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The stability of atmospheric stratified fluids is revisited to study the influence of the temperature-
dependent density inhomogeneity due to thermal expansion in the Earth’s lower atmosphere (with
heights 0 to 50 km) under the action of gravity. Previous theory in the literature [Phys. Lett. A 480
(2023) 128990] is modified and advanced. It is found that the Brunt-Väisälä frequency associated
with internal gravity waves is modified, leading to new instability conditions of vertically stratified
fluids. The possibility of the onset of Rayleigh-Bénard convective instability is also discussed, and
the influences of the modified Brunt-Väisälä frequency and the density and temperature gradients
on the instability growth rates are studied.

I. INTRODUCTION

Continued global warming and climate change deserve
great interest from scientists studying problems of atmo-
spheric circulation dynamics, e.g., problems describing
free thermal convection [1]. Such motions, which arise
in the gravity field at spatial inhomogeneity of density
caused by temperature inhomogeneity were intensively
discussed. Acheson and Hide [2] noted that differential
heating produces temperature variations from place to
place, and owing to thermal expansion, they give rise to
density stratification, causing so-called thermal instabil-
ities. In [3], the effect of a small-scale helical driving
force on fluid with a stable vertical temperature gradi-
ent, with a small Reynolds number, under the action of
gravity is considered. The authors showed large-scale
vortex instability in the fluid despite its stable stratifi-
cation. At a nonlinear stage, this instability gives many
stationary spiral vortex structures. Among these struc-
tures, there is a stationary helical soliton and a kink of
the new type. Later in [4], authors considered stratified
in gravity field rotating flow and found a new large-scale
instability. They obtained nonlinear equations for the
instability and gave a detailed study of the linear stage
of the instability and the conditions of its appearance.
They noted that instability is possible in the case of both
stable and unstable vertical temperature stratifications.
The authors in [5] reported a new type of large-scale in-
stability generated by the unstable vertical temperature
gradient (heated from below) and small-scale force with
zero helicity in an inclined rotating fluid with solutions in
localized vortex kink-like structures. Such investigations
dealt with the propagation problems of internal gravity
waves [6]. In Ref. [7], the authors discussed vertical
coupling in the atmosphere and ionosphere system by
internal waves generated in the lower atmosphere. In
addition, they also discussed the progress in the sudden
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stratospheric warming and upper atmospheric circulation
due to wave-induced vertical coupling between the lower
and upper atmosphere.

Recently, Kaladze and Misra [8] studied the influences
of the temperature and density gradients due to thermal
expansion on the stability of vertically stratified fluids
in the Earth’s atmosphere. The authors initiated an in-
vestigation in the atmospheric layer (0 < z < 50 km
heights) with negative and positive vertical temperature
gradients in the tropospheric (0 < z < 15 km) and strato-
spheric 15 < z < 50 km) regions separately. They showed
that such influence could lead to instability in stratified
incompressible fluids. They also obtained the Brunt-
Väisälä frequency modified by the thermal expansion co-
efficient and the critical value of the expansion coefficient
for which the instability of internal gravity waves occurs.
In their approach, they ignored the dependence of the
background density of stratified fluids on the variation of
the background fluid temperature. However, spatial vari-
ations of fluid temperatures in the atmosphere can cause
density variations owing to the thermal expansion [2].
Such temperature dependence can significantly influence
the spatio-temporal evolution of perturbed flows. Thus,
it becomes necessary to take into account such effects in
the dynamics of stratified atmospheric fluids.

In this work, we consider such density inhomogeneity
effect due to temperature variation and the vertical tem-
perature gradient with an arbitrary sign, which allows
the expansion of atmospheric layers with heights ranging
from 0 to 50 km and to consider arbitrary length scales
of density and temperature inhomogeneities. In this way,
we modify and advance the work by Kaladze and Misra
[8]. We show that the Brunt-Väisälä frequency associated
with the internal gravity waves (IGWs) gets modified by
this effect, and we obtain new instability conditions for
IGWs. Consequently, the Rayleigh-Bénard convective in-
stability and the modified instability growth rate occur.
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II. MODELING OF DENSITY
INHOMOGENEITY DUE TO THERMAL

EXPANSION

Typically, differential heating causes atmospheric con-
vection in which the spatial variation of temperature may
lead to the density variation due to the thermal expan-
sion of stratified fluids. So, modeling of the density inho-
mogenity due to temperature variation is necessary for
atmospheric fluid dynamics. To this end, we consider
the following equation of state for incompressible atmo-
spheric fluids, i.e., the dependence of the fluid density (ρ)
on the fluid temperature (T ) and pressure (p).

