
1 
 

1 
 

 

Energy Transfer Mechanism Under Incoherent Light Excitation 

in noisy Environments: Memory Effects in Efficiency Control  

Rajesh Dutta1 and Biman Bagchi2* 

1Department of Chemistry, Purdue University, West Lafayette 47906, Indiana, USA. 

2SSCU, Indian Institute of Science, Bangalore 560012, India. 

*Email: bbagchi@iisc.ac.in, profbiman@gmail.com 

Abstract 

Fluctuations in the energy gap and coupling constants in and between chromophores can 

play important role in the absorption and energy transfer across a collection of two level 

systems.  In a noisy environment, fluctuations can control efficiency of energy transfer 

through several factors, including quantum coherence. Several recent studies have 

investigated the impact of light-induced stationary quantum coherence on the efficiency 

of transferring optical excitation to a designated "trap" state, crucial for subsequent 

reactions such as those in photosynthesis. However, these studies have typically employed 

either a Markovian, or a perturbative approximation for the environment induced 

fluctuations. In this study, we depart from these approaches to incorporate memory 

effects by using Kubo's quantum stochastic Liouville equation (QSLE). We introduce the 

effects of the decay of excitation (to the ground state) and the desired trapping that 

provides the direction of the motion of the excitation. In the presence of light-induced 

pumping, we establish a relation between the mean survival time, efficiency, and the 

correlation decay time of the bath-induced fluctuations. We find a decrease in the steady-

state coherence during the transition from the non-Markovian regime (characterized by 

small values of fluctuation strength V and inverse of bath correlation time b) to the 

Markovian limit (where V and b are both large), resulting in a decrease in efficiency. 

Apart from V and b, the ratio V2/b plays a crucial role (as in Haken-Strobl model) in 

determining the mechanism of energy transfer and shaping the characteristics of the 

efficiency profile. We recover a connection between transfer flux and the imaginary part 

of coherences in both equilibrium and excited bath states, in both correlated and 
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uncorrelated bath models. We uncover a non-monotonic dependence of efficiency on site 

energy heterogeneity for both correlated and uncorrelated bath models. 

I. Introduction 

That fluctuations in environment can play important role in quantum relaxation and quantum 

transport have been well-known for a long time.1-5 When a system consisting of a large number 

of weakly coupled two level systems is placed under optical excitation (or pumping), both the 

absorption and subsequent transport of energy may depend crucially on the amplitude and time 

correlations of fluctuations in energy (the diagonal terms) and coupling coefficients. Recent 

developments in both theoretical and experimental studies have unveiled the crucial role played 

by the noisy protein environment within photosynthetic complexes, contributing to the 

enhancement of the excitation energy transfer process and maximizing overall energy transfer 

efficiency.6-16   Noise can induce resonance matching condition, thus fostering energy transfer.  

Thus, understanding the role of noise in our quest for conditions that allow efficient transfer of 

absorbed excitation energy from chromophores to reaction centre holds paramount importance. 

Earlier Haken, Strobl, Reinecker and Silbey developed elegant theories that included partly the 

effects of quantum motion in the diffusion of energy in a one-dimensional array of two-level 

systems.1-3 A non-Markovian generalization of the same model was presented by Bagchi and 

Oxtoby.17 

 Intense interest in this field is derived partly from the realization that the effects of noise may 

offer insights for advancing solar energy technologies such as photovoltaic devices and 

artificial photosynthesis. The efficientt energy transfer prompts an intriguing inquiry into 

identifying optimal conditions for maximizing the excitation energy transfer process within a 

multilevel extended quantum dissipative system. 

The sub-picosecond time scale of quantum coherence observed in experiments on 

photosynthetic complexes6-9 or conjugated polymers18,19 raises several questions about the 
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energy transfer process. One of these concerns is whether dynamical coherences induced by 

coherent ultrashort laser pulses themselves play a role in efficient energy transfer. Because, in 

natural conditions, energy transfer in photosynthetic light-harvesting occurs through incoherent 

sunlight. Furthermore, despite the short time scale of dynamical coherence, recent studies 

highlight the crucial role of steady-state coherences in non-equilibrium steady-state (NESS) 

for efficient energy transfer to the reaction center. The NESS envisages a steady flow of the 

excitation to the sink. 

Over the past decade, there has been extensive research into the role of quantum coherence in 

excitation energy transfer, particularly in noisy environments. One of the significant challenges 

in studying excitation energy transfer lies in the non-perturbative treatment of intra-system or 

system-bath coupling, as the energy transfer occurs within the intermediate coupling regime 

for photosynthetic complexes. In our recent studies, we explored different coupling regime of 

energy transfer in photosynthetic system.14,15 We observed that fluctuations not only have the 

capacity to disrupt coherence but, under specific circumstances, can also facilitate it. We 

demonstrated that temperature exerts the most significant influence in the intermediate 

coupling limit, where it can facilitate the transition from coherent to incoherent transfer. We 

also observed the decrease in temperature induces long-lasting quantum coherence, which 

subsequently triggers delocalization, resulting in the enhancement of coherence length. 

