = −1 and thus ν = 1/∆τ ≈ 1

2 + ε
12 . While

a

u
G

a

u
G

WF

a) b)

d > 4 d < 4

FIG. 5. Sketch of the flow generated by Eq. (42) for Model
B in (a) d > 4 and (b) d < 4. Indicated are the Gaussian
fixed point (G) and the Wilson-Fisher fixed point (WF). The
highlighted orange line shows the critical manifold.
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strictly valid only close to d = 4, the expansion in ε
can be improved systematically and there is ample evi-
dence that the WF controls the critical behavior down to
d = 2 [58]. In the Supplemental Material, we provide a
notebook to reproduce the results of this section [59].

2. Kinetics of interfaces

Whether interfaces are rough or smooth is of great
technological importance, e.g., in the fabrication of semi-
conductors. The theoretical modeling of interfaces has
a long tradition in statistical physics. Of particular im-
portance is the minimal field theory by Kardar, Parisi,
and Zhang (KPZ) for the large-scale dynamics of inter-
faces [4]. KPZ defines a universality class beyond film
growth and a number of exact results have been uncov-
ered [60, 61].

The field ϕ(r, t) now describes an interface (or surface)
in d + 1 dimensions with “substrate position” r ∈ Rd.
For a curl-free current we can write j = −∇µ with an
effective chemical potential µ. Since µ is a scalar field,
it can only involve rotationally invariant quantities. The
lowest-order scalar that can be constructed for an inter-
face is its local curvature ∇2ϕ with coefficient κ ⩾ 0
akin to a rigidity that resists bending the interface. Non-
potential terms arise from an expansion of µ in even pow-
ers of |∇ϕ| (see Ref. [62] for a more comprehensive dis-
cussion) so that to lowest order one finds

µcKPZ = −κ∇2ϕ+ c2|∇ϕ|2 (44)

with non-linear coefficient c2 (conventionally c2 = −λ/2
but we prefer c2 for reasons that will become clear
presently). Together with Eq. (16), this chemical po-
tential defines the conserved KPZ (cKPZ) equation

∂tϕ = ∇2(c2|∇ϕ|2 − κ∇2ϕ) + η (45)

first studied by Sun, Guo and Grant [5].
Invariance of Eq. (45) under scaling yields the relations

∆κ = z−4, ∆2 = z−4−∆ϕ, ∆D = 2∆ϕ−d+z (46)

between the scaling dimensions. Unlike KPZ, Eq. (45)
does not exhibit Galilean invariance and, therefore, the
non-linear coefficient c2 receives graphical corrections
from the graphs shown in Fig. 6 although their contri-
butions cancel each other at one-loop [63].

Let us calculate the remaining corrections ψi. The
only non-zero vertex is v2(k1,k2) = −c2q2k1 · k2. For
the graph shown in Fig. 2(c), we have already calculated
the frequency integral in Eq. (38). Plugging this result
with h(k) = κk4 into Eq. (17), we find

I(Γ1) =− 4c22Dq
2

κ2
[G0(q̂)]

2∫
ddk

(2π)d
k · (q− k)(q · k)|k− q|2

k2(k4 + |q− k4|)
.

(47)

(a) (b)

FIG. 6. One-loop graphical corrections to the 2-vertex for the
conserved KPZ [Eq. (45)].

Performing the angular integrals [Eqs. (25) and (27)] and
reading off κ̃, we find

ψκ =
2c22D

dκ3
KdΛ

d−2 =
2c̄22
d
. (48)

Importantly, since the lowest order is q4 this graph only
corrects κ but does not generate a correction to a, which
remains zero. Here we have defined the sole dimen-
sionless parameter c̄22 ≡ c22Dκ

−3KdΛ
d−2. We also see

that the corresponding graphical correction for the noise
term [Fig. 2(e)] is O(q4). The original noise correlations
[Eq. (5)] are proportional to q2 whence ψD = 0.
The flow equation for the single dimensionless model

parameter now reads

∂ℓc̄2 =

(
∂ℓc2
c2

+
1

2

∂ℓD

D
− 3

2

∂ℓκ

κ

)
c̄2

=

(
∆2 +

1

2
∆D − 3

2
∆κ − 3

2
ψκ

)
c̄2.

(49)

Plugging in the relations for the scaling dimensions and
the graphical correction [Eq. (48)], we obtain the closed
flow equation

∂ℓc̄2 =

(
2− d

2
− 3c̄22

d

)
c̄2. (50)

We recover the Gaussian fixed point at c̄2 = 0, which is
attractive for d > 2 and repulsive for d < 2. In d < 2
dimensions there is a second perturbative fixed point at
|c̄∗2| =

√
ε
3 to lowest order in ε = 2−d, which is connected

to a dynamic phase transition (“roughening transition”).
For a discussion of its physical effects on the growth of
interfaces, we refer to the literature, e.g. Ref. [5]. Again,
we provide a notebook to reproduce the results of this
section [59].

