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Abstract

Here we show how Feynman’s simplified model for the Josephson junction, as a macroscopic

two-state coupled quantum system, has a one-to-one correspondence with the stable dynamics of

two interfacial Rossby waves in piecewise linear shear flows. The conservation of electric charge and

energy of the superconducting electron gas layers become respectively equivalent to the conservation

of wave action and pseudoenergy of the Rossby waves. Quantum-like tunneling is enabled via

action-at-a-distance between the two Rossby waves. Furthermore, the quantum-like phenomena

of avoided crossing between eigenstates, described by the Klein-Gordon equation, is obtained as

well in the classical shear flow system. In the latter, it results from the inherent difference in

pseudoenergy between the in-phase and anti-phased normal modes of the interfacial waves. This

provides an intuitive physical meaning to the role of the wavefunction’s phase in the quantum

system. A partial analog to the quantum collapse of the wavefunction is also obtained due to

the existence of a separatrix between “normal mode regions of influence” on the phase plane,

describing the system’s dynamics. As for two-state quantum bits (qubits), the two-Rossby wave

system solutions can be represented on a Bloch sphere, where the Hadamard gate transforms the

two normal modes/eigenstates into an intuitive computational basis in which only one interface is

occupied by a Rossby wave. Yet, it is a classical system which lacks exact analogs to collapse and

entanglement, thus cannot be used for quantum computation, even in principle.

I. INTRODUCTION

In the very last chapter of Feynman Lectures on Physics [1] (Vol. III, 21-9), Feynman

suggested a simplified model for the Josephson junction. In this model, two layers (1 and 2)

of superconducting electron gas (that is, a gas composed of quasi-particle Cooper pairs of

electrons [2], whose electrical resistance vanishes below a critical temperature) are separated

by a thin insulating layer (Fig. 1). Since Cooper pairs behave as bosons, they tend to

aggregate in the lowest possible energy quantum states, U1,2, of each layer.

Cooper pairs occupying the same quantum state are indistinguishable, thus for a very

large number of pairs, the quantum probability density function ρ for finding a single pair
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becomes their macroscopic density [3]. Consequently, a macroscopic wavefunction can be

assigned for each layer:

ψ1,2 =
√
ρ1,2e

i θ1,2 , (1)

where it can be shown that in the absence of a magnetic vector potential, the gradients of

the phases, ∇θ1,2, are proportional to the momenta carried by the electron currents along

each layer [1].

Feynman’s simplified model assumes two homogeneous, non-magnetized, superconducting

electron gas layers with zero current, thus ψ1,2 are functions of time but not of space. The

electron gas in layer 1 was first charged by voltage V , making a difference in their lowest

energies: U1 −U2 = qV (where here q, is the electric charge of a Cooper pair, equal to twice

the electron charge). The model equations then read:

iℏψ̇1 = U1ψ1 +Kψ2 , (2a)

iℏψ̇2 = U2ψ2 +Kψ1 . (2b)

Under perfect insulation between the two layers (whenK = 0), these are just the Schrödinger

equations for particles in the energy states U1,2 (ℏ is the reduced Planck constant). For non-

zero values of the coupling constantK, the insulator is not perfect, hence quantum tunneling

is possible between the layers, where K generally decreases as the width of the insulator

increases.

Equation set (2) is an example of a two-state coupled quantum system. As will be shown

in this paper, it also describes a seemingly unrelated system – the stable interaction-at-a-

distance between two interfacial Rossby waves in shear flows. This is quite intriguing as the

latter system is purely classical. The main purposes of this paper are to understand how the

physical processes in these two systems are related and what added value is obtained from a

comparison between the two systems. In Section II we present the main physical properties

of the superconducting system and then show, in Section III, how they reemerge in the

context of the Rossby-wave system. Then in IV we examine the quantum-like phenomena

in the classical system and conclude, in Section V, with a discussion on the equivalency

between the two systems.
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𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 𝒈𝒈𝒈𝒈𝒈𝒈 𝝍𝝍𝟐𝟐
(U2 = U0)

FIG. 1: A Josephson junction device, detached from an electric circuit, is composed of two

superconducting electron gas layers, separated by a thin insulator. The Cooper pairs in

layer 2 are in the ground state energy U0. Layer 1 was previously charged by voltage V ,

thus in energy state U0 + qV (where q is the Cooper pair’s electric charge). Each electron

gas layer is described by a macroscopic wavefunction ψ, Eq. (1). If the insulator is thin

enough, a “super current” may flow via tunneling from one layer to the other.

II. PROPERTIES OF THE FEYNMAN MODEL

A. Representation as a dynamical system

Equation set (2) can be rewritten then as:

ψ̇1 = −iω̂1ψ1 − iσψ2 , (3a)

ψ̇2 = −iω̂2ψ2 − iσψ1 , (3b)

where ω̂1,2 = U1,2/ℏ, are effective frequencies associated with the energy states in the absence

of interaction, and σ = K/ℏ, is the tunneling coupling coefficient, scaled by ℏ. Inserting the

polar form of Eq. (1) in Eq. (3), Feynman obtained dynamical equations for the densities
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and phases in the two layers. In terms of ω̂1,2 and σ we obtain:

ρ̇1 = −2σ
√
ρ1ρ2 sin δ = −ρ̇2 , (4a)

θ̇1 = −
(
ω̂1 + σ

√
ρ2
ρ1

cos δ

)
; θ̇2 = −

(
ω̂2 + σ

√
ρ1
ρ2

cos δ

)
, (4b)

δ̇ = −∆ω̂ + σ

(√
ρ1
ρ2

−
√
ρ2
ρ1

)
cos δ , (4c)

where δ = θ1 − θ2, ∆ω̂ = ω̂1 − ω̂2 and J = 2σ
√
ρ1ρ2| sin δ| is the magnitude of the “super-

current” that may flow from one layer to the other by tunneling, through the insulator

barrier [4].