ρ = ρ(T, p). (1)

Any physical state variable, f can be considered as the
superposition of the mean (background) state and the
perturbed state, i.e., f = f + f ′, where the choice of
the mean f plays a crucial role for the spatio-temporal
evolution of the perturbation f ′. Next, we consider the
Taylor-series expansion of ρ about the unperturbed or
mean state ρ(z) ≡ ρ

(
T (z), p(z)

)
and assume that the

deviations of the fluid density, pressure, and tempera-
ture from the unperturbed (background or mean) state
are small. Thus, we obtain from Eq. (1) the following
expansion for ρ to the first-order-smallness of perturba-
tions.

ρ(r, t) = ρ(z) + ρ′(r, t)

= ρ(z) [1− βT ′(r, t) + αp′(r, t)] ,
(2)

where r = (x, y, z) and the expansion coefficients asso-
ciated with the temperature and pressure, respectively,
are

β = −1

ρ

(
∂ρ

∂T

)
p

, α =
1

ρ

(
∂ρ

∂p

)
T

. (3)

The negative sign in β is considered to mean that the
fluid density increases with decreasing the temperature
at atmospheric heights. The smallness of the perturbed
density relative to its unperturbed state requires to fulfill
the following condition:

|βT ′ − αp′| ≪ 1. (4)

Typically, the thermal expansion coefficient, β is small
(≪ 1), and it decreases with increasing the temperature
[8]. So, the condition (4) gives

|βT ′| ≪ 1, |αp′| ≪ 1. (5)

Next, we assume that the fluid density variation due to
the pressure inhomogeneity is small compared to the tem-
perature inhomogeneity, i.e.,

|αp′| ≪ |βT ′|. (6)

Such an assumption is valid for atmospheric stratified
fluids. Thus, ignoring the term proportional to α, Eq.
(2) reduces to

ρ(r, t) ≡ ρ(z) + ρ′(r, t) = ρ(z) [1− βT ′(r, t)] , (7)

where the perturbed density ρ′ is given by

ρ′(r, t) = −ρ(z)βT ′. (8)

However, the density variation due to temperature can
not be neglected as it gives rise to the fluid convective
motion. The condition (6) means that the pressure of
the stratified fluids does not change drastically. In par-
ticular, it follows that the vertical scale of area where the
convection occurs may not be too large. If the charac-
teristic vertical scale is L, then the hydrostatic change of
pressure has the order ρgL, i.e., |p′1 − p′2| ∼ ρgL, where
g is the constant acceleration due to gravity acting ver-
tically downwards and the conditions (5) and (6) give

ρgL|α| ≪ |β|θ ≪ 1, (9)

where θ = |T ′
1 − T ′

2| is the characteristic temperature
difference.

III. BASIC EQUATIONS

We consider the dynamics of incompressible stratified
neutral fluids in the lower atmosphere (with heights 0 <
z < 50 km) under the action of the gravity force g =
(0, 0,−g) per unit fluid mass density directed vertically
downward. Our starting point is the following Navier-
Stokes equation for incompressible neutral fluids.

ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇p+ ρg + µ∇2v, (10)

where v is the neutral fluid velocity and µ is the coef-
ficient of the fluid dynamic viscosity. The hydrostatic
equilibrium state of fluid flow with v = 0 can be de-
scribed from Eq. (10) as

0 = −1

ρ
∇p+ g. (11)

It is well known that the Boussinesq approximation
is used to study convective motions or buoyancy-driven
flows or gravity waves originating from the buoyancy
force that are slower than typical sound waves in incom-
pressible fluids. In this approximation, the kinematic
viscosity coefficient is assumed to be constant, the den-
sity differences (due to inertial effects) are ignored except
for the term associated with the gravity, and the density
is solely a function of temperature. Thus, noting that ρ
behaves as the local fluid density and ρ as the reference
density, and using the Boussinesq approximation and Eq.
(11), we obtain from Eq. (10) the following reduced equa-
tion for the perturbed fluid velocity v (without using
prime symbol for v, for simplicity).

