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Superconducting states that break space-group symmetries of the underlying crystal can
exhibit nontrivial spatial modulation of the order parameter. Previously, such remarkable
states were intimately associated with the breaking of translational symmetry1,2, giving rise
to the density-wave orders3–8, with wavelengths spanning several unit cells9–19. However, a
related basic concept has been long overlooked: when only intra-unit-cell symmetries of the
space group are broken, the superconducting states can display a distinct type of nontriv-
ial modulation preserving long-range lattice translation. Here, we refer to this new concept
as the pair density modulation (PDM), and report the first observation of a PDM state in
exfoliated thin flakes of iron-based superconductor FeTe0.55Se0.45. Using scanning tunneling
microscopy, we discover robust superconducting gap modulation with the wavelength cor-
responding to the lattice periodicity and the amplitude exceeding 30% of the gap average.
Importantly, we find that the observed modulation originates from the large difference in
superconducting gaps on the two nominally equivalent iron sublattices. The experimental
findings, backed up by model calculations, suggest that in contrast to the density-wave or-
ders, the PDM state is driven by the interplay of sublattice symmetry breaking and a peculiar
nematic distortion specific to the thin flakes. Our results establish new frontiers for explor-
ing the intertwined orders in strong-correlated electronic systems and open a new chapter
for iron-based superconductors.

Iron-based superconductors (FeSC) exhibit multiple electronic orders involving spin, orbital,
and charge degrees of freedom that are, in many instances, intertwined with superconductivity20,21.
Moreover, the electrons in FeSCs are strongly correlated22,23, leading to shallow electronic bands,
especially in an archetypal compound FeTe0.55Se0.45, where the Fermi energy was observed within
only several millielectronvolt24. These salient features make this family of compounds a good
candidate for exploring new superconducting phenomena25,26. While previous scanning tunnel-
ing microscopy (STM) measurements focused on the bulk iron-based superconductors and films
grown by molecular beam epitaxy, here, for the first time, we study this material system in the
form of exfoliated thin flakes. The schematic of the experiment and unit cell of Fe(Te,Se) are
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shown in Fig. 1a,b. A large flake of Fe(Te,Se) is placed on a hexagonal boron nitride, contacted
by a graphite electrode, and its surface is probed using the STM tip. The main technical challenge
in studying flakes of these materials arises due to their air sensitivity and the great care that has to
be taken during the sample preparation (see Methods for details, see also Extended Data Fig. 1,
Supplementary Fig. 2 and Supplementary Fig. 3). Large area topographic scans reveal clean mi-
cron size surfaces accompanied by multiple step edges (Fig. 1d). Remarkably, the measured step
edge heights are about 18% larger compared to the bulk measurements (Supplementary Fig. 5d),
implying the nontrivial role of the exfoliation process, inducing effective negative pressure (Sup-
plementary Fig. 5f) and driving the system into an unexplored phase space of FeSC compounds.
Here, we report measurements primarily focused on the 50-nm flake; however, the properties of
flakes in the 25-210 nm range were also examined, the details are shown in Methods and Supple-
mentary Information (SI).
Modified microscopic properties

First, we focus on basic spectroscopic characterization. The wide-bias-range differential con-
ductance (dI/dV) spectrum (inset of Fig. 1e) shows a characteristic V-shaped local density of states
(LDOS) within ±80 meV, consistent with the semimetallic band structure. A high-resolution dI/dV
spectrum focusing on the small energies around the Fermi level reveals a U-shaped hard supercon-
ducting (SC) gap, indicating a nodeless SC order parameter (Fig. 1e, Extended Data Fig. 2, see also
SI Section 3) and temperature-dependent measurements show the SC gap collapsing around 11 K
(Fig. 1f). Moreover, the SC coherence length (ξ∆0) of thin flakes was determined to be around 4.4
nm (Fig. 3k). These observations are quantitatively in line with previous measurements on bulk
FeTe0.55Se0.45

27,28, as well as recent transport measurements of thin flakes that show no dramatic
differences from bulk properties29.

However, quasiparticle interference (QPI) reveals the striking difference in electronic struc-
ture between the flakes measured here and the bulk material. These measurements are carried
out by collecting a dI/dV spatial map alongside the topography (Fig. 1g) and performing a two-
dimensional Fourier transform (FT) of the map (Fig. 1h). The QPI measurements typically reveal
the details of the electronic structure, such as dominant scattering vectors in the Brillouin zone,
which are not accessible by transport measurements. Note that in bulk FeTe0.55Se0.45, Fermi sur-
face consists of one hole pocket and two electron pockets30 and is characterized by three dominant
scattering vectors (Fig. 1c), as established in previous STM experiments27,31.

Surprisingly, in contrast to bulk, our measurements show that the q2 vector, connecting Γ and M
pockets, disappears within ±8 meV bias voltage range (Fig. 1h), indicating no coexisting electron
and hole pockets within this energy window. The Fermi level only crosses either hole-like Γ pocket
or electron-like M pockets, and as a consequence, the shortest scattering vector is q3, instead of
q2. Despite the modified Fermi surface, the SC order parameter appears still to be sign-changing,
as suggested by measurements on the monolayer step edge (Supplementary Fig. 7). In addition,
phase-referenced QPI measurement (see SI Section 2 for further details) reveals a negative signal
around (0,0), implying that sign changing appears for a small q (Supplementary Fig. 6a-c). These
observations place constraints on the SC order parameter in thin flakes especially as some of the
thermodynamic quantities remain comparable to bulk crystals while several microscopic properties
are strongly modified (see Supplementary Fig. 6d-i for further discussions).
Robust gap modulation

We now focus on the spatial characterization of the SC gap. In bulk FeTe0.55Se0.45, previous
experiments observed that the gap is strongly inhomogeneous at a length scale of ξ∆0 (about ten
times lattice constant)32, but roughly uniform below that scale (Supplementary Fig. 10). In con-
trast, here we find the dI/dV spectrum of the thin flakes exhibits substantial modulation of the
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superconducting gap. The modulation is observed almost everywhere in the thin flake regions
(Supplementary Fig. 4), including the areas with high impurity concentrations (see Methods and
Extended Data Fig. 6), but disappears at the sufficiently thick flakes (Supplementary Fig. 9). Also,
the periodicity is present even at high magnetic fields close to pinned vortices (see Methods and
Extended Data Fig. 5).

Fig. 2 shows an example of high-spatial-resolution dI/dV linecut measured along the crystal-
lographic y- axis. Importantly, the observed modulation of the coherence peak positions matches
with the wavelength of the crystal lattice. The locations of the top selenium atoms (Se+) are in-
dicated by the white dashed line in Fig. 2c corresponding to local minima in the linecut, while
local maxima are reached at the positions of iron atoms (Fey), located at the middle of the y-
bonds between two adjacent Se+ atoms (see the crystal structure in Fig. 1b). The spatially av-
eraged dI/dV curves of the positions of local maxima and minima sites are shown in Fig. 2a.
Three different quantities related to the superconductivity, the spatial variation of the gap ∆(y),
zero-bias conductance g0(y) and height of the coherence peak H(y) (Fig. 2e-g), all show the same
periodicity. Moreover, the observation of the sharp Bragg peak in the Fourier transform further
verifies well-ordered modulation (Fig. 2h-j, see also Extended Data Fig. 3, Extended Data Fig. 4
and Supplementary Fig. 8 for more examples).

The observation of the strongly modulated gap is highly unexpected, as it was not reported
before either for the bulk crystal, whose surfaces are also created by the exfoliation-like cleaving
process, or in the previously studied films synthesized by molecular beam epitaxy. Naively, the
observed modulation resembles the well-studied density-wave orders11–14,16–19; however, with an
important distinction: the wavelength matches the crystal lattice, implying that the long-range
lattice translational symmetry is preserved. In the following, we investigate the properties of this
PDM state characterized by the intra-unit-cell gap modulation.
Imaging the PDM state

To get further insights, we performed spectroscopic imaging (SI) STM measurements on
a 5×5 nm2 area (Fig. 3). A map of local superconducting gap value ∆(r) (Fig. 3a) can be
extracted from LDOS data collected alongside topography (Fig. 3b, see Methods for details
about SC gap extraction). The observed ∆(r) modulates along two lattice directions (Fig. 3d)
on top of a non-modulating component ∆0(r) (Extended Data Fig. 10e). We can express
the total gap as, ∆(r) = ∆0(r) + δ∆(r), with the PDM modulating component δ∆(r) =∑

Q=PX,PY
|∆Q(r)| cos

[
Q · r + ϕ∆

Q(r)
]
, where |∆Q(r)| and ϕ∆

Q(r) are PDM modulation ampli-
tude and modulation phase at the two Bragg vectors: Q = ±PX or ±PY. These quantities can be
extracted individually by a standard 2D lock-in method33,34 (see description in SI Section 4, phase
in Extended Data Fig. 8a,b, and amplitude in Supplementary Fig. 13a,b). In general, we find that
the gap modulation in the thin flakes is very strong, with |∆Q| /∆0 reaching 20% in the current
device (Extended Data Fig. 10b,c), and an even stronger modulation of 40% in another device
with thinner flakes (Extended Data Fig. 7). In order to compare with the previously reported
density-wave modulations, we plot the |∆Q| /∆0 versus superconducting critical temperature (Tc)
for several materials in Extended Data Fig. 10a.

Now we focus on the observed δ∆(r) (Fig. 3c). By comparing it to the atomic topography
δT (r) (Fig. 3b), it is clear that the gap modulation does not trivially follow the surface corru-
gation, i.e., heights of the Se+ atoms. FT filtered images (see Methods) of raw data (Fig. 3b,c),
surprisingly, show that while the atomic lattice is well-ordered (Fig. 3e), the gap map shows strong
distortion, breaking the area into small domains (Fig. 3f). An auto-correlation analysis of the ex-
tracted modulation amplitude |∆Q(r)| shows that the corresponding coherence length of the PDM
state (Fig. 3i,k), is very short (about half of the SC coherence length, measured from a zero-bias
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conductance map of an SC vortex core, Fig. 3j,k). Further analysis of the ϕ∆
Q(r) maps shows

the existence of topological defects around the domain boundaries, where both half and integer
dislocations of the PDM state were observed (see Extended Data Fig. 8, and details in Methods).

The presence of domains provides further insights into the origin of the observed modula-
tion. We first note that the crystal structure of FeSC is characterized by a nonsymmorphic space
group. The up-down staggered distribution of selenium atoms enlarges the crystallographic unit
cell (Fig. 1b), and as a result, it includes two iron atoms, which sit below top selenium atoms Se+
along the x- and y- direction (Fex and Fey). Structure-wise, the equivalence of the two iron sublat-
tices is provided by a glide-mirror symmetry of the space group P4/nmm. However, remarkably,
this symmetry is broken in our PDM state. Focusing on the observed behavior within the domain,
we find that they correspond to regions where the gap maxima are observed on the Fex (or Fey)
sublattice. This is clearly resolved by comparing Fig. 3e and Fig. 3f where we marked four Se+
atoms on each of the two adjacent domains. We find that within a domain, the gap maxima are
locked to one of the iron sublattices, while the gap minima to the other. The gap difference be-
tween these neighboring extrema on iron sites, i.e. |∆Fex − ∆Fey |/(∆Fex + ∆Fey), reaches 32%
(Extended Data Fig. 10d, see also SI Section 9 for details). The gap maxima/minima positions
swap from Fex to Fey when the domain wall is crossed. A schematic for the two kinds of domain
was shown in Fig. 3h. To quantitatively determine the domain boundaries, we define PDM polar-
ization pLL that captures whether the maxima positions are on Fex or Fey sites corresponding to
values of pLL = ±1 (Fig. 3g, see Methods for definition, Supplementary Fig. 11 for calculation
details, and Supplementary Fig. 12 for a simulation). The domain boundaries can be extracted by
tracing the value of pLL = 0 (shown as gray lines in Fig. 3f and Fig. 4d,e).
Origin of the PDM state

Having identified that the gap modulation is linked to the iron sublattices, the key question
arises: why the PDM state has not been seen in the bulk FeSC or molecular beam epitaxy synthe-
sized films. In FeSCs, when the glide-mirror symmetry, composed of z → −z reflection and a
translation by the nearest neighbor Fe-Fe lattice distance, is preserved, all iron atoms are equiva-
lent. However, in the vicinity of the surface, the chalcogenide atoms above and below iron plane
can reside at a different distances from the plane (Fig. 1b), breaking the glide-mirror symmetry.
Since the hoppings between the next-nearest neighbors in iron lattice (i.e. the q3 direction) are
facilitated by the chalcogenide atoms, this results in two different next-nearest hopping integrals
(t2 and t3) as indicated in Fig. 4a. However, though the breaking of glide-mirror symmetry ne-
cessitates using a two-iron unit cell, the two iron sublattices can still map to each other by 90◦

rotation, another ingredient is needed to explain our observations.
Taking a careful look into the real-space resolved dI/dV, we now focus on the normal state

properties above the SC gap (Fig. 4d-g). Here the previously identified domains appear as stripes
along x- or y- directions (Fig. 4d,e). The measured LDOS reflects contributions from both Se+/Se−
and Fex/Fey sublattices. While the LDOS imbalance from Se+/Se− is expected owing to the
two atoms being in different planes (see Fig. 1b), it alone can not reproduce the observed stripe
behavior. We then concluded that a small LDOS imbalance between Fex/Fey sublattices in the
normal state has to exist, implying normal state nematicity with the director pointing alongside q3

directions (Fig. 4f,g), which is 45° rotated from the nematic director of the bulk (Supplementary
Fig. 16c,d). The origin of this nematic distortion is likely driven by electronic instability (see
Methods for further discussion). Based on these observations, we built a simple model with glide-
mirror symmetry breaking and a nematic director being along the next-nearest neighbor of iron
atoms (q3 direction). This model results in the LDOS imbalance between the iron sublattices and
a different superconducting gap on Fex and Fey atoms, thus capturing the main features of our
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experiments (see also SI Section 1 for more realistic modeling and further details).
To compare directly the findings of the model and our experiments, we eliminated the influence

from Se+/Se− sublattices, and directly visualized the LDOS imbalance on Fex/Fey. This was done
in three different ways. First, we traced the dI/dV linecut along a-axis from the SI-STM data (left
panel in Fig. 4c, see also linecut locations in Supplementary Fig. 14a). This linecut follows the
Fex-Fey direction and avoids the positions of selenium atoms. We simulated the SC gap along the
same direction (right panel in Fig. 4c), and both the gap size and LDOS above SC gap match well
with the experimental measurements. Second, we averaged the dI/dV curves on iron sites with
gap maxima or gap minima among the SI-STM data (lower panel in Fig. 4b). The normal-state
LDOS was always larger at the iron sites with gap maxima, and vice versa, matching the ratio from
calculations (see Methods and Supplementary Fig. 14a,b). Third, we performed lattice segregation
analysis, and the extracted LDOS maps of Fex/Fey sublattice further supporting the existence of
sublattice LDOS imbalance in the PDM state (see Methods and Extended Data Fig. 9).
Discussion

