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I review the state of the art of the theoretical calculations for decays mediated by b → sℓ+ℓ−

transitions, for ℓ = e, µ. I focus on the predictions of observables in B → Kµ+µ−, B →
K∗µ+µ−, and Bs → ϕµ+µ− decays, as many of these predictions are in tension with the
corresponding experimental measurements. I also briefly discuss the Λb → Λµ+µ− decay
and present a new calculation for this channel. Special emphasis is placed on the non-local
contributions, as they are the largest systematic uncertainties in these decays. The current
theoretical calculations for b → sµ+µ− decays are not able to explain the tensions with the
experimental measurements.

1 Introduction

One of the main goals of flavour physics is to probe the Standard Model (SM) using indirect
searches. To this end, very precise experimental measurements of flavour observables are com-
pared with equally precise SM predictions. This procedure provides strong constraints on New
Physics (NP) and may eventually lead to a new discovery.

The rare B meson decays mediated by b→ sℓ+ℓ− transitions are ideal for performing these
indirect searches. These decays have very small branching ratios in the SM (∼ 10−6) because
they are loop mediated and GIM or CKM suppressed. As a consequence, NP could generate
a substantial contribution compared to the SM one. For instance, in many Z ′ and leptoquark
models the b→ sℓ+ℓ− transitions occur at tree-level and hence would only be suppressed by the
mass of the new heavy mediator 1,2.

Interestingly, several measurements of observables in B → Kµ+µ−, B → K∗µ+µ−, and
Bs → ϕµ+µ− decays 3,4,5,6,7 are in tension with the corresponding SM predictions 8,9. The
observables that show tension are the differential branching ratios and the angular observables,
which have been measured with moderate precision by both the LHCb and CMS experiments.
The significance of the tensions depends on the process and the region of the phase space
considered, and 9s in some cases above 4σ 8. These tensions are commonly called the b→ sµ+µ−

anomalies. Note that these anomalies form a coherent picture and can therefore be explained
by the introduction of a new heavy mediator 1,2. It should be emphasised that these anomalies
are not related to the previous anomalies in the lepton flavour universality ratios RK and RK∗ ,
which disappeared at the end of 2022 10.

On the one hand, the experimental measurements for the b → sµ+µ− observables are con-
sidered reliable due to the background suppression and the efficient triggering of the muon
tracks.On the other hand, the theoretical predictions for b→ sµ+µ− decays are extremely chal-
lenging, due to the appearance of non-perturbative QCD effects. Therefore, progress in the
theoretical calculation is urgently needed to understand whether these anomalies are due to NP
or to misestimated QCD contributions.
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The rest of this document is structured as follows. In sec. 2 I briefly review the theoretical
framework by introducing the weak effective Hamiltonian and the form factors. In sec. 3 I
present the most recent local and non-local form factor calculations. In sec. 4 I give the SM
predictions and compare them with recent experimental measurements. In sec. 5 I discuss the
importance of rare Λb → Λℓ+ℓ− decays before concluding in sec. 6.

2 Theoretical framework

It is convenient to perform theoretical calculations for rare b-hadron decays in the framework of
an effective field theory — called the Weak Effective Theory (WET) — rather than using the full
SM Lagrangian. This allows to factorise the short- and long-distance contributions. The short-
distance contributions are contained in the Wilson coefficients, and they are process independent.
Therefore, there is no need to recalculate the Wilson coefficients every time the WET is used,
which is an enormous practical advantage. In contrast, the long-distance contributions that are
contained in the matrix elements of the effective operators are manifestly process dependent.
The WET Hamiltonian for b→ sℓ+ℓ− transitions reads 11

Hbsℓℓ
eff = −4GF√

2
VtbV

∗
ts

10∑
i=1

Ci(µ)Oi(µ) + . . . , (1)

where the ellipsis indicates CKM-suppressed terms and the QCD and QED interaction terms
are not explicitly shown. The Wilson coefficients are denoted by Ci, while the effective operators
are denoted by Oi. The scale is assumed to be µ ≃ mb. For a very good approximation, it is
sufficient to consider only the following operators:

O1 = (s̄LγµT
acL)(c̄Lγ

µT abL) , O2 = (s̄LγµcL)(c̄Lγ
µbL) , O7 =

e

16π2
mb(s̄Lσ

µνbR)Fµν ,

O9 =
e2

16π2
(s̄LγµbL)(ℓ̄γ

µℓ) , O10 =
e2

16π2
(s̄LγµbL)(ℓ̄γ

µγ5ℓ) . (2)

The decay amplitude for B → K(∗)ℓ+ℓ− (and Bs → ϕℓ+ℓ−) decays can be written as (neglecting
QED corrections)

A(B̄ → K(∗)ℓ+ℓ−) = N
[
(C9L

µ
V + C10L

µ
A) FBK(∗)

µ − Lµ
V

q2

{
2imbC7FBK(∗)

T,µ + 16π2HBK(∗)
µ

}]
, (3)

where

N ≡ GF αV
∗
tsVtb√

2π
, Lµ

V (A) ≡ ūℓ(q1)γ
µ(γ5)vℓ(q2) ,

FBK(∗)
µ (k, q) ≡ ⟨K(∗)(k)|s̄LγµbL|B̄(q + k)⟩, FBK(∗)

T,µ (k, q) ≡ ⟨K(∗)(k)|s̄LσµνqνbR|B̄(q + k)⟩,

HBK(∗)
µ (k, q) ≡ i

∫
d4x eiq·x ⟨K(∗)(k)|T

{
jemµ (x), (C1O1 + C2O2)(0)

}
|B̄(q + k)⟩ .