B. Hamiltonian and Hamilton equations

Equation (4a) indicates that the total charge, ρ = ρ1+ρ2, is conserved. Equation set (4b)

are scaled Hamilton-Jacobi density equations, θ̇i = −Hi [5], where Hi is the Hamiltonian

density (scaled by ℏ) of each layer i = 1, 2. Assuming that the volume of each layer is the

same the Hamiltonian per unit volume, H = ρ1H1 + ρ2H2, is conserved:

H =
2∑

i=1

ρiHi = −
2∑

i=1

ρiθ̇i =
2∑

i=1

ρiω̂i + 2σ
√
ρ1ρ2 cos δ , (5)

where substitution in Eq. (4) verifies Ḣ = 0 . Equivalently, Eq. (3) can be written in the

matrix form:

i
˙⃗
Ψ = ĤΨ⃗ , where Ψ⃗ =

 ψ1

ψ2

 & Ĥ =

 ω̂1 σ

σ ω̂2

 = ĤT (6)

are the wavefunction vector in the Hilbert space and the Hermitian Hamiltonian density

operator (superscript (.)T denotes the Hermitian transpose). The Hamiltonian in bra-ket

notation (scaled by the volume) reads:

H = ⟨Ψ|Ĥ|Ψ⟩ ≡ Ψ⃗T ĤΨ⃗ , (7)

where it can be verified by direct substitution that the RHS of Eq. (5) and Eq. (7) are the

same. The vanishing of the time derivative of H in Eq. (7) is obtained directly as well when

writing
˙⃗
Ψ = −iĤΨ⃗ and

˙⃗
ΨT = iΨ⃗T Ĥ .
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Equations (4a,b) can then be written in the compact form of the canonical Hamilton

equations:

ρ̇i =
∂H

∂θi
, θ̇i = −∂H

∂ρi
, (8)

implying that in the four dimensional phase space: x ≡ (ρ1, ρ2, θ1, θ2), the Hamiltonian H

serves as the streamfunction of the associated velocity field: u ≡ (ρ̇1, ρ̇2, θ̇1, θ̇2), so that

u · ∇H = {H,H} = 0, where ∇ is the four-component nabla operator in the phase space

of coordinates x. Furthermore, {f,H} =
∑2

i=1

(
∂H
∂θi

∂f
∂ρi

− ∂H
∂ρi

∂f
∂θi

)
= u · ∇f is the Poisson

bracket of a general function f(x, t) with H. The phase space flow is volume preserving

(i.e., divergence-free, ∇ · u = 0), in agreement with Liouville’s theorem [6].

C. Eigenstates and avoided crossing

As will be shown here, the frequency eigenvalues of the two-level system of Eq. (3) exhibit

the phenomena of avoided crossing (e.g. Ref. [7] in the context of diatomic molecules), i.e.,

the two frequency eigenvalues of the coupled system never equal to each other (their values

‘never cross’). This is valid even in the degenerated case where the two separated frequencies

of the uncoupled system are equal (when ω̂1 = ω̂2).

The time independent Schrödinger equation:

ωΦ⃗ = ĤΦ⃗ , (9)

for Ψ⃗ = Φ⃗e−iωt (with the corresponding energy eigenvalues E = ℏω), gives the frequency

eigenvalues:

ω± = ω̂ ±

[(
1

2
∆ω̂

)2

+ σ2

]1/2
, (10)

where ω̂ = (ω̂1 + ω̂2)/2 . As expected, in the absence of tunneling (σ = 0) the two layers

are uncoupled: ω+ = ω̂1, and ω− = ω̂2, with the corresponding eigenvectors Φ⃗T
+ = (

√
ρ1, 0);

Φ⃗T
− = (0,

√
ρ2) .

Without loss of generality, we can move to the frame in which ω̂1 = −ω̂2 ≡ ω̂, so that

ω̂ = 0 and ∆ω̂/2 = ω̂. Equation (10) then simplifies to the Klein-Gordon dispersion relation:

ω± = ±
(
ω̂2 + σ2

)1/2 ≡ ±Ω . (11)

In Fig. 2, we plot ω± as a function of ω̂. For σ = 0, the dashed straight lines in ±45◦

correspond to the solutions ω+ = ω̂1 and ω− = ω̂2, respectively. In the presence of tunneling,
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σ > 0, the coupled solutions of the upper and lower hyperbolic branches never cross (even

in the degenerate case where ω̂1 = ω̂2 = 0).

The corresponding two orthonormal eigenstate vectors Φ⃗±, obtained from Eq. (9) are:

Φ⃗+ =
1√
2

√Ω+ω̂
Ω√

Ω−ω̂
Ω

 ; Φ⃗− =
1√
2

 √
Ω−ω̂
Ω

−
√

Ω+ω̂
Ω

 , (12)

where the general solution of Eq. (3) is superposition of the eigenstates:

Ψ⃗(t) = a+Φ⃗+e
−iω+t + a−Φ⃗−e

−iω−t (13)

(a± = A±e
iα± are two complex amplitudes). Since Φ⃗+ and Φ⃗− are orthonormal, a± =

⟨Φ±|Ψ(t = 0)⟩ . Hence, the seemingly complicated nonlinear dynamics in Eq. (4) can be

projected into the superposition of the two eigenvectors, where each propagates with its

constant eigenvalue frequency. For example, starting from an initial condition of zero density

in the lower layer: Ψ⃗T (t = 0) = (1, 0)T , yields a± = ϕ1± (where ϕ1± corresponds to the first

entries of the vectors Φ⃗±). Furthermore, for each pure eigenstate solution:

Ψ⃗± =

√
ρ1e

iθ1

√
ρ2e

iθ2


±

= a±Φ⃗±e
−iω±t =

√
ρ1e

i(θ01−ωt)

√
ρ2e

i(θ02−ωt)


±

(14)

(here the zero superscript corresponds to the initial time t = 0), ρ1,2, their ratio, ρ1/ρ2, as

well as θ01,2 are all constant. Since θ1,2 = θ01,2−ωt, the phase difference δ = θ1− θ2 = θ01 − θ02

is also constant, where θ̇1 = θ̇2 = −ω . As (Ω± ω̂) are both positive (for non zero positive

values of σ), Eq. (12) indicates that δ+ = 0 and δ− = π. Thus, the upper branch of the

hyperbola corresponds to the cases where the upper and lower macroscopic wavefunctions

are in phase, whereas the lower branch corresponds to the cases where they are anti-phased.

The eigenstates energy then satisfy Eq. (5):

H± = (ρ1 − ρ2)ω̂ ± 2σ
√
ρ1ρ2 = ρω± . (15)

We recall that H is scaled by ℏ, which is the elementary action unit of a quantum particle.