Coherence can be subdivided into two categories namely dynamical and static coherence. 

While dynamical coherence has been meticulously examined through the time evolution of the 

off-diagonal elements, it remains a transient phenomenon linked with the quantum beating 

observed in experiments. Due to the brief duration of quantum beating, the static coherence has 

a greater significance. The static coherence remains constant for long times and associates to 

stationary effects in equilibrium states or non-equilibrium steady states. We also established a 

connection between stationary coherences and non-canonical equilibrium population 
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distributions.20 Absence of light-induced energy transfer, results in equilibrium coherences in 

the long-time limit. The finite coherences at equilibrium are indicative of quantumness and 

defy replication in classical descriptions.21,22 The finite coherences can give rise to non-

canonical equilibrium populations.23-25 However, in the presence of a source term or energy 

pumping, the energy transfer is predominantly governed by the NESS condition. 

The inclusion of decay and trap possess several levels of theoretical challenge. First, the 

trapped state or reaction center must function as an energy sink, ensuring that no energy is 

regained once reaching this state. While this concept can be easily implemented in a classical 

framework via the rate description, its implementation becomes more intricate within a 

quantum formalism due to the Hamiltonian's hermiticity. Additionally, the complexity 

intensifies because of spatial and temporal correlation of the fluctuating environment in 

presence of light induced pumping. In presence of light induced pumping, the NESS has utmost 

importance in efficient energy transfer to the trap state.  

Theoretical investigations in this domain can be broadly categorized into two groups. Firstly, 

the use of Markovian and perturbative equations of motion to explore optimal conditions for 

energy transfer in the absence of light-induced coherence. Gaab and Bardeen26 predicted the 

optimal combination of trapping and dephasing for the minimal trapping time in N-site 

homogeneous chain systems by manipulating the trap position. In a series of insightful studies, 

Cao, Silbey, and co-workers explored the optimal conditions for energy transfer in both model 

and real photosynthetic complexes.27-30 They studied linear and closed-loop configurations to 

observe the impact of phase modulation. Subsequently, they unveiled the role of the 

environment in the FMO complex using both seven and eight-site descriptions, considering 

dephasing models and incorporating spatial and temporal correlations to capture the real 

scenario in the energy transfer process within a dissipative environment. Cao et al. presented a 

scaling theory of average trapping time in weak and strong damping regimes, applying the 
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theory to energy transfer in symmetric dendrimers. Aspuru-Guzik and their co-workers used a 

general dephasing model to investigate environment-assisted quantum transport in the FMO 

complex and binary trees.31,32 Plenio and their co-workers explored the dependence of transfer 

efficiency on energy mismatch and dephasing rate for both linear and globally connected 

network models.33,34 Chen and Silbey considered independent dichotomic noise, employing an 

exactly solvable approach to calculate population relaxation and determine the optimal 

conditions for energy transfer in symmetric dimers and photosynthetic complexes.35 In our 

earlier study, we compared quantum and classical approaches for efficient energy transfer 

across various coupling limits, analysing both linear and cyclic models.36 

On the other hand, there are studies that focus solely on investigating light-induced steady-state 

coherences, and its application towards efficient energy transfer in model and photosynthetic 

systems.37-45 Zerah-Harush and Dubi revealed a universal origin for environment-assisted 

quantum transport in quantum networks with dephasing environment based on the connection 

between exciton current and occupation within a Markovian open quantum system 

framework.41,42 They used a Lindblad equation and investigated the condition with and without 

static disorder. Cao and his colleagues examined the dimer model and its interaction with the 

environment, treating it as pure dephasing within the Haken-Strobl-Reineker framework.43 

They elucidated a coherence-flux-efficiency relationship and further deduced that the quantum 

coherence, as portrayed by the imaginary component of the density matrix, remains invariant 

across different basis sets for the dimer model. Jung and Brumer employed a hybrid 

methodology, merging the non-secular description of the Bloch–Redfield treatment with a 

Lindblad description for the remaining environment, in order to investigate the asymmetric 

donor-acceptor model.44  

However, there are certain aspects in all these studies that necessitate further investigation. For 

example, most of these studies either rely on the Markovian master equation or employ a pure 
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dephasing model approximation. However, in photosynthetic and conjugated polymer 

complexes, the perturbative and Markovian approximation may underestimate quantum 

coherence. Consequently, obtaining an accurate description of the optimal conditions for 

energy transfer may be challenging. Similarly, the pure dephasing model, though highly 

simplified, understates the complexity of energy transfer dynamics in photosynthetic 

complexes and conjugated polymers by neglecting spatial and temporal correlations.  

While non-Markovian aspects and higher-order system-bath correlations have been addressed 

using the Hierarchical equation of motion,46,47 the study of the role NESS in obtaining optimal 

conditions for energy transfer remains unexplored. 