We emphasize that the direction of the nematic distortion is crucial for the observation of the
PDM state. In most bulk FeSCs, both Γ and M Fermi pockets are present20. The dominating
nesting vector of the Fermi surface is the q2 vector [(π,0)] connecting the two pockets (see Sup-
plementary Fig. 16a,c). When a nematic phase appears, the nematic director always follows the
nesting vector pointing along a- or b- direction so that the 1-Fe unit cell is stretched, but the Fex
and Fey sublattice remain equivalent21,35. As a result, these compounds cannot exhibit the PDM
state described here. In FeTe0.55Se0.45 thin flakes, one of the pockets is missing (Fig. 1h) and the
nematic director is observed along x- or y- direction (q3 direction, see Fig. 4f,g), compatible with
the 45°-rotation of the nesting vector (Supplementary Fig. 16c,d). Combined with the breaking of
glide-mirror symmetry, this peculiar nematic distortion distinguishes the two iron sublattices, and
leads to the formation of the PDM state (see Fig. 4a). Note that a similar arrangement of Fermi
surfaces appears in monolayer Fe(Te,Se)/SrTiO3 films where only the M pockets are present. How-
ever, it was well-characterized that the nematic instability is absent in these previously measured
monolayer films36–38, therefore not satisfying conditions for the PDM state.

In summary, we observed the PDM state in thin flakes of Fe(Te,Se), highlighting the nontriv-
ial role of the exfoliation process. In this context, one interesting avenue of future explorations
would be to study other correlated materials in this form, where the interplay between strong elec-
tronic interaction and quantum confinement could potentially modify the underlying symmetries
and electronic structure, thereby giving rise to novel phenomena. Finally, we note that the ob-
served PDM state is likely not limited to the thin flakes studied here; instead, it may occur more
generally in other unconventional superconductors with sublattice degeneracy and intertwined or-
ders. The PDM state might be resolved in some compounds of cuprates39, heavy fermion40 and
kagome41 superconductors by revisiting STM measurement with super-high spatial resolution.
Some rarely studied FeSC compounds are also promising candidates, especially the heavily hole-
doped RbFe2As2 and CsFe2As2

42–44, where the nematic directors aligns along the q3 vector, fa-
vors the formation of the PDM state (Supplementary Fig. 16b). Other candidates, such as the
superconductors based on van der Waals materials and heterostructures exhibiting a plethora of
symmetry-breaking states, call for a careful investigation across the phase diagram.
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iment. b, A unit cell of Fe(Te,Se) crystal structure. It contains two selenium atoms, Se+ and Se−, placed
within the top and bottom layers of the “sandwich” block, and two middle-layer iron atoms, Fex and Fey,
placed along the x- and y- bonds of the top selenium atoms. Tellurium atoms substitute for selenium sites
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hole Fermi pockets are depicted in blue and red colors. Three dominant scattering vectors are marked as
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STM topography (1.9×1.9 µm2) measured on Fe(Te,Se) thin flakes showing several flat and clean surfaces
as well as multiple atomically-sharp monolayer steps. Right panel: atom-resolved STM topography (30×30
nm2), showing a checkerboard pattern formed by Se+ or Te+ atoms. e, A dI/dV spectrum shows U-shaped
hard SC gap. Inset: wide-bias range dI/dV spectrum. f, Temperature dependence of spatially-averaged
dI/dV spectra. Inset: an interpolated false-color plot of (f). g, A typical conductance map, g(r, E), for
energy above SC gap. Solid circles mark the positions of Se+ atoms. Conductance maxima appear at Se−
sites. h, Magnitude of energy-integrated Fourier transform (FT) of conductance map within ±8 mV. The
absence of prominent features around (π, 0) indicates that there is no scattering corresponding to q2. See
definitions of all the symbols in Supplementary Table I.



10

Energy (meV)
0 2 4 6-2-4-6

0

2.5

y
 (

n
m

)

d
I/

d
V

 (
a
.u

.)

5

10

15

D!
(q

y
)

(a
.u

.)

(π,π)(0,0) (2π,2π) (3π,3π)
0

2

4

g
0
	

#
(q

y
, 

0
 m

V
)

(a
.u

.)

(π,π)(0,0) (2π,2π) (3π,3π)
0

1

H!
(q

y
)

(a
.u

.)

(π,π)(0,0) (2π,2π) (3π,3π)
0

2

4

qy (1/aFe)

qy (1/aFe)

qy (1/aFe)

b

y (nm)
0 1.0 1.5 2.0

l 2l 3l 4l 5l 6l 7l

0.5 2.5

SC gap
FT Filtered

1.5

1.6

1.7

1.8

1.9

D
(y

) 
(m

e
V

)

e

f

g

h

i

j

0.5

1.0

1.5

2.0

Energy (meV)
0 2 4 6-2-4-6

Low High

FT Filtered

Zero-bias conductance

g
0
(y

,0
 m

V
) 

(a
.u

.)
H

(y
) 

(a
.u

.)

Peak height

y (nm)
0 1.0 1.5 2.0

l 2l 3l 4l 5l 6l 7l

0.5 2.5

0.3

0.4

y (nm)
0 1.0 1.5 2.0

l 2l 3l 4l 5l 6l 7l

0.5 2.5

FT Filtered

1.8

1.9

2.0

2.1

2.2

2.3

D$min

1.0

2.0

d
I/

d
V

 (
a
.u

.)

a

c d

Low High
Energy (meV)

0 2 4 6-2-4-6 1 nm

D$max
x

y

a

b

Fig. 2. Periodic modulation of superconducting gap. a, Spatially-averaged dI/dV spectra at gap maxi-
mum (blue) and minimum (black) sites of the linecut. b, Atom-resolved topography (5 × 2 nm2) at the same
area dI/dV spectra were measured. c, False-color plot of a dI/dV linecut measured along y-axis [dashed blue
line in (b)]. The SC gap is minimized at Se+ atom sites (dashed white lines). The linecut was measured on
a Y-Domain (see Fig. 3 for the definition). d, The waterfall plot of (c). The curves are offset for clarity. e-g,
The spatial variation of SC gap, ∆(y); the zero-bias conductance, g0(y); and the coherence peak height,
H(y), respectively. The semi-transparent solid lines are obtained by FT filtering of the raw data. The hori-
zontal dashed line in (e) indicates the average value of SC gap in the linecut (∆̄). h-j, Magnitude of FT of
raw data in (e-g). The modulation ratio |∆PY

|/∆̄ is 7% in this linecut.



11

1.8

2.2

D(r )

0
1

2
3

4
5

D
(r

)

L
x (nm)

L y
(n

m
)

0
1

2
3

4 5

0.5

1.0

1.5

2.0

2.5

2 Å-1

PX

PY

2 Å-1

�D"(q)�T 
" (q)

1 nm

-0.2

-0.1

0

0.1

0.2

(meV)

Low

High

Low

High

Low

High

�
!!

-1

0

1

Low

High

d
D

(r)

Ω D�"
(r

 
) Ω D�#

(r
 
)

Ω p
!!

(r
 
)

3 nm 3 nm

3 nm 4 nm

D�#

D�"

p""

4.4 nm

2.4 nm
1.9 nm
1.7 nm

 x#, x∆$	=

a e

c f

g

k

Ω
!

(r
 #
),

 g
0
(r
̅ 	)

0

0.5

1.0

0 1 2 3 4 5 6

Radius r # (nm)

Low

High

Low

High

Low

Highd

i

j h

X
-D

o
m

a
in

Y
-D

o
m

a
in

b

g0(r ̅	, 6 T): D0

xy

a

b

dD(�!,�")
(r )

A = 

dT (r ) dT (�!,�")(r )

g0(r, 0 mV, 6 T)

dD(r )

Fig. 3. Imaging the pair density modulation state. SI-STM data on a 5×5 nm2 area with a 100×100 grid.
At each point, a dI/dV spectrum is measured within ±8 mV. a, The SC gap map, ∆(r). The modulating
PDM component, δ∆(r), coexists with non-modulating component, ∆0(r). b, Topographic image, δT (r),
with atomic resolution acquired simultaneously with data in (a). c, The PDM modulation component,
δ∆(r). d, The FT magnitude of (b) and (c). The green crosses indicate (π, 0) and equivalent locations.
The two PDM vectors are marked as ±PX and ±PY. e, f, FT filtered images at ±PX and ±PY, of (b)
and (c) respectively. The red and blue circles mark the positions of Se+ atoms (the same circles are plotted
in Fig. 1g and Fig. 4d,e). Gray lines in (f) show domain boundaries. Within each domain, the gap maxima
are pinned to one iron sublattice (Fex, or Fey), while the gap minima appear at the other (Fey, or Fex). We
define these as X-Domain (or Y-Domain) (see also panel h). g, Lattice-lock-in polarization of the PDM
state, pLL(r) (see the definition in Method, and the calculation details in Supplementary Fig. 11). pLL(r) is
+1 (or -1), if gap maxima are perfectly locked to Fex (or Fey) (see also Supplementary Fig. 12). The domain
boundaries can be traced from the zero contour, shown as the gray dashed lines in (f). The Gaussian cut-off
length, σ, was set to 1.3 nm for (e-g). h, Schematic of PDM state in X- and Y-domain. The circles mark the
positions of Se+ atoms. The PDM state also shows the oval shape that points along x- or y- directions (see
details in Supplementary Fig. 13). i, Autocorrelation of the PDM modulation amplitude (Supplementary
Fig. 13a,b). j, Left Panel: Autocorrelation of |pLL(r)|. Right panel: zero-bias conductance map of a vortex.
k, Angle-averaged radial distribution of (i) and (j) showing the corresponding coherence lengths.



12

Dmax

Dmin

0.5

1.0

1.5

d
I/

d
V

 (
a
.u

.)

0

4

8

Experiment

�
g (E

) (%
)

Low

High

Low

High

X
-D

om
ain

Y
-D

om
ain

1 nm Low

High

S
e −

F
e x

D m
in

F
e
yD

m
a
x

�
t 2

�
t 3

-6 -4 -2 0 2 4 6
Energy (meV)

a b

1

0

2

3

4

5

a
(n

m
)

-5 50
Energy (meV)

-5 50
Energy (a.u.)