III. ACTIVE MODEL B+

A. Definition of the model

Although at first glance the physics of Model B and
cKPZ are quite different, mathematically both fall into
the same class of scalar theories. The most general form
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n)

FIG. 7. All possible one-loop graphs for a model with 2-vertices and 3-vertices. These contribute graphical corrections to
(a,b) the propagator, (c-f) 2-vertices, and (g-n) 3-vertices.

including all possible terms at order ϕ2 and ∇4 reads

∂tϕ = ∇2(aϕ+ bϕ2 + uϕ3 − κ∇2ϕ)+
c1
2
∇4ϕ2 + c2∇2|∇ϕ|2 − c3∇[(∇2ϕ)∇ϕ] + η (51)

with three new model parameters ci. Note that at next
order this model only includes u∇2ϕ3 although in prin-
ciple more terms at that order are admissible. Equa-
tion (51) has been coined Active Model B+ (AMB+) [38]
and, so far, it has been discussed mostly in the context
of active Brownian particles. Clearly, Model B follows
setting c1 = c2 = c3 = 0 and cKPZ follows setting
a = b = u = c1 = c3 = 0.
The central lesson from the ε-expansion of Model B

in Sec. II I 1 has been that perturbative corrections give
rise to a new critical fixed point, the Wilson-Fisher (WF)
fixed point, which detaches from the Gaussian fixed point
and controls the critical behavior for d < 4. The central
question that we address in the following is whether such
a similar scenario occurs in d = 2 + ε dimensions when
including the additional derivatives of Active Model B+.

In contrast to the illustrations of Sec. II I, the pres-
ence of both 2-vertices and 3-vertices now implies a large

number of graphs to consider, which are shown in Fig. 7.
While v3(q) = −uq2, the vertex function for 2-vertices

v2(p1,p2|q) = −bq2 +
c1
2
q4 + c2p1 · p2q

2

− c3
2
(p2

2q · p1 + p2
1q · p2) (52)

has become considerably more complex compared to our
illustrative cases and requires to handle more involved
integrals2.
We point out that there is one combination c3 = 0 and

c1 + 2c2 = 0 of the new model parameters for which we
can restore an effective free energy

F [ϕ] =

∫
ddr

[
κ− c1ϕ

2
|∇ϕ|2 + f(ϕ)

]
. (53)

In the following, we will denote this condition as the
“equilibrium line” in parameter space.

2 We have developed a python package that handles graph con-
struction and mapping to integrals symbolically, which can be
found at https://github.com/us-itp4/restflow. See also the
Jupyter notebooks provided in the Supplemental Material [59].

https://github.com/us-itp4/restflow


10

B. The cubic coefficient b flows

Before we embark on deriving the flow equations for
AMB+, we note that, unlike for Model B, even if we
start with b = 0 there are now graphical corrections that
cause b to flow away from zero. Specifically, the one-
loop graphical correction becomes (see appendix D for
the detailed calculation)

ψbb =
3Dκu

2dbκ2
KdΛ

d−2[2c1d− 2c2d− c3(d− 2)]

+
Dc21
dbκ3

KdΛ
d[−2c3 + d(2c2 + c3)], (54)

which is non-zero if u ̸= 0 and any ci ̸= 0, or if u = 0 and
c1 ̸= 0 and either c2 ̸= 0 or c3 ̸= 0. For non-zero b, the
2-vertex function Eq. (52) thus contributes to further b-
dependent terms in the graphical corrections of the other
(dimensionless) model parameters due to graphs includ-
ing 2-vertices.

To elucidate the role of the cubic coefficient b, it is
instructive to briefly return to Model B. The modified
bulk free energy

f(ϕ) =
a

2
ϕ2 +

b

3
ϕ3 +

u

4
ϕ4 (55)

including a cubic term ϕ3 can be interpreted as an off-
critical quench. A shift ϕ→ ϕ+ ϕ0 of the field allows to

eliminate the cubic coefficient b→ b̂ = 0 through setting
ϕ0 = −b/(3u). This shift modifies a → â = a − b2/(3u)
and also introduces a linear term ∝ ϕ corresponding
to an external field that explicitly breaks the symmetry
ϕ → −ϕ of Eq. (29). Through this shift, we thus trans-
form the phase diagram to the one sketched in Fig. 3 and
can now reach the critical fixed point through tuning a
along the line ϕ = 0. This interpretation hinges on the
physical nature of the order parameter. Note that the
cubic non-linearity in the free energy is not always elim-
inated through such a shift. For example, it is necessary
for modeling liquid crystals [64] and can result in inter-
esting behaviors, such as a weak first order transition
when fluctuations are taken into account [65].

On the other hand, without the shift keeping b ̸= 0, one
finds that the flow of Model B diverges. Based on Fig. 3,
we interpret the flow to approach the trivial fixed points
with a→ ±∞ (with u, b roughly constant) corresponding
to the “pure” phases (e.g. gas or liquid). Therefore, the
only other non-trivial fixed point besides G is WF at
b = 0 and fine-tuning a. Following this argument thus
fixes the zero value of the order parameter field ϕ to the
critical manifold. For more details of Model B with b ̸= 0,
see Appendix C.

C. Generation of relevant higher-order terms

Including 2-vertices (absent in standard Model B) al-
lows to construct one-loop graphs that correspond to

(a) (b)

FIG. 8. Examples of one-loop graphs with a 4-vertex that
contribute graphical corrections to (a) the 2-vertex function
and (b) the 3-vertex function.

higher-order non-linear terms of the form ∇2ϕn with
n ≥ 3 that are not part of Eq. (51). This is reminiscent
of the field-theoretic renormalization of the annihilation-
fission process [66]. The graphical correction of the corre-
sponding coefficient is proportional to cn1f(c2, c3), where
f(c2, c3) is a linear homogeneous function of c2 and c3
[cf. Eq. (54) for u = 0]. Therefore, these terms are gen-
erated only for c1 ̸= 0 and either c2 ̸= 0 or c3 ̸= 0. Since
they correspond to new n-vertices, new one-loop graphs
can be constructed (see Fig. 8 for two examples) that
contribute to further corrections to the model parame-
ters. Importantly, the flow of the corresponding model
parameters couples with the rest of the flow.
“Naive” dimensional analysis with ∆0

ϕ = (d−2)/2 pre-

dicts that higher-order terms ∇2ϕn become irrelevant for
d > 2n+1

n−1 with n ≥ 4. Therefore, we expect terms with
n > 5 to be irrelevant for d ≥ 3. However, as explained
in Section IIC, such a dimensional analysis neglects the
anomalous dimensions η and, in principle, we might need
to consider these terms in the one-loop analysis.