In this study, our objective is to bridge the gap between these two types of investigations and 

examine the role of incoherent light-induced steady-state coherence in efficient energy transfer, 

employing the non-Markovian quantum stochastic Liouville equation. In this work, we 

consider correlated and uncorrelated bath models to explore the optimal conditions for energy 

transfer process. Utilizing a non-perturbative hierarchical equation of motion (HEOM) based 

on the quantum stochastic Liouville equation (QSLE),48-52 we investigate various energy 

transfer regimes, including the strong coupling non-Markovian and weak coupling Markovian 

limits, in the presence of radiative decay and traps. Broad range of variation of parameters 

could be useful to study different type natural and artificial complexes. 

In this work, we obtained several potentially intriguing results briefly outlined as follows  

(1) In the case of a correlated bath, presence of excess coherence compared to an 

uncorrelated bath model leads to an increase in Mean Survival Time (MST) and 

reduction of efficiency. This distinctive behavior is not evident in the absence of 

incoherent light condition. The distinction becomes particularly pronounced at low 

intersite coupling (J), where the uncorrelated bath case exhibits an order of magnitude 

larger MST compared to the correlated bath model. This discrepancy arises from off-
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diagonal fluctuations playing a role similar to J, establishing connections between 

chromophores at small J, a scenario not achievable in the uncorrelated bath model. 

(2) Different behavior with respect to the fluctuation strength (V) and rate of fluctuation is 

observed in the transition from non-Markovian (small V and b) to Markovian limit 

(large V and b). Efficiency profile experiences a decline when transitioning from the 

non-Markovian regime to the Markovian limit. In addition, the role of V2/b is revealed 

determining the nature of energy transfer. 

(3) Transfer flux is defined with classical systems as a reference point, making it applicable 

for studying larger quantum networks. The transfer flux determines the pattern of 

efficiency with respect to the different coupling and relaxation parameters. 

Contribution of equilibrium and excited state coherences towards transfer flux can be 

disentangled for correlated bath model which is not possible for uncorrelated bath 

model. 

The organization of the rest of the paper is as follows. In section II, we present the models and 

the theoretical formalism, including the Hamiltonian employed. In section III, we discuss the 

steady state population and coherences for correlated and uncorrelated bath model. In section 

IV, we elaborate the mean time and efficiency. In section V, we describe efficiency, transfer-

flux and coherence relation. In section VI, we explain the effect of temperature. Section VI 

concludes with a discussion. 

II. Model, Hamiltonian and equation of motion 

For an isolated system driven by weak incoherent light one can write the Hamiltonian as 

follows 

   S LMH t H H t           (1) 

Where, the system Hamiltonian is given as 
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,

S k kl

k k l
k l

H k k J k l



          (2) 

Light-matter Hamiltonian can be written as 

   . 0 0LM k LM

k

H t t k k      E       (3) 

The transition dipole moment operator is given as  

†

0 0 0 0k k k

k

k k              (4) 

The light matter Hamiltonian represents single excitation since we consider weak excitation. 

In photosynthetic systems, the coherence time of the solar radiation is shorter than the time-

scales of the system, coupling and the bath time-scale. In this limit, the incoherent light can be 

treated as the white-noise model for the description of the radiation as follows 

  0LME t   and      *

2LM LM

I
E t E t t t


         (5) 

Here, I represents the pumping rate and 
2

k

k

   is magnitude of total dipole moment and 

the average is taken over the state of the incoherent light or the radiation density matrix. 

 Using perturbative approach and white noise approximation, one can obtain the equation of 

motion for isolated system as follows 

    0,St i H              (6) 

Throughout this work we assume 1 .  Here, 
0

0 02
0 0k k

I



   is pure coherent state 

after single excitation by the incoherent light. 

For an open quantum systems total Hamiltonian can be rewritten as follows:   
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int( )tot S LM BH H H t H H   
        (7)

  

In the present study, we consider the total Hamiltonian in the interaction representation of the 

fluctuating bath Hamiltonian, so that the interaction V is time dependent and can be modelled 

by a stochastic function with known statistical properties. In this interaction representation, the 

Hamiltonian can be represented as follows, 
 

( ) ( )effH t H V t            (8) 

where,  eff S LMH H H t 
          

 
,

 - -
2 2

t d
S k kl

k k l k
k l

k k
H E k k J k l i N N i k k



     (9) 

where kE is the energy of an exciton localized at site k and klJ  is the intersite coupling between 

excitations at sites k and l. N is the terminal site where trap is attached, kt and kd are the rate of 

trap and radiative decay respectively. For simplicity, we consider the decay rate is same for all 

sites or chromophore. In this study, we exclusively focus on the unidirectional energy transfer 

from the terminal chromophore to the trap through a trapping rate. We note that upon 

considering the interaction between the trap and the chromophore, significantly large trapping 

rate effectively disrupts the resonant condition essential for energy transfer. 

The stochastic Hamiltonian V(t) is next decomposed into diagonal and off- diagonal 

fluctuations 

,

( ) ( ) ( ) d od

k k l
k l

V t k k V t k l V t



        (10)  
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The Hamiltonian is augmented with anti-Hermitian parts such as exciton recombination and 

exciton trapping to evaluate the mean time to reach the reaction center and energy transfer 

efficiency. We assume that fluctuations around each chromophore are spatially uncorrelated. 