Low

High
c

d e

Low

High

2 Å-1 2 Å-1

Low

High
f gΣ�$	(q 

Y−Domain,−8/−4 mV) Σ�$	(q 
X−Domain,−8/−4 mV)

Y
-D

o
m

a
in

 a
s
 a

n
 e

x
a
m

p
le

xy

a

b

xy

a

b

Σ�(�!,�")
(r,−8/−4 mV)Σ�(r,−8/−4 mV)

S
e +

Dmax

Dmin

0.5

1.0

0

5

Theory

d
I/

d
V

 (
a
.u

.) �
g (E

) (%
)

t
3

t
2t1

Fe
x

Fe
y

Fig. 4. Origin of the pair density modulation state. a, Our model proposes nonequivalent hopping
amplitude on the two iron sublattices Fex and Fey. This breaks sublattice symmetry, leading to higher
LDOS and a larger SC gap simultaneously at one of the sublattices (α is the nematic distortion parameter,
t1 is the nearest neighbor hopping integral and t2,3 are the next-nearest neighbor hopping integrals, see
further details in SI Section 1). The schematic takes a Y-Domain as an example (gap maxima appear at
Fey). Here, the faded and open-circle atoms show the positions with lower LDOS, leading to the formation
of a stripe-like pattern. b, Experimental (lower panel) and theoretical (upper panel) comparison between
iron sites with gap maxima and minima. The experimental data are averaged over all the spatial locations
of the two kinds of iron atoms respectively (Supplementary Fig. 14a,b). The LDOS imbalance ratio (pg)
was calculated at |E| > 4 meV, in order to avoid the influence from the modulation of coherence peaks
(see SI Section 8 and Supplementary Fig. 20). The theoretical results qualitatively match the experimental
observations. c, Left panel: a dI/dV linecut extracted from the SI-STM data along a-axis (linecut position
is shown in Supplementary Fig. 14a). This linecut is along Fex-Fey direction, avoiding the LDOS from
Se+/Se− sites. Right panel: the simulated gap modulation along the same Fex-Fey direction. d, Energy-
integrated g(r, E) between -8 and -4 meV (see also the results at positive bias voltage in Supplementary
Fig. 14c). The arrows indicate the Fe sites with higher LDOS. e, FT filtered image at ±PX and ±PY of
(d). The dashed lines indicate the directions of the stripes that change orientation across the domain wall
(marked by the gray lines tracing pLL = 0). The pink and cyan circles indicate Se+ atoms on two different
domains. f, g, Selected-area FT magnitude of (d) on Y-Domain and X-Domain, respectively.
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Methods:1

Device fabrication: High-quality single crystals of FeTe0.55Se0.45 were synthesized using the2

self-flux method, and their values of Tc were determined to be 14.5 K from magnetization3

measurements45. Although FeTe0.55Se0.45 single crystal is stable in air, exfoliated thin flakes4

are very air-sensitive. STM measurements require open surface geometry that excludes the full5

encapsulation as a method for sample protection46. To overcome this challenge, we combined6

ultra-pure argon environment fabrication, suitcase transfer, and optimized fabrication process to7

minimize the pre-vacuum contamination of the surface. In Supplementary Fig. 3, we show a8

history of device quality optimization. Even though all the five devices are fabricated under the9

same ultra-pure argon environments, minimizing the time of Fe(Te,Se) thin flake being exposed10

in the argon environment (tAr) was crucial in reaching sufficiently high surface quality.11

The optimized fabrication procedure is demonstrated in Supplementary Fig. 2. To minimize12

tAr, thin flakes of bottom graphite gate, boron nitride dielectric (h-BN) layer, and top graphite con-13

tact were prepared in advance on polydimethylsiloxane (PDMS) films. After the bottom graphite14

and h-BN are transferred onto a pre-patterned gold electrodes, the FeTe0.55Se0.45 single crystal was15

exfoliated using Scotch tape directly onto the PDMS film. Thin flakes (dt = 6 - 50 nm) were ob-16

tained using this method29. Afterward, the Fe(Te,Se) flake was transferred onto h-BN under 60-9017

◦C47. The electric contact between the sample and the bias electrode was established by utilizing18

top graphite, and the complete device was transferred into STM ultra-high vacuum (UHV) cham-19

ber immediately using home-made air-tight suitcase. The optical images of each step of device20

fabrication can be found in the lower panels of Supplementary Fig. 2. With this particular fabrica-21

tion scheme, we achieved clean surface roughly comparable to in-situ cleaved single crystals in a22

field of view extending to 30×30 nm2 (Fig. 1d, Extended Data Fig. 6a, Supplementary Fig. 17a).23

The remaining contamination comprised of small, 1-2 Å high impurities that are mobile and can24

be removed by constant-current-mode scanning (Supplementary Fig. 23). The PDM state was25

confirmed to exist, even in the areas with high impurity concentrations, see Extended Data Fig. 6.26

The locations of interest were identified using a combination of optical imaging, atomic force27

microscopy (AFM) and STM measurements (Extended Data Fig. 1). The thickness of each flake28

was determined by AFM after the STM experiments were completed. In device #1, the thickness29

of h-BN dielectric layer is 50 nm, and the Fe(Te,Se) thin flake is 25 nm - 50 nm from left to right.30

There is also a 210 nm-thick flake attached to the left-bottom corner of the sample. Using precise31

tip navigation (Supplementary Fig. 4), we can investigate flake regions with specific thicknesses.32

The averaged single step height was found to be 7.1 Å (Supplementary Fig. 5). This value is about33

18% larger to its bulk counterpart (c = 6.0 Å), effectively acting as negative chemical pressure,34

and has not been realized in bulk materials48,49.35

STM measurement: STM measurements were performed in a commercial Unisoku USM 1300J36

STM/AFM setup using a Pt/Ir tip in an ultra-high vacuum environment. All features are measured37

by using several different micro-tips. The differential conductance (dI/dV) spectra were acquired38

by a standard lock-in amplifier at a frequency of 973 Hz, under lock-in modulation voltage Vmod39

= 0.1 - 1 mV, setpoint voltage Vbias = -5 mV and tunneling current It= 100 pA. STM images were40

acquired in the constant-current mode under the same setpoint parameters of dI/dV spectra, except41

the micrometer-sized topographies (left panel of Fig. 1d, Extended Data Fig. 1e, Supplementary42

Fig. 3 and Supplementary Fig. 4) which were applied a larger tunneling barrier (Vbias = -100 mV,43

It= 20 pA). Unless otherwise specified, the data was measured in a zero magnetic field. The precise44

tip navigation (Supplementary Fig. 4) is facilitated by the fine calibration of walking piezos on45

pre-patterned reference markers. Unless specified otherwise, data was acquired under a system46

temperature of 300 mK and electron temperature ranging from 1-4 K depending on the lock-in47
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amplitude and circuit configuration as determined by the sharpness of the gap edge. At lower48

electron temperatures, multiple features near the coherence peak are identified (SI Section 3). All49

these features exhibit similar spatial behavior (Extended Data Fig. 4). In order to simplify the data50

analysis, we focused on the high electron temperature limit where the features are merged into a51

single peak.52

Summary of the STM data: In this work, we measured five Fe(Te,Se) thin-flake devices (Sup-53

plementary Fig. 3), and a FeTe0.55Se0.45 bulk single crystal cleaved in-situ for comparison. The54

results of single crystal are shown in Supplementary Fig. 5a,c and Supplementary Fig. 10. The55

devices #3- #5 are test devices (the spectroscopic data not shown). The results of device #2 are56

shown in Extended Data Fig. 7. All the other figures were measured on device #1. The PDM state57

was observed on the thin part of devices #1 and #2, but disappeared at 210-nm-thick part of the58

flake (Supplementary Fig. 9). Unless specified otherwise, the data from device #1 was measured59

at 50 nm-thick flakes. An example of 35-nm thick flake is shown in Extended Data Fig. 3b, and60

data of 30-nm-thick flake from device #2 is shown in Extended Data Fig. 7.61

Robustness of the PDM state: The PDM state is robust against influence of magnetic field and62

nearby impurities. By applying a 6 T magnetic field perpendicularly to the thin flakes, a single63

SC vortex core was identified in Extended Data Fig. 5a. With dI/dV linecuts measured along64

crystallographic directions, we observed well-ordered gap modulation at the area far away from65

the core (Extended Data Fig. 5b-f). At the core center, we observed bound states oscillated within66

±1 meV with a same periodicity of lattice (Extended Data Fig. 5g-l). In the areas with high67

impurity concentration, due to pair breaking scattering, higher zero-bias conductance and lower SC68

coherence peak height were observed (Extended Data Fig. 6b,c). Even in these areas, periodic gap69

modulation is well resolved at the edges (Extended Data Fig. 6d,e). Inside these areas, new sub-70

gap states, induced by disorder, appear and modulate with the same spatial wavelength (Extended71

Data Fig. 6f-k).72

Gap map extraction: The SI-STM data shown in the main text was measured under 300 mK, with73

an effective electron temperature around 4 K (spectral broadening: 1.2 meV). For this electron74

temperature, only a single peak is observed around SC gap. The local spectral gap is defined as75

(∆+-∆-)/2, where ∆+,- are defined as the energies at the coherence peak maxima determined by76

Gaussian fitting. In rare cases (less than 0.1% of data) when the fitting failed, the left and right77

peak energy were determined by the positions of local maximum after a slope function subtracted78

from the raw data (see also SI Section 3 for the discussion of low electron temperature data).79

FT filtering: A reciprocal-vector-locked FT filtering enhances the visualization of modulation by80

filtering out irrelevant signals (Fig. 3e,f, Fig. 4e and Extended Data Fig. 8c,d). First, the vector-81

selecting Gaussian windows was applied to the Fourier transform of the image. Then, an inverse82

Fourier transform construct the filtered image. The FT filtering function is expressed as,83

F lt
(Q1...Qn)

[A(r)] ≡ F−1

{
F [A(r)]√

2πσq

∑
Q=±Q1...±Qn

e
− (q−Q)2

2σ2
q

}
(1)

where F and F−1 are Fourier transform and inverse Fourier transform operation respectively.84

σq = 1/σ is the Gaussian cutoff in the reciprocal space, it was set to be 1/1.3 nm−1 throughout85

this work (see also a related method in SI Section 4).86

Origin of the observed PDM domains: As discussed in the main text, the PDM state is in-87

timately related to the nematic distortion in thin flakes. In bulk, the composition studied here88

(FeTe0.55Se0.45) is at the boundary of the nematic phase21,48,49. While the long-range order is ab-89

sent, the elastoresistance experiments observed diverging nematic fluctuations48,50, and a recent90
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STM measurement showed puddles of short-range order pinned by inhomogeneity51. We expect91

that this behavior is also present in thin flakes but with a different nematic director, giving rise92

to the PDM state, as explained in the main text. The appearance of small domains of the PDM93

state, as well as various topological defects around the boundaries, are direct consequence of these94

fluctuations.95

Topological defects around the domain walls: We found that the distortions around the PDM96

domain walls (Fig. 3f) originate from topological defects. In Extended Data Fig. 8c,d, we dis-97

entangle the gap modulation along the two Bragg directions (±PX and ±PY) by using a vector98

selective FT filtering, that allows us to analyze the spatial dependence of the two unidirectional99

modulations individually. Several PDM dislocations were observed for both unidirectional modu-100

lations. Since an integer (or half) dislocation displays as a single (or half) vortex at the spatial map101

of the modulation phase ϕ∆
Q(r), the phase analysis can quantitatively identify the properties of102

these defects (Extended Data Fig. 8a,b). By tracing the phase around a vortex center, we identified103

a half dislocation (Extended Data Fig. 8e) and three integer dislocations (Extended Data Fig. 8f),104

where two of them formed a dislocation-antidislocation pair (Supplementary Fig. 21). A zoom-in105

into two of these defects (marked by dashed boxes in Extended Data Fig. 8c) is shown in Extended106

Data Fig. 8g and Extended Data Fig. 8j. These defects, corresponding to half-integer and integer107

dislocations, can be fully reproduced from a simple simulation (see Extended Data Fig. 8h,i,k,l108

and SI Section 7 for details). The related modulation amplitude of the PDM state is suppressed109

in the centers of these defects (Supplementry Fig. 13a,b), while the non-modulating component110

is not affected (Extended Data Fig. 10e). The presence of these unusual topological defects52,53,111

implies a nontrivial origin of the small domains of the PDM state54–56.112

Lattice-lock-in polarization of the PDM state: In order to quantitatively describe the orthogonal113

domains of the PDM state, we introduce the lattice-lock-in polarization (pLL). The status of lattice114

lock-in can be resolved by comparing the difference of modulation phase between topography and115

gap map along the directions of the two modulation vectors, ±PX and ±PY. In Supplementary116

Fig. 11g,h, we show the phase difference, i.e. δϕ
∆/T
PX,Y

(r) ≡ ϕ∆
PX,Y

(r) − ϕT
PX,Y

(r), extracted and117

converted by the 2D lock-in method (see SI Section 4, and definitions in Supplementary Table I118

and Supplementary Eq. 18). Then the lattice-lock-in polarization can be expressed as,119

pLL(r) ≡
[
|δϕ∆/T

PX
(r)| − |δϕ∆/T

PY
(r)|

]
/π (2)

It is +1 or -1 if gap maxima fully polarize at Fex or Fey positions (Supplementary Fig. 12).120

Estimation of the lattice distortions: The lattice distortion in our thin flakes was tested using a121

large topography image with atomic resolution, measured on a 100×100 nm2 area (Supplementary122

Fig. 17a-d). The orthorhombic distortion is defined as, δ ≡ (xo − yo)/(xo + yo) where xo and123

yo are lattice constants of orthorhombic unit cell, which is the 2-Fe unit cell on thin flake. We124

obtained the lattice constants by converting the reciprocal vector from FT magnitude image. This125

leads to ±0.1% resolution on δ for a 100×100 nm2 topography, when considering the uncertainty126

as the size of reciprocal pixel. Following this method, we resolved δ = (0.34 ± 0.1)%. This127

vanishing distortion is comparable to the values of nematoelastic coupling induced distortion in128

bulk crystals, which can be up to 0.6% in literature57,58, indicating an electronic-driven nematic129

distortion in the thin flakes. Additionally, we applied the same method to the topography of SI-130

STM data (Fig. 3b, Supplementary Fig. 17e-h). Even though the small image size leads to a larger131

uncertainty, we obtained zero average distortion δ = (0±1.8)% for this particular scan, consistent132

with the analysis on large topography. Moreover, the electronic deformations on the LDOS and gap133

map were found to be much larger than the lattice distortion, which further supports an electronic134

origin of the nematic distortion in our thin flakes (see SI Section 5 and Supplementary Fig. 18d).135
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Note that the sample fabrication process inevitably introduces strain in some areas. We show an136

example of a strained area in Supplementary Fig. 22, where dense stripe-like feature was observed137

on the topography. In this work, we only focused on areas that do not show strain.138

Iron sites with gap maxima or minima: The lower panel of Fig. 4b shows the extracted dI/dV139

spectra from the iron sites with gap maxima or minima separately. In order to obtain this plot,140

we first use the normalized gap map ∆temp ≡ 2δ∆(r)/[(δ∆)max − (δ∆)min] as a template, to141

locate the positions of iron sites with gap maxima and minima. The positions for gap maxima and142

minima were determined by ∆temp > 0.2 and ∆temp < -0.2 respectively, and small variation of this143

threshold do not have considerable effects on the extraction results. The segregation results are144

shown in Supplementary Fig. 14a,b and the averaged spectrum is shown in the main figure.145