Thus, when integrating ρℏ over the volume of the two electron gas layers we obtain the

total action of the Cooper pairs in the system. We will indeed see that in the Rossby wave

system, ρ corresponds to their wave action.

While the mathematical analysis shown above is straightforward, the physical interpreta-

tion of the dynamics is somewhat obscured. For the eigenstate solutions, the layers interact
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with each other via tunneling but no super-current flows from one layer to the other. The

phase difference in the wavefunctions affects the charge density ratio between the layers and

acts as well to synchronize the phase rate in the two layers. This is despite the fact that

phase gradients are zero and, thus do not correspond to currents within the layers. As will

be discussed in the following sections, these issues become clear when implementing Feyn-

man’s model to describe the seemingly unrelated stable interaction-at-a-distance between

interfacial Rossby waves in piecewise linear shear flows.

III. FEYNMAN’S MODEL APPLIED FOR INTERFACIAL ROSSBY WAVES

A. Wave action and pseudoenergy conservation

For our purposes it is sufficient to consider inviscid, constant density, two-dimensional

horizontal flows in the x–y plane. The linearized dynamics of monochromatic small per-

turbations, with respect to a mean shear profile u(y) (denoted by overbars), satisfies the

momentum, vorticity and continuity equations:

Du

Dt
= −∇p+ x̂ q v ;

Dq

Dt
= −qy v ; ∇ · u = 0 . (16)

Here u = (u, v) is the perturbation velocity with respect to the mean flow u(y), p is the

pressure perturbation scaled by the constant density, and q = ẑ · (∇× u) = ( ∂v
∂x

− ∂u
∂y
) is the

vertical component of the vorticity perturbation (the hat superscript denotes a unit vector

and ∇ is the horizontal nabla operator). The linearized material derivative is D
Dt

= ∂
∂t
+u ∂

∂x

and the mean flow vorticity and its gradient are respectively q(y) = −∂u
∂y

and qy ≡ ∂q
∂y

= −∂2u
∂y2

.

We denote the cross-stream displacement (in the y direction) by η so that v = Dη
Dt

; the

perturbation vorticity equation in Eq. (16) then yields D
Dt
(q+ qyη) = 0. We assume isovorti-

cal dynamics in which the vorticity perturbation results solely from the deformation of the

basic state vorticity, q = −qyη, thus the vorticity perturbation can be non-zero only in re-

gions where qy ̸= 0. For a horizontal domain (−Lx/2 < x < Lx/2 ;−Ly/2 < y < Ly/2) with

periodic stream-wise boundary conditions and vanishing cross-stream fluxes on the stream-

wise boundaries, v(y = ±Ly/2) = 0, the linearized dynamics of Eq. (16) conserves the two

constants of motion - the pseudomomentum (and its associated wave action) and pseudoen-

ergy [8]. Define the stream-wise averaging as (...) ≡ 1
Lx

∫ Lx/2

−Lx/2
(...)dx and its integration in

8
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In phase

Anti phase

FIG. 2: Eigenstate frequencies, ω±, satisfying the Klein-Gordon dispersion relation

Eq. (11) for tunneling coupling coefficient σ = 1.5. The upper (lower) hyperbola

corresponds to eigenstate solutions in which the two layers wavefunctions are in (anti)

phase. Dashed lines correspond to the uncoupled solutions (σ = 0) of each electron gas

layer in isolation. The avoided crossing phenomena is evident as the two hyperbolas never

cross, even on the ordinate where the frequencies of each layer in isolation are equal. The

inset on the middle-left shows the eigenstate density ratio for the two hyperbolas, as

obtained from Eq. (12). The eigenstate structures of the Josephson junction system are

visualized in the insets (with red and green waves and arrows) in terms of the normal

modes of the equivalent Rossby waves system (see a detailed explanation for the

interaction mechanism in subsections IVA and IVB).

the cross-stream direction as ⟨...⟩ ≡
∫ Ly/2

−Ly/2
(...)dy , the pseudomomentum:

P = −1

2

〈
q2

qy

〉
= −1

2

〈
qy η

2

〉
, (17)

is the additional mean stream-wise momentum imposed by the perturbation on the flow. If

the mean vorticity gradient qy does not change sign within the domain, this ensures stability
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as the vorticity perturbation cannot grow in time without violating the conservation of P [9].

For a monochromatic perturbation of the form f = f̃(y, t, k)eikx, where k is the stream-wise

wavenumber (and f is a general field), the wave action:

A =
P

k
(18)

is conserved as well. The second invariant is the pseudoenergy which is the additional kinetic

energy imposed by the perturbation on the base flow:

E =
1

2

〈
u2 − u

qy
q2
〉

=
1

2

〈
u2 − u qy η

2

〉
, (19)

from which a generalization of the additional stability condition of Fjørtoft, sgn(u) =

−sgn(qy), is deduced [10, 11].

From the incompressibility condition, the perturbation streamfunction ϕ satisfies:

∇ · u = 0 =⇒ u = ẑ×∇ϕ =⇒ q = ∇2ϕ . (20)

The eddy kinetic energy integral can be written then as K = 1
2

〈
u2
〉
= −1

2

〈
q ϕ
〉
, which

allows writing the pseudoenergy as:

E = −1

2

〈
q

(
∇−2 +

u

qy

)
q

〉
, (21)

where ∇−2 denotes the inverse horizontal Laplacian operator. Consider hereafter monochro-

matic wave dynamics, the RHS of Eq. (20) yields:

q̃(y, t, k) = ∇2
k ϕ̃ =

(
−k2 + ∂2

∂y2

)
ϕ̃ =⇒ ϕ̃(y, t, k) = ∇−2

k q̃ =

∫ Ly/2

−Ly/2

q̃(y′, t, k)Gk(y, y
′)dy′ ,

(22)

where G(y, y′) is the Green function, satisfying: ∇2
kGk(y, y

′) = δ(y − y′) and δ is the Dirac

delta function. For the purpose of the analysis here it is enough only to consider the open

domain case: Ly → ∞ for which Gk(y, y
′) = −e−k|y−y′|/2k [12].