In other words, the fluctuating elements in the Hamiltonian at each chromophore site are 

independent of one another. However, when considering temporal correlation, we examine 

two distinct scenarios: (1) In the correlated bath model, (Fig 1a) fluctuation around different 

chromophores are same or correlated all the times. (2) In the uncorrelated bath model, (Fig 

1b) fluctuations are independent of each other around each chromophore.   

 

Figure 1: Schematic picture of light driven efficient energy transfer to the reaction center in 

presence of fluctuating environment (a) correlated bath model (b) uncorrelated bath model. Here, 

each site or chromophore is modelled by a two-level system. Pale blue back ground signifies the 

fluctuating environment. Two sites in same environment designates correlated bath whereas two 

sites in different environment corresponds to the uncorrelated bath model. RC represents the 

reaction center or sink. 

In Fig. 1 the ground state of the molecule couples with excited state via transition dipole 

moment ˆ
i .  Here, pumping rate I has dimension of inverse of time. Multiplication of transition 

dipole moment and electric field provide the dimension of energy (Eq. 3).  

We employ the non-perturbative quantum stochastic Liouville equation (QSLE) to treat 

quantum dissipative systems in different coupling regimes. We have previously discussed and 
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employed the approach in detail in our earlier studies.53,54 To maintain conciseness, we refrain 

from repeating the derivation but succinctly outline the fundamental steps leading to the final 

equations presented below (Eq. 11 and 12). First, we treat the light-matter interaction terms 

perturbatively, yielding a modified Quantum Liouville equation with the contribution of pure 

coherent states. The subsequent steps would be the same to the original stochastic Liouville 

equation, involving the joint probability distribution for the system and stochastic variable. 

This is followed by employing the Master equation of the stochastic variable to derive the 

ultimate reduced density matrix. The latter is then expanded in the eigenstates of the stochastic 

operator. These eigenfunctions are well-defined for two distinct processes: a Gaussian and a 

two-state Poisson. Remarkably, by considering only the first two eigenfunctions of the 

Gaussian Markov process, we deduce the equations for the Poisson bath. Here, we exclusively 

present the final equation of motion for correlated and uncorrelated bath model. 

The coupled equations of motion (EOM) for dimer with correlated fluctuation, as follows  

 

(11) 

 

where, we consider 1 , 
xO f Of fO  .  

Similarly, one can derive the coupled equations of motion for dimer with uncorrelated 

fluctuation and is given as follows  

    

            

           (12) 

   

   

0

1 2 ,0

1

1, 1,

0 ,

1 1 2 2 1 2 2 1

2 2 1 1 2 2 ( )

x x
m

m m m

x

t m d m od m m m m m m

m k l
k l

d
i E E iJ

dt

k k iV k l mb


   

        




     

 
       
 
 
 

 

     

     

0

1 2 ,00

1 1

1, 1, 1, 1,

0 0

1 1 2 2 1 2 2 1 2 2 1 1 2 2

           1 1 2 2

x xjk

jk jk jk t jk d jk

x x

d j j j j j k d k k k k jk d jk d jk

j k

d
i E E iJ k k

dt

iV iV jb kb


     

               
  

        

      
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where, Vod, Vd are the strengths of the fluctuation for correlated and uncorrelated bath 

fluctuation respectively and bod and bd corresponds to the rate of fluctuation.   is the reduced 

density matrix and suffix m and jk representing the eigenstate of the stochastic diffusion 

operator that can take 0 and 1 value for two level Poisson bath with eigenvalue 0 and –b. For a 

Gaussian stochastic process, the indices can vary from m=0 to infinity with eigenvalue -mb. 

We consider uncorrelated nearest neighbour fluctuations have same fluctuation strength and 

correlation time. The Kronecker delta terms in both correlated and uncorrelated bath case 

indicate the contribution of incoherent light induced pure coherent state. 

III. Steady state population and coherences: 

As we are interested in NESS, population of the two sites for correlated bath model, can be 

written using Eq. (11) as follows 

2
11 12 121
0 0 1

1 1 1

2
22 12 122
0 0 1

2 2 2

ˆ 22
Im Im

ˆ 22
Im Im

od

od

VI J

k k k

VI J

k k k


  


  

  

  

       (13) 

where, k1=kd and k2=kd+kt 

One can easily prove from the above equations 

11 22

1 0 2 0I k k            (14) 

Eq. (14) suggests the exciton pumping flux is equivalent to the exciton depletion flux. 

Equation for the steady state coherences can be written as 

     

     

12 11 22 11 22

0 0 0 1 1 1 2

12 11 22 11 22

1 1 1 0 0

ˆ ˆ.

