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Abstract

Tropospheric ozone, known as a concerning air pollutant, has been associated with health
issues including asthma, bronchitis, and impaired lung function. The rates at which peroxy
radicals react with NO play a critical role in the overall formation and depletion of tropo-
spheric ozone. However, obtaining comprehensive kinetic data for these reactions remains
challenging. Traditional approaches to determine rate constants are costly and technically
intricate. Fortunately, the emergence of machine learning-based models offers a less resource
and time-intensive alternative for acquiring kinetics information. In this study, we lever-
aged deep reinforcement learning to predict ranges of rate constants (k) with exceptional
accuracy, achieving a testing set accuracy of 100%. To analyze reactivity trends based on
the molecular structure of peroxy radicals, we employed 51 global descriptors as input pa-
rameters. These descriptors were derived from optimized minimum energy geometries of
peroxy radicals using the quantum composite G3B3 method. Through the application of
Integrated Gradients (IGs), we gained valuable insights into the significance of the various
descriptors in relation to reaction rates. We successfully validated and contextualized our
findings by conducting cross-comparisons with established trends in the existing literature.
These results establish a solid foundation for pioneering advancements in chemistry, where
computer analysis serves as an inspirational source driving innovation.

Introduction
In the field of atmospheric studies, there has been a great deal of interest in global tropospheric
chemistry and its influence on climate [1, 2, 3]. In general, the troposphere is considered the
region of the atmosphere situated 10-18 km from the earth’s surface, depending on the latitude
and season. The temperature ranges from 210-289 K (Kelvin), and pressure averages 1013
mb (millibar) at Earth’s surface to 140 mb near the tropopause region [4]. The abundance of
tropospheric ozone is changing significantly; photochemical pollution plays a crucial role in ozone
(O3) formation in the tropospheric region. The main sources of hazardous chemical compounds
that are emitted into the troposphere as a result of human activities can broadly be classified as
anthropogenic (pollution) [5] and biogenic sources [6]. From the existing literature, it is evident
that anthropogenic NOx emissions cause high ozone concentrations [7, 8, 9, 10].
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One point of potential confusion regarding the ozone (O3) layer is that in the stratosphere
it plays an important and actually desired role in restricting the transmission of ultraviolet
radiation below 290 nm, noting that the latter contributes to skin cancer. In contrast to the
stratosphere, in the lower troposphere, high (O3) levels are associated with adverse effects on
human health; concentrations of more than 70 ppb (parts per billion) in the are considered
to be hazardous [11] and are associated with health issues including asthma, bronchitis, and
impaired lung function. Hence it can be stated that in the troposphere as opposed to within the
stratosphere, high ozone (O3) concentration makes it a dangerous air pollutant that has serious
effects on the ecosystem [3].

Numerous experimental research has been conducted with the goal of identifying the danger,
important biological effects, and doses pertinent to health declines following trophospheric ozone
exposure [12, 13]. Globally, anthropogenic O3 pollution is thought to be responsible for 0.7
million annual fatalities [14, 3, 15]. In addition to lung damage in humans, crop yields are
negatively impacted by ozone, with negative effects on stomatal conductance, photosynthetic
carbon assimilation, and plant growth [3].

One of the main sources of tropospheric O3 formation is via the photolysis of NO2 [16], as
shown in the following pair of reactions:

NO2 + hν −→ NO + O(3P) (1)

O(3P) + O2 + M −→ O3 + M (2)

It has been found that a significant source of atmospheric reactive carbon, and ultimately the
reactant NO2 in Reaction (1), is vegetation [17]. Most reactive carbon emissions from plants
are currently understood to comprise volatile olefinic substances such as isoprene and monoter-
penes [18, 19]. The oxidation reaction of such volatile organic compounds (VOCs) leads to the
formation of the intermediate ˙RO2 radical, which plays a key role in the formation of NO2 in the
troposphere. In particular, ˙RO2 is a reactant in the free radical reaction that converts existing
NO in the troposphere to NO2:

˙RO2 + NO −→ ṘO + NO2 (3)