Lattice segregation: Here we introduce the method for isolating the signal of Fex/Fey from the146

measured LDOS map. The positions of the Se+ sites are determined by first fitting Supplementary147

Eq. 17 to δT
(P1,P2)

(r) (Fig. 3e), while keeping a unitary amplitude. Then, the Se+ positions are148

determined as areas where the value of the fitted function exceeds 0.9. In the second step, the iron149

sites (Fex and Fey) are identified by shifting the Se+ positions by half a wavelength in x- or y-150

direction. Then the LDOS of each sublattice can be segregated by picking up the dI/dV signals151

from the corresponding positions determined above. Finally, we rebuild a continuous image for152

each sublattice by a standard Voronoi image interpolation method. The segregated Fex/Fey images153

show lattice modulation due to sublattice symmetry breaking, while segregated Se+ images show154

no modulation as expected (Extended Data Fig. 9, see also an example in Supplementary Fig. 15).155
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Extended Data Fig. 1. Sample details. a, Optical image of device #1. b, Schematic of the van der
Waals stacks and the circuits. The FeTe0.55Se0.45 thin flakes were stacked on top of hexagonal boron nitride
dielectric layer, with a graphite gate at the bottom. Bias voltage (Vbias) was applied to the Fe(Te,Se) flakes,
and the graphite gate was grounded. Top-right inset: Atom-resolved STM topography of the graphite top
contact (setpoints: Vbias = 100 mV, It= 20 pA). The yellow spot on the bottom panel indicates the position
where the graphite topography was measured. Top-left inset: side view of the STM device circuit. c, d, f,
AFM images of the regions of interest. Panels (c) and (d) show the zoomed-out view of the region where
STM data has been taken (shown in e). Panel (f) shows the region of top graphite contact. The green dot in
(e) indicates the position where the SI-STM data for the main figures was measured. g-i, AFM line-profiles
along the traces in (c), showing the thicknesses of the different regions of the Fe(Te,Se) flake. From left to
right, the thickness increases from 25 nm to 50 nm (see also Supplementary Fig. 4, the STM topographies
mapping through the Fe(Te,Se) flakes). A 210-nm-thick flake is attached in the left-bottom corner. j, AFM
line profile along the trace in (f), used to determine the thickness of h-BN dielectric layer (50 nm). Note
that the AFM measurements were performed after the STM measurements were completed.
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Extended Data Fig. 2. Examples of dI/dV spectra on Fe(Te,Se) thin flakes. dI/dV spectra taken at
different positions showing one- (a, b, i), two- (c, g, h) or three- (d, e, f) peak-like spectral features. Panel
(h) is also shown in Fig. 1e. j, A high-resolution dI/dV spectrum measured with a wide bias range. Here we
can resolve three spectral features around the superconducting gap by the second derivative analysis (lower
inset, see also SI Section 3), although the second and the third peaks are hardly distinguishable in the raw
data (higher inset).
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Extended Data Fig. 3. Two more examples of periodic gap modulation. The panel arrangements are the
same as Fig. 2. a, Flake thickness dt is 50 nm. The modulation ratio |∆PY

|/∆̄ is 13.4%. b, Flake thickness
dt is 35 nm. The modulation ratio |∆PX

|/∆̄ is 6.7%. The scale bars in the inset of (a2) and (b2) are 1 nm.
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Extended Data Fig. 4. Gap modulation at lower electron temperature. a, False-color plot of a dI/dV
linecut measured along x-axis, across three nearest Se+ atoms. The SC gaps are minimized at Se+ atom sites
(dashed white lines). b, The waterfall plot of (a). The curves are offset for clarity. On each dI/dV spectrum,
three features can be identified by fitting the second derivative of the dI/dV curves (see SI Section 3 and
Supplementary Fig. 25). The fitting results are shown in (a) as black dots. All the three features (located at
energies E1, E2 and E3) modulate in phase and are individually plotted in c-e. The semi-transparent solid
lines are extracted by FT filtering of the raw data. The horizontal dashed lines indicate the average energy
of the spectral features (Ēi = 1.28 meV, 1.78 meV, 2.32 meV). f, Spatially-averaged dI/dV spectra at gap
maximum (blue) and minimum (black) sites. g, Comparison of the modulation amplitude corresponding to
the three features, where the curves from (c-e) have their average value subtracted. The feature at higher
energy has a larger modulation amplitude (|δEi| = 0.22 meV, 0.31 meV, 0.41 meV), but the modulation
ratio (|δEi|/Ēi with i = 1,2,3) is roughly constant among these features, i.e. 17.2%, 17.4% and 17.7%,
respectively.
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Extended Data Fig. 5. Presence of the PDM state in high magnetic fields. a, Zero-bias conductance
map of a single vortex (15×15 nm2, see also a vortex lattice in Supplementary Fig. 24). The left and right
panels are measured at the same field of view but under different magnetic fields: 6 T (out of plane) and
0 T, respectively. The left panel is also shown in Fig. 3j. We measured two dI/dV linecuts in this field of
view, and both of them follow the Se+ lattice. The linecut #1 (along x-axis) starts far away from the vortex
and goes across the edge of the vortex core, with the corresponding dI/dV data shown in b. The periodic
modulation of SC gap was observed outside the vortex core (cyan dashed box). The waterfall plot of the
cyan region is shown in c. Spatially-averaged dI/dV spectra at the gap maximum (blue) and minimum
(black) sites are shown in d. The extraction of the gap modulation is shown in e, and its FT magnitude
is shown in f. At the edge of the vortex core, in-gap bound states were observed around 1 meV and they
exhibit modulation with the same periodicity [purple dashed box in (b)]. g, Negative curvature plot (see SI
Section 6) of the purple dashed box in (b). The extraction of spatial modulation of the in-gap bound state is
shown in h, and its FT magnitude is shown in i. The linecut #2 (along y-axis) was measured at the vortex
center [blue arrow in (a)]. j, False-color plot of dI/dV linecut (left) and waterfall spectrum plot (right) of
linecut #2. k, Typical spectra inside the vortex core. The positions of each curve are indicated by the color
bar in (j). l, Energy-dependent magnitude of one-dimensional FT of (j). Color scale: black for high and
white for low intensity. Inside the vortex core, the bound states oscillate from 0 meV to around ±1 meV
with a similar wavelength as the PDM state. This observation is consistent with the signal that appears
around (π,π) in (l).
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Extended Data Fig. 6. Periodic modulation in the areas with high impurity concentration. A large
area (50×50 nm2) contains regions with low and high impurity concentrations. a, Atom-resolved STM
topography. Some impurities can be identified in the upper region, resulting in a high zero-bias conductance
(b) and lower coherence peaks (c). In contrast to the interstitial iron impurities on the bulk single crystals
without annealing, the impurities observed here are mobile and can be removed by constant-current-mode
scanning (Supplementary Fig. 23). b, c, Differential conductance map at zero bias (0 mV) and the energy
of SC gap coherence peak (+2 mV). d-i, Three dI/dV linecuts measured in this area. Their locations are
marked in (a-c). They go gradually deeper inside the region with higher impurity concentration from #1 to
#3. (d, f, h) are false-color plots of dI/dV linecut. (e, g, i) are the corresponding negative curvature plots (see
SI Section 6). The periodic gap modulation exists throughout. Note that sharp bound states appear in the
dI/dV spectrum when measured near the impurities. These states exhibit the same modulation periodicity
as the PDM state. j, Selected spectra from (f). The positions of the curves are indicated in (f) by the color
bar. k, Selected spectra from (h) feature the spatial modulation of the bound states. The positions of these
curves are indicated in (h) by the color bar.



23

5 µm

0 20 40
X (µm)

0

10

20

30

Z
 (

n
m

)

4 Å

2.5

(meV)

2.0

1.5

1.0

4 Å

High

Low

-5 50
Energy (meV)

-5 50
Energy (meV)

-5 50
Energy (meV)

-5 50
Energy (meV)

-5 50
Energy (meV)

-5 50
Energy (meV)

0

5

10

15

D
is

ta
nc

e 
(Å

)

0

5

10

15

D
is

ta
nc

e 
(Å

)

0

5

10

15

D
is

ta
nc

e 
(Å

)

0

5

10

15

D
is

ta
nc

e 
(Å

)

0

5

10

15

D
is

ta
nc

e 
(Å

)

0

10

20

D
is

ta
nc

e 
(Å

)

20a

b

c

d

e f g

h i j

Low

High

Low

High

x

y

a

b

T (r )

D(r )

Extended Data Fig. 7. Gap modulation on Device #2. a, Optical image of Device #2. Inset: AFM line
profile measured along the white dashed line in (b), showing the thickness of the flake (30 nm). b, AFM
image of Device #2. c, SC gap map on a 1.7×1.7 nm2 area. Inset: the FT magnitude of the SC gap map. d,
The STM topography acquired simultaneously with the gap map in (c). The white circles mark the positions
of gap maxima appearing at the Fey sites. e-j, dI/dV linecuts measured on device #2 along either x-axis or
y-axis. The average gaps are ∆̄ = 1.30, 2.00, 2.09, 2.03, 1.60, 1.76 meV and PDM modulation amplitudes
are |∆P| = 0.40, 0.50, 0.61, 0.69, 0.56, 0.72 meV for each corresponding linecut. The average modulation
ratio is 35 % in this device, with individual ratios being: 31%, 40%, 29%, 34%, 35%, 41%, respectively.
Setpoints: Vbias = -5 mV; It: 700 pA for (e), 1.3 nA for (c, d, f), 1.5 nA for (g-i).
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Extended Data Fig. 8. Fractional and integer topological defects on the PDM state. a, b, PDM
modulation phase at the ±PX and ±PY, calculated by 2D lock-in method (SI Section 4). c, d, Separate vi-
sualization of the modulation at ±PX and ±PY, calculated by FT filtering with only unidirectional vectors
selected (see Methods). Multiple topological defects are identified (#1 - #3). e, f, Phase winding around
fractional and integer topological defects. For clarity, the curves are shifted to match their phase minima
at zero. In (f), a dislocation-antidislocation pair is demonstrated by their opposite phase winding (see also
a simulation in Supplementary Fig. 21). g-i, Zoom-in of an half-integer quantized topological defect. g, A
zoom-in image of blue dashed square area in (c), which contains the topological defect #1. h, i, Simulation
of the fractional topological defect #1 (see SI Section 7). A misaligned half dislocation on the ±PX mod-
ulation of the PDM state (h) appears as an equivalent half vortex in its phase field (i). j-l, Same as (g-i),
showing an integer topological defect #2. A single dislocation on the ±PX modulation (k) appears as an
equivalent single vortex in its phase field (l). The Gaussian cut-off length (σ) of FT was set to 1.3 nm in
(a-d).
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Extended Data Fig. 9. Lattice segregation and LDOS imbalance. a-d, Energy-integrated differential
conductance map of segregated iron sublattice, both Fex and Fey sites are selected (see Methods). The
integration energy window was selected in order to avoid the influence of SC coherence peak (see SI Section
8 and Supplementary Fig. 20). The gray lines show the PDM domain wall, which traces pLL = 0. The
segregated LDOS at iron sites, Σg(rFe), shows the periodic modulation with a wavelength equal to the
lattice constant, regardless if positive (a) or negative (b) energy window is selected. The same modulation
can be seen from the FT magnitude [(b) and (d)], where the Bragg peaks can be resolved. e-h, Same as (a-d)
but on segregated Se+ sublattice. No modulation is seen as expected. The blue circles indicate the positions
of Se+ sites. See also Supplementary Fig. 15 for an example of lattice segregation procedure performed on
simulated images with and without LDOS imbalance between Fex/Fey sites.
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Extended Data Fig. 10. Gap modulation ratio. a, Literature survey of the materials showing gap
modulation9,11–19. Unidirectional gap modulation ratio, |∆Q|/∆0, versus SC critical temperature, Tc, is
plotted for multiple materials. The filled symbols are extracted from SC gap measurements, ∆(r); while
the open symbols are converted from Cooper pair density map, ns(r), which was measured by Josephson
SI-STM experiments in the literature (see details in SI Section 9). The current work (dark-red filled sym-
bols) exhibits an unprecedentedly large gap modulation ratio (see also Extended Data Fig. 7). b, c, Spatial
distribution of unidirectional gap modulation ratio of the SI-STM data in device #1 (Fig. 3 and Supplemen-
tary Fig. 13a,b). The ratio is calculated individually along ±PX and ±PY directions. The gray lines are the
lattice-lock-in domain walls, which trace pLL = 0. The ratio is above 20% inside the domain. d, The gap
difference between the neighboring Fex and Fey atoms [p∆(r)] which is derived by the sum of (b) and (c),
see details in SI Section 9 and Supplementary Table I. e, Map of the inhomogeneous non-modulating com-
ponent, ∆0(r). In practice, it was defined as the polynomial background of the total gap, ∆(r) (Fig. 3a),
and extracted by function fitting. The ∆0(r) was also depicted as the semi-transparent plane in the three-
dimensional plot of Fig. 3a.
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1. MODELS FOR THE PAIR DENSITY MODULATION STATE

We build the model for the pair density modulation (PDM) state based on several experimental
observations. The quasiparticle interference patterns observed in our thin flake devices suggest
the absence of either Γ or M pockets based on the lack of scattering processes with momentum
transfer q2 (Fig. 1h). In the following we will assume that only M pockets are present, similarly
to the monolayer FeSe on SrTiO3 substrate. We then note that the SC order modulation is com-
mensurate with two-iron unit cell and the SC gap extrema coincide with the two iron sublattices,
with maximum on Fex site and minimum on Fey site. Therefore, the model has to make a distinc-
tion between the two sublattices. Such a distinction can be achieved by breaking the glide-mirror
symmetry present in the bulk crystals, which can happen at the crystal surface due to the different
environment of the Se/Te atoms that are below and above the Fe plane (Fig. 1b). Moreover, our
measurements also indicate differences in normal state density of states (for bias voltage far out-
side of the SC gap, see Fig. 4), which requires additional symmetry breaking beyond that of the
glide-mirror plane. We propose the nematic distortion along one of the sides of the two-iron unit
cell to be responsible for differentiation between the two iron sublattices. Short-range nematic

∗ Correspondence: lykong@caltech.edu
† Correspondence: s.nadj-perge@caltech.edu
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order (see Methods for details) also explains the presence of two types of domains, in which the
role of Fex and Fey switches.