(4)

As is readily apparent from these definitions, the FBK(∗)

(T ),µ are hadron-to-hadron matrix elements

of local operators while theHBK(∗)
µ are hadron-to-hadron matrix elements of non-local operators.

In general, these matrix elements can be written in terms of form factors (FFs):

FBK(∗)

(T ),µ (k, q) ∝
∑
λ

FBK(∗)

(T ),λ (q2)Sλ
µ(k, q) , HBK(∗)

µ (k, q) ∝
∑
λ

HBK(∗)
λ (q2)Sλ

µ(k, q) , (5)

where the Lorentz structures Sλ
µ are known functions 12. These equations follow from Lorentz

invariance.



3 Form factors predictions

The FFs are dominated by long-distance contributions and hence non-perturbative techniques
are needed to calculate them. The B(s) → {K(∗), ϕ}ℓ+ℓ− local FFs have been computed by
lattice QCD for large q2 values 13,14,15,16. A lattice QCD computation for the B → Kℓ+ℓ−

local FFs for low q2 values has also recently appeared 17. One of the main advantages of
lattice QCD computations is that they have small and reducible uncertainties. The local FFs
have also been calculated using light-cone sum rules (LCSRs) at low q2 and thus these two
methods are complementary 18,19. However, the uncertainties of LCSRs are moderate (∼ 10%−
20%) and not reducible below a certain threshold. While the status of B → Kℓ+ℓ− local FFs
is satisfactory given the current experimental uncertainties — although further independent
lattice QCD computations are needed — the B(s) → {K∗, ϕ}ℓ+ℓ− local FFs definitely need
improvement. In particular, a calculation beyond the narrow width limit for the K∗ is necessary
given the current experimental and theoretical precision 20.

To combine the different theoretical calculations and to obtain the local FFs in the whole
semileptonic range, it is necessary to use a parametrization. We propose the following parametriza-
tion 12,21

FBK(∗)

(T ),λ (q2) =
1

PF (q2)ϕF (q2)

∞∑
n=0

αF
n pn(q

2) , (6)

where the Blaschke factors PF , the outer functions ϕF , and the polynomials pn are known func-
tions.a The parametrization in eq. (6) is the first one that satisfies the following two conditions
simultaneously. (i) All hadronic branch cuts are taken into account — i.e. those due to Bsπ(π)
states — ensuring a consistent treatment of the FFs and avoiding hard-to-quantify systematic
uncertainties. (ii) The coefficients αF

n obey a unitarity bound:∑
F

∞∑
n=0

∣∣αF
n

∣∣2 < 1 . (7)

Since, in practice, the series of eq. (6) has to be truncated after a few terms, the unitarity
bound allows us to control the truncation error in a systematic way. We perform a simultaneous
fit of all B(s) → {K(∗), ϕ}ℓ+ℓ− local FFs including all lattice QCD results, selected LCSRs
calculations, and the unitarity bound. This enables us to obtain all these FFs in the whole
semileptonic range, with improved precision compared to the inputs used. The results are
provided as machine-readable files to facilitate their use 21.

The non-local FFs are clearly more complicated objects than the local FFs. Despite prelim-
inary studies, a lattice QCD computation of HBK(∗)

λ is currently out of reach 22. We then use

a light-cone operator product expansion (LCOPE) 23 to calculate HBK(∗)
λ for q2 ≪ 4m2

c . This
LCOPE can be written as

HBK(∗)
λ (q2) = CF (q

2)FBK(∗)

(T ),λ (q2) +
mbΛhad

4m2
c − q2

C̃F (q
2)VBK(∗)

λ (q2) +O
((

mbΛhad

4m2
c − q2

)2
)
. (8)

The Wilson coefficients CF and C̃F can be calculated perturbatively. The αs corrections to
CF are known. On the contrary, the FFs FBK(∗)

(T ),λ and VBK(∗)
λ have to be obtained by non-

perturbative methods. The FBK(∗)

(T ),λ have already been discussed above. While it may seem

awkward that the non-local FFs depend on the local FFs (at the leading power in the LCOPE),
it is somewhat intuitive that the local limit of the non-local FFs must depend on the local FFs.
The VBK(∗)

λ are manifestly non-local objects, and they have been calculated using LCSRs 23,9.