0

od

od od

i k iJ iV I

i k b iJ iV

    

    

       

        

 
    (15) 

Population difference in excited bath state in the above expression can be expressed as 
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11 22 12 12

1 1 1 0

1 2

2 2
Im Imod

od od

J V
k b k b

   
 

          
    (16) 

Solution of the Eq. (15) can be obtained by using Eq. (13) and (16). The imaginary part of the 

steady state coherences in equilibrium and excited bath states are expressed as 

12

0

12

1

Im

Im

QR SN

MQ PN

MS PR

MQ PN















         (17) 

where, 

 

  

 

  

 

 

 

  

 

 

22
1 21 2 1 2

2 2 2 2

1 2 1 2 1 2

1 2 1 2

2 2

1 2 1 2

1 2 1 2

2
2

1 2 1 2

2

2

222
1

22

2 2

2
1

odod

od od

odod

od od

od od od

od od
od

od

od

k k bV kk k k kJ k
M

k k k k k k k b k b

k k bJV k k k
N

k k b k b k k

J k b V k k b k k
P

k b k b k kk b

J k b
Q

k b

   
   

      

   
  

    

    
  

     


 

 

 

  

 

 

 

 

 

 

2

1 2 1 2

2
2 2

1 2 1 2

2 2

1 2 2 11 2

2 2 2 2

1 2

2 2

1 2 2 1

2
2

1 2

22

ˆ ˆˆ ˆ.

ˆ ˆ

od odod

od od
od

od od

od

V k bk k b k k

k b k b k kk b

k k II Jk
R

k k k k

V k b k k I
S

k kk b

 

 

    
     
 


 

   

 


  

 

  (18) 

and, 
 1 2

2

k k
k


  

Now, substitution of the imaginary part of the coherences in steady state population one can 

obtain the following expression. 
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2
11 1
0

1 1 1

2
22 2
0

2 2 2

ˆ 22

ˆ 22

od

od

VI J QR SN MS PR

k k MQ PN k MQ PN

VI J QR SN MS PR

k k MQ PN k MQ PN







 
  

 

 
  

 

      (19) 

For an uncorrelated bath model, the steady state-population and coherence relation can be 

written as follows 

2
11 121
00 00

1 1

2
22 122
00 00

2 2

ˆ 2
Im

ˆ 2
Im

I J

k k

I J

k k


 


 

 

 

        (20) 

In this case, the coherence in excited bath states 12

mn  (m and n could be either 0 or 1) is coupled 

to the coherence in equilibrium bath states and thus cannot be separated. For both correlated 

and uncorrelated bath model, the first term (Eq. 13 and 20) indicates the contribution from the 

excitation and depletion at the same site or chromophore. However, the remaining terms are 

identical for both sites, with opposite signs indicating coherent transfer contributions.  

IV. Mean survival time and efficiency: 

Mean survival time require to reach the trap state can be defined using the steady state 

population as follows42 

0

1 ii

iI
             (21) 

Eq. (21) is either can be obtained from the stationary solution to the equation of motion or 

terms of residence time or integrated population. In general, the meantime can be obtained by 

solving linear system of equation using Eq. (11) and (12) 
0L    with the assumption of 

steady state i.e. 0  . As a result, one can obtain the stationary solution as 
1 0L  . In our 

earlier study, the mean survival time is defined for local molecular excitation.37 However, in 
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this work the excitation is induced by stationary sunlight where 
0 consists of delocalized 

excitations as well as interference between excitations. 

Efficiency or quantum yield can be defined as follows42 

 

22

0

11 22

0 0

t

d d t

k
Q

k k k



 


 
        (22) 

Here, efficiency is defined in terms of probability of trapping. We note that the denominator of 

Eq. (22) represents the total depletion flux, incorporating both decay and trapping effects, thereby 

equating to the pumping flux as expressed in Eq. (14). Therefore, the equation of efficiency or 

quantum yield simplifies to 

22

0

1
tQ k

I
           (23) 

In case of uncorrelated bath model, the mean time and efficiency equation can be replaced by 

00

ii  and 22

00 .  
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Figure 2: Panel (a)-(c) and (d)-(f) show plot of mean survival time at different trapping rate and 

decay rate kd=0.01 for correlated and uncorrelated bath model. (a) mean survival time vs. inter-

site coupling at fluctuation strength Vod=1 and bath relaxation rate, bod=1, (b) mean survival time 

vs. fluctuation strength (Vod) at J=1 and bod=1, (c) mean survival time vs. bath relaxation rate 

(bod) at J=1 and Vod=1. (d) mean survival time vs. inter-site coupling at fluctuation strength Vd=1 

and bath relaxation rate, bd=1 (e) mean survival time vs. fluctuation strength (Vd) at J=1 and 

bd=1, (f) mean survival time vs. bath relaxation rate (bd) at J=1 and Vd=1. 

In the case of photosynthetic energy transfer from the chlorophyll antennas to the reaction 

center, both the rate of trapping and energy relaxation is generally of the order of ~ 1ps -1. 

However, the recombination rate or relaxation rate towards ground state could be lower than 

1ps-1 by several order of magnitude, and the associated rate is ~ 1ns-1. We picked the time 

scales of trapping and decay such that the difference in time scale is similar to those in 

photosynthetic energy transfer.  

