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Landau-Zener-Stückelberg-Majorana (LZSM) interference emerges when the parameters of a qubit
are periodically modulated across an avoided level crossing. Here, we investigate the occurrence of
the LZSM phenomenon in nonlinear multilevel bosonic systems, where the interference pattern is
determined by multiple energy levels and cannot be described by a level crossing between only
two states. We fabricate two superconducting resonators made of flux-tunable Josephson junction
arrays. The first device is very weakly nonlinear (the nonlinearity is smaller than the photon-loss
rate) and, when a weak driving field is applied, it behaves as a linear resonator, yet shows the same
LZSM interference as in a two-level system. Notably, here the interference originates from multiple
avoided level crossings of the harmonic ladder. When subjected to a stronger drive, nonlinear effects
start playing a role, and the interference pattern departs from the one observed in two-level systems.
We demonstrate that, when two or more LZSM interference peaks merge, dissipative quantum chaos
emerges. In the second device, where the nonlinearity surpasses the photon-loss rate, we observe
additional LZSM interference peaks due to Kerr multiphoton resonances. When described under
the light of the Floquet theory, these resonances can be interpreted as synthetic modes of an array
of coupled cavities. We derive a simple effective model highlighting the essential features of the
entirety of these phenomena. As the control of LZSM in qubit systems led to the implementation of
fast protocols for characterization and state preparation, our findings pave the way to better control
of nonlinear resonators, with implications for diverse quantum technological platforms.

I. INTRODUCTION

Qubits – two-level systems – are the building blocks
of digital quantum computers and simulators, as well as
an essential paradigm for describing many quantum sys-
tems [1, 2]. Understanding and controlling their dynam-
ics is thus pivotal to the progress of quantum technolo-
gies. When the qubit’s energy-level splitting is varied in
such a way that the two levels become almost degenerate,
the Landau-Zener-Stückelberg-Majorana (LZSM) [3–6]
transition probability dictates the likelihood of non-
adiabatic transitions between the ground and excited
states. When the variation of the splitting is periodic
in time, a rich LZSM interference pattern arises, as
schematically shown in Fig. 1 (a) (see Ref. [7] for a re-
cent overview of the field). At each oscillation period,
the transition paths can interfere constructively or de-
structively to determine the final probability of the qubit
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to reach the excited state, as observed in, e.g., supercon-
ducting qubit architectures [8, 9], semiconductor quan-
tum dots [10, 11], and nitrogen-vacancy center in dia-
mond [12].

Historically, the understanding of LZSM transitions
was a foundational step in the development of non-
relativistic quantum mechanics [3–6]. Recently, LZSM
interference gained also considerable attention, as a ver-
satile tool for the study of quantum systems. Ex-
amples include the characterization of the frequency
noise of superconducting resonators [13] and the de-
coherence properties of charge states from steady-state
measurements [11, 14, 15]. LZSM interferometry was
also employed for the fast coherent control of charge
qubits [16, 17], and to mediate and control the cou-
pling of a qubit to multiple mechanical modes [18]. Fi-
nally, LZSM interferometry has also been proposed as
a tool for the preparation of exotic quantum states,
such as two-level systems with tunable absorption prop-
erties [19], correlated photons [20] and Schrödinger-cat
states [21, 22]. The physics of LZSM interference beyond
the two-level approximation has been marginally investi-
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gated, and often focuses on isolated avoided level cross-
ing within a larger multilevel structure [7]. Furthermore,
coupled classical oscillators have been proposed [23] and
studied [24, 25] as classical systems displaying LZSM in-
teferences. Indeed, in the presence of tailored modula-
tion, these multimode classical systems display the same
equation of motion of a qubit [26], and thus exhibit LZSM
interference due to the presence of an effective two-level
system.

In bosonic systems, the qubit limit can be reached
by the introduction of a Kerr nonlinearity (anharmonic-
ity) χ, permitting, in principle, to address only the
ground and first excited states [1]. This description ap-
plies to several platforms, including superconducting cir-
cuits [27], polaritonic microcavities [28], mechanical res-
onators [29], and the vibration of trapped ions [30]. A
realistic description of these systems must include the ef-
fects of dissipative processes, which blur the distinction
between energy levels and thus hinder the possibility of
addressing them singularly. Depending on the magnitude
of the total loss rate κ, one can thus determine two dis-
tinct regimes that we dub the Kerr (|χ| > κ) and Duffing
(|χ| < κ) regimes [31]. In the Kerr regime, depicted in
Fig. 1 (b), the energy quantization of the bosonic mode
is still accessible despite the presence of dissipation [32].
The system can absorb n photons from a drive and tran-
sition to the nth excited level, in a process known as
Kerr multiphoton resonance (or multiphoton transition)
[33]. In the Duffing regime [Fig. 1(c)], instead, dissipa-
tion blurs these multiphoton resonances, giving rise to
a single spectral feature, where the energy quantization
of the underlying boson can’t be resolved. The effect of
the nonlinearity, in this case, is to shift this resonance,
leading to phenomena such as bistability and hystere-
sis [34–36]. Multimodal Duffing oscillators, where mul-
tiple bistabilities are present, display emergent phenom-
ena, such as the formation of domain walls and dissi-
pative phase transitions [37–39], as well as dissipative
quantum chaos [40]. The latter is triggered by the com-
bined presence of classical and quantum fluctuations and
the competition of unitary dynamics and dissipative pro-
cesses [41, 42].