D. Renormalization flow close to the WF

1. Full flow equations

With these considerations in mind, we now turn to the
flow equations for the full AMB+ [Eq. (51)]. Similarly
to Sec. II I 1, we employ the reduced dimensionless model
parameters ā and ū defined in Eq. (40) and also define

b̄ ≡ bD1/2

κ3/2
K

1/2
d Λd/2−3, (56)

c̄i ≡
ciD

1/2

κ3/2
K

1/2
d Λd/2−1. (57)

The final flow equations read

∂ℓā = (2 + ψa − ψκ) ā, (58)

∂ℓū = (4− ε+ ψu − 2ψκ)ū, (59)

∂ℓb̄ =

(
6− d

2
− 3

2
ψκ + ψb

)
b̄, (60)

∂ℓc̄i =

(
−d− 2

2
− 3

2
ψκ + ψi

)
c̄i. (61)
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The graphical corrections ψx up to lowest order of the
model parameters and up to O(ε) are obtained in Ap-
pendix D. Naive dimensional analysis would suggest that
the ci coefficients become irrelevant above two dimen-
sions. To proceed, we expand these evolution equations
around d = 2 + ε with ε assumed to be small.

In Table I, we show the fixed points admitted by the
flow equations [59]. One fixed point agrees with the ex-
trapolation of the result of Sec. II I 1, and we identify this
fixed point with the WF although the values for ū and
ā are now of order O(1). However, for small values of
the other parameters their flow decouples from ā and ū.
Based on the proposition that the WF critical point per-
sists to lower dimensions, we thus probe the influence of
the additional model parameters and whether additional
fixed points influence the critical behavior.

There is one pair F± of perturbative fixed points in
the sense that they merge with WF in the limit ε → 0.
They are only accessible for d ⩾ 2. However, a stabil-
ity analysis shows that these fixed points exhibit com-
plex eigenvalues. The corresponding eigenvectors overlap
with all axes, preventing the flow to converge towards
F± along their irrelevant directions, making them effec-
tively unreachable by the flow. Note that this situation
is reminiscent of Model B with b ̸= 0, where we also
find a pair of fixed points with complex eigenvalues (Ap-
pendix C). In this case, the new pair of fixed points is also
not reachable and it just modifies the boundary between
ā → ∞ and ā → −∞. Indeed, it appears that F± is
likely its counterpart for AMB+ since they both exhibit
spiral behavior along ā and ū and converge towards WF
for d→ 2. There are two more non-perturbative pairs of
fixed points emerging from the truncated flow equations,
which do not alter the flow close enough to the WF due
to their large c̄ values.

Linear stability analysis of the WF reveals that in
d ⩾ 2 all of its eigenvalues are non-positive apart from
one, the corresponding eigenvector of which points along
the ā axis. To obtain further insights, we numerically in-
tegrate the flow equations in d > 2 for non-zero b̄ and c̄n,
and we observe for ā fine-tuned to its critical value that
the flow converges towards the WF fixed point. Interest-
ingly, the WF now exhibits a conjugate pair of complex
eigenvalues with negative real part in d > 2, which leads

WF F± K1
± K2

±

ā − 1
4
+ 31

48
ε − 1

4
+ 31

48
ε −1.9 + 0.2ε 1.2 + 0.45ε

ū 2
9
− 1

9
ε 2

9
− 1

27
ε −0.25− 0.1ε 0.07 + 0.03ε

b̄ 0 ±ε1/2 ±1.2± 0.12ε ±0.7± 0.24ε

c̄1 0 ∓ 1
3
ε1/2 ±1.2± 0.12ε ∓0.66∓ 0.32ε

c̄2 0 ∓ 1
3
ε1/2 ∓0.6∓ 0.06ε ±0.33± 0.16ε

c̄3 0 ±2ε1/2 0 0

TABLE I. Fixed points of the truncated flow equations for
AMB+ with ε = d− 2.

to the flow spiraling down into the WF on the hyperplane
spanned by (b̄, c̄1, c̄2), and thus does not affect the large-
scale physics. For d = 2, there is a Hopf bifurcation and
the system oscillates on that hyperplane around the WF.