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p′ + βT ′gẑ + ν∇2v, (12)

where we have substituted ρ′ = −βρT ′ from Eq. (8) and
the term proportional to β represents the buoyancy force.
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Also, ν = µ/ρ is the coefficient of the fluid kinematic
viscosity and ẑ is the unit vector along the positive z-axis
(vertically upward). The momentum balance equation
(12) is to be closed by the following continuity equation
and the heat equation in absence of any heat source for
the perturbed velocity v and temperature T ′.

∇ · v = 0, (13)

∂T ′

∂t
+ (v · ∇) (T + T ′) = χ∇2(T + T ′), (14)

where χ is the coefficient of the thermal diffusivity. In
Eq. (13), we have used the following condition for in-
compressible fluids.

dρ

dt
≡ ∂ρ

∂t
+ v · ∇ρ = 0. (15)

Next, from the basic state (unperturbed state) of heat
equation (14), we have d2T/dz2 = 0, which gives
dT/dz = C0, a constant, and hence the following linear
vertical temperature distribution.

T (z) = C0z + C1, (16)

where C1 is another constant of integration. Applying
this result to Eq. (14), we have

∂T ′

∂t
+ (v · ∇)T ′ + C0w = χ∇2T ′, (17)

where v ≡ (u, v, w) = v⊥ + wẑ. Furthermore, we recast
Eq. (15) in the following reduced form.

w
dρ

dz
+

dρ′

dt
= 0. (18)

Equations (12), (13), (17), and (18) are the desired set
of equations for the dynamics of atmospheric stratified
incompressible fluid flows. Comparing these equations
with those in [8], we note that not only the effect of fluid
viscosity is considered in addition to the present work,
the temperature (unperturbed) gradient (C0) appears to
be constant in contrast to the work [8].

IV. BRUNT-VÄISÄLÄ FREQUENCY AND
INSTABILITY CONDITION

To explicate the roles of the density gradient and the
vertical temperature gradient, we consider a simple case,
i.e., the linear flow of nonviscous fluids. Thus, separating
the perpendicular and vertical (along the z-axis) compo-
nents of the fluid velocity in Eq. (12), we obtain

∂v⊥

∂t
+

1

ρ
∇⊥p

′ = 0, (19)

∂w

∂t
+

1

ρ

∂p′

∂z
− gβT ′ = 0. (20)

Also, the equation of continuity (13) gives

∇⊥ · v⊥ = −∂w

∂z
. (21)

Taking divergence of Eq. (19), noting that ∇2
⊥ = ∆⊥ =

∂2/∂x2 + ∂2/∂y2, and using Eq. (21), we obtain

∂2w

∂t∂z
=

1

ρ
∇2

⊥p
′. (22)

Next, using the operator ∂∆⊥/∂t to Eq. (20) we get

∂2

∂t2
∆⊥w +

1

ρ

∂2

∂t∂z
∆⊥p

′ − gβ
∂

∂t
∆⊥T

′ = 0. (23)

Also, using Eq. (22) and noting that ρ = ρ(z), Eq. (23)
reduces to

∂2

∂t2

(
∆w +

1

ρ

dρ

dz

∂w

∂z

)
− gβ

∂

∂t
∆⊥T

′ = 0, (24)

where ∆ = ∆⊥ + ∂2/∂z2 is the Laplacian operator.
In what follows, we operate Eq. (17) with ∆⊥ to get

in the linear approximation,

∂

∂t
∆⊥T

′ = χ∆⊥∆T ′ − C0∆⊥w. (25)

Combining Eqs. (24) and (25), we have

∂2

∂t2

(
∆w +

1

ρ

dρ

dz

∂w

∂z

)
− gβχ∆⊥∆T ′ + gC0β∆⊥w = 0.

(26)
Using the relation for the perturbed density, ρ′ =
−ρ(z)βT ′ [Eq. (8)] to Eq. (18), we obtain

(1− βT ′)
1

ρ

dρ

dz
w − β

dT ′

dt
= 0. (27)

Next, using Eq.(17) to Eq. (27), in the linear approxi-
mation, we obtain

1

ρ

dρ

dz
w − βχ∆T ′ + C0βw = 0. (28)

Finally, from Eqs. (26) and (28), we obtain the follow-
ing evolution equation for stratified incompressible fluid
flows in the lower atmosphere.