In this article, we discover a new paradigm of LZSM
physics, through the study of two nonlinear supercon-
ducting resonators, one in the Kerr and one in the Duff-
ing regime. Given the high degree of tunability of the
drive, the modulation, and the other system parameters,
we determine the whole LZSM interference diagram for
nonlinear bosonic systems. We present a simple unified
model that captures the relevant features of the system
under consideration.

The main results of this work can be summarized as
follows.

First, we experimentally demonstrate and theoretically
clarify that, at low driving amplitude, the LZSM inter-
ference pattern is independent of the nonlinearity of the
system [c.f. the rightmost panels of Figs. 1(a) and (d)].
Namely, there is no distinction in the LZSM interfer-
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FIG. 1. Landau-Zener-Stückelberg-Majorana (LZSM) in-
terference mechanisms in bosonic systems. For cases studied
in this article, we show the level structure of the undriven
system (left); the photon number n of the driven, but not-
modulated, system as a function of the pump-to-cavity de-
tuning ∆ (center); and the LZSM pattern emerging when the
cavity eigenfrequency is periodically modulated with strength
ζ and frequency Ω (right). (a) In the qubit regime of infinite
nonlinearity, the system consists only of the ground and ex-
cited states. This level structure gives rise to a single excita-
tion peak (|0⟩ → |1⟩) at detuning ∆ = 0. Thus, the standard
LZSM interference pattern emerges. (b) In the Kerr regime,
where the anharmonicity is larger than the loss (|χ| > κ),
the system consists of many uneven-spaced states with dif-
ferent numbers of excitations. When ∆ = nχ, multiphoton
transitions |0⟩ → |n⟩ occur for large-enough drive. This multi-
photonic transition structure is periodically repeated around
each standard LZSM peak. (c) In the Duffing regime, where
the anharmonicity is smaller than the loss (|χ| < κ), the
uneven-spaced states are broadened by dissipation and cannot
be distinguished. The drive excites multiple levels, resulting
in a deviation from a Lorentzian shape, and the Kerr non-
linearity competes with detuning, giving rise to bistability.
Such a deviation and the presence of bistability are imprinted
in each LZSM peak. (d) In the linear regime (χ = 0), all
levels are equispaced. When driven, only a Lorentzian peak
appears at ∆ = 0, similar to the qubit regime. Upon mod-
ulation of the resonator frequency, the LZSM interference is
also indistinguishable from that in the qubit regime.
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ence pattern between a completely linear resonator and
a qubit.

Second, we show novel effects due to the competition
between the modulation and the nonlinearity at larger
pumping power, demonstrating the role of dissipation
[Figs. 1 (b) and (c)]. In particular (i) In the Kerr regime,
we observe how Kerr multiphoton resonances add struc-
ture to the LZSM interference. These resonances and
the associated quasi-energy (Floquet) states can be in-
terpreted as the modes of a multimode synthetic cavity
array, with effective interference between these multiple
transitions resulting in avoided level crossings. (ii) In the
Duffing regime, we show how bistability and hysteresis
come into play in determining the state of the system,
suggesting the emergence of dissipative quantum chaos
in a Floquet regime, i.e., Floquet-dissipative quantum
chaos.

Our work establishes a comprehensive framework for
understanding LZSM and Floquet physics, clarifying the
role of nonlinearity and dissipation in determining the
interference patterns. It paves the way to their control,
with perspectives for synthetic dimension engineering in
Floquet configurations. This platform can be used as
a quantum simulator to investigate quantum chaos and
critical phenomena in highly controllable superconduct-
ing systems.

The article is organized as follows. In Sec. II we char-
acterize the devices and provide a model describing them.
We then investigate LZSM interference in the qubit and
linear regimes in Sec. III. In Sec. IV we study LZSM in-
terference beyond the standard qubit regime. In partic-
ular, in Sec. IV A we investigate the Kerr regime, where
multiphoton resonances participate in determining the
emergent LZSM interference. In Sec. IVB, instead, we
study the system in the Duffing regime and show the
emergence of Floquet dissipative quantum chaos. We
draw our conclusions in Sec. V. The appendices are de-
voted to the details on the theoretical derivation of the
effective model as well as the numerical methods used to
study the system (Appendix A), the description of the ex-
perimental setup and the calibration of the experiment
(Appendix B), and additional measurements (Appendix
C).

II. EXPERIMENTAL SYSTEM AND MODEL

We aim to investigate all regimes of nonlinearity and
dissipation, namely, qubit, Kerr, Duffing, and linear, as
shown in Figs. 1 (a-d), respectively. To this extent, we
design and fabricate two frequency-tunable nonlinear res-
onators that can operate in these different regimes ac-
cording to the driving amplitude. These are supercon-
ducting SQUID arrays [43–45], galvanically connected
to ground on one side, and capacitively shunted to the
ground on the other side, as shown in Figs. 2 (a), (b), and
(f). A detailed summary of their parameters is reported
in Table I.