While in general iron-based superconductors are described by multiple orbital models con-
structed out of the 3d shell of iron atoms, here we will focus on a simple model that nevertheless
can capture the essence of the PDM state. We base our approach on phenomenological models
previously suggested for monolayer FeSe on SrTiO3

59,60, with two iron sublattices, and nearest
and next-nearest hoppings between them:

H0(k) =

(
ϵFex(k) ϵT (k)
ϵT (k) ϵFey(k)

)
(1)

ϵFex(k) = −2 (α t2 cos kx + t3 cos ky)− µ (2)

ϵFey(k) = −2 (α t3 cos kx + t2 cos ky)− µ (3)

ϵT (k) = −4t1 cos
kx
2
cos

ky
2

(4)

As shown in Fig. 4a, the glide-mirror symmetry is broken when the next-nearest neighbor
hoppings t2 and t3 have different values as they are facilitated by the chalcogenide atoms that are
below and above the iron plane, respectively. However, when only the glide mirror symmetry is
broken, the normal state density of states on both iron sublattices remains the same. Therefore,
the second crucial ingredient of the model is the appearance of nematic order in a direction of
one of the next-nearest neighbor Fe-Fe bonds. We stress this is different from the nematic order
commonly observed in other FeSC compounds, which is along the nearest neighbor Fe-Fe bond.
In other words, in our case the nematic direction is rotated by 45° from the direction usually
encountered in other iron-based superconductors (see details in Supplementary Fig. 16). The
effect of this nematic order is described by the parameter α, which changes the values of hopping
along x direction, in accordance with experimentally determined nematicity direction. By slightly
changing α value from 1, we can obtain normal state density of states ratio between the two
sublattices as observed in the experiment, which is on the order of few percent.

With such a normal state Hamiltonian, we can now discuss the SC order parameter. In the
simplest case, we consider on-site interaction that gives rise to two momentum-independent order
parameters:

∆X = V0/Nk

∑
k

⟨ckX↑c−kX↓⟩ (5)

∆Y = V0/Nk

∑
k

⟨ckY ↑c−kY ↓⟩ (6)

where V0 is the onsite interaction strength and ckX/Y ↑↓ are the annihilation operators for electrons
on sublattice Fex/Fey with spin up/down, respectively. Due to the difference in normal state density
of states, the self-consistent solutions of the gap equation will lead to different values of ∆X and
∆Y . We then obtain the density of states in the superconducting state by first constructing the
Bogoliubov-de Gennes Hamiltonian:

HBdG(k) =

(
H0(k) ∆
∆† −HT

0 (−k)

)
, ∆ =

(
∆X 0
0 ∆Y

)
(7)

With such a Hamiltonian, we calculate the spectral function and, from it, the density of states on
each sublattice:

GR(ω,k) = (ω + iη −HBdG(k))
−1 (8)
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Supplementary Fig. 1. Calculated density of states in PDM state model with two Fermi surface
pockets at the two iron sublattices. The two gaps oscillate either in-phase when the SC order parameters
have the same sign (a), or out-of-phase when they have opposite sign (b). The unit ∆̃ = ∆0+∆H = 0.045,
∆0 and ∆H are defined in the supplementary Information.

ρX/Y (ω) = − 1

π

∑
k

ImGR(ω,k)11/22 (9)

The difference in on-site order parameters results thus in different positions of the coherence
peaks on both sublattices as presented in Fig. 4 of the main text. The parameter values used in
calculations were t1 = 1.6, t2 = 0.4, t3 = −2.0, µ = −2.4, α = 0.975, V0 = 12.5 with cut-off
±0.25. Nevertheless, the obtained results are not strongly dependent on the exact values used
for calculations. Mainly, a larger deviation of α from 1 increases the difference in the normal
density of states, and in consequence, the difference in order parameters. In general, we can also
consider pairing between the nearest and next-nearest sites, which will change the gap structure
quantitatively (including some impact on the coherence peak separation), but the main feature of
shifted coherence peaks between the two sublattices will remain unchanged.

To make our model more realistic, we make an extension by considering two pockets at the
M point. These pockets correspond to two orbital degrees of freedom and their presence is found
by the first principles calculations and angle-resolved photoemission spectroscopy. The simplest
way to incorporate the presence of this second pocket is to include two copies of the single orbital
model and introduce hybridization between them to lift the degeneracy between the two bands. In
such a case, the normal state Hamiltonian is:

H0(k) =


ϵFex(k) ϵH(k) ϵT (k) 0
ϵH(k) ϵFex(k) 0 ϵT (k)
ϵT (k) 0 ϵFey(k) ϵH(k)
0 ϵT (k) ϵH(k) ϵFey(k)

 (10)

where the hybridization term is given by ϵH(k) = −2t4(cos kx + cos ky). The inclusion of the
second pocket allows us to consider different relationships between the order parameters on each
pocket. Theoretical proposals include s++ and s+− configurations with the same and opposite
phases of the order parameter on the two pockets, and quasi-nodeless d-wave order parameter,
which also has opposite phase on both pockets, but with additional momentum space structure
as shown in Supplementary Fig. 6. We can now investigate on a phenomenological level various
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consequences of different possible order parameter types. First of all, the presence of two Fermi
surface pockets can lead to the appearance of an additional coherence peak related to different SC
gaps on both pockets. While exact experimental regime can considerably complicate this simple
picture, in principle, the behavior of such peaks can serve as an indicator for the nature of the SC
state thanks to the emergence of PDM state. To model these differences between the gap sizes and
signs of order parameters between the pockets further, we can use the following ∆ matrix in the
sublattice and orbital space:

∆ =


∆0 +∆z ∆H ∆T 0

∆H ∆0 +∆z 0 ∆T

∆T 0 ∆0 −∆z ∆H

0 ∆T ∆H ∆0 −∆z

 (11)

Here we decomposed ∆X and ∆Y into ∆0 and ∆z. Additionally, we include the possibility of
intersublattice intraorbital pairing ∆T and intrasublattice interorbital pairing ∆H . When rotated to
the band basis of the normal state Hamiltonian H0(k), the intrapocket pairing on the two pockets
will have the form:

∆P1/2 = ∆0 ±∆H +∆T
ϵT√

ϵ2T + (ϵFex − ϵFey)
2/4

+ ∆z

(ϵFex − ϵFey)/2√
ϵ2T + (ϵFex − ϵFey)

2/4
(12)

where we have suppressed the momentum dependence of the normal state Hamiltonian and order
parameter components. In this basis, we can see that the order parameter in the two pockets, and
in particular their relative sign can be determined by the relative sign of ∆0 ± ∆H , since the ∆T

and ∆z terms have the same sign for both pockets. We can qualitatively test the consequence
of PDM state for s++ (in our model, ∆H < ∆0), s+− (∆H > ∆0), and nodeless d-wave (∆H =
∆̃H sin kx/2 sin ky/2, ∆H > ∆0 on the Fermi surface) pairings. When the density of states on each
sublattice is calculated with such ∆ parametrizations, the relative sign of the order parameters has
a qualitative consequence on the spectrum. If the sign is the same on both pockets, the maxima
and minima of the coherence peak positions for both pockets coincide with the same iron atoms
(Supplementary Fig. 1a). However, when the order parameter signs are opposite, maximum of one
gap will coincide with minimum of the second gap on a given sublattice, with the roles reversed
on the other sublattice (Supplementary Fig. 1b). This will result in either in-phase oscillation of
coherence peaks for the same order parameter sign, or out-of-phase oscillation of coherence peaks
for the opposite signs of order parameters. As such, the presence of PDM state can thus enable
distinguishing between the relative sign of superconductivity in the two pockets.

2. PHASE-REFERENCED QUASIPARTICLE INTERFERENCE

Phase-referenced (PR) QPI can resolve the sign changing between two SC order parameters61,62.
Here, we employed a defect-bound-state-based PR-QPI method63, which is more applicable in
practice. In this method, the PR-QPI signal is expressed as,

gPR (q, E) ≡ |g̃ (q, E)| cos (θq,E − θq,−E) (13)

where |g̃ (q, E)| and θq,E are the FT magnitude and phase of g (r, E), respectively. The gPR (q, E)
is negative, if the q connects states with the opposite sign of SC order parameters, sign[∆i(k)] =
−sign[∆j(k−q)], but is positive if the order parameters for the initial and final states have the same



31

sign. This method was originally proposed for a sharp spectral peak of impurity-induced bound
states, but it was later extended to the case without a clear subgap peak31,64. Previous experiments
showed that the gPR signal captured the gap structure of FeTe0.55Se0.45

31 and Bi2Sr2CaCu2O8+δ
64

bulk superconductors correctly even when the subgap peaks are absent. We employed this strategy
in our SI-STM data and observed negative gPR signal within a small q vector around (0, 0). These
signals only exist at the energy window slightly smaller than the gap value, where the impurity
scattering exists (Supplementary Fig. 6a-c). These observations place constraints on the SC order
parameter of the Fe(Te,Se) thin flakes (Supplementary Fig. 6d-i).

3. MEASUREMENTS WITH LOWER ELECTRON TEMPERATURE

The dI/dV measurements with lower electron temperature show fine features around the SC
gap edges. We typically observe three features corresponding to energies of approximately ±1.4
meV, ±1.9 meV and ±2.4 meV with their visibility declining at higher energies (Fig. 1e, Extended
Data Fig. 2 and Extended Data Fig. 4, electron temperature: 1 K, broadening: 0.3 meV). It is
not clear whether they originate from SC quasiparticles, gap anisotropy, or k-dependence of the
Fermi surface. However, these features appear to show in-phase spatial oscillation, the measured
high-resolution dI/dV linecut across a few Se+ sites (Extended Data Fig. 4a,b) shows the same
behavior as data in the main text obtained for higher electron temperatures. The precise energy
positions of the three spectral features were determined from a multipeak extraction algorithm
facilitated by a second-derivative method. The extraction details for each spectrum are shown in
Supplementary Fig. 25: the peak searching procedure was applied to the negative second derivative
curves (lower panel), while the searching window is defined in between the gray bars (upper
panel). The extraction results are indicated as blue dots on each panel. These extracted positions
are depicted in Extended Data Fig. 4a, and displayed individually in Extended Data Fig. 4c-e.
All three features evolve in phase, with a roughly constant gap modulation ratio, about 17.5%
(Extended Data Fig. 4g).

4. EXTRACTION OF MODULATION AMPLITUDE AND PHASE

We employed two methods to extract the amplitude and phase from a modulation image,
M(r) = A(r)cos [Q · r + ϕ(r)]. The two dimensional lock-in method34 converts the real quantity
with modulation to be a vector-locked complex quantity,

MQ(r) =

∫
dRM(R) eiQ·R e−

(r−R)2

2σ2 (14)

where Q is the vector of modulation, and σ is the Gaussian cutoff length, which controls the low-
pass frequency of the extraction. To remove the relative oscillation phase (Q · r), the Gaussian
cutoff σ should be larger than 2π/Q. A too small σ introduces irrelevant distortion, while a too
large σ smears out the spatial features. Considering the commensurate length scale (3.8 Å) of our
PDM state, we use a reasonably large cutoff (σ = 1.3 nm) to avoid artifacts.

In practice, the vector-locked complex quantity is calculated in reciprocal space,

MQ(r) = F−1MQ(q) = F−1

{
F
[
M(r)eiQ·r] · 1√

2πσq

e
− q2

2σq2

}
(15)
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where σq ≡ 1/σ, F and F−1 are Fourier transform operation and inverse Fourier transform oper-
ation, respectively. Then the modulation amplitude and phase can be extracted as,

A(r) =

√
[ReMQ(r)]

2 + [ImMQ(r)]
2; ϕ(r) = tan-1 ImMQ(r)

ReMQ(r)
(16)

We checked the validity of 2D lock-in method by a less sophisticated but more direct, moving
window method65. In this method, the field of view is cropped to a small 1.3 × 1.3 nm2 window.
The relative modulation amplitude (or phase) can be extracted from FT magnitude (or FT phase)
within the window at the modulation vector Q. Moving the window pixel by pixel throughout the
field of view, a spatial map of modulation amplitude (or modulation phase) can be obtained. Al-
though the small window size leads to low signal-to-noise-ratio of the extraction maps, the moving
window method qualitatively matches results obtained by the 2D lock-in method (Supplementary
Fig. 11).