∂2

∂t2

(
∆w +

1

ρ

dρ

dz

∂w

∂z

)
+N2(z)∆⊥w = 0, (29)

where N2 is the squared Brunt-Väisälä frequency, given
by,

N2(z) = −1

ρ

dρ

dz
g. (30)

Equation (29) has the same form as for ordinary in-
ternal gravity waves [9, 10] in absence of the effects of
thermal expansion. It is important to note that the
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choice of the mean fluid density (background) is cru-
cial for the spatio-temporal evolution of the perturbed
fluid velocity w. Since the temperature variation in the
Earth’s atmosphere can cause the density variation due
to thermal expansion, we model the background density
ρ(z) ≡ ρ

(
T (z), p(z)

)
as [2]

ρ(z) = ρ0(z)
[
1− β

(
T (z)− T0

)]
, (31)

where ρ0(z) is the fluid mass density at some reference
temperature, T (z) = T0 at a particular height, applicable
for ordinary internal gravity waves. In view of the as-
sumption (31), the expression (30) for the Brunt-Väisälä
frequency reduces to

N2(z) =
g

1− βT
×[

(βT − 1)
1

ρ0

dρ0
dz

+ β
dT

dz

]
,

= −g

(
1

ρ0

dρ0
dz

− βT
1− βT

1

T
dT
dz

)
,

(32)

where ρ0 ≡ ρ0(z), T ≡ T (z) = T (z) − T0. Comparing
the first form of Eq. (32) with Eq. (21) of Ref. [8], we
find that an additional factor 1 − βT (z) appears in Eq.
(32) before the square brackets due to the modeling of
the background density with thermal expansion effects
[cf. Eq. (31)]. Furthermore, in contrast to Ref. [8], the
temperature gradient C0 ≡ dT (z)/dz is no longer varying
but a constant [cf. Eq. (16)].
In what follows, we obtain the instability conditions

from Eq. (32), and note that dρ0/dz < 0 holds in the
atmospheric heights 0 < z < 50 km [8] and βT < 1 holds
good as per the assumption (9). Furthermore, dT /dz < 0
in the tropospheric heights 0 < z < 15 km and dT /dz >
0 in the stratospheric heights 15 < z < 50 km [8]. So, in
the tropospheric layer, the necessary conditions for the
instability at which N2 < 0 are βT < 1 and dT /dz < 0.
On the other hand, since the conditions dT /dz > 0 and
βT < 1 are likely to hold in the stratosphere, the fluid
is said to be stable there for N2 > 0. The sufficient
condition of instability gives(

1

ρ0

dρ0
dz

>
βT

1− βT
1

T
dT
dz

)
. (33)

Since as said before, dρ0/dz < 0 in the atmospheric re-
gion of heights 0 < z < 50 km and βT < 1 as per the
assumption (9), the condition (33) can only be satisfied
when dT /dz < 0. Typically, the length scale of the tem-
perature inhomogeneity is larger than that of the density
inhomogeneity [8], i.e.,

L−1
T ≡ 1

T

∣∣∣dT
dz

∣∣∣ < L−1
ρ0

≡ 1

ρ0

∣∣∣dρ0
dz

∣∣∣. (34)

So, by means of the relation (34), Eq. (33) reduces to

1 <
∣∣∣LT

Lρ0

∣∣∣ < βT
1− βT

. (35)

The condition (35) is satisfied only when 0.5 ≲ βT ≲ 1,
which is rather a harsh one in the atmospheric regions.
Thus, we may conclude that incompressible stratified
fluid flows may be unstable in the tropospheric layer
0 < z < 15 km but stable in the other region, i.e.,
15 < z < 50 km. For typical values of the atmospheric
fluid density ρ0(z) and temperature T , and their gra-
dients, readers are referred to the work of Kaladze and
Misra [8].

V. RAYLEIGH-BÉNARD CONVECTIVE
INSTABILITY

As an illustration, we consider the possible convective
instability in the tropospheric layer with negative vertical
temperature gradient, i.e., dT /dz < 0. We assume that
such layer spans between heights z0 = 0 km and z1 = 15
km. The temperatures at the bottom and top boundaries
are kept fixed at T = T0 at z0 = 0 km and at T = T1 at
z1 = 15 km, so that the temperature at the top boundary
is lower than the bottom boundary, i.e., ∆T = T0−T1 >
0.
As a starting point, we consider Eqs. (12), (13), and

Eq. (17), and recast them in linearized forms as(
∂

∂t
− ν∇2

)
u = −1

ρ

∂p′

∂x
, (36)