The most recent calculation for VBK(∗)
λ have found these contributions to be small. In addition,

aHere, I do not introduce the conformal variable z(q2) for brevity. The details can be found in the original
paper.
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Figure 1 – SM predictions for the normalised differential branching ratios taken from ref. [9].

it is also possible to use the experimental measurements for B(s) → {K(∗), ϕ}J/ψ decays, as
these decays only receive a non-local FFs contribution. For instance, for B → KJ/ψ one has 9

A(B → KJ/ψ) ∝ Res
q2→M2

ψ

HBK(q2) . (9)

To fit the LCOPE calculations and theB(s) → {K(∗), ϕ}J/ψ, we use an analogous parametriza-
tion to that in eq. (6):

HBK(∗)
λ (q2) =

1

PH(q2)ϕH(q2)

∞∑
n=0

βHn pn(q
2) . (10)

As before, the advantage of this parametrization is that the coefficients are bounded by unitarity:∑
H

∞∑
n=0

∣∣βHn ∣∣2 < 1 . (11)

This is the first unitarity bound for non-local FFs 12. By performing this fit we obtain numerical
results for the HBK(∗)

λ (q2) below the open-charm threshold. The results are provided as machine-
readable files 9.

4 SM predictions and comparison with measurements

Using our results for the local FFs FBK(∗)
λ and the non-local FFs HBK(∗)

λ , we can obtain the SM
predictions for the branching ratios and angular observables in B(s) → {K∗, ϕ}µ+µ− decays.
Two of these predictions are illustrated fig. 1. The main source of uncertainty in our predictions
is the local FFs. Still, progress on calculations for non-local FFs is urgently needed to fully
control the systematic uncertainties and to clarify whether the b → sµ+µ− anomalies are due
to NP or to underestimated theoretical uncertainties.

It is also important to stress that the shifts found in B(s) → {K∗, ϕ}µ+µ− decays are
coherent and q2 independent. Coherent means that the difference between SM predictions and
data is approximately the same for different processes. q2 independent means that for a given
observable this difference does not depend on the value of q2. (This has also been elegantly
pointed out in a recent paper 24). These two observations are crucial because, in general, a NP
contribution from a heavy mediator should be both coherent and q2 independent, whereas QCD
effects are expected to show both a process and a q2 dependence. However, the process and
q2 dependence of the current shifts could be hidden in the current uncertainties, that is why
progress on the theory side is crucial.

To quantify the impact of NP in each of the three processes considered, we allow for a (real)
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Figure 2 – The local (left), non-local charm-loop (center), and non-local penguin (right) contributions to
Λb → Λℓ+ℓ− decays. Image taken from ref. [25].

NP contribution in C9 and C10: C9,10 = CSM
9,10 + CNP

9,10. The largest SM pull is in B → Kµ+µ−

(5.7σ), since the predictions for this channel are very precise 9. Nevertheless, the three processes
show coherent 68% intervals for CNP

9,10, as anticipated above.

5 Aside: Λb → Λℓ+ℓ− decays

The Λb → Λℓ+ℓ− decays offer the possibility to probe b→ sℓ+ℓ− transitions using baryon decays.
If the b → sµ+µ− anomalies are due to NP, the same discrepancy between SM predictions and
data will appear in Λb → Λµ+µ− decays. In contrast, the non-local FFs are expected to differ
between the mesonic and baryonic cases. This is mainly due to the different spin of the hadrons
and the different number of valence quarks within them.

In order to carry out this test, a significant improvement is needed on both the theoretical and
experimental sides. The uncertainties of the current measurements are statistically dominated,
therefore future measurements will be more precise. On the theoretical side 25,27,26, there is
a need to improve and develop new techniques to improve the accuracy of the non-local FFs
in particular. For instance, there is no estimate of the non-local charm loop contributions
beyond naive factorisation (central panel of fig. 2). A step in this direction has been taken
in one of my recent publications 28. Here the contribution of the penguin operators has been
calculated for the first time (right panel of fig. 2). These contributions are analogous to the
annihilation topologies in mesonic decays. We find that these contributions are small and hence
the systematic uncertainties coming from the penguin operators can be considered to be under
control.

6 Summary and conclusion

The b-hadron decays mediated by b → sℓ+ℓ− transitions are undoubtedly a very active and
fascinating area of research. Both the experimental and the theoretical communities are putting
a great deal of effort into reducing the current uncertainties. An improvement of the experi-
mental uncertainties can be anticipated, as most of the measurements are statistically limited.
Theoretical uncertainties are also expected to improve, especially those due to local form fac-
tors, through new and more advanced lattice QCD calculations. The predictions for non-local
form factors are way more challenging to improve, and they are beyond the reach of present
lattice QCD techniques. Nevertheless, there is a lot of room for improvement, especially in the
Λb → Λℓ+ℓ− decays. For instance, combined unitarity analyses, improvements in the b hadron
distribution amplitudes, and higher order calculations will certainly help to reduce the uncer-
tainties. In conclusion, although the road to improving SM predictions for b → sℓ+ℓ− decays
may seem daunting, we must have the conviction that with dedication and innovation even the
most complex calculations can be mastered.
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