Writing the vorticity perturbation in terms of amplitude and phase: q̃ = Qeiθ, when re-

calling that for two general monochromatic functions: (f, g) = (f̃ , g̃)eikx = (Feiθf , Geiθg)eikx

we obtain f g = 1
2
ℜ{f̃ g̃∗} = 1

2
FG cos (θf − θg) (where asterisk denotes complex conjugate),

the wave-action and the pseudoenergy become [13]:

A = − lim
Ly→∞

∫ Ly/2

−Ly/2

Q2(y)

4kqy(y)
dy ; (23)
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E = lim
Ly→∞

∫ Ly/2

−Ly/2

Q(y)

4

[∫ Ly/2

−Ly/2

Q(y′) cos (θ(y)− θ(y′))
e−k|y−y′|

2k
dy′ − u(y)Q(y)

qy(y)

]
dy . (24)

It will be shown that the wave-action A plays the equivalent role of the charge density ρ in

the Josephson junction and the pseudoenergy E the role of the Hamiltonian H.

B. Single interfacial vorticity wave

Consider first the piecewise linear shear flow profile (Fig. 3):

u(y) = u0 −

{
qT (y − y0), y ≥ y0

qB(y − y0), y ≤ y0
; q(y) =

{
qT y > y0

qB y < y0
; qy = ∆q0 δ(y − y0) , (25)

where u0 is negative, (qT , qB) are both positive constants and ∆q0 ≡ qT − qB is assumed

negative. The isovortical monochromatic vorticity perturbation has therefore a delta func-

tion structure: q̃ = −η̃∆q0 δ(y − y0) ≡ q̂0(t)δ(y − y0). Substitute q̃ in the RHS equation of

Eq. (22) we obtain:

ϕ̃(y, t) = Gk(y, y0)q̂0(t) = −e
−k|y−y0|

2k
q̂0(t) . (26)

While ϕ̃ is continuous across the interface y0,
∂ϕ̃
∂y

is discontinuous. Consequently ṽ = ikϕ̃

is continuous, but ũ = − ∂
∂y
ϕ̃ flips sign across the interface. The latter yields an infinite

perturbation shear, −∂u′

∂y
, across the interface, corresponding to the delta function structure

of the vorticity perturbation.

Substituting an interfacial vorticity wave perturbation q′0 = Q̂0δ(y− y0)e
i(kx−ω̂0t) (so that

θ0 = −ω̂0t) together with its associated streamfunction Eq. (26) in the vorticity equation of

Eq. (16), for profile Eq. (25) we obtain at y = y0:

˙̃q0 = −iω̂0 q̃0 ; θ̇0 = −ω̂0 , (27)

with the frequency:

ω̂0 = kĉ0 = k

(
u0 −

∆q0
2k

)
= k

(
−|u0|+

|∆q0|
2k

)
= −k (|u0|+ |∆q0|Gs) , (28)

where hereafter we use ˙(...) ≡ ∂
∂t
(...) (in order to relate between the two common notations

of temporal derivative in quantum and fluid mechanics), and Gs ≡ −1/2k = Gk(y0, y0)

is the self-induced Green function. The propagation mechanism is of interfacial counter-

propagating Rossby waves [14] (Fig. 3). The vorticity perturbation field at the interface
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induces a cross-stream velocity field, located a quarter of wavelength to its right. Since

∆q0 is negative, the advection of the mean vorticity by the perturbation velocity across the

interface results in fresh interfacial vorticity anomalies to the right. This acts to translate

the waves in the positive x direction (the term |∆q0|
2k

in Eq. (28)) counter the mean flow −|u0|.

As the wavenumber k is positive definite, the dispersion relation in Eq. (28) indicates that

the sign of ω̂0 is positive (negative) for k < kc (k > kc), where kc ≡ 0.5|∆q0|/|u0|. Hence, for

long enough wavelength the waves overcome the mean flow Doppler shift and propagate to

the right, when viewed from a frame of rest, whereas waves with smaller wavelengths than

2π/kc are drifted to the left in the direction of the interfacial mean flow u0. Substituting

Eq. (27) and Eq. (28) in Eq. (23) and Eq. (24) we obtain the single interface action-angle

relations:

E0 = −A0θ̇0 = A0ω̂0 ; A0 =
Q̂2

0

4k|∆q0|
. (29)

C. Two interfacial vorticity waves

Consider now the shear flow profile (Fig. 4):

u(y) =


u1 − qT (y − y1), y ≥ y1

u2 − qM(y − y2), y2 ≤ y ≤ y1

u2 − qB(y − y2), y ≤ y2

; q(y) =


qT , y > y1

qM , y2 < y < y1

qB, y < y2

, (30)

so that

qy = ∆q1 δ(y − y1) + ∆q2 δ(y − y2) , (31)

where u1 < u2 < 0 and qB > qM > qT > 0 =⇒ ∆q1 ≡ qT − qM < 0 and ∆q2 ≡

qM − qB < 0. Denote the distance between the interface by Y ≡ y1 − y2, Eq. (30) implies

that qM = −(u1 − u2)/Y .

For isovortical dynamics, q̃ = q̂1(t)δ(y−y1)+q̂2(t)δ(y−y2), with the corresponding stream-

function ϕ̃ = − 1
2k

(
q̂1e

−k|y−y1| + q̂2e
−k|y−y2|

)
. Substitute q̃ and ϕ̃ in the vorticity equation of

Eq. (16) for y = (y1, y2) (and recall that ṽ = ikϕ̃), we obtain:

˙̂q1 = −iω̂1q̂1 − iσ1q̂2 , (32a)

˙̂q2 = −iω̂2q̂2 − iσ2q̂1 , (32b)
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FIG. 3: Schematic illustration of an interfacial counter propagating Rossby wave at y = y0.

The shear profile of Eq. (25) has a negative δ-function value of mean vorticity gradient.