(
∂

∂t
− ν∇2

)
v = −1

ρ

∂p′

∂y
, (37)

∂w

∂t
= −1

ρ

∂p′

∂z
+ βgT ′ + ν∇2w, (38)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (39)

∂T ′

∂t
− Γw = χ∇2T ′, (40)

where we have obtained the first three equations [(36) to
(38)] from Eq. (12) after separating the velocity compo-
nents along the axes and Γ = −C0 = −dT/dz > 0 is so
called the lapse rate.
Eliminating T ′ from Eqs. (38) and (40), we get[(

∂

∂t
− χ∆

)(
∂

∂t
− ν∆

)
− βgΓ

]
w =

−
(

∂

∂t
− χ∆

)
1

ρ

∂p′

∂z
.

(41)

Differentiating Eqs. (36) and (37) with respect to x and
y successively and using the results for ∂u/∂x and ∂v/∂y
in Eq. (39), we obtain(

∂

∂t
− ν∆

)
∂w

∂z
=

1

ρ
∆⊥p

′. (42)
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Next, differentiating Eq. (41) with respect to z we get[(
∂

∂t
− χ∆

)(
∂

∂t
− ν∆

)
− βgΓ

]
∂w

∂z
=

−
(

∂

∂t
− χ∆

)
∂

∂z

(
1

ρ

∂p′

∂z

)
.

(43)

Further applying the operator ∂/∂t − ν∇2 to Eq. (43)
and using Eq. (42), we obtain[(

∂

∂t
− χ∆

)(
∂

∂t
− ν∆

)
− βgΓ

]
1

ρ
∆⊥p

′ =

−
(

∂

∂t
− χ∆

)(
∂

∂t
− ν∆

)
∂

∂z

(
1

ρ

∂p′

∂z

)
,

(44)

or, [(
∂

∂t
− χ∆

)(
∂

∂t
− ν∆

)
− βgΓ

]
1

ρ
∆⊥p

′ =

−
(

∂

∂t
− χ∆

)(
∂

∂t
− ν∆

)(
1

ρ

∂2p′

∂z2
− 1

ρ2
dρ

dz

∂p′

∂z

)
,

(45)

and finally we obtain the following equation.(
∂

∂t
− χ∆

)(
∂

∂t
− ν∆

)
∆p′

ρ
− βgΓ

1

ρ
∆⊥p

′ =(
∂

∂t
− χ∆

)(
∂

∂t
− ν∆

)
1

ρ2
dρ

dz

∂p′

∂z
.

(46)

We assume that the charateristic size of variation of ρ(z)
is much larger than that for p′. In this situation, ρ may
be considered as a constant and we can recast Eq. (46)
as (

∂

∂t
− χ∆

)(
∂

∂t
− ν∆

)
∆p′ − βgΓ∆⊥p

′ =

− 1

g

(
∂

∂t
− χ∆

)(
∂

∂t
− ν∆

)
N2 ∂p

′

∂z
,

(47)

where N2 is the Brunt-Väisälä frequency given by Eq.
(30).

To reveal the role of the term proportional to N2 on
the wave dynamics, we assume that the length scale
of fluid density inhomogeneity remains approximately a
constant, i.e., 1/Lρ0

≡ (1/ρ0) (dρ0/dz) is constant and
so is N2. The latter can assume a negative sign for the
instability to occur (See Sec. IV). Next, to study the
characteristics of the wave eigenmode, we assume the per-
turbations to propagate as plane waves with wave vector
k = (kx, ky, kz) = k⊥ + kz ẑ and wave frequency ω with
constant amplitude p̃ in the following form:

p′(r, t) = p̃ exp (ik · r− iωt) . (48)

Substitution of Eq. (48) into Eq. (47) yields the following
dispersion relation for Rayleigh-Bénard convective flows.(
k2 − i

N2

g
kz

)[
ω2 + i(χ+ ν)k2ω − χνk4

]
+βgΓk2⊥ = 0.

(49)

In particular, in absence of the effects of fluid viscosity
and thermal diffusivity, i.e., ν = 0, χ = 0, Eq. (49) gives
the following expressions for the real (ωr = ℜω) and the
imaginary (γ = ℑω) parts of the wave frequency ω.