2. Constraining b to zero

In the previous section (Sec. IIID 1), we have seen
that the flow of model parameters leads to inconsistencies
reminiscent of conventional Model B with a non-zero cu-
bic coefficient b. While for Model B we can nevertheless
access the critical manifold through shifting the origin of
the field, now Eq. (54) implies

b̃ = ψbb|b=0 δℓ ̸= 0 (62)

even for b = 0 due to non-zero graphical corrections.
Moreover, a shift ϕ → ϕ + ϕ0 of the field also affects
κ → κ̂ = κ − c1ϕ0. This effect has been overlooked by
previous studies [67, 68] and we explicitly describe the
field-shift procedure here.
Shifting the field after adding the graphical corrections

leads to new intermediate model parameters x̂ with

κ̂ = κ̃+
c̃1b̃

3ũ
, â = ã− b̃2

3ũ
, b̂ = 0, (63)

while the other model parameters are not affected by the
shift. The correction to a is of order δℓ2 and thus can be
dropped, â = ã. For κ, we absorb the additional term up
to order O(δℓ) into

ψ̂κ ≡
(
ψκ +

c1
3uκ

ψbb
)
b=0

(64)

with all other graphical corrections ψx unchanged. The
remaining flow equations are the same as in Eqs. (58),

(59) and (61) with ψκ replaced by ψ̂κ. We again expand
around d = 2 with ε = d− 2.
Since we have to apply the field shift in every infinites-

imal step to constrain b, the value of ϕ0 keeps changing
and flows as ℓ increases. Summing these changes implies

∂ℓϕ0 = ∆ϕϕ0 −
1

3u
ψbb|b=0 (65)

after rescaling, for which we employ the scaling dimen-
sion ∆ϕ of the field. To eliminate trivial effects we intro-
duce the scaled field origin

ϕ̄0 ≡ ϕ0κ
1/2

D1/2
K

−1/2
d Λ1−d/2, (66)

for which we find

∂ℓϕ̄0 =

(
d− 2

2
+

1

2
ψ̂κ

)
ϕ̄0 +Ψ (67)

with Ψ(x̄) = −c̄1+c̄2+ ε
4 c̄3 to lowest order. Since ϕ̄0 does

not influence the flow of the other model parameters, we



12

WF Feq Keq

ā − 1
4
+ 3

32
ε − 1

4
− ε

48
− 3

10
+ 7ε

25

ū 2
9
− 1

9
ε 2

9
− ε

27
2
9
+ 5ε

81

c̄1 0 ± 2
√
−ε
3

± 2
√
21

√
−ε

9

c̄2 0 ∓
√
−ε
3

∓
√
21

√
−ε

9

c̄3 0 O(ε2) 0

TABLE II. Fixed points of AMB+ to lowest order when con-
straining the flow to b = 0. The two fixed points Feq and
Keq merge with WF as ε → 0 and lie on the equilibrium line
c̄1 + 2c̄2 = 0.

can go to a fixed point and inquire about the fate of ϕ̄0.
The differential equation is ∂ℓϕ̄0 = αϕ̄0 + Ψ with α ≡
(ε+ ψ̂κ)/2 evaluated at the fixed point. This equation is
solved by (α ̸= 0)

ϕ̄0(ℓ) =
Ψ

α

(
eαℓ − 1

)
(68)

and ϕ̄0(ℓ) = Ψℓ for α = 0, setting the initial value ϕ̄0(ℓ =
0) = 0 to zero. There are two possible outcomes in the
limit ℓ → ∞: (i) ϕ̄0 diverges for α > 0 and Ψ ̸= 0, or
(ii) it goes to zero for Ψ = 0 or α < 0 and non-zero Ψ.
Clearly, for G and WF we have Ψ = 0 in any dimension
and thus ϕ̄0 = 0 at all scales.
We now determine the fixed points of the constrained

flow, which are summarized in Table II [59]. We again
find a fixed point that we identify with WF. In addition,
there are two fixed points Feq and Keq on the equilibrium
line c̄1+2c̄2 = 0 that require ε ⩽ 0 (d ⩽ 2) and that seem
to merge with WF as ε → 0. However, considering the
value ϕ̄0 of the field origin, we note that α ∝ ε and thus
even though α < 0, its value Ψ/ε diverges as ε → 0
and these fixed points are inaccessible. For d ⩾ 2 there
are no further fixed points with ū ̸= 0 apart from the
WF. By numerically integrating the flow equations, we
observe that the flow moves in general towards the WF.
For d = 2, there is a marginal direction and the system
converges towards the WF logarithmically slow.

3. Summary

The conclusion from our one-loop analysis is that for
u > 0 the Wilson-Fisher (WF) fixed point is the only
critical fixed point for AMB+ close to two dimensions,
and that it determines its large-scale physics. While we
found other fixed points in the vicinity of the (one-loop)
WF, we conclude that they are artifacts and do not corre-
spond to physically reachable critical points. Moreover,
we find that the model parameters c̄i are irrelevant at
large scales since the flow converges towards the WF.
This conclusion holds for not too large model parame-
ters. Going further away from the WF there might be
other relevant fixed points but we have argued that the

presence of 2-vertices in AMB+ lead to the generation of
new, possibly relevant, order parameters and, therefore,
AMB+ is not “closed” at the level of one-loop dynamic
renormalization. Notebooks with the detailed calcula-
tions of the flow equations can be found in the Supple-
mental Material [59].

IV. PERTURBATIVELY ACCESSIBLE FIELD
THEORIES

As outlined in Sec. III C, for c1 ̸= 0 and either c2 ̸= 0 or
c3 ̸= 0, additional terms to Eq. (51) might be generated.
In this section, we consider two models that fall into the
AMB+ class of active field theories but that do not fulfill
this condition and thus are “closed” in the sense that
no additional non-linear terms are generated during the
renormalization procedure.