Studying the factors contributing to ozone O3 depletion in the troposphere is important in un-
derstanding the balance with ozone production. The photolysis of O3 leads to the formation of
O(1D) which, followed by reaction with water vapor, forms ȮH free radicals, the same results in
a net loss of tropospheric ozone O3. In the setting of sufficiently low concentration of NO, O3

reacts with ȮH and ˙HO2 radicals. The corresponding reactions of ozone O3 with these two free
radical reactions are an additional source for the loss of tropospheric ozone. The concentration
of NO plays an important role in the net formation and loss of O3 in the troposphere. The net
formation of O3 is determined by the rate of reaction of RO2 radical with NO as given by the
Reaction 3. The number of NO molecules converted to NO2 plays a key role in deciding the
rate of formation of O3 in troposphere [20]. Because of the radioactive properties of O3 in the
ultraviolet and the infrared wavelength range, it plays an essential role in deciding the radiation
budget of the earth’s atmosphere [21]. This characteristic absorption of ultraviolet radiation
protects the biosphere from harmful radiation [22]. Considering the crucial nature of free radical
reactions in their contribution for determining ozone O3 dynamics in the atmosphere, we aim to
gain further insights into the rate contribution factors associated with the nature of hydrocar-
bons that undergo such reactions.
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In recent years machine learning (ML)-based approaches have increasingly replaced classical
methods to study reaction kinetics and mechanisms. The adoption is due largely to ML’s bet-
ter prediction accuracies and computational cost-savings [23, 24, 25]. A recent study [26], for
example, showed that ML-based prediction of key descriptors/parameters of reaction conditions
that determined kinetics could achieve higher accuracy compared to standard quantum mechan-
ical (QM) methods. ML also saved computational time – around 0.5 seconds versus several
hours for standard QM-based predictions [26]. In the context of synthetic organic chemistry
ML techniques have been used for the prediction of feasible reaction paths and products [27].
From existing literature, it can be seen that ML-based methods play a significant role in under-
standing atmospheric reactions [23]. In [28], a Gaussian Process Regression model was used for
the purposes of deciding the activation energies of nucleophilic aromatic substitution reactions.
Free radical reaction pathways were exhaustively investigated in [29] without requiring chemical
intuition, using a graph theory-based reaction pathway search approach. In [30], an ML-based
approach was used to model the mechanism and kinetics of OH radical reactions. ML showed
greater predictive capacity than traditional alternatives.

It is important to note that kinematics modeling based on traditional ML approaches requires
substantial domain expertise, as poor decisions of feature descriptors of the chemical system under
consideration at any step will lead to large modeling errors. A notable alternative is to use Deep
Learning [31] based approaches that form self-adapting descriptors that represent meaningful
information from raw data. A recent work [32] developed a deep learning framework for molecular
kinetics using neural networks that provided easily interpretable few-state kinetic models as
compared to traditional Markov models. A framework for screening candidate reaction solvents
was devised in [33], and chemical descriptors based on the frontier molecular orbital theory were
combined with a deep learning-based reaction kinetics model. In [34], a deep learning-based
framework was developed in an effort to obtain the kinetic model of photochemical reactions.
Deep learning was more robust in terms of experimental noise and typical pre-analysis errors
like time-zero corrections. In [35], a Deep Neural Network (DNN) with molecular fingerprints
as feature descriptors was developed to directly predict the ȮH radical rate constants with
respect to 593 organic contaminants. An ensemble model combining the DNN with XGBoost
was introduced in [36] for estimating the reactivity of ȮH radicals toward newly emerged organic
compounds.

Building upon the existing literature, in this work, we sought to design a practical ML-based
approach in order to estimate the nature of kinetics of reactions involving various VOCs, the
mechanism shown in Reaction 3. A significant challenge faced in the effective implementation
of such a method is that for the particular class of reactions under consideration, there are very
few experimental and computational studies reported in the existing literature. We compare
the relative performances of various ML-based approaches, including a recently introduced Rein-
forcement Learning (RL)-based data efficient alternative [37] to determine the optimality of the
kinetics modeling obtained. A much broader goal here is to allow the kinematics model correla-
tions with respect to input physical descriptors to provide a source of inspiration to explore new
insights involved in the kinetics of the reaction of peroxy radicals with Nitric Oxide (NO).
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1 Methods
In this section, we outline the set of methods used to analyze chemical kinematics data. The
kinematics modeling used here is either a simplified standard neural regression task (to predict
the reaction rate constant) or a NN-based classification task for estimating the possible order of
kinematics. The limitation of data for the task is acknowledged in this study; standard forms of
conventional methods in the field of deep learning (DL) are tried out for a rigorous comparison.