ωr = ± 1√
2

√
βgΓk⊥
KN

(
1− k2

K2
N

)1/2

, (50)

γ = ∓ 1√
2

√
βΓ

g
N2 k⊥kz

K3
N

(
1− k2

K2
N

)−1/2

, (51)

where ωr and γ are related to

ωrγ = −βΓN2 k
2
⊥kz
K4

N

, (52)

and KN =
(
k4 +N4k2z/g

2
)1/4

. From Eqs. (50) and

(51), we note that for N2 < 0 and kz > 0, we have the
instability (γ > 0) and a real wave mode propagating
vertically upwards in the atmosphere with the frequency
ωr (> 0). Typically, for a particular atmospheric model,
|N2| ∼ 10−4 − 10−3/s2 and g ∼ 10 m/s2 [8] so that
KN ≈ k for kz ≪ 1 such that ωr ≈ 0. However, for mod-
erate values of |N2| and kz, such an approximation may
not be valid. Thus, in this approximation and in absence
of the effects of fluid viscosity and thermal diffusivity, the
Rayleigh-Bénard convective flows with positive lapse rate
Γ can no longer propagate with a finite wave frequency
ωr, but can have a finite growth rate of instability, given
by,

|γ| ≈
√

βgΓ
k⊥
k
. (53)

Clearly, the instability grows and the instability growth
rate increases with increasing values of the thermal coef-
ficient β and the thermal lapse rate Γ without any cut-off
unless k⊥ = 0. Since the thermal lapse rate remains a
constant, the increasing values of β may correspond to
the region of low-temperatures with heights ranging from
0 to 15 km (See, e.g., Table 1 of Ref. [8]).
On the other hand, if the dissipation due to thermal

diffusion dominates over the time evolution of pertur-
bation, the term ω2 can be neglected compared to the
terms proportional to χ. Thus, for a non-viscous (ν = 0)
slowly varying perturbations, Eq. (49) gives, after sepa-
rating the real and imaginary parts, the following wave
frequency and the growth rate.

ωr = −βΓN2

χK4
N

k2⊥
k2

kz, (54)

γ =
βgΓ

χK4
N

k2⊥. (55)

Since Γ > 0 due to the assumption of the negative tem-
perature gradient, we must have N2 < 0 for instability
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FIG. 1. The real [subplot (a)] and imaginary [subplot (b)] parts of the normalized wave frequency (Ω = ω/ωg), given by
Eqs. (54) and (55), are plotted against the normalized wave number (K = kL) for different values of the parameters as in
the legends. Here, N2 = −ω2

g < 0 and L is the length scale of perturbations. The parameters are normalized as β0 = βT0,
Γ0 = ΓL/T0, χ0 = χ/ωgL

2, and ν0 = ν/ωgL
2. Furthermore, kz = k cos θ and k⊥ = k sin θ with θ denoting the angle between k

and kz. The fixed parameter values are g̃ ≡ g/Lω2
g = 0.4, ν0 = 0.05, and θ = π/3. The effect of N2 is to reduce the instability

growth rate (not shown).

to occur (See Sec. IV), and so Eq. (54) gives positive
values of ωr. From Eqs. (54) and (55), it follows that
both the wave frequency and the instability growth rate
increase with increasing values of the thermal expansion
coefficient, β and the positive thermal lapse rate, Γ. In
contrast, the thermal diffusivity effects significantly re-
duce the magnitudes of both ωr and γ, since both vary
inversely with χ. Also, since the Brunt-Väisälä frequency
contributes to ωr and γ in the orders of 1/|N2| and 1/N4

respectively, it can influence both the wave frequency and
the growth rate in reducing their values at higher val-
ues of |N2|. It is interesting to note that both the wave
frequency and the growth rate tend to decrease with in-
creasing values of the wave number k and reach steady
states at higher values of k. The characteristics of the
real (ωr = ℜω) and imaginary parts (γ = ℑω) are shown
in Fig. 1 for different values of the parameters β, Γ, and
χ. From the subplots, it is evident that for the propa-
gation of gravity waves, the wave number k should not
be too small or too large for which the wave frequency
exceeds the magnitude of the Brunt-Väisälä frequency or
it tends to vanish. Both the frequency and the instability
growth rate attain maximum values at long-wavelength
perturbations (k → 0).