5. DISCUSSION OF DRIFT AND SHEARING CORRECTIONS

Atoms slightly deviating from their perfect positions induce the so-called slowly varying lattice
distortion, which breaks the perfect periodicity of the lattice. This distortion can be corrected by
Lawler-Fujita algorithm33. A perfect square lattice takes the form,

T0(r0) =
∑

Q=PX,PY

|TQ| cos
[
Q · r0 + ϕ̄T

Q

]
(17)

the measured lattice topography is always imperfect with position-dependent lattice phase,

T (r) =
∑

Q=PX,PY

|TQ| cos
[
Q · r + ϕT

Q(r)
]

(18)

where the two wavevectors are PX = [(PX)x, (PX)y] and PY = [(PY)x, (PY)y]. We further
define the distortion field as,

u(r) ≡ r0 − r =

(
ux(r)
uy(r)

)
(19)

which is the local displacement of the real lattice from the perfect lattice. Therefore, the relation-
ship between perfect and distorted lattice is,(

(PX)x (PX)y
(PY)x (PY)y

)(
ux(r)
uy(r)

)
=

(
ϕT
PX

(r)− ϕ̄T
PX

ϕT
PY

(r)− ϕ̄T
PY

)
(20)

Since ϕ̄T
Q only introduces a rigid shift of the entire image, for simplicity, we set them to be zero in

the following. By applying matrix inversion, u(r) can be calculated as,

ux(r) =
(PY)yϕ

T
PX

(r)− (PX)yϕ
T
PY

(r)

(PX)x(PY)y − (PX)y(PY)x
(21)

uy(r) =
(PX)xϕ

T
PY

(r)− (PY)xϕ
T
PX

(r)

(PX)x(PY)y − (PX)y(PY)x
(22)
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The slowly varying phase, ϕT
Q(r), can be extracted from the 2D lock-in method. Therefore a

Lawler-Fujita corrected image can be obtained by making the following transform, T0(r0) =
T [r + u(r)].

Shear distortion artifact, which breaks the C4 rotational symmetry of the lattice, appears, for ex-
ample, when unidirectional drift happens during SI-STM measurement. Following the literature12,
we describe the image shear with an X-shearing matrix S and a shear angle, θshear, which is the
angle between the shearing axis and the horizontal axis of the image (Supplementary Fig. 19g).
Then the relationship between sheared (x, y) and unsheared (x0, y0) coordinate can be expressed
as, (

x
y

)
= R(θshear)SR(−θshear)

(
x0

y0

)
= R(θshear)

(
1 Sh
0 1

)
R(−θshear)

(
x0

y0

)
(23)

where, Sh is the shearing strength, R(θ) is the standard 2D rotation matrix. In reciprocal space,
it shears the two adjacent Bragg vectors (we note the perfect Bragg vectors as Q0

1, Q0
2). The

coordinates of sheared Bragg vectors Q1, Q2 are,

(
(Qi)x
(Qi)y

)
=

(
|q| cos(αi

lat) + Sh|q| sin(θshear) cos(θshear − αi
lat)

|q| sin(αi
lat)− Sh|q| cos(θshear) cos(θshear − αi

lat)

)
, i = 1, 2 (24)

where |q| = |Q0
1| = |Q0

2|, αi
lat = αlat, αlat + π/2 for i = 1, 2 respectively, αlat is the lattice

angle, defined as the angle between Q0
1 and horizontal axis of the image. The Q1, Q2 can be

measured from the sheared image, with these inputs, another four parameters of Eq. 24 can be
solved numerically by global fitting procedure. Finally, the shear corrected image can be obtained
by following transform,

r0 = R(θshear)SR(−θshear)r (25)

For example, we corrected data with a severe drift by our shear correction code (Supplementary
Fig. 19b). Our code captured the parameters of the image shear and with these parameters we
reproduced the sheared image as shown in Supplementary Fig. 19a,c.

We note that the lattice distortion is negligible in our SI-STM dataset shown in the main figures
and to avoid unnecessary data processing, we used the raw data for further analysis (the corre-
sponding corrected topographies utilizing Lawler-Fujita and shearing correction code are shown
in Supplementary Fig. 18a-c, demonstrating the negligible lattice distortion).

6. CURVATURE METHODS

We employed the curvature method66 to improve the feature visualization in the dI/dV linecuts
measured on vortex core (Extended Data Fig. 5), high impurity concentration area (Extended Data
Fig. 6) as well as the spectra measured on the thick flake (Supplementary Fig. 9). The curvature
method is effectively similar to the second-derivative method but improves the localization of the
extrema and reduces the peak broadening, resulting in better visualization of spectral features on
intensity image plots.
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7. SIMULATIONS OF DISLOCATION AND GAP MODULATION

Phenomenological simulations #1: the topological defects shown in Extended Data Fig. 8. The
spatial winding of the modulation phase can be described as

ϕD(x, y) = m tan-1
(

x sinαdis − y cosαdis

−x cosαdis − y sinαdis

)
+ ϕ0 (26)

where αdis is the orientation angle of the dislocation, m is 1 or 0.5 for integer or half-integer
topological defects, ϕ0 is global phase shift. Then the dislocation was simulated as,

D(x, y) = D0cos [Q · r + ϕD(x, y)] (27)

where Q is the wavevector of the ordered state. Moreover, simple simulation of a vortex-antivortex
pair is shown in Supplementary Fig. 21. Following the literature67, phase field of the pair is
simulated by

ϕ(x, y) = tan-1
[

4lvyC(y)
4x2 + 4y2 − l2v

]
+ π (28)

where lv is the distance between vortex and antivortex, and the shape factor is

C(y) =
∣∣∣∣1 + A− |y|

lv

∣∣∣∣ 1
B

(29)

Phenomenological simulations #2: PDM linecut and induced LDOS modulation shown in Sup-
plementary Fig. 20 (see also the next section). The coherence peaks were simulated by a simple
Gaussian function,

G0(E, x) =
1√
2πσ

[e
−(E−E0)

2

2σ2 + e
−(E+E0)

2

2σ2 ] (30)

where,
E0(x) = ∆0 +∆pcos(Qxx+ ϕ) (31)

is the spatial-modulated SC gap. The background above the SC gap was simulated by a modified
Fermi-Dirac function,

G1(E, x) = 1/[e(E+E0)/kBT + 1] (32)

and,
G2(E, x) = 1− 1/[e(E−E0)/kBT + 1] (33)

Therefore, the simulated PDM linecut can be produced by adding the three terms,

G(E, x) = G0(E, x) +G1(E, x) +G2(E, x) (34)

Then the induced LDOS modulation was simulated by applying Fourier transform on the PDM
linecut (Supplementary Fig. 20b,d).
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8. PDM STATE INDUCED LDOS MODULATION

In order to show that the observed LDOS imbalance at Fex/Fey sublattices (Fig. 4) is not a
consequence of modulating SC coherence peak, we performed the corresponding data analysis in
the bias range well outside the peak regions. Here we further justify this approach. Gap modulation
can, in principle, induce LDOS modulation at the energies around SC coherence peak. Assuming
a perfect gap modulation following ∆(r) = ∆0 + ∆1 cos(Q · r), the induced LDOS modulation
can be demonstrated by investigating the spatial distribution of LDOS at some typical energies
(Supplementary Fig. 20a). For example, at the energies of gap maximum (E1 = ∆0 + ∆1), the
LDOS is maximized at positions where ∆(r) = E1 (one time per 2π/Q), thus giving rise to
LDOS modulation with the same vector Q as the gap modulation (the same situation also happens
for E2 = ∆0 −∆1). Moreover, at the energy of gap average (E0 = ∆0), the LDOS is maximized
at positions where ∆(r) = E0 (two times per 2π/Q), thus give arise to LDOS modulation with a
wavevector equal to 2Q.

Phenomenological simulations (see SI Section 7) of these induced LDOS modulation in the
PDM state are shown in Supplementary Fig. 20a-e, which are fully consistent with our measure-
ments (Supplementary Fig. 20f-i). The induced LDOS modulation is prominent at the energies
around the SC coherent peaks, relatively weak deep within the superconducting gap, and com-
pletely disappears at the energies well above the gap. The energy threshold for the existence of
this modulation is affected by the peak broadening, leading to the threshold being slightly larger
than the gap maximum.

Note that the Fex-Fey sublattice LDOS imbalance (or, equivalently, the normal state nematicity,
Fig. 4) is measured sufficiently far above the SC gap, and is not affected by the induced LDOS
modulation discussed here. Therefore, in the data analysis of the LDOS imbalance (Fig. 4 and
Extended Data Fig. 9), we use the dI/dV map at energies above the threshold for vanishing of
the induced modulations (which is ±4 meV in our case), to ensure the extracted features do not
originate from this induced LDOS modulation.

9. EXTRACTION OF MODULATION RATIO

As discussed in the main text, the total gap is expressed as

∆(r) = ∆0(r) +
∑

Q=PX,PY

|∆Q(r)| cos
[
Q · r + ϕ∆

Q(r)
]

(35)

Thus the unidirectional gap modulation ratio is defined as the ratio between the amplitudes of
modulating and non-modulating components,

|∆Q(r)| /∆0(r) (36)

In Extended Data Fig. 10a, we summarized the unidirectional gap modulation ratio among multiple
materials in the literature. When the gap modulation was measured by the spatial variation of the
energy positions of SC coherence peaks, the ratio |∆Q(r)| /∆0(r) could be directly extracted.
In references9,12,15, the modulation was identified by measuring the spatial variation of Josephson
current, which is proportional to Cooper pair density (ns). In these cases, the gap modulation ratio
|∆Q(r)| /∆0(r) can not be directly read out from the data, but simple conversion method can be
used for the extraction. Considering the relationship ns ∝ (IcRN)

2 and IcRN = [π∆
2e

tanh( ∆
2kBT

)],
we got √

ns(r) ∝ ∆(r) (37)
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at low temperatures. The data points extracted through this method are shown as open symbols in
Extended Data Fig. 10a.

Finally, we discuss the derivation of the gap difference between the neighboring Fex and Fey
atoms, defined as,

p∆(r) ≡
|∆Fex −∆Fey |
∆Fex +∆Fey

(r) (38)

where ∆Fex and ∆Fey are the SC gaps on the two neighboring iron atoms Fex/Fey. Since the non-
modulating SC component can be expressed as, ∆0 = (∆Fex + ∆Fey)/2 and the energy different
between the SC gaps of the two iron sites can be expressed as |∆Fex −∆Fey | = 2(|∆PX |+ |∆PY|),
the p∆ can be calculated by the sum of the two unidirectional gap modulation ratios,

p∆(r) ≡
|∆Fex −∆Fey |
∆Fex +∆Fey

(r) =
|∆PX

(r)|+ |∆PY
(r)|

∆0(r)
(39)

The extracted map of p∆ of the SI-STM data of the main text is shown in Extended Data Fig. 10d.

10. OTHER SUPPORTING DISPLAY ITEMS

(S01) List of Symbols (Supplementary Table I).
(S02) Sample fabrication (Supplementary Fig. 2).
(S03) History of device quality optimization (Supplementary Fig. 3).
(S04) Precise tip navigation on Fe(Te,Se) flakes (Supplementary Fig. 4).
(S05) Step height on Fe(Te,Se) thin flakes (Supplementary Fig. 5).
(S06) Possible symmetries of SC order parameter (Supplementary Fig. 6).
(S07) Breakdown of superconductivity at step edges (Supplementary Fig. 7).
(S08) More examples of periodic gap modulation (Supplementary Fig. 8).
(S09) Absence of gap modulation on 210-nm thick flake (Supplementary Fig. 9).
(S10) Absence of gap modulation on bulk crystals (Supplementary Fig. 10).
(S11) Calculation of the PDM lattice-lock-in polarization (Supplementary Fig. 11).
(S12) Simulation of the PDM lattice-lock-in polarization (Supplementary Fig. 12).
(S13) PDM nematicity (Supplementary Fig. 13).
(S14) SC gap and LDOS behavior on iron sublattices (Supplementary Fig. 14).
(S15) Examples of lattice segregation procedure (Supplementary Fig. 15).
(S16) Summary of the possible nematic distortions in FeSCs (Supplementary Fig. 16).
(S17) Lattice orthorhombic distortion of Fe(Te,Se) thin flake (Supplementary Fig. 17).
(S18) Drift and shear correction of the SI-STM data (Supplementary Fig. 18).
(S19) Shear correction of a dataset with severe thermal drift (Supplementary Fig. 19).
(S20) PDM state induced LDOS modulation (Supplementary Fig. 20).
(S21) Phase of a dislocation-antidislocation pair of the PDM state (Supplementary Fig. 21).
(S22) Topography of a highly strained area (Supplementary Fig. 22).
(S23) Cleaning the surface by constant-current-mode scanning (Supplementary Fig. 23).
(S24) Distorted vortex lattice on device #1 (Supplementary Fig. 24).
(S25) Details of the multipeak extraction (Supplementary Fig. 25).
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Supplementary Fig. 2. Sample fabrication. Thin flakes of bottom graphite (Step 1) and hexagonal boron
nitride (h-BN) (Step 2) were prepared in advance on polydimethylsiloxane (PDMS). After transferring them
onto pre-patterned gold markers (Steps 4 and Steps 5), a freshly exfoliated flake of Fe(Te,Se) on PDMS
(Step 6) was transferred onto h-BN (Step 7) inside an argon-filled glovebox with oxygen and moisture
concentration below 0.5 ppm, followed by placing a top graphite contact (Step 8), which is also prepared in
advance (Step 3). The lower panels show optical images corresponding to each step of sample fabrication.
The van der Waals stack was transferred into ultra-high vacuum (UHV) chamber immediately through a
home-made air-tight suitcase. The total dwell time of the Fe(Te,Se) thin flakes under ultra-pure argon
environment (tAr) was about 1 hour. The short argon exposure time (tAr) is crucial for achieving sufficiently
high surface quality. A history of device quality optimization can be found in Supplementary Fig. 3.
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ResultstAr
*Device 

Name

Fabrication 

Date

Scan at 77K, improve recipes> 12 hours#504/25/2022

Scan at 77K, improve recipes9 hours#405/13/2022

Scan at 77K, improve recipes3 hours#306/05/2022

Initial Results2 hour#208/23/2022

Main Results~ 1 hour#102/01/2023

Device #5

Device #4

Device #3

a

c

eDevice #5 

(tAr > 12 hours) 

100 nm

b

Device #4 

(tAr = 9 hours)

160 nm

d

100 nm

Device #3 

(tAr = 3 hours)

f

g

Device #2

* tAr is sample’s Argon environment dwell time, counted from fresh exfoliation till UHV storage.