Consequently, the Rossby wave acts to propagate to the right (leaving the lower mean

vorticity to its left) counter the mean flow u0. The position of the wave after a short time

interval is shown by the green dashed curve.

with the wave frequencies, at the absence of interaction:

ω̂1,2 = kĉ1,2 = k

(
−|u|+ |∆q|

2k

)
1,2

= −k (|u|+ |∆q|Gs)1,2 , (33)

and the interaction coefficients:

σ1,2 =
e−kY

2
|∆q|1,2 = −k|∆q|1,2Gi , (34)

where we denote (Gs, Gi) ≡ −(1, e−kY )/2k as the self and induced values of the Green

function of each wave on itself and on the opposed one. Writing q̂1,2 = Q̂1,2e
iθ1,2 , the wave

action of the perturbation can be obtained from Eq. (23) to be:

A =
Q̂2

1

4k|∆q1|
+

Q̂2
2

4k|∆q2|
= A1 +A2 . (35)

Now, if we choose to define a “wavefunction” for the interfacial Rossby waves:

ψRos
1,2 ≡

√
A1,2e

i θ1,2 =⇒ q̂1,2 = 2
√
k|∆q|1,2 ψRos

1,2 (36)
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FIG. 4: Schematic illustration of two interfacial counter propagating Rossby waves on the

shear profile Eq. (30). As in Fig. 3, each wave acts to propagate to the right counter the

local mean flow at its interface. The waves interact at a distance by inducing their

cross-stream velocity which decays exponentially with distance from their home bases. In

this example the upper wave’s amplitude is larger than the lower one. Consequently, the

influence of the upper wave on the lower is larger than vice-versa. The phase difference

between the waves at this snapshot is −π/2 < δ < 0. As a result both waves amplify each

others’ rightward propagating speed, but have opposite effect on the amplitudes - the lower

(upper) wave increases (decreases) the upper (lower) wave’s amplitude.

and substitute back in Eq. (32) we obtain:

ψ̇Ros
1 = −iω̂1ψ

Ros
1 − iσψRos

2 , (37a)

ψ̇Ros
2 = −iω̂2ψ

Ros
2 − iσψRos

1 , (37b)

with the scaled interaction coefficient σ =
√

|∆q1||∆q2| e−kY /2 . Hence, assigning ψRos
1,2 7→

ψ1,2 and A1,2 7→ ρ1,2 we obtain Eq. (3) and thus Eq. (4).

Using Eq. (24), it is shown in Appendix B that when assigning E 7→ H, Eq. (5) holds as

well. Consequently, equations (6-14) apply as well for the two Rossby wave system, thus

completing the mathematical equivalence between the quantum and the classical systems.
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IV. QUANTUM-LIKE EFFECTS IN THE ROSSBY WAVE SYSTEM

A. Interaction mechanism as tunneling

In Fig. 4 we sketch an example for the interaction between the two interfacial waves. Since

at each interface ∆q is negative, the cross-stream displacement η , the vorticity field q , and

the wavefunction ψRos, are all in phase. At each interface the cross-stream velocity field is

composed of two contributions: “self” (s), from the home-base wave and “induced” (i) from

the remote wave. According to Eq. (22) at each interface ṽ = ṽs + ṽi = ik(Gsq̂s + Giq̂i) =

−0.5 i (q̂s + e−kY q̂i). Hence, ṽs,i is positioned a quarter of wavelength ahead of q̂s,i where

the action-at-a-distance interaction decays exponentially with the wavenumber, scaled by

the distance between the interfaces. ṽi therefore accounts to the analog effect of tunneling

in this classical system [15]. More analysis on its nature is provided in Appendix A.

In Fig. 5 we show representative snapshots of the interaction according to their phase

difference δ. When δ = π/2 (Fig. 5a) the upper wave reinforces the amplitude of the lower

wave by inducing a velocity field which is in phase with the displacement of the upper wave.

In contrast, the lower wave diminishes the amplitude of the upper wave as the induced

velocity is in anti phase with the lower wave displacement. When δ = −π/2 (Fig. 5b) the

opposite scenario occurs. These are instantaneous snapshots as both the amplitude ratio

ρ1/ρ2 (eq. 4a) and the phase difference δ (eq. 4c) are continuously changing (unless ∆ω̂ = 0).

Hence such phase configurations cannot describe eigenstates (in the quantum system), or

equivalently normal modes (in the fluid system). We see that the waves cannot mutually

amplify each other when the sign of their home base mean vorticity gradients is the same

[16].

When the waves are in phase (δ = 0), Fig. 5c, the self and the induced velocities are

superposed, thus the waves help each other to propagate to the right with respect to their

local mean flow u, (eq. 4b). In contrast, in anti-phase (δ = π), Fig. 5d, the induced

velocity acts against the self velocity, thus slowing the rightward propagation tendency of

each wave in isolation. Furthermore, if Q̂i/Q̂s > ekY , the induced velocity overpowers the

self one, forcing the wave to propagate to the left with respect to its local mean flow. These

phase and anti-phased configurations may form the normal modes when δ̇ = 0 (eq. 4c), as

discussed next.
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(b) (d)

(c)(a)

FIG. 5: Representative snapshots of the waves action-at-a-distance interaction according

to their phase difference δ = (π
2
,−π

2
, 0, π) in (a,b,c,d), respectively. When δ = π/2 the

upper wave reinforces the amplitude of the lower wave while the lower wave diminishes the

amplitude of the upper wave. When δ = −π/2 the opposite occurs. When the waves are in

phase (δ = 0), they help each other to propagate to the right, while when in anti-phase

(δ = π), they slow each other.

B. Mechanistic interpretation for the normal modes and avoided crossing

As pointed out in the previous section, neutral normal modes in the fluid system (which

are equivalent to the eigenstates Eq. (12) in the quantum system) can be obtained when the

waves’ amplitudes are either in phase (δ = 0) or in anti-phase (δ = π), (eq. 4a). We wish

to provide a mechanistic interpretation of the structure of these eigenstates/normal modes

from the Rossby wave interaction perspective. Recall that due to the negative sign of ∆q,

at the two interfaces, each Rossby wave acts to propagate to the right, however, the local

mean flow at each interface adds a Doppler shift toward the left direction. When the waves

are in phase, they reinforce each other’s tendency to propagate to the right and when they

are in anti-phase, they hinder their rightward propagation.

Consider first the case when ω̂ > 0, that is in isolation, viewed from a frame of rest, the
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upper wave propagates to the right (ω1 = ω̂) and the lower to the left (ω2 = −ω̂). In the

upper right hyperbola of Fig. 2 the waves are in phase, where the upper wave’s amplitude

is larger than the lower one. Consequently, they help each other to propagate to the right

but the upper wave provides more help to the lower one than vice-versa. The upper wave’s

amplitude should be large enough so that the velocity field it induces on the lower wave

(although attenuated by e−kY ) will help the latter to overcome the leftward mean flow and

consequently propagate to the right. The lower wave helps (albeit, a little) the upper wave

to propagate more to the right, thus their joint (eigen) frequency is larger than the frequency

of the upper wave in isolation.