A. Kinetics of interfaces revisited

We first return to the conserved KPZ equation dis-
cussed in Sec. II I 2. Recently, Caballero and coworkers
have argued that Eq. (44) is not the most general form
and that geometric arguments admit another contribu-
tion to the surface current

j = −∇µcKPZ + c3(∇2ϕ)∇ϕ (69)

that describes “blind geodesic jumps” [67]. Conse-
quently, this extension of cKPZ called cKPZ+ involves a
current with non-vanishing curl.
In fact, general arguments [62] indicate that, once de-

tailed balance is broken on the level of microscopic par-
ticle jumps, an expansion of the surface current should
also admit odd powers of ∇ϕ. Already to linear order
this introduces an “Edwards-Wilkinson” diffusion term
jEW = −a∇ϕ with coefficient a that can take both signs.
In addition, we assume that the interface growth is con-
fined by an external potential (e.g., through the presence
of a substrate) that breaks translational invariance and
implies a field-dependent rigidity κ(ϕ), which to lowest
order of ϕ is expanded as κ(ϕ) = κ − cϕ. Moreover,
we focus on the special case where the coefficient of the
square-gradient term also equals c and we absorb both
terms into

c|∇ϕ|2 + cϕ∇2ϕ =
c

2
∇2ϕ2. (70)

The final evolution equation becomes

∂tϕ = ∇2
(
aϕ+

c

2
∇2ϕ2 − κ∇2ϕ

)
+ η (71)

and thus corresponds to AMB+ [Eq. (51)] with c1 = c
and b = u = 0 as well as c2 = c3 = 0. As argued
in Sec. III C, the later condition is required to prevent
corrections to u and b in the presence of a non-vanishing
coefficient c1 ̸= 0.
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FIG. 9. Modified cKPZ. Streamline plot of the flow equations
(72) and (73) for the one-loop graphs in Fig. 7(a, c, d): (a) ε =
0.1 (d > 2) and (b) ε = 0 (d = 2). For ε < 0 (d < 2), the flow
is qualitatively similar to ε = 0 shown in (b). Note that we
plot only for c̄ > 0 since the flow equations are invariant under
the transformation c̄ → −c̄. The closed red and blue dot
corresponds to the Gaussian and Wilson-Fisher fixed point,
respectively, and the green open symbols indicate the initial
points of a few trajectories obtained through integrating the
flow equations (dotted lines). The eigenvectors of the fixed
points are the straight lines denoted by the same color as the
fixed point.

The flow equations for the dimensionless parameters ā
[Eq. (40)] and c̄ [Eq. (57)] read

∂ℓā = (2 + ψa − ψκ) ā, (72)

∂ℓc̄ =

(
−d− 2

2
− 3

2
ψκ + ψc

)
c̄ (73)

with graphical corrections

ψa = 0, ψκ = − c̄2

2(ā+ 1)2
, ψc =

c̄2

(ā+ 1)3
(74)

calculated from the one-loop graphs in Fig. 7(a,c,d) [59].
Visual inspection of Fig. 2(e) reveals that the correspond-
ing graphical correction for the noise term is of O(q8) and
thus ψD = 0.

We plot the flow in the plane (ā, c̄) for d > 2 [Fig. 9(a)]
and d = 2 [Fig. 9(b)]. The Gaussian fixed point G at
(0, 0) is repulsive along the ā direction for any d and
attractive (repulsive) for d > 2 (d ⩽ 2) along the c̄ di-
rection. In d > 2, we also find a pair of perturbative
fixed points A± at (0,±

√
2ε/7), which are repulsive. We

numerically integrate the flow and we find that for ini-
tially non-zero values of ā, it runs off to infinity in any
dimension. Importantly, c̄ also runs off to infinity except
in d > 2 with initial |c̄| ⩽

√
2ε/7, for which it converges

to 0.
To corroborate the analytical results, we perform nu-

merical finite-difference simulations of Eq. (71) employ-
ing the Python package py-pde [59, 69]. We track the
time evolution of the width W of the interface given by
W (L, t) = ⟨ϕ(x, t)2⟩, where ⟨·⟩ denotes the average over
noise histories and ⟨ϕ⟩ = 0. From the scaling of W ,
the exponent ∆ϕ (see Sec. II I 2) is calculated based on
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FIG. 10. Growth of the width of the interface W (L, t) versus
time for the modified cKPZ [Eq. (71)] in d = 3, for c = 0.3,
a = 0 for different system sizes. The lines and the dots are
the averages over 200 trajectories. (b) The saturated width
(the width at the last timestep from (a)) for different system
sizes. The black line is obtained from linear regression and
has slope λ = 0.965± 0.037 (c.f. for the Gaussian fixed point
λ = 2∆ϕ = 1).

W (L) ∝ L2∆ϕ , where W (L) is the saturated width, i.e.,
W (L, t) for t → ∞ (for more details on the procedure,
see Ref. [70]).
To access the Gaussian fixed point, we perform numeri-

cal simulations for a three-dimensional substrate (d = 3).
In Fig. 10, we plot the numerical results for a parame-
ter region in which the renormalization flow is supposed
to approach the Gaussian fixed point. In this case, we
find ∆ϕ = 0.483 ± 0.019, which is in good agreement
with ∆ϕ = (d − 2)/2 (see Sec. II C). For d = 3 and
large enough values of c, the simulations develop a nu-
merical instability (the profile becomes very steep within
a few time steps). For d = 1, 2 with c ̸= 0, this is
always the case. We interpret this instability to indi-
cate non-trivial behavior and the potential crossover to
a strong-coupling regime. It has indeed been observed
in the strong-coupling regime of the KPZ equation [71]
and necessitates different numerical approaches such as
performing a Cole-Hopf transformation [72] or a special
fitting ansatz [73]. Note that without changing the final
conclusions, here we set a = 0 to accelerate the satura-
tion of the width or the explosion of the trajectories.