1.1 Neural Regression / Classification
We used regression in its most standard form via an Artificial Neural Network (ANN) to model a
set of inputs related to a continuous prediction. The target variable for regression/classification
is selected is the rate constant, k. We made use of a Neural Network Architecture whose hidden
layer neuron scheme follows a monotonic exponential relation with the number of hidden layers.
The ANN architecture used for this study is shown in Figure 1. We arrived upon the architecture
after on a rigorous random search [38] for hyperparameters.

51 x 1

Input Vector

512
ReLU-
Linear

256
ReLU-
Linear

128
ReLU-
Linear

64
ReLU-
Linear

1/ nclass

Linear /
Softmax

Figure 1: Architecture of the Neural Network used for continuous or discrete predictions.

To normalize the target variable, we used the standard min-max scaling procedure:

yscaled =
y − ymin

ymax − ymin
(4)

Note that, apart from the normalization, a log scale transformation [39] was applied to the target
variable apriori so as to improve its distribution. The objective function used for the purposes of
ANN-based regression was the standard mean squared error, which in its standard form (applied
to N data points) is as follows:

MSE (y, ypred) =

N∑
i=1

∣∣yi − yipred
∣∣2 (5)
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For the purpose of obtaining a discretized set of labels for classification, we performed a multi-
step clustering process as outlined in Algorithm 1. To obtain an optimal and reproducible set of
clusters, we used the k-means++ method [40] for all clustering steps mentioned in Algorithm 1.

Algorithm 1: Multi-Step Clustering for Data Discretization
Data: Target Variable - y
Result: Obtain Y (Class labels)
Obtain initial set of clusters and centroids
Yi, Ci = K-means++ (y);
Select majority class from the set of clusters
ym, cm = max (N(Yi));
Iterate until convergence is achieved
while iter < itermax do

if class balanced then
break;

end
Cluster on the majority class
Yj , Cj = K-means++ (y = ym);
Repopulate the set of clusters
Yi = Yi + Yj ;
Re-select majority class from the new set of clusters
ym, cm = max (N(Yi));

end
Return final set of clusters : Yi

The objective function we used for the vanilla form of ANN based classification was cross-entropy,
the standard form (applied to N data points) as shown in Equation 6.

CE (y, ypred) = −
N∑
i=1

Nclass∑
j=1

yij log(yijpred) (6)

We used the Adam [41] optimizer with a base learning rate of (10−3) for all ANN training
purposes. Note that all tunable hyperparameters used were obtained through random search.

1.2 Classification by Representation
In studies such as this, where there is an immense shortage of labeled data, learning a compact
latent vector representation model for a given set of data (for effective comparison) is a suitable
alternative, rather than learning a direct functional mapping from data to labels. Recent work
[42] outlines the effectiveness of contrastive objectives for supervised representation learning in
tasks where data is sparse, and label information is effectively utilized. For our purposes, we
used the following form of the contrastive loss [43]:

Lcontrastive(y1, y2) = (1−B)
1

2
(D(y1, y2))

2
+ (B)

1

2
[max (0,m−D(y1, y2))]

2 (7)

Note that in Equation 7, the Boolean label B signifies whether or not both latent representations
(y1, y2) have the same categorical label. We chose the distance metric D as the euclidean be-
tween the vectors. The margin parameter m decides the bound on the magnitude of the overall
contrastive objective, acting as an important hyperparameter for the overall setting.
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Figure 2: Siamese neural network architecture used in the representation learning framework.

In order to generate the pair of embeddings required for the framework at each step, as outlined
in the objective (Equation 7) we made use of the Siamese network architecture (Shared Weights)
as illustrated in Figure 2.

1.3 Classification by Reinforcement Learning
In this section, we outline the adaptation of a deep reinforcement learning (DRL)-based approach
(as Introduced in [37]) for optimal classification in sparse data settings. The approach is primarily
based on the Deep Q-Learning [44] method, where classification is reformulated as a multi-step
decision-making process instead of single-step prediction modeling. The advantage of doing so is
the additional control on the variance of the objective function over the training period. Doing
so markedly improves the algorithm’s overall data efficiency by allowing a wider search space
for parameter optimization. As in any classic RL setting, the overall goal is to form an agent
(policy) that performs optimal actions in given state, where the actions’ optimality is governed
by scalar feedbacks (rewards). More formally, Q-Learning [45] proceeds through the optimization
of Q-value (action value), which for a given policy (π) and a discounted Markov Decision Process
(MPD) is as outlined in Equation 8.