In the lower right branch of the hyperbola the waves are anti-phased when the amplitude

of the lower wave is larger than the upper wave. Consequently, the velocity that the lower

wave induces on the upper, opposes and overpowers the latter (despite the exponential

attenuation), making the upper wave to propagate to the left. By the same time, the

upper wave reduces by little the tendency of the lower wave to propagate to the right, thus

consequently their joint (eigen) frequency is more negative than the frequency of the lower

wave in isolation. Following the same logic, in the left side of Fig. 2 (when ω2 = −ω1 =

−ω̂ < 0), in the upper left of the hyperbolas the waves are in phase, where the amplitude

of the lower wave is larger than the upper. In the lower left part, the waves are anti-phased

and the amplitude of the upper wave is larger than the lower.

The avoided crossing phenomena is easily explained in terms of the wave interaction

mechanism. In the degenerate case when each wave in isolation has the same frequency

(ω1 = ω2 = 0) they still interact. When they are in phase and have the same amplitude they

equally help each other to propagate, thus their joint eigenstate frequency is positive. When

they are in anti-phase, with equal amplitudes, they equally hinder each other’s propagation

to the right and consequently their joint frequency becomes negative.

C. Qubit-like representation on a Bloch sphere

Although the Rossby wave system is classical it shares the same dynamical equations for

a two-state coupled quantum system, where the latter can be seen as a quantum bit (qubit)

device for quantum computations [18]. In this section, we apply quantum computation

notation to describe the Rossby wave system. We denote the in-phase eigenstate Φ⃗+ in
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FIG. 6: Bloch sphere representation adopted from Ref. [17]. Each quantum state |Ψ
〉

satisfying Eq. (39) is a point on the sphere envelope, where each pair of opposite unit

vectors form an orthonormal computational basis. The two eigenstates (|0
〉
, |1
〉
) are located

on the z axis where the (|+
〉
, |−
〉
) basis, obtained from applying the Hadamard gate on

the eigenstates, are located on the x axis. The general structure of |Ψ
〉
can be visualized in

terms of snapshots of the two Rossby waves (here presented for the avoided crossing point

of ∆ω = 0). The two eigenstates are Rossby waves in phase and anti-phase. The (|+
〉
, |−
〉
)

basis represents the setups in which only one wave exists on each interface. The ±π/2 out

of phase setups of 5(a,b) are obtained for the computational basis
(
|0
〉
∓ i|1

〉)
/
√
2.

Eq. (12) as |0
〉
, and the anti-phase eigenvector Φ⃗− as |1

〉
. Then, their superposition Eq. (13)

can be rewritten for t = 0 as:

|Ψ
〉
= eiα+

[
A+|0

〉
+ A−e

i(α−−α+)|1
〉]
. (38)
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As |0
〉
and |1

〉
are orthonormal, then for normalized |Ψ

〉
, A2

++A
2
− = 1. Hence, we can assign

an angle θ so that A+ = cos θ
2
and A− = sin θ

2
. Denoting the eigenstate phase difference

as ϕ ≡ (α− − α+) and choosing α+ = 0 (without loss of generality), the superposition of

Eq. (38) reads:

|Ψ
〉
= cos

θ

2
|0
〉
+ eiϕ sin

θ

2
|1
〉
, (39)

which can be represented on the Bloch sphere of unit radius [18], as illustrated in Fig. 6.

Motion on the sphere envelope is obtained by applying a sequence of unitary transformations,

where each pair of opposite unit vectors forms an orthonormal computational basis. For

instance, the useful action of the Hadamard gate on the eigenstates

1√
2

1 1

1 −1

|0〉
|1
〉
 =

1√
2

|0〉+ |1
〉

|0
〉
− |1

〉
 ≡

|+〉
|−
〉
 (40)

transforms |0
〉
7→ (|0

〉
+ |1

〉
)/
√
2 (rotates a unit vector in the positive z coordinate into the

positive x coordinate) and |1
〉
7→ (|0

〉
− |1

〉
)/
√
2 (rotates a unit vector in the negative z

coordinate into the negative x coordinate). In other words, this transforms the orthonor-

mal eigenstate computational basis (|0
〉
, |1
〉
) from the z coordinate into the orthonormal

computational basis (|+
〉
, |−
〉
) on the x coordinate.

For the avoided crossing point of ∆ω̂ = 0, these two central computational basis (Fig. 6)

become:

|0
〉
=

1√
2

1
1

 ; |1
〉
=

1√
2

 1

−1

 , |+
〉
=

1
0

 ; |−
〉
=

0
1

 . (41)

Thus, the (|+
〉
, |−
〉
) basis represents the two cases where only one wave at each interface

exists (equivalent to that only one layer is filled with an electron gas and the other is empty).

The assignment of the Rossby wave Eq. (36) to the quantum wavefunction provides as well

simple intuitive meaning for other computational basis. For instance, the application of the

S gate [18] rotates the eigenstates into
(
|0
〉
± i|1

〉)
/
√
2, corresponding to the structures

where the upper wave lags (advances) the lower wave by a quarter of wavelength (as in

Fig. 5(a,b)).
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D. Separatrix on a phase plane - classical “fuzzy collapse”

Relate the wavefunction amplitude ratio to a radius: r ≡
√
ρ1√
ρ2

=
√
A1√
A2

, equation set (4) can

be reduced to the compact form of radial and azimuthal velocities on the polar coordinates

(r, δ):

ur ≡ ṙ = −(r2 + 1) sin δ , (42a)

uδ ≡ rδ̇ = (r2 − 1) cos δ − µr , (42b)

where the time was scaled by the interaction coefficient, t 7→ σt. µ ≡ ∆ω̂/σ, indicating

on the amount of coupling between the waves (the ratio between the frequency difference

between the waves in isolation and their interaction coefficient), can be regarded then as

the control parameter of the dynamical system. In the frame of reference where ω̂ = 0,

µ/2 = ω̂/σ, the two eigenstates Eq. (12) are the two neutral fixed points on the phase plane:

[r, δ]∗+ =

[(
µ

2
±
√(µ

2

)2
+ 1

)
, 0

]
, (43a)

[r, δ]∗− =

[(
−µ
2
±
√(µ

2

)2
+ 1

)
, π

]
, (43b)

where only positive values of r∗ are considered. The divergence and vorticity field of the

phase plane flows become:

∇ · u =
1

r

[
∂

∂r
(rur) +

∂uδ
∂δ

]
= −4r sin δ , (44a)

ẑ · (∇× u) =
1

r

[
∂

∂r
(ruδ)−

∂ur
∂δ

]
= 4r cos δ − 2µ , (44b)

where the divergence vanishes on the neutral fixed points. A separatrix is obtained at xs =
µ
2
,

as evident when writing the velocity in the x direction: ux = ur cos δ− uδ sin δ = y(µ− 2x).