B. Neural network model

As a second application, we consider AMB+ [Eq. (51)]
with cn = κ = 0,

∂tϕ = ∇2(aϕ+ bϕ2 + uϕ3) + η, (75)

but with a noise term η that is no longer conserved [α = 0
in Eq. (5)]. Equation (75) has been derived recently for
the evolution of a neural network [74], where now ϕ(r, t)
is interpreted as a neural activity field, and is related to
the famous Wilson-Cowan model [75].
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FIG. 11. Neural network. Streamline plots of the flow equations (80) and (81) for (a) ε = 0.1 (d < 2) and (b) ε = −0.1
(d > 2). Closed symbols indicate the corresponding fixed points and the green open symbols indicate the initial points of a
few trajectories (dotted lines). The eigenvectors of the fixed points are the straight lines denoted by the same color as the
fixed point. While B− is repulsive, B+ has one attractive and one repulsive direction. The separatrix is shown as the green
dashed line: trajectories starting above the separatrix flow into the attractive fixed point (A for d < 2 and G for d > 2) while
trajectories starting below run off to infinity.

Since κ = 0, we redefine the dimensionless non-linear
model parameters with respect to a,

b̄2 ≡ b2D

a3
KdΛ

d−2, ū ≡ uD

a2
KdΛ

d−2. (76)

The graphical corrections [59]

ψa = 3ū− 2b̄2, (77)

ψb = 4b̄2 − 9ū, (78)

ψu = −9ū+ 21b̄2 − 5b̄4/ū (79)

are calculated from all one-loop graphs shown in Fig. 7.
Note that this model is different from the previous exam-
ples in that the expansion of the external wave vector is
only up to second order. While graphical corrections to
κ and c1,2 are generated, due to this q-expansion they are
neglected. Turning to the graph in Fig. 2(e), the graphi-
cal correction for the non-conserved noise term is O(q2),
which immediately implies ψD = 0.

The final flow equations read

∂ℓb̄
2 = (2− d+ 14b̄2 − 27ū)b̄2, (80)

∂ℓū = (2− d− 15ū+ 25b̄2)ū− 5b̄4 (81)

for the two dimensionless non-linear parameters. In
Fig. 11, we plot the flow for two values of ε = 2 − d

in the plane (b̄2, ū). The Gaussian fixed point G at (0, 0)
is attractive for d > 2 and becomes repulsive for d < 2.
For b̄2 = 0, we find another perturbative fixed point A at
(0, ε/15), which is attractive for d < 2 and now governs
the flow in the vicinity of G. For d > 2, A becomes repul-
sive and we now find two more perturbative fixed points
B± from the quadratic equation [after eliminating b̄2 by
setting Eq. (80) to zero]

2865

196
ū2 +

29

49
εū− 5

196
ε2 = 0 (82)

with solutions ū∗ = −ε/15 and ū∗ = 5ε/191, and thus
B+ at (−0.021ε, 0.026ε) and B− at (−0.200ε,−0.067ε).
These fixed points require ε ⩽ 0 so that b̄2 ⩾ 0.
Starting from an initial point in the plane, there are

two possible behaviors: either the flow runs into an at-
tractive fixed point (A for d < 2 and G for d > 2) or
the flow runs off to infinity. This could be an artifact
of the one-loop approximation (Ref. [74] finds numerical
evidence for d = 2 that this is indeed the case) or it indi-
cates the existence of a strong-coupling fixed point that is
not accessible in our perturbative approach. Both behav-
iors are delineated by a line, the separatrix. To calculate
the separatrices, we recast Eqs. (80) and (81) into a sin-

gle differential equation db̄2

dū , which can be solved through
an appropriate change of variables and substitution. For
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ε > 0 it can be shown that the line y = 1
3x is the separa-

trix. For ε < 0, the separatrix was found by integrating
the flow equations backward in time starting close to the
saddle point B+ and using linear analysis close to the
unstable points B− and A.

V. CONCLUSIONS

Dynamic renormalization is a powerful tool for analyz-
ing large-scale behavior in active field theories, providing
an efficient alternative to complementary field-theoretic
approaches. In this manuscript, we first offer a concise
but self-contained introduction to dynamic renormaliza-
tion with applications, and we provide an accompanied
python package for automating diagrammatic calcula-
tions. With these tools at our disposal, we then focus
on conservative scalar field theories by revisiting Active
Model B+, which extends the paradigmatic Model B
of phase coexistence through including extra terms that
break detailed balance and that has been argued to ap-
ply to scalar (non-aligning) active matter such as active
Brownian particles [38].

In particular the critical behavior of active Brownian
particles has been studied intensively both in computer
simulations [33–35] and using theoretical arguments [36,
68]. While here we take a decisive step forward, our
results do not yet resolve whether motility-induced phase
separation of active Brownian particles belongs to the
same universality class as Model B. The reason is two-
fold: First, although explicit construction schemes have
been proposed [68, 76, 77], the precise relations between
the microscopic model parameters (pair potential, speed,
etc.) and the effective parameters x of the scalar field
theory have not been established (and tested) yet. It is
thus unclear what sector of AMB+, if at all, represents
active Brownian particles.