Qπ(st, at) = E
[
Rt+1 + γRt+2 + γ2Rt+3 + ... | (st, at)

]
(8)

Q-Learning proceeds by the principle of temporal difference learning, where the Q-value estimate
of a given step (training epoch) is compared with an estimated target using the bellman opti-
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mality equation. We used the following modified form of the Bellman equation [46] to estimate
the target Q-value:

Qπ
target(st, at) = Rt+1 + γmax

a
{Qπ(st+1, a)} (9)

Note that we used a simple two-state deterministic Markov Decision Process (MDP) to model
the state transition dynamics. In this formulation, a single state is defined by a data point and
a Boolean that indicate the prediction’s correctness. The MDP is formally illustrated in Figure
3.

Figure 3: The simplistic Markov Decision Process used, illustrating the state-action interplay.

We used a binary reward that depended on the state-action pair, as shown in Equation 10. Note
that the prediction Boolean can vary with the reward’s nature.

Rt =

{
+1 if at−1 = label
−1 if at−1 ̸= label.

(10)

The DRL setting uses a neural network (functional modeling) to predict the Q-values of possible
actions at a given state. The policy of action selection during each training step is based on the
ϵ-greedy strategy; each transition data (st, at, Rt+1, st+1) is stored in a memory buffer. The
network optimization step proceeds by sampling a batch of transitions from the memory buffer
and estimating the target Q-value using equation 9. Now a simple Mean Squared Error objective
can be used to compare the error in the Q-value estimate as modeled by the network. Note that
the hyperparameter setting for the optimization setting is the same as that used in the other
classification settings, which enables formal comparison between all settings used. Illustrated
in Figure 4, the network architecture is slightly varied to accommodate for the boolean state
variable.
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Figure 4: The Multi-Input neural network architecture used for the Deep Reinforcement Learning
setting. The two components of the state are initially processed in separate branches to ensure
compatibility.

2 Experiments and Results

2.1 Data Collection
A set of molecular parameters were chosen for each of the peroxy radicals of particular VOC,
which reacts with NO, substrate from the minimum energy geometries of the peroxy radical
optimized with G3B3 quantum composite method by using Gaussian16 program suite [47]. A
total of 51 global descriptors were chosen in this work as input parameters to represent an overall
structural representation of the peroxy radical. These molecular parameters included the number
of carbon(nC), the number of hydrogen(nH), and various other atoms present in the molecular
structure of peroxy radical. The parameters also included molecular distance edge(MDEC),
fraction of rotatable bonds(RotBtFrac), partial positive surface area (PPSA), and various other
global descriptors obtained using PaDEL software [48]. The parameters were chosen to make the
model efficient in predicting the reaction outcome with significant accuracy.

2.2 Data Preparation
The dataset from experimental analysis contained 91 data points. We assumed that the data
distribution obtained was noise-free and that possible experimental biases were at a minimum.
Considering the value range of the dependent variable (Y ), we re-scaled using standard log
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scaling:

Y = log

(
Y − Ymin

Ymax − Ymin

)
(11)

The train-test split for regression was 81:10, where the test data was sampled at random from
the dataset. For the purposes of binary classification, the class distribution obtained after the
clustering procedure was 41:50 (high yield: low yield). The train-test split was chosen to be
71:20. For testing, 10 data-points were chosen at random from each class.

2.3 Model Comparison

(a) Vanilla Classification (b) Representational Learning

(c) RL based Classification

Figure 5: Average confusion matrices (ceiling integer value) obtained for corresponding models
on full dataset evaluation, post model training in each proposed setting.
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We began our analysis by cross-comparing the classification metrics obtained by the three dif-
ferent settings. The confusion matrices obtained after runs on a fixed hyperparamter (tuned)
setting are shown in Figure 5. Note that the RL-based setting was able to converge nominally in
the dataset, whereas the Vanilla classification setting showed under-fitting behavior. Our study
aimed to investigate the significance of the intricate analysis perspectives brought in through
neural networks. The variable importance of the best-performing model is further analyzed us-
ing the Integrated Gradients (IGs) method to obtain critical insights into the analysis perspective
brought in through predictive modeling of the data. The variable importance obtained from IGs
is plotted out for each variable in possible ranges (limited data samples) as shown in Appendix
A.