 Here, we chose the parameter space in dimensionless units, where energy parameters are 

scaled by the energy gap parameter ∆, which is assumed to be unity all through. Thus, the 

coupling parameter J and stochastic parameters Vd and Vod are all scaled by ∆=1. We have 

approached the Markovian limit by increasing the rate of fluctuations, denoted by bd (diagonal, 

that is, site energy) and bod (off-diagonal, intersite coupling) parameters and strength of 

fluctuation Vd and Vod. The theoretical results are discussed below. 

In Figure 2(a)-(c), the mean survival time (MST) is plotted with respect to intersite coupling, 

fluctuation strength, and the rate of fluctuation for the correlated bath model. Investigations 

into the photosynthetic system reveal that energy transfer occurs in the coupling regime where 

the intersite coupling and system-bath coupling strength are similar.  

In Figure 2(a), an initial rise in MST is noted with the increase in J at intermediate values of V 

and b. This suggests that the excitation at both sites fails to reach the trap state efficiently due 
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to the activation of intersite coupling, leading to quantum interference between pathways. 

However, as intersite coupling increases, the competition between V and b with J minimizes 

the MST. To confirm the role of quantum coherence, the MST is also evaluated at large V and 

b limit, where the destruction of quantum coherence eliminates the initial rise in mean survival 

time. In Figure 2(b), a similar feature is observed in MST vs. J as V is directly associated with 

J. At low values (close to J) of off-diagonal fluctuation, MST increases. Further increases in V 

result in a decrease in MST. The ratio V²/b also determines the nature of transport. At small J 

and large b, the plot exhibits a different pattern, with MST decreasing with increasing V and 

saturating after V²/b > 2J, indicating a transition from coherent to incoherent transport. For 

Figure 2(c), at the intermediate coupling regime (J and V equal), an increase in b leads to a 

decrease in MST, with a slow decrease observed at large values of b. In the low J and large V 

limit, mean survival time decreases with increasing b until the ratio V²/b is close to 2J. Beyond 

this point, further increases in b result in an increase in MST. Additionally, the dependence of 

MST on oscillator strength is verified, indicating that a large oscillator strength at the terminal 

site decreases MST.  

The MST plot for an uncorrelated bath is illustrated in Figures 2(d)-2(f). In both correlated and 

uncorrelated bath models, an increase in trapping rate results in a reduction in MST. In Figure 

2(d), as the coupling constant J increases, MST experiences an initial decrease, reaching a 

saturation point when J equals both V and b. This saturation indicates the existence of an 

intermediate coupling regime. A subsequent increase in b while keeping V constant leads to a 

further diminishing of MST. Emphasizing the earlier observation in the correlated bath case, 

the ratio V2/b plays a pivotal role in determining the nature of transport. Notably, the initial 

hump observed in Figures 2(a) and 2(b) is absent in both Figures 2(d) and 2(e), attributed to 

the protectionon of coherence due to the bath correlation. In Figure 2(e), an increase in V 

corresponds to a increase of the mean time, indicative of the destruction of coherence. This 
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observation is further clarified by examining Figure 2(f), where an increase in b results in a 

reduction of MST, attributed to the destruction of fluctuations. Intriguingly, at large values of 

V with fixed b, MST exhibits a subsequent increase. 

In order to further investigate the competition between J, V and b, plot of quantum yield or 

efficiency is shown in three dimension. Interestingly, energy transfer in photosynthesis is an 

efficient process because of large time scale separation between trapping and recombination.55 

Hence, to understand the competition between parameters clearly, comparable trapping and 

recombination or decay rates are assumed. 

 

Figure 3: Panel (a)-(b) show three-dimensional plot of quantum efficiency (Q) for correlated bath 

model at trapping rate kt=1 and decay rate kd=0.5. (a) quantum efficiency (Q) vs. intersite 

coupling (J) vs. fluctuation strength (Vod) at bod=1 (b) quantum efficiency (Q) vs. fluctuation 

strength (Vod) vs. bath relaxation rate (bod) at J=1. Panel (c)-(d) show three-dimensional plot of 

quantum efficiency (Q) for correlated bath model at trapping rate kt=1 and decay rate kd=0.5.  (c) 
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quantum efficiency (Q) vs. intersite coupling (J) vs. fluctuation strength (Vd) at bd=1 (d) quantum 

efficiency (Q) vs. fluctuation strength (Vd) vs. bath relaxation rate (bd) at J=1. 

The efficiency exhibits an opposing trend to that of MST. In Fig. 3(a), the efficiency of the 

correlated bath model is plotted against intersite coupling (J) and fluctuation strength (V). 

Figure 3(a) clearly illustrates that, for a fixed b and V, efficiency experiences an initial dip 

followed by an increase, eventually reaching saturation at large J. This initial dip is attributable 

to the onset of J, giving rise to quantum interference between pathways. Upon increasing V, 

both the minima and maxima shift towards higher J values due to the ongoing competition 

between quantum interference and environmental fluctuation. Conversely, at a fixed V and J, 

an increase in b results in the disappearance of the initial minima, followed by an overall 

enhancement in efficiency. This improvement is due to the destruction of quantum coherence 

induced by the rapid bath fluctuations. Similarly, according to Fig. 3(b), there is a decrease in 

efficiency when V increases for a fixed J and b. However, as b increases, efficiency shows an 

upward trend. Nonetheless, an increase in J leads to a further decline in efficiency.  