Second, as shown in Sec. III C, AMB+ involves a trun-
cation at order ϕ3 that lacks closure under one-loop dy-
namic renormalization since potentially relevant higher
order non-linear terms arise at larger scales. Thence, we

Model a κ u b c1 c2 c3 Remarks

Linear (×) (×)

cKPZ (×) × ×
cKPZ+ (×) × × ×

Section IVA (×) × ×
Model B × (×) ×

Active Model B × × × × × × cn∇2ϕn, n ≥ 4

Active Model B+ × × × × × × × terms generated

TABLE III. Overview of the field theories considered in this
work that are contained within AMB+ [Eq. (51)], where ×
denotes the non-zero model parameters. Parenthesis indicate
parameters that could be set to zero and the resulting model
would still be closed with respect to higher-order terms.

focus on the vicinity of the Wilson-Fisher and Gaussian
fixed points, where these terms are small and can be ne-
glected. We conclude that the Wilson-Fisher is the only
non-trivial fixed point, and, therefore, that it determines
the large-scale physics close to two dimensions. To ex-
plore a wider area of the parameter space, promising di-
rections are two-loop renormalization [78] and functional
renormalization approaches [79, 80]. Finally, we demon-
strate the efficiency of dynamic renormalization by ap-
plying it to the perturbatively accessible field theories
derived from AMB+, see Table III. All results obtained
for the examples considered in this work are equivalent
to alternative action-based approaches and show how ef-
ficiently even complex flow equations can be obtained
within dynamic renormalization. To tackle the integrals
that arise from the vertex function Eq. (17), we have
developed a python package that we hope will be partic-
ularly useful for scalar field theories involving similarly
complicated vertex functions.
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Appendix A: Multiplicity of one-loop graphs

To calculate the multiplicity of a given one-loop graph
Γ, we cut the correlation function and arrange the ver-
tices into a tree. Each edge ends in either: another vertex
(black dot), a noise term (crossed dot), or nothing. For
each vertex vi, the number of possible permutations of

(a) (b) (c)

(d) (e)

FIG. 12. Example to illustrate the steps to calculate the mul-
tiplicity. (a) Original graph [same as Fig. 7(j)]. (b) The cor-
responding tree after cutting the open dot. (c-e) The three
vertices.
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these three symbols is

Ni =
E!

B!C!(E −B − C)!
(A1)

with E the number of outgoing edges, B the number of
black dots, and C the number of crossed dots. The graph
multiplicity is |Γ| =

∏
iNi.

As an example, let us consider the graph Fig. 12(a),
which has three vertices in total. Its tree is shown in
Fig. 12(b). In Fig. 12(c-e), we have isolated the vertices
and their edges. Fig. 12(c) has E = 2, B = 2, and C = 0
with N1 = 1. Fig. 12(d) has E = 3, C = 1, and B = 0
with N2 = 3. Fig. 12(e) has E = 2, C = 1, and B = 0
with N3 = 2. Multiplying the number of permutations,
we obtain |Γ| = 6.

Appendix B: Reconstructing vertex functions

Given the model parameters x, let us assume that we
have calculated the sum I(p1, . . . ,pn;x) =

∑
m I(Γm)

of the one-loop graph integrals. We focus on a 2-vertex
v2(q,p;x) with scalar product q · p = qp cosψ but the
following scheme extends to higher vertices. As already

mentioned, we assume that v2 =
∑

i xiv
(i)
2 is linear in the

model parameters. Since vertex functions are polynomi-

als, we expand v
(i)
2 =

∑
k a

(i)
k fk in the monomial basis

fk = {q2, p2, qp cosψ, . . . } with constant coefficients a
(i)
k .

We expand the integral I =
∑

k bk(x)fkδℓ in the same
basis. Using the definition of x̃i yields

ṽ2 =
∑
i

x̃iv
(i)
2 =

∑
i

(1 + ψxi
δℓ)xiv

(i)
2

= v2 +
∑
i

ψxi
xi

∑
k

a
(i)
k fkδℓ

!
= v2 + I (B1)

and thus by comparing the basis coefficients∑
i

a
(i)
k xiψxi

= bk(x) (B2)

for all k. This is a linear system of equations for the
graphical corrections ψxi

determined by the bk and the

vertex structure encoded in the coefficients a
(i)
k .

Appendix C: Flow of Model B in the presence of a
non-zero cubic coefficient

Here we study Model B with evolution equation

∂tϕ = ∇2(aϕ+ bϕ2 + uϕ3 − κ∇2ϕ) + η (C1)

obtained from Eq. (51) setting c1 = c2 = c3 = 0. We
apply the dynamic renormalization procedure to the re-
duced dimensionless parameters ā, ū and b̄ defined in

Eqs. (40) and (56) obeying the flow equations

∂lā = (2 + ψa − ψκ) ā, (C2)

∂lū = (4− d+ ψu − 2ψκ) ū, (C3)

∂lb̄ =

(
6− d

2
− 3

2
ψκ + ψb

)
b̄, (C4)

where the graphical corrections

ψκ =
b̄2

(
−ā2d+ 2ā2 − ād+ 8ā+ 4

)
d(ā+ 1)2

, (C5)

ψa = − 2b̄2

ā(ā+ 1)2
+

3ū

ā(ā+ 1)
, (C6)

ψu = − 5b̄4

ū(ā+ 1)4
+

21b̄2

(ā+ 1)3
− 9ū

(ā+ 1)2
, (C7)

ψb =
4b̄2

(ā+ 1)3
− 9ū

(ā+ 1)2
(C8)

are calculated from the one-loop graphs in Fig. 7 [59].
Note that from Eq. (C4), for initially zero value, b̄ stays
zero and we recover Model B from Sec. II I 1. From these
flow equations, we obtain the WF located at ā∗ = −ε/6+
O(ε2), ū∗ = ε/9 + O(ε2) and b̄∗ = 0 with ε = 4 − d.
Moreover, there are also new fixed points with b̄ ̸= 0
whose ā values at any order of ε are given by the solutions
of the polynomial

ā6
(
4ε2 − 16ε+ 16

)
+ ā5

(
−18ε2 − 248ε+ 568

)
+ā4

(
−54ε2 − 194ε+ 1228

)
+ ā3

(
6ε2 + 688ε+ 1668

)
+ā2

(
105ε2 + 1102ε+ 1496

)
+ā

(
90ε2 + 520ε+ 536

)
+ 23ε2 + 68ε+ 44 = 0.