200 nm

Device #2 

(tAr = 2 hours)

h

Device #1

i

400 nm

Device #1 

(tAr ~ 1 hour)

j k

Supplementary Fig. 3. History of device quality optimization. All five devices were fabricated inside
an argon-filled glovebox, with oxygen and moisture concentrations below 0.5 ppm. The details and steps
of sample fabrication procedure are shown in Supplementary Fig. 2. In all cases, the Fe(Te,Se) flakes are
never exposed to air. a, b, Optical image and micrometer-sized STM topography of device #5. c, d, Optical
image and micrometer-sized STM topography of device #4. e, f, Optical image and micrometer-sized STM
topography of device #3. g, h, Optical image and micrometer-sized STM topography of device #2. The
spectroscopic measurements on this device are shown in Extended Data Fig. 7. i, j, Optical image and
micrometer-sized STM topography of device #1. Most of the data of this work is from this device. k,
Summary of the fabrication information of the five devices. The argon dwell time (tAr) is defined as the
time span between the exfoliation of Fe(Te,Se) flakes and the moment that the sample was transferred into
the STM UHV chamber. tAr is found crucial for surface quality. The devices #5 and #4 were fabricated
before optimizing the fabrication procedures, and a significant amount of impurities is observed on STM
topography (b, d). In device #4, a square region in the middle of the field of view was cleaned up by STM
tip through constant-current-mode scanning. In device #5, this cleaning procedure did not work. Note that
even in the worst scenario (for device #5), we could find small clean regions after intensive search on the
surface [see atom-resolved topography in inset of (b), (a 5.5×5.5 nm2 scan, scale bar is 1 nm)].
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Supplementary Fig. 4. Precise tip navigation on Fe(Te,Se) flakes. a, High resolution optical image of
the Fe(Te,Se) flake of device #1. The blue and green paths show the tip trajectory driven by walking piezos,
and the solid dots indicate the positions where STM topographies were taken. b, Micrometer-sized STM
images of the corresponding areas. The precise navigation allows us to calibrate walking piezos precision
to about 5% accuracy.
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Supplementary Fig. 5. Step height on Fe(Te,Se) thin flakes. a, STM topography of an in-situ cleaved
Fe(Te,Se) bulk single crystal that contains a monolayer step edge. b, Micrometer-sized STM topographies
of the blue path of Supplementary Fig. 4. c, Averaged horizontal line profile from (a), showing step height of
around 6 Å in agreement with previous works. d, Examples of the height line profiles on the thin flakes. The
six step edges are marked in (b). We observed expanded c- lattice constant (step height), which effectively
results in a negative pressure compared to the bulk. e, Histogram of the c- lattice constants among all the
step edges shown in (b). The central peak of the histogram is around 7.1 Å, which is 18% larger than that
of bulk materials. f, Summary of c- lattice constant among Fe(Te,Se) and Fe(S,Se) bulk materials48. The
Te (S) substitution acts as negative (positive) chemical pressure. The c- lattice constant of our exfoliated
thin-flake Fe(Te,Se) sample was indicated as the black symbol.
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Supplementary Fig. 6. Possible symmetries of SC order parameter. a, Phase-referenced quasiparticle
interference pattern at 1 mV. The negative signal appears around (0,0), supporting the opposite sign of
SC order parameter for pockets separated by small scattering wavevector q31,61–64. b, Phase-referenced
quasiparticle interference pattern at 8 mV for comparison. There is no pair breaking scattering beyond the
SC gap, thus the absence of negative gPR(q) is expected. c, Energy-dependent gPR(E) integrated over the q
inside the white circle shown in (a). A dI/dV spectrum (gray curve) is appended for reference. The negative
gPR around (0,0) only appears within ±[0.5,1.5] meV. d-i, The candidates for SC pairing symmetry. (d)
and (g) correspond to s±-wave pairing in bulk FeSCs, where the sign change is between Γ and M Fermi
surface pockets68. Considering orbital dependence, an equal-sign condition among all the orbitals leads
to conventional s± wave (d), an opposite-sign between dxy and dxz/yz orbitals leads to orbital anti-phase
s±-wave (g)69. (i) is the incipient s±-wave pairing, the sign change is between Γ and M, but in contrast
to the case of normal s± wave, here the Fermi surface only has either the Γ or the M pockets59,70. Our
quasiparticle interference measurements support a small q sign-changing pairing with only electron or hole
pockets, that restricts a possible scenario of pairing symmetry to either bonding-antibonding s-wave (e),
quasi-nodeless d-wave (f), or orbital anti-phase s-wave (h) pairings. For the case with only electron Fermi
surfaces, theoretically, the (e) favors strong interpocket hybridization and weak band anisotropy, while the
(f) favors the opposite71. The (h) is the case with only Γ pockets.
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Supplementary Fig. 7. Breakdown of superconductivity at step edges. a, c-e, STM/S measurements
at a 12 nm-height step edge #1. a, STM topography across the step edge. c, d, Differential conductance
map of the step edge #1 at -2 mV (around SC coherence peak) and -7 mV (continuum of electronic states).
SC is suppressed everywhere along the edge. e, dI/dV linecut measured perpendicular to the step edge #1
[black arrow in (a)]. f-h, STM/S measurements at a monolayer step edge #2. f, The corresponding STM
topography of the step edge #2. g, Height line profile along the green dashed line in (f). The interlayer
spacing is about 7 Å. h, dI/dV linecut measured along the step edge #2 [red arrow in (f)]. b, Summary of
spectral behavior on and off the step edge. SC is suppressed on both step edges. An in-gap state appears on
step edge #2 (red curve). Since the step edges are nonmagnetic, the observation of SC breakdown indicates
an unconventional sign-changing SC order parameter on the Fe(Te,Se) thin flakes.
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Supplementary Fig. 8. More examples of periodic gap modulation. Panels a1-a4 and b1-b4 show
similar measurements as the one shown in Fig. 2 and Extended Data Fig. 3. a, The scale bar in the inset of
(a3): 0.5 nm. The modulation ratio |∆PY

|/∆̄ is 13.5%. b, The scale bar in the inset of (b3): 1 nm. The
modulation ratio |∆PY

|/∆̄ is 4.5%.
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Supplementary Fig. 9. Absence of the gap modulation on 210-nm thick flake. a, Atom-resolved STM
topography. b, Spatially-averaged dI/dV spectra at Se+ site (black) and Fex (blue) sites. c, False-color plot
of dI/dV linecut. d, Negative curvature plot of (c), see SI Section 6. e, Waterfall spectrum plot of (c).
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Supplementary Fig. 10. Absence of gap modulation on the surface of bulk crystals. a, SC gap map
in a 2×2 nm2 area. b, FT magnitude of (a). Inset: histogram of (a). c, d, Horizontal dI/dV linecuts; the
position of these linecuts are indicated in (a), as #1 and #2 respectively. e, f, Waterfall spectrum plot of
(c) and (d). g-j, More examples of dI/dV linecuts measured along x-axis or y-axis on the surface of bulk
crystals. The white dashed lines indicate the position of Se+.
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Supplementary Fig. 11. Calculation of the PDM lattice-lock-in polarization. a, b, d, e are the phases
of the topography and the gap map in ±PX and ±PY directions (see the definition of each quantity in
Supplementary Table I). c, f, The FT magnitude of the raw data of topography and gap map. The FT
magnitudes on background-subtracted images are shown in Fig. 3d, where the intensity around (0,0) was
removed. g-i show the phase difference along the two directions and the resulting PDM lattice-lock-in
polarization pLL [same panel as (i) is shown in Fig. 3g]. k-m, Same quantities as (g-i), but calculated by
using a different, moving window method (see SI Section 4). The two methods are qualitatively equivalent
to each other (g-i). The Gaussian cut-off length (σ) of FT was set to 1.3 nm for (a, b, d, e, g-i). The window
size was set to 1.3 nm for (k-m).
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Supplementary Fig. 12. Simulation of the PDM lattice-lock-in polarization. a, A simulated Se+ lattice.
b, A simulated gap map in a X-Domain, where the gap maxima coincide with Fex sites. c, A simulated gap
map in a Y-Domain, where gap maxima coincide with Fey sites. The white circles in the three panels mark
the positions of Se+ atoms. d, Calculated lattice-lock-in polarization of X-Domain, which is equal to +1.
e, Same as (d), but for Y-Domain, the calculated polarization is -1. f, j, Line profile of T (r) and ∆(r) in a
X-Domain, along x and y-axis respectively. The positions of the line profile are indicated as the black lines
in (a-c). When gap maxima lock to Fex perfectly, the x profile shows a π phase difference between T (r)

and ∆(r),
∣∣∣δϕ∆/T

PX
(r)

∣∣∣ = π, while the y profile shows a zero phase different,
∣∣∣δϕ∆/T

PY
(r)

∣∣∣ = 0. Following

the definition of lattice-lock-in polarization, pLL(r) ≡
[∣∣∣δϕ∆/T

PX
(r)

∣∣∣− ∣∣∣δϕ∆/T
PY

(r)
∣∣∣] /π, pLL(r) = +1 in the

X-Domain. h, j, Same as (f, i), but calculated for the Y-Domain, -1 polarization can be derived.
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Supplementary Fig. 13. PDM nematicity. a, b, PDM modulation amplitude along the two directions
±PX and ±PY of the SI-STM data in Fig. 3. Small gray arrows superimposed on data depict the local
PDM modulation phase (Extended Data Fig. 8a,b). c, Nematic polarization (pnem) of the PDM state (see
definition in Table I). pnem = +1, if |∆PX

(r)|≫|∆PY
(r)|, and vice versa. d, Histogram of (c), the well-

separated peaks identify the true dichotomy of differently polarized nematicity on the PDM state. The
central nematic strength at each domain is about 30%. (a, b) were extracted by the 2D lock-in method, with
a Gaussian cut-off 1.3 nm.
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Supplementary Fig. 14. SC gap and LDOS behavior on iron sublattices. a, b, Color plots indicating the
positions of superconducting gap local maxima and minima. The segregation was performed on the super-
conducting gap map as described in Methods. The areas with δ∆ > 0.2(δ∆)max or δ∆ < -0.2(δ∆)min are
depicted by colors in (a) or (b) respectively, while other areas are depicted in white color. This demonstrates
that gap maxima lie on Fex in one domain and on Fey in the other domain. The red line in (a) indicates the
positions of the linecut shown in Fig. 4c. This linecut is along a- axis, avoiding the positions of Se+/Se−
atoms. The black circles in (a) and (b) mark the positions of Se+ sites. c, A similar data as Fig. 4d, but
integrated at positive energies. The pink and cyan circles in (c) mark the positions of Se+ sites. d, A similar
data as Fig. 4b, but averaged only among the dI/dV spectra in the linecut shown in Fig. 4c.
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Supplementary Fig. 15. Examples of lattice segregation procedure. The lattice segregation algorithm
was described in Methods, and the segregation results of the experimental data were shown in Extended
Data Fig. 9. In order to validate it, here we simulate two images of LDOS (first row), with (b) or without (a)
LDOS imbalance on Fex/Fey sublattice, and apply the segregation procedure used in the main text to these
simulated images. The LDOS of segregated Fex/Fey (or Se+) sublattice, as well as their corresponding
FT magnitude, are shown in the second (third) row. The LDOS simulations (first row) are performed by
preparing images where LDOS maxima positions are matched with the Se− sites (same as our experimental
observations, see Fig. 1g). In (b), we assume a X-Domain throughout the area. The stripe feature was gen-
erated by taking the Fex sites having higher LDOS than the Fey sites. While the segregated Se+ sublattice
does not show modulations (third row), the segregated Fex/Fey sublattice (second row) exhibits clear lattice
periodicity when the LDOS imbalance exists (b), but no modulation when the imbalance is absent (a).



51

B!" 

d#!$%! -wave

FeTe0.55Se0.45 flake (This work)

Ising nematicity on normal state and PDM state

Short-range, nematic fluctuation

B&" 

d#%-wave

FeTe0.55Se0.45 bulk

Ising nematicity on normal state

Short-range, nematic fluctuation

B!" 

d#!$%! -wave

RbFe2As2; CsFe2As2 (3d5.5)

Ising nematicity on normal state

Long-range nematic order#

B&" 

d#%-wave

FeSe; BaFe2As2; NaFeAs;… etc.