In the case of Fig. 3(c), efficiency shows an enhancement with the increase in J, followed by a 

saturation at large J for a fixed V and b. Similar to that of the correlated bath model, with the 

increase in V, efficiency decreases. Contrary to this, an increase in b shows an overall increase 

in efficiency. Analyzing Fig. 3(d), it can be inferred that with the increase in V at fixed b and 

J, efficiency decreases gradually and saturates at large V. In contrast, with the increase in b at 

fixed J, saturation occurs at a higher value of V and lower efficiency due to the decrease in the 

V²/b ratio. At the limit V and b∞, our model reaches the Markovian limit. In this scenario, 

rather than considering the individual parameters V and b, the dynamics of the fluctuating 

environment can effectively be described by a single parameter, as demonstrated in the Haken-

Strobl-Reineker-Silbey model.1-3  
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In the non-Markovian limit (characterized by low values of V and b), as depicted in Fig. 3(a) 

and 3(c), the efficiency is notably higher compared to the Markovian limit (where V and b are 

large), as illustrated in Fig. 3(b) and 3(d). According to Eq. (13), (20), and (23), the increase in 

efficiency is associated with an increase in the imaginary part of the steady-state coherences. 

Based on previous studies,14,15 we know that the memory effect enhances dynamical coherence. 

Therefore, we can infer that the memory effect promotes both dynamical and steady-state 

coherences. 

We also explore the impact of asymmetry or site energy heterogeneity (Δ) on efficient energy 

transfer. In both the correlated and uncorrelated bath models, efficiency exhibits a non-

monotonic relationship with Δ. Efficiency increases with increasing Δ, reaching a maximum at 

an intermediate value close to J, then decreases with further increases in Δ. Interestingly, for a 

fixed value of J and V, an increase in b leads to enhanced efficiency due to the decrease in the 

V2/b ratio. 

V. Transfer flux and multi-chromophoric system: 

Transfer flux plays essential role in characterizing the efficient energy transfer in extended 

systems or molecular network. Cao, Silbey and co-workers defined transfer flux23 (F) for 

classical system using integrated classical population as follows 

ij ij j ji iF k k            (24) 

Where, k is the rate of transfer between different sites and  is the integrated population or 

residence time. The equivalent transfer flux can be obtained for quantum system of correlated 

bath model as follows 

0 12 Im 2 Imij ij

ijF J V           (25) 
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In the case of correlated bath model, both the coherences in equilibrium and excited bath states 

play a crucial role.  

For uncorrelated bath the transfer flux can be simply written as 

002 Im ij

ijF J           (26) 

In the case of uncorrelated bath model, the coherences in excited bath state indirectly 

contributes towards the transfer flux via the coupling between element of density matrix. In the 

absence of source or pumping term, the transfer flux is zero for our QSLE dynamics at steady 

state because of detailed balance condition. Excitation energy transfer in photosynthetic 

complex is governed by NESS which is driven by absorbed photons.     

Now, using the definition of quantum yield or efficiency one can obtain the expression of 

efficiency in terms of transfer flux as follows 

2

2 12

2 2

ˆ
t

F
Q k

k Ik

 
  

 
         (27)  

The expression of efficiency can be easily extended to the linear chain of multi-chromophoric 

systems where the trap site is attached to the terminal site (N).  

2ˆ ijN
multi t

i jN N

F
Q k

k Ik





 
  

 
         (28) 

The two terms in Eq. (28) can be entitled as monomer and transfer contribution respectively. 

The plot of transfer contribution with respect to the intersite coupling, fluctuation strength or 

rate of fluctuation will be similar in nature to that of efficiency.  
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VI. Effect of Temperature 

Temperature effect in the equation motion can be included through different parameters such 

as J and V as well as temperature corrected equation of motion. While J exhibits weak 

dependency on temperature, a decrease in temperature leads to molecules being packed more 

closely together. Consequently, the overlap between wave functions increases, resulting in an 

enhancement of J. However, V has a strong temperature dependence and decreases rapidly with 

as the temperature decreases. Therefore, a decrease in temperature essentially indicates an 

increase in coherence as well as transfer flux.  

On the other hand, the stochastic theory deals with the fluctuation of energy states but does not 

incorporate dissipation terms in the equation of motion. Dissipation arises alongside fluctuation 

due to the system's interaction with a heat bath. In equilibrium, energy balance is achieved 

through fluctuation-dissipation dynamics. However, the dissipation term is absent in the 

stochastic Liouville equation as it neglects back reaction from the system to the bath. 