(C9)

We numerically study the solutions of this polynomial
equation [59] and we find that, for ε ∈ [0, 2] (d ∈ [2, 4]),
there is only one new pair of fixed points C± with real
model parameters. This pair is symmetric with re-
spect to b̄ → −b̄, which originates from the symmetry
(ϕ, b) → (−ϕ,−b) of Eq. (C1). Importantly, we find that
C± converges towards the WF for ε→ 2+ (d→ 2−) and
disappears for ε < 0 (d > 4).
In Fig. 13, we plot the flow in the three planes of the

parameter space in d = 3.5. We firstly revisit the stability
of G and WF. For ā and ū we obtain the same linearized
behavior as in Sec. II I 1. With our additional model
parameter, we find that b̄ is a relevant parameter for G
if d < 4 and for WF if d ∈ (2, 4). Note that d = 2 is now
a lower critical dimension for WF since its stability with
respect to perturbations of b̄ is different for d > 2 and
d < 2. A heuristic argument for this critical dimension
is that at exactly d = 2 the fixed points C± joins with
WF, thus changing its stability.
We now discuss the stability of the pair C of fixed

points. Interestingly, each fixed point of C exhibits a
conjugate pair of complex eigenvalues with negative real
part. The corresponding eigenvectors are not aligned
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FIG. 13. Renormalization flow portrait of Model B without shifting the origin of the field in d = 3.5. The filled symbols are
the fixed points: Gaussian (red), WF (blue) and C± (magenta). The arrows are the vector field centered on the Gaussian fixed
point. The red and blue segments are the stable and unstable eigenvectors of each fixed point. The dotted lines are projections
of the separatrix on the planes distinguishing the areas where ā → ±∞.

with a particular model parameter and have complex
components in the plane (ā, ū). The complex nature of
these eigenvalues leads to spiraling behavior of the flow
close to C±.

Additionally, there is a relevant direction that closely
aligns with the ā axis. We numerically study the flow [59]
and find that for non-zero b̄ it follows this relevant direc-
tion converging towards trivial fixed points with ā→ ±∞
(and ū, b̄ approximately constant) (see trajectory in
Fig. 13 as an example). The only non-trivial critical point
that the flow can converge to is the WF for b̄ = 0 and ā,
ū placed on the line that connects G and WF in Fig. 5.
This observation bridges the analysis of Model B with the
one obtained by shifting the origin of the field explained
in Sec. II I 1.

Appendix D: Graphical corrections for AMB+

We calculate the graphical corrections of AMB+
[Eq. (51)] up to one-loop. For completeness, the function
h(q) defining the bare propagator [Eq. (4)], the 2-vertex
[Eq. (52)], and the 3-vertex functions read

h(q) = q2(a+ κq2), (D1)

v2(p1,p2|q) =− bq2 +
c1
2
q4 + c2p1 · p2q

2

− c3
2
(p2

2q · p1 + p2
1q · p2),

(D2)

v3(q) = −uq2, (D3)

respectively. All of the possible one-loop graphs are
shown in Fig. 7. The full expressions for the graphical
corrections are too long to show here, but we provide the

notebook used to calculate them [59]. To lowest order of
the model parameters, the corrections simplify to

ψa =
ε
(
−2b̄c̄3 + c̄1c̄3

)
4ā

− 3ū+

−2b̄2 + b̄c̄1 − 2b̄c̄2 + c̄1c̄2 + 3ū

ā
,

(D4)

ψκ = 2b̄2 + b̄c̄1 + 2b̄c̄2 −
3b̄c̄3
2

− c̄21
2

+ c̄1c̄2−

c̄1c̄3
4

+ c̄22 − 2c̄2c̄3 + ε

(
3c̄1c̄3
16

− c̄22
2

− 5c̄23
16

)
+

ε

(
−b̄2 + b̄c̄1

2
− b̄c̄2 +

b̄c̄3
8

)
,

(D5)

ψu = −9ū, (D6)

ψb = −3c̄3εū

4b̄
+

−9b̄ū+ 3c̄1ū− 3c̄2ū

b̄
, (D7)

ψ1 =
ε
(
48b̄ū− 12c̄1ū+ 24c̄2ū− 3c̄3ū

)
8c̄1

+

−24b̄ū− 6c̄1ū− 12c̄2ū+ 9c̄3ū

2c̄1
,

(D8)

ψ2 =
ε
(
−6b̄ū+ 3c̄1ū− 3c̄3ū

)
2c̄2

+
6b̄ū− 3c̄3ū

c̄2
, (D9)

ψ3 = 0, (D10)

for which it suffices to calculate the graphs in
Fig. 7(a,b,e,f,g). Here, ε = d − 2 and the dimensionless
parameters x̄ are given by Eqs. (40), (56) and (57). Note
that at this order of the model parameters, the flow of ā
decouples from the flow of the other model parameters.
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