Furthermore, from the conservation of charge/wave action and energy Eq. (5), we find that

the phase plane flow follows the closed curves, encircling the fixed points:

(µr + 2 cos δ)r

r2 + 1
= Const . (45)

Examples of the phase plane flow are shown in Fig. 7 for the control parameter values:

µ = (−5, 0, 5).
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The separatrix separates the left and the right sides of the phase plane into two “regions of

influence” of the normal modes/eigenstates/fixed points. For any initial conditions of wave

action amplitude ratio and phase difference, the dynamics satellites one of the fixed points,

according to Eq. (45), without crossing to the other fixed point “region of influence”. This

is intriguing when considering the analog to the collapse of the wavefunction in quantum

mechanics. In the latter, the state of the system is obtained by the superposition of Eq. (13),

but when a measurement is taken the system collapses immediately to one of the eigenstates

Φ⃗±, with the respective probability A2
±, and then stays there forever, unless perturbed again.

The collapse is in a sense exterior to the dynamics described by the Schrödinger equation

and does not have a classical counterpart. Nevertheless, the phase-plane analysis suggests

a classical “fuzzy-collapse” counterpart. Suppose that a wave maker generates a monochro-

matic wave perturbation with random amplitude ratio and phase difference between the

two interfaces and then let it evolves according to Eq. (4). When we take a measurement,

the dynamics is certainly not collapsing into one of the normal modes, but the measure-

ment reveals at which side of the separatrix the system is, that is around which of the two

eigenstates Φ⃗± it keeps circulating.

V. DISCUSSION

This paper shows that the mathematical description of the interfacial Rossby wave in-

teraction mechanism is equivalent to the description of Feynman’s simplified model for the

Josephson junction as a two-state coupled quantum system.

The added value resulting from this comparison seems to be twofold. For the quantum

system, it provides a simple mechanistic interpretation for its dynamics and eigenstates,

especially for the central but obscured role of the phase difference between the macroscopic

wavefunctions. For the fluid system, it sheds light on the mechanism of tunneling in terms

of the superposition of the self and induced components of their cross-stream velocity fields.

Furthermore, the conservation laws of wave action and pseudoenergy obtain an interesting

interpretation. Usually, the two Rossby wave action-at-a-distance interaction is considered

to be a paradigm for barotropic and baroclinic instabilities [19]. There the system is non-

Hermitian, and while the dynamic equations can be represented elegantly by the canonical

action-angle Hamilton equations [11, 13], the conserved quantities of the wave action and
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FIG. 7: Phase plane flow of the dynamical system Eq. (42), for control parameter values

µ = (−5, 0, 5). The fixed points Eq. (43) are indicated by the green stars. Colors show the

values of the curl and the divergence fields in the upper and lower rows, respectively,

according to Eq. (44). Unit circles around the origin are indicated by the dashed lines.

Solid black circles of radius
√(

µ
2

)2
+ 1, connect the fixed points and are cut in half by the

separatrix xs = µ/2. Trajectories on the phase plane encircle the fixed points, following

Eq. (45), are indicated by the white closed curves. For the avoided crossing point, µ = 0,

the dynamics on the separatrix for δ = ±π
2
corresponds respectively to the wave

configurations of 5(a,b).

pseudoenergy must vanish to obtain modal instability - a somewhat confusing result. How-

ever here, for the stable interaction, the system is Hermitian and consists of a straightfor-

ward analog to the elementary Planck–Einstein (particle) energy-(wave) frequency relation

E = ℏω. ℏ is the elementary action unit of a single quantum particle, thus for the electron

gas of density ρ, the energy density is E = [ρℏ]ω. For Rossby waves the pseudoenergy

E = Aω, where the wave action A is shown here to be equivalent to the electron gas den-

sity. Therefore, up to the scaling constant factors of the Planck number and the electron

gas layers’ volume, the conservation of wave action is analogous to the conservation of the
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total action of the Cooper pair quasi-particles. Furthermore, following the same logic, (18)

can be regarded as a classical manifestation of the de Broglie (particle) momentum-wave

number relation P = ℏk. This suggests an intriguing classical perspective on wave-particle

duality.

One may ask why the analogy between such two remote physical systems, one quantum

and the other classical, works. The correspondence is even more surprising when considering

the fundamental dispersion relations of de Broglie matter waves and Rossby waves. The

Schrödinger equation for the wavefunction ψ of a particle with mass m, in the absence of

an external potential [20], and the vorticity equation for streamfunction ϕ on a negative

constant vorticity gradient β-plane, in the absence of mean flow [21], read:

ψ̇ = i

(
ℏ
2m

)
∇2ψ , q̇ = ∇2ϕ̇ = i(βk)ϕ . (46)

Hence, for a given wavenumber k in the x direction the roles of the function and its Laplacian

are flipped when we compare between the two equations. Consequently, the dispersion

relations of plane waves of the form ei(k·x−ωt) (where k and x are the wavenumber and

position vectors) are very different: ωdeBro = ℏ
2m

k2 and ωRos = β k
k2 . The former can be

interpreted as a sort of irrotational compressible quantum pressure waves [22], whereas the

latter as vortical waves, resulted from advection of the mean flow vorticity. In the presence

of a constant potential U in the Schrödinger equation, and a constant mean flow u, in the

vorticity equation, Eq. (46) becomes:

ψ̇ = i

(
ℏ
2m

)
∇2ψ − i

U

ℏ
ψ =⇒ ωdeBro =

ℏ
2m

k2 +
U

ℏ
, (47a)

∇2ϕ̇ = i(βk)ϕ− i(uk)∇2ϕ =⇒ ωRos = k

(
β

k2
+ u

)
. (47b)

Thus, for the de Broglie waves the constant potential adds energy but does not affect their

group velocity, whereas for the Rossby waves the mean flow adds a Doppler shift.