The frequency of the resonators can be tuned by a ded-
icated flux line that uniformly threads the magnetic fields
in each SQUID loop (in purple) and an external super-
conducting coil. The two resonators differ in the number
of SQUIDs in each array, as highlighted by red and blue
false colors, determining the two orders of magnitude
difference in their Kerr nonlinearity χ. Hereafter, the
red and blue color schemes will always indicate measure-
ments of the devices in the Kerr/qubit and Duffing/linear
regimes, respectively. Each resonator is also capacitively
coupled to a feedline (in green) in a notch configuration,
resulting in an external coupling κext close to the inter-
nal dissipation rate κint (critically coupled regime). We
define the total dissipation rate as κ = κext + κint.

Each device is thermally and mechanically anchored
at the mixing chamber plate of a dilution refrigerator,
reaching an average base temperature of 15mK. The
devices are probed by a coherent drive with amplitude
F at the sample, injected in the feedline through highly
attenuated coaxial lines. The drive amplitude is related
to the input power Pin by F =

√
Pinκext/ℏωd, where

ωd is the drive frequency. Although the frequency of
the untuned cavity is ωc, through the paper, the fre-
quency working point of the resonators, ωwp, is set by
a static flux generated by direct current through an ex-
ternal superconducting coil. The flux operating point is
Φwp = 0.45Φ0 for theN = 10 device, while Φwp = 0.32Φ0

for the N = 32 one, where Φ0 = h/2e is the magnetic
flux quantum. Finally, driving the fluxline at a frequency
Ω periodically modulates the frequency of the resonator,
approximately between ωwp ± ζ, with ζ representing the
strength of the modulation. The single-tone spectroscopy
of the resonators at low-driving power as a function of the
external magnetic flux is reported in Appendix B.

Both devices can be modeled as a bosonic mode with
the following time-dependent Hamiltonian:

Ĥ/ℏ = −∆â†â+χâ†â†ââ+F (â+â†)+ζ cos(Ω t)â†â , (1)

where ∆ = ωd−ωwp is the detuning between the working
point of the devices (ωwp) and the drive frequency (ωd).
Beyond the total dissipation rate κ, the system is sub-
ject to dephasing with rate κϕ. We include them in the
time evolution of the density matrix ρ̂ using the Lindblad
master equation

ℏ ∂tρ̂ = −i
[
Ĥ, ρ̂

]
+ κD[â]ρ̂+ κϕD[â†â]ρ̂ . (2)

Here, D[L̂]ρ̂ ≡ L̂ρ̂L̂† − {L̂†L̂, ρ̂}/2 is the Lindblad dissi-
pator [46].

In Fig. 2 we characterize the coherent response of the
resonators in the absence of modulation (i.e., ζ = 0) and
use it to determine the parameters of the two devices. In
Figs. 2 (c) and (d) we report the magnitude and phase
of the transmission coefficient S21 (see Appendix B 3) as
a function of the driving power Pin ∝ F 2 in the Kerr
regime. At low power, only a single dip around ∆ = 0
is visible, representing the transition to the first excited
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FIG. 2. SQUID array characterization. (a) Equivalent lumped electrical circuit of the device composed of N SQUIDs in series.
The static flux is controlled via an external coil and a microwave signal can be applied to the flux line (purple) for fast frequency
modulation. The resonator is coupled to a feedline in a notch configuration. (b, f) Optical micrograph of the two SQUID array
resonators studied in this work with N = 10 (red) and N = 32 (blue) SQUIDs, with details on the Josephson junction shown
in the inset where the white scale bare represents 5µm. (c-d) For the Kerr case (N = 10), the magnitude and phase of the
transmission coefficient through the feedline as a function of drive power at the sample. The black dashed curve indicates
where the phase of S21 is zero according to numerical simulations, highlighting the position of the multiphoton resonances. (e)
Selected traces of the data reported in panel (d). Experimental data are shown with circle markers whose colors correspond
to the ticks in panel (d). Numerical fits to a full quantum model are shown in black solid lines. The grey dotted vertical lines
indicate the position of the multiphoton resonances obtained from numerical simulations. (g-i) Same measurement as in (c-e),
but for the Duffing case. The dashed curves in (g,h) indicate the minima of |S21| obtained from a full quantum simulation.
Additional details on the characterization of the two devices are given in Appendix B 3.

TABLE I. Summary of the relevant SQUID array parameters at flux operating point Φwp.
Parameters N = 10 device N = 32 device Description

(Kerr/Qubit regime) (Duffing/Linear regime)
|χ|/κ 5 0.05 Photon-number distinguishability
ωc/2π ≈ 13 GHz ≈ 6.4 GHz Zero-flux frequency
ωwp/2π 4.502 GHz 4.306 GHz Frequency