Nevertheless, the features, stated before, can be a bit
different in a more general situation in which the sign
and magnitude of N2 could influence the onset of insta-
bility and the growth rates rather than the possibility of
damping due to viscosity and diffusion effects. So, we
consider the general dispersion equation (49) and solve it
numerically. The results for the real and imaginary parts

of the wave frequency are displayed in Fig. 2. We note
that Eq. (49) can be considered as a quadratic equation
in ω, which gives two branches of complex wave modes.
However, we consider the branch that gives positive val-
ues of both the real and imaginary parts of the wave
frequency. From the subplots of Fig. 2, we find that
both the real wave frequency and the growth rate can
achieve maximum values in domains of long-wavelength
perturbations. Such maximum values can be further en-
hanced even with a small reduction of the values of |N2|
(not shown in the figure). It is also noted that while the
growth rate can have a cut-off, the real wave frequency
approaches more or less a constant at higher values of the
wave number. Furthermore, in both the cases, the effects
of the thermal expansion (β) and the temperature gradi-
ent (Γ) are to enhance the wave frequency and the growth
rate with their increasing values (In agreement with the
previous discussion at some particular cases). Because of
their appearance in the dispersion equation (49), any one
of the coefficients of the fluid viscosity (ν) and the ther-
mal diffusivity (χ) can influence both the wave frequency
(ℜω) and the instability growth rate (ℑω). While their
effects on ℜω are not significant [See the dash-dotted line
in subplot (a)], the growth rate can be significantly re-
duced with increasing values of any one of χ and ν. For
brevity, we have only shown graphically the effects of χ
on the characteristics of ℜω and ℑω.
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FIG. 2. The real [subplot (a)] and imaginary [subplot (b)] parts of the normalized wave frequency (Ω = ω/ωg), given by
Eq. (49), are plotted against the normalized wave number (K = kL) for different values of the parameters as in the legends.
Here, N2 = −ω2

g < 0 and L is the length scale of perturbations. The parameters are normalized as β0 = βT0, Γ0 = ΓL/T0,
χ0 = χ/ωgL

2, and ν0 = ν/ωgL
2. Furthermore, kz = k cos θ and k⊥ = k sin θ with θ denoting the angle between k and kz. The

fixed parameter values are g̃ ≡ g/Lω2
g = 1.5, ν0 = 0.05, and θ = π/3. The effect of N2 is to reduce the instability growth rate

(not shown). The effects of the viscosity (ν) on ℜω and ℑω are similar to χ.

VI. CONCLUSION

We have investigated the influence of the temperature-
dependent density inhomogeneity due to thermal expan-
sion on the stability of stratified fluids in the Earth’s
lower atmosphere (0 < z < 50 km) owing to its impor-
tance in the spatio-temporal evolution of perturbed flows.
We show that modeling of such temperature dependence
introduces a new factor involving the thermal expansion
coefficient in the Brunt-Väisälä frequency and thus modi-
fies its expression and the instability condition compared
to those proposed in Ref. [8]. Furthermore, in contrast
to Ref. [8], the instability of stratified flows can occur
for βT < 1 and dT/dz < 0 only in the tropospheric
region (0 < z < 15) km. At the stratospheric region
(15 < z < 50) km, the fluid flow can be stable. It is also
noted that the background temperature gradient, previ-
ously considered to vary, does not vary with atmospheric
heights but remains a constant. We also consider the
influence of the modified Brunt-Väisälä frequency, N2

on the Rayleigh-Bénard convective flows and show that
the negative temperature gradient for which the stratified
flows associated with internal gravity waves become un-
stable can cause convective instability with an enhanced
growth rate at a lower value of N2. Such growth rates
can be higher with increasing values of the thermal ex-
pansion coefficient and the thermal lapse rate, but can
be significantly reduced by the effects of the thermal dif-
fusion.

To conclude, the density inhomogeneity-driven ther-
mal instability of stratified fluids relating to the Brunt-

Väisälä frequency could be helpful for the initiation of
large-scale (may be comparable to the turbulence or vor-
tex phenomena) instabilities through the momentum and
energy transfer such as those associated with internal
gravity waves and acoustic-gravity waves in the atmo-
sphere [11]. Furthermore, due to the Rayleigh-Bénard
convective instability, a more efficient energy transfer be-
tween two layers in the atmosphere can take place by the
effects of the thermal expansion and the temperature gra-
dient, leading to a transition from laminar to turbulent
flows [12, 13]. However, such efficient energy transport
may eventually tend to resist some external perturba-
tions, and the fluid flows may return to the equilibrium
state. However, the detailed discussion concerning it is
beyond the scope of the present study.
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