Consequently, at finite temperatures, the system fails to reach equilibrium in the long-time 

limit. However, this discrepancy can be eliminated considering bath as a collection of 

Harmonic oscillators. In this case, the bath correlation function has both real and imaginary 

part leading to the symmetric and antisymmetric part of the correlation function. The 

antisymmetric part of the bath correlation function is responsible for the dissipation. High 

temperature approximation results to the exponential decay of symmetric and antisymmetric 

part of the correlation. Temperature corrected equation of motion was derived by Taniumra 

and Kubo56 and can be written as follows 

 

            

           (29) 
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where, 
xO f Of fO   and 

oO f Of fO  . If one neglects the imaginary term that comes 

from antisymmetric part of the bath correlation the equation becomes equivalent the QSLE for 

Gaussian bath states. Eq. (29) can be extended the to incorporate the decay, trap and incoherent 

light induced contributions. Eq. (29) accurately determines energy transfer dynamics at room 

temperature for photosynthetic systems.7 QSLE overestimates the coherence with respect to 

the temperature corrected equation of motion which will essentially changes the MST and 

efficiency profile. In our earlier study, we showed the temperature correction equation leads to 

the non-canonical thermal distribution due to the system-bath correlation.16 As a result, the 

steady-state coherence arises from the combined effects of thermalization and light-induced 

NESS conditions in the presence of trapping and decay processes. 

VII. Conclusions: 

Understanding the efficiency of energy transfer to the trap in the photosynthetic reaction system 

or its biomimetic analogue requires study of quantum transport in the presence of quantum 

coherence and energy decay. In the systems of interest, the study additionally has to deal with 

noisy environment that gives fluctuations in the diagonal and off-diagonal terms in our 

Hamiltonian. Upton a point, diagonal fluctuations can help in the absorption of light. However, 

fluctuations can lead to reduction in quantum coherence which can play a positive role in the 

transport to the trap. This is where correlations in and among fluctuations could play important 

role. 

In this work, we employ Kubo’s quantum stochastic Liouville equation (QSLE) to explore the 

light induced excitation energy transfer. Our objective of the study is the impact of different 

coupling limit in Markovian and non-Markovian limit, particularly in the presence of 

incoherent light-induced coherence for correlated and uncorrelated bath model. The motivation 

is to unravel the factors contributing to the high efficiency of the transfer to the reaction center 
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in photosynthetic systems. Despite the apparent simplicity of the system, it reveals intricate 

dynamics. The key findings of this study are briefly outlined as follows 

(1) In case of correlated bath model, MST shows an initial enhancement due to the 

additional quantum coherence induced by incoherent light at intermediate J, which was 

absent in excitation transfer in initially localized condition. Interestingly, MST with 

respect to the V shows different behavior in different regime. At the intermediate value 

of J and b, increase of MST was noted with the increase in fluctuation strength followed 

by a saturation at large V. Contrary to this behavior, at small J and large b, MST 

decreases with the increase in fluctuation strength till V2/b 2J limit is attained and 

reaches a constant value at large V. The change of nature of MST indicates the coherent 

to incoherent transition going form strong coupling non-Markovian to weak coupling 

Markovian limit (large V and b). 

(2) In case of uncorrelated bath model, a behavior similar to correlated bath can be 

observed from different MST plot. However, uncorrelated bath can diminish the 

coherence effectively than that of correlated bath and as a result the initial increase in 

MST is absent. At low value of J, larger value of MST was observed compared to 

correlated bath case. This is because, in case of correlated bath case at low J, the off-

diagonal fluctuation strength establishes the connection between the sites and helps the 

energy transfer which cannot be possible by the diagonal fluctuation in case of 

uncorrelated bath. 

(3)  In both correlated and uncorrelated bath cases, the substantial oscillator strength near 

the trap state results in a decrease in mean survival time (MST), thereby facilitating 

efficient energy transfer. We also note a non-monotonic relationship between efficiency 

and site energy heterogeneity, with the maximum efficiency occurring near the intersite 

coupling. 
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(4) Efficiency or quantum yield exhibits the opposite trend to that of MST for both 

correlated and uncorrelated bath case. With the parameter value of decay and trapping 

rates related to the photosynthesis high efficiency close to unity and minute variation 

in the efficiency profile was observed. Efficiency shows dependence on the ratio V2/b 

in addition to the V and b separately. Memory protects steady-state coherence, resulting 

in an increase in efficiency. 

(5) In case of correlated bath role of steady state coherence in equilibrium and excited bath 

state can be separated. However, in case of uncorrelated bath case, the effect of 

coherence in excited bath states towards the transfer flux is hidden into the contribution 

by the coherence in equilibrium bath states and as a result cannot be disentangled. 

Finally, we conclude that we explored the effect of incoherent light induced NESS across 

different coupling limit ranging from strong coupling non-Markovian to weak coupling 

Markovian limit. Our investigation has unveiled numerous intriguing conditions for 

controlling transfer flux and energy transfer efficiency, offering potential insights for 

designing optimal artificial energy transfer networks.  Especially, our study can effectively 

describe the trapping of excitation energy in the presence of spatial and temporal 

correlation. This work could be extended by the incorporation of temperature correction 

which will make the study closer to the complex biological networks at physiological 

conditions.  
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