Ising nematicity on normal state

Long-range nematic order

�
!
"
#
	(�

)

-

+

�
!
"
#
	(�

)

-

+

�
!
"
#
	(�

)

-

+

1 Fe BZ 2 Fe BZ 1 Fe UC 2 Fe UC

a

Fe

Se (+) Nematic director

ka

kb
kx

ky

a

b
xy

�
!
"
#
	(�

)

-

+

hole 
pocket

electron 
pocket

b

c

d

One of the possible Fermi surface configurations.
The alternative case where only hole pockets

exist should also support PDM state when this
nematic order is present.

q3

�q
3

�q
3

q2

q2

�q
2

�q
2

q3

Supplementary Fig. 16. Summary of the possible nematic distortions in FeSCs. Left column:
Schematic of Fermi surface and symmetry of nematic order parameter. The case with a distorted Bril-
louin zone indicates the existence of a long-range nematic order. The red arrows indicate the dominant
vectors of Fermi surface nesting, which also coincide with the directions of the nematic director (indicated
by purple arrows) in all the cases summarized here. Middle column: Corresponding lattice structure. Lattice
distortion is shown for the cases with long-range order. Right column: summary of the relevant information
about nematicity. a, Common case of nematic order in the bulk FeSCs. b, A rare case of nematic order in
the bulk FeSCs. c, The absence of long-range nematic order in the FeTe0.55Se0.45 bulk material, which is
near the phase boundary of the nematic phase in Fe(Te,Se) phase diagram. d, Nematicity in our thin flakes.
In contrast to the bulk, the nematic director is rotated by 45◦. The q2 (π,0) and q3 (π,π) are the same vectors
shown in Fig. 1c and their corresponding length scale is indicated on the panels in the middle column. We
stress that the nematic distortion along the nearest neighbor Fe-Fe bond (as in panel a and c) will not lead
to the PDM state in our theory.
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Supplementary Fig. 17. Lattice orthorhombic distortion of Fe(Te,Se) thin flake. The orthorhombic
distortion is defined as δ ≡ (xo − yo)/(xo + yo) where xo and yo are lattice constants of orthorhombic unit
cell (2-Fe unit cell in our case). In order to check if the nematic distortion is lattice-driven, high momentum
resolution or equivalently large area scans are required. a, 100×100 nm2 atom-resolved topography of
device #1. b, FT analysis showing a nearly perfect square lattice, corresponding to orthorhombic distortion
δ = (0.34 ± 0.1)%, with the deviation calculated as the uncertainty from the size of one reciprocal pixel.
This is comparable to the value of nematoelastic coupling induced distortion, which can be up to 0.6% in the
literature57,58, indicating an electronic-driven nematic distortion. c, d, Zoom-in on the Bragg peaks along x-
and y- direction respectively. e-h, Small scale topography (5×5 nm2) showing distortion of δ = (0±1.8)%,
where SI-STM data in the main text is obtained.
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Supplementary Fig. 18. Drift and shear correction of the SI-STM data. a, Raw data of STM topog-
raphy (same data was shown in Fig. 3b). b, A shear-corrected image of (a). The shear correction method
is shown in SI Section 5 and Supplementary Fig. 19. c, A drift-corrected image of (a) by Lawler-Fujita
picometer-drift correction algorithm33. (a-c) show a negligible distortion in this topography. To avoid un-
necessary data processing, we used the raw data for the analysis. d, Black dots: Energy-dependent shear
strength of the differential conductance map Sh(E). Blue and red lines indicate shear strength of topog-
raphy [0.88%, T (r) in Fig. 3b] and gap map [11.38%, ∆(r) in Fig. 3a], respectively. While the lattice
distortion is negligible, our measurements indicate considerably larger distortions present on the electronic
state and, concomitantly, on the PDM state, consistent with the observations of small domain size and the
appearance of the topological defects. e, Zoom in (1.2×1.2 Å-2) around the PDM vector PX (upper row)
and PY (lower row). While the FT magnitude of topography exhibits well ordered Bragg peaks, the case
of gap map shows disordered quasi-Bragg peaks, demonstrating the PDM phase with no long-range order.
f, Line profile of FT magnitude of T (r). The red and blue lines are extracted along (π, π) and (π,−π) di-
rections respectively (inset). The difference of FT magnitude of the Bragg peaks is less than 8%, consistent
with a nearly isotropic STM tip11.
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Supplementary Fig. 19. Shear correction of a dataset with severe thermal drift. a, Superconducting
gap map ∆(r) of a severely drifted SI-STM data before correction. b, Shear-corrected image of (a). The
shear parameters are fitted through the corresponding T (r) (not shown) measured simultaneously with the
SI-STM data. c, d, The simulated image before and after shear correction, using the parameters fitted
through our shear correction codes. e, f, False-color plot and waterfall spectrum plot of a dI/dV linecut
extracted along a-axis from the corrected SI-STM dataset. Prominent and well-ordered gap oscillation was
observed between Fey and Fex sites. g, An illustration of image shearing. The sheared coordinates (x

′
s, y

′
s)

can be derived by applying the shearing matrix to the original coordinates (x0s , y
0
s ). Sh is the shearing

strength, and θshear is the shearing angle measured between the shear and the image axis. h, Simulated
lattice under different shear strengths (other parameters: lattice angle, αlat = 45◦, θshear = 0◦).
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Supplementary Fig. 20. PDM state induced LDOS modulation. a, c, Simulation of coherence peak mod-
ulation under a PDM vector ±PX, with and without asymmetric background, respectively. b, d, Energy-
dependent FT magnitude of (a) and (c). The most prominent LDOS modulation follows the ±PX vector
of PDM state. There is also an additional LDOS modulation appearing at ±2PX. e, Energy-dependent
linecut of FT magnitude at PX and 2PX from (b) and (d). Without asymmetric background, at ∆0, the
±PX LDOS modulation is the weakest while the ±2PX LDOS modulation is the strongest (gray and blue
dot lines). The background above SC gap shifts the position of local minima of ±PX LDOS modulation
slightly away from ∆0, while the strongest ±2PX LDOS modulation is still right at ∆0 (black and blue
solid lines). The red horizontal dashed lines are zero intensity of each curve. The induced LDOS modula-
tion disappears at high energy. f, A dI/dV linecut measured on a 35-nm thick flake (see details in Extended
Data Fig. 3b). g, Energy-dependent FT magnitude of (f). h, Energy-integrated FT magnitude within ±5
mV from simulation (d) and experiment (g). Both ±PX and ±2PX LDOS modulations are observed in
experiments. i, Comparison of energy-dependent linecut of FT magnitude at PX (top) and 2PX (bottom)
between simulation (d) and experiment (g). See more details of the simulation in SI Section 7. The param-
eters used in simulation are ∆0 = 2.09 meV; |∆PX

| = 0.13 meV; PX = 2π/3.8 Å−1; ϕ∆
PX

= −π/2; FWHM
of the coherence peak (simulated by simple Gaussian function): 1.3 meV; the asymmetric background was
simulated by a Fermi-Dirac function with simultaneously modulated Fermi energy, temperature used in the
simulation is 4 K.
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Supplementary Fig. 21. Phase of a dislocation-antidislocation pair of the PDM state. a, Vector field
plot of the phase of a dislocation-antidislocation pair #2 and #-2 shown in Extended Data Fig. 8a. The
direction of the arrows indicate the value of ϕ∆

PX
. b, Simulation of a vortex-antivortex pair (right and left)

with vorticity m = +1 (see details in SI Section 7).
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Supplementary Fig. 22. Topography of a highly strained area. An example of a highly strained area.
In the main experiment, such areas were avoided. Setpoints: Vbias = -100 mV, It = 20 pA.
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Supplementary Fig. 23. Cleaning the surface by constant-current-mode scanning. Recording the
motion of impurities in a 25×25 nm2 area by simple STM scanning. As shown by subsequent images, some
of the observed impurities are very mobile. Most likely, these are introduced during sample fabrication and
are different from interstitial iron impurities that are frequently observed in unannealed bulk materials.
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Supplementary Fig. 24. Distorted vortex lattice on device #1. a, Zero-bias conductance map at out-
of-plane magnetic field (B = 2 T). b, To increase visibility of the lattice, the 10th power of (a) is shown,
which suppresses the background intensity and superimposed with standard Delaunay triangulation. c,
Autocorrelation of (a). The black dots are an extraction of the positions of the nearest ring from the image
center, approximately corresponding to the average vortex distance. d, A typical dI/dV linecut measured
along the white dashed arrow shown in (a), crossing a vortex core. e, Waterfall spectrum plot of (d). f,
Angle-averaged radial distribution curve of (c). Inset: Box plot of the dots in (c). The data analysis leads to
an averaged vortex distance lv = 28 nm, which is close to the value calculated from perfect Abrikosov vortex
lattice, lv ≡ (2Φ0/

√
3B)

1
2 = 34 nm, where Φ0 = h/2e is magnetic flux quanta, and B is the magnetic

field. g, Zoom-in into the dI/dV spectra measured at the center of the vortex core [thicker curves in (e)].
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Supplementary Fig. 25. Details of the multipeak extraction. Extraction of energies corresponding to
the spectral features near the coherence peaks measured at low electron temperature (Extended Data Fig. 4).
The upper curves are the raw dI/dV data, the lower curves show the negatives of the second derivative of
the dI/dV spectrum. Gray solid bars indicate the energy window for the peak fitting procedure. The blue
dots indicate the fitting results.
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Supplementary Table I. List of Symbols

Symbols/Variables Meanings

Se+, Se− Top, Bottom selenium atoms.
Fex, Fey Iron atoms at the x-, y- bonds of Se+ atoms.

x, y Lattice axis of 2-Fe unit cell (Se+-Se+ direction).
a, b Lattice axis of 1-Fe unit cell (Fex-Fey direction).
It, Vb Setpoints: tunneling current & bias voltage.

PX, PY Modulation vectors (Bragg) of the PDM state.
dt, tAr Flake thickness & Argon dwell time of the sample.

T (r), δT (r) ≡ T (r)− T0(r) Topography w/o or w/ background subtraction.
|T̃ (q)|, |δ̃T (q)| FT Magnitude of T (r), δT (r).
ϕT
PX

(r), ϕT
PY

(r) Modulation phase of topography.
δT

(P1,P2)
(r) ≡ F lt

(P1,P2)
[δT (r)] Filtered image of δT (r) with ±P1,2 locked.

g(r, E) ≡ dI
dV (r, E) Constant energy map of differential conductance.

|g̃ (q, E)| a FT Magnitude of g(r, E).
gPR (q, E) ≡ |g̃ (q, E)| cos (θq,E − θq,−E)

b Phase-referenced quasi-particle interference pattern.
Σg̃(q, E) ≡

∑+E
−E |g̃(q, E)| Energy-integrated |g̃ (q, E)| within [−E,E].

g0(x, 0), |g̃0(qx, 0)| Line profile of zero-bias dI
dV and its FT magnitude.

H(x), |H̃(qx)| dI
dV line profile of gap peak, and its FT magnitude.

Σg(r, E1/E2) ≡
∑E2

E1
g(r, E) Energy-integrated g (r, E) within [E1, E2].

|Σ̃g(q, E1/E2)| FT Magnitude of Σg(r, E1/E2).
Σg(rFe, E1/E2), Σg(rSe+ , E1/E2) Lattice segregation of Σg(r, E1/E2).

|Σ̃g(qFe, E1/E2)|, |Σ̃g(qSe+ , E1/E2)| FT Magnitude of Σg(rFe/Se+ , E1/E2).
Σg

(P1,P2)
(r, E1/E2) ≡ F lt

(P1,P2)
[Σg(r, E1/E2)] Filtered image of Σg(r, E1/E2) with ±P1,2 locked.

∆0(r) Non-modulating SC gap.
|∆PX

(r)|, |∆PY
(r)| Modulation amplitude of the PDM state.

ϕ∆
PX

(r), ϕ∆
PY

(r) Modulation phase of the PDM state.

δ∆(r) ≡
∑

Q=PX,PY
|∆Q(r)| cos

[
Q · r + ϕ∆

Q(r)
]

Modulating component of the PDM state.

∆(r) ≡ ∆0(r) + δ∆(r) Map of the total superconducting gap.
|∆̃(q)|, |δ̃∆(q)| FT Magnitude of ∆(r), δ∆(r).

δ∆
(P1,P2)

(r) ≡ F lt
(P1,P2)

[δ∆(r)] Filtered image of δ∆(r) with ±P1,2 locked.
δ∆P1

(r) ≡ F ltP1
[δ∆(r)] Filtered image of δ∆(r) with only ±P1 locked.

pLL(r) Lattice-lock-in polarization of the PDM state.

pnem ≡ |∆PX
(r)|−|∆PY

(r)|
|∆PX

(r)|+|∆PY
(r)| Nematic polarization of the PDM state.

Ω|∆PX
|(r), Ω|∆PY

|(r), Ω|pLL |(r) Auto-correlation of the quantities in the subscript.
ΩA(r̄), g(r̄) Angle-averaged radial distribution curves.

|∆Q(r)| /∆0(r) Gap modulation ratio.

pg(E) ≡ g[r̄Fe(∆max),E]−g[r̄Fe(∆min)
,E]

g[r̄Fe(∆max),E]+g[r̄Fe(∆min)
,E]

LDOS imbalance ratio between Fex/y and Fey/x.

p∆(r) ≡
|∆Fex−∆Fey |
∆Fex+∆Fey

(r) =
|∆PX

(r)|+|∆PY
(r)|

∆0(r)
Gap difference between Fex and Fey.

a |g̃ (q, E)| =
√
[Reg̃(q, E)]2 + [Img̃(q, E)]2, in which g̃(q, E) ≡ F [g(q, E)].

b θq,E = arctan [Img̃(q, E)/Reg̃(q, E)], is the phase of Fourier transform of g(r, E).


	Observation of Cooper-pair density modulation state
	Contents
	Models for the pair density modulation state
	Phase-referenced quasiparticle interference
	Measurements with lower electron temperature
	Extraction of modulation amplitude and phase
	Discussion of drift and shearing corrections
	Curvature methods
	Simulations of dislocation and gap modulation
	PDM state induced LDOS modulation
	Extraction of modulation ratio
	Other supporting display items