In the Feynman model, the macroscopic wavefunction is assumed constant along each

electron gas layer, thus ∇2ψ = 0. This assumption degenerates the de Broglie wave dy-

namics, consequently resulting in constant frequency U/ℏ for each isolated gas layer. It

also excludes the existence of the nonlinear quantum (Bohm) potential, appearing in the

Madelung fluid-like representation of the Schrödinger equation [5].

For the interfacial Rossby waves at y = y0, β = |∆q0|δ(y− y0), which makes the vorticity

perturbation a delta function at the interface with a wavy streamfunction in the x direction

23



and evanescent structure in the y direction. For u0 < 0, this gives the dispersion relation

of Eq. (28)
(
1
2
|∆q0| − k|u0|

)
. Consequently, U/ℏ ⇐⇒

(
1
2
|∆q0| − k|u0|

)
, thus for given values

of the interfacial mean flow and vorticity gradient, a change in the wavenumber k accounts

for a change in the ground state U of the Cooper pairs in the electron gas layer. The other

ingredient that fits in is the simple representation for the tunneling between the supercon-

ducting layers in the Feynman model (σ) that is represented by the evanescent structure of

the cross-stream velocity induced by each interfacial waves σ 7→
√
|∆q1||∆q2| e−kY /2 .

The equivalence between the two systems has therefore resulted from the gross simplifica-

tion of the physics describing the two systems. It would be interesting to examine whether

such equivalence is maintained when considering more realistic setups. For instance, a

straightforward extension could be a case where the superconducting layers are not entirely

homogeneous, so that the gradients of the phases yield currents within the layers. In the

fluid system this may be equivalent to a slow variation of the mean flow and the mean vor-

ticity gradients across the interfaces, so that the Rossby wave dynamics would be described

using WKB approximation. We leave this analysis for a future work.

The comparison between the systems raises the question whether the two-Rossby wave

system can serve as a sort of a hydrodynamic qubit device (which would obviously be

enormous in size and extremely slow in comparison to trapped ions or superconducting

quantum interference devices (SQUIDs) [17]), even in principle. However, despite of the

equivalence between the two systems, including the “fuzzy collapse” behavior, the fluid

system is classical, thus lacks the features of quantum collapse and entanglement, which are

essential requirements to perform quantum computation.
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Appendix A: Action-at-a-distance as tunneling

As discussed in subsection IVA, the analog for tunneling in the fluid system is the action-

at-a-distance between the waves, mediated by the far field cross-stream velocity vi, induced
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FIG. 8: The velocity and pressure fields induced by the interfacial wave, positioned at

y = y1. The undulated solid line indicates the wave displacement η at the interface. The

velocity arrows indicates the Rossby propagation mechanism, translating the displacement

to the right counter the mean flow u1. The velocity field decays exponentially away from

the interface but induces a non zero field on interface y2 (the tunneling effect). The

induced pressure filed Eq. (A2), is indicated by the colored contours where red (blue) refers

to positive (negative) values. At the steering level ys, ĉ1 = u1(ys). This is enabled as in the

x direction the pressure gradient force balances the acceleration/deceleration of u1(ys),

resulting from the vertical advection of the mean flow by the velocity perturbation v1(ys).

In the y direction the pressure gradient must vanish there in order to allow the v field to

be passively advected by u1(ys).

by each wave on the other. For a classical incompressible fluid, action-at-a-distance is not

“spooky” as in quantum mechanics [23], in the sense that the speed of sound (playing an

equivalent role to the speed of light in quantum mechanics), is assumed infinite (zero Mach

number), thus information is assumed to be travelling “infinitely” fast within the fluid.

The constant shear layer in between the two interfaces is the analog for the insulator in

the Josephson junction device. As the vorticity perturbation field is non zero only at the
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interfaces, the in between shear layer is transparent to it. However, one may ask how the

two components of the induced velocity field, together with the induced pressure field, resist

the shear and maintain untilted structures.

Consider then profile Eq. (30) and the fields induced by the upper interfacial wave, q1 =

Q̂1δ(y − y1)e
ik(x−ĉ1t) on the shear layer below y2 < y < y1. Applying Eq. (26) for y0 7→ y1,

the induced fields satisfy: (ϕ1, u1, v1) = 0.5(−k−1, 1,−i)Q̂1e
k(y−y1)eik(x−ĉ1t), together with a

pressure field p1 = p̃(y)eik(x−ĉ1t), that is yet need to be found. The steering level, that is

the height ys, where the mean flow is equal to the phase velocity of the wave: u(ys) = ĉ1 =

(−|u1| + |∆q1|
2k

), is located at ys = y1 − 1
2k

|∆q1|
qM

, where we choose |∆q1|
qM

= 1 − qT
qM

< 2kY , to

ensure the steering level to be found inside the middle shear layer. Above the steering level

ĉ1 > u(y), whereas below it ĉ1 < u(y). Hence, as indicated from the momentum equation

of Eq. (16), to maintain the untilted structure of the induced fields outside the steering

level, the pressure gradient force implied by the wave field, together with the cross-stream

advection of the mean shear flow, must balance the advection of the mean flow. Substitute

in the two-component of the momentum equations we obtain:

[ĉ1 − u(y)]u1 = p1 − qMϕ1 ; [ĉ1 − u(y)]v1 = − i

k

∂p

∂y
, (A1)

from which we obtain the induced pressure field:

p1 = −0.5

[
qT + qM

2k
+ qM(y1 − y)

]
Q̂1e

k(y−y1)eik(x−ĉ1t). (A2)

Thus, the wave’s induced pressure field is in anti-phase with its vorticity field (fig. 8). At

its home base interface (y = y1), p
1
1 = −

(
qT+qM

4k

)
Q̂1e

ik(x−ĉ1t) =
(

qT+qM
2

)
ϕ1
1 ≡ q1ϕ1

1 [24]. At

the steering level ps1 = qMϕ
s
1 and

(
∂p1
∂y

)
ys

= 0. The complete untilted wave structure that is

induced (“tunneled”) from the interfacial vorticity Rossby wave at interface 1 onto interface

2 is:

(u, v, p)21 = 0.5

[
1,−i,−

(
qT + qM

2k
+ qMY

)]
Q̂1e

−kY eik(x−ĉ1t). (A3)
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Appendix B: Equivalence between the Hamiltonians of the Rossby wave and the

Josephson junction systems
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