Figure 6: Integrated gradient map outlining the variable importance obtained.

We cross-compare the trends obtained from our method with those of existing literature to
validate and obtain new insights that may open doors to possible research directions in the field
of chemistry.

3 Discussion
We discovered several correlations between the input molecular descriptors and the target variable
i.e., rate constant k. Different geometric descriptors were used to describe the structural feature
of different peroxy radicals and their interaction with NO. It is observed that the contribution
toward k is approximately linearly positively or negatively correlated with the number of carbon
atoms in the peroxy radical and the type of bonding they were involved in, as shown in Figures
7(a) and 7(b). We observed that the bonding pattern and hybridization of the carbon atom also
play an important role in determining k for the studied class of reaction.

In Figure 7(a), the descriptor C1SP3 follows a positive correlation with rate constant k
which indicates that the contribution towards k value increases with increasing number of SP3

"C" present in the molecule which are attached to only one other "C" atom. The increased
number of terminal -CH3 group increases the electron density on the peroxy radical as a result
of +I inductive effect, which contributes towards the reactivity. Figure 7(b) indicates a negative
correlation between the descriptor C2SP3 and its contribution towards the "k" value. The
increase in SP3 "C" attached to two other "C" i.e., -CH2 group leads to a decrease in the
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Figure 7: The contribution trends of various important chemical descriptors towards the rate
constant "k" value.
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contribution towards the "k" value. Here the +I effect of the terminal -CH3 group decreases
with an increase in the value of C2SP3 which causes the contribution to the "k" value to decline.

The number of halogens also appears to correlate linearly k, as seen in Figure 7(c and d).
In Figure 7(c), we see that the contribution towards the "k" value increases with an increase
in the number of Fluorine atoms present in the peroxy radical. On the other hand, in Figure
7(d), the contribution towards "k" value decreases with increasing number of Cl atoms present in
the peroxy radicals. Presumably, halogen bonding between the Cl atom and NO diminishes the
interaction of NO with the peroxy radical and the feasibility of the reaction. In halogen bonding,
a positive region, called a σ-hole, forms around the surface of "Cl." The σ-hole is responsible for
the existence of halogen bonding of the "Cl" atom, whereas the halogen bonding is not shown by
the "F" atom due to its higher electronegativity and limited polarizability [49]. "F" exhibits a
very strong -I effect, which contributes to the higher stability of the reactive complex produced
between the peroxy radical and NO. We infer that the enhanced stability underlies the positive
correlation between number of "F" and the "k" value.

We also examined PPSA1, which is the partial positive surface area, defined by:

PPSA1 = Σ(SAi) (12)

where (SAi) is the surface contribution of ith positive atom in the peroxy radical. Figure 7(e)
illustrates the effect of PPSA1 by showing how the contribution to "k" increases as the peroxy
radicals’ PPSA1 value rises.

Finally, it is evident in Figure 7(f) that as the peroxy radical’s molecular weight (MW) rises,
so does its contribution to the "k" value.

4 Conclusion and Future Work
We have shown that deep learning with a basic artificial neural network can reliably identify
key contributing factors to free radical reaction kinetics in the troposphere. In particular, deep
reinforcement learning is a data-efficient technique that permits accurate algorithms when only
a small amount of training data is present. In the present case, as is often the case, only a
small amount – by deep learning standards – of experimental data was available for analysis.
Nevertheless, as we have seen notably in the realm of medical images, deep reinforcement learning
can learn in a generalized fashion even in the presence of limited training data. The deep
reinforcement learning-based method used here is able to predict the range of kinetics and is able
to generalize the predictive ability of the neural network to predictive kinetics of peroxy radicals
with a testing set accuracy of 100%. In this study, we report a few observed correlations between
the descriptors and their influence on the rate constant "k" value. In particular, the correlations
obtained for the molecular descriptors such as number/type of halogens present in the peroxy
radical as well as physical descriptors like PPSA1 and Molecular weight (MW) may provide
a fresh perspective for atmospheric research on the kinetic behavior of various radicals. Future
work will extend the current approach to use another small-data method: evolutionary strategies.
Like deep reinforcement learning, evolutionary strategies have succeeded in image classification
when only a few training images are present. We expect to obtain similar, intuitively consistent
trends as we have in the presented work for deep reinforcement learning. We will in future work
extend the approach to study related chemical systems in environmental science and systems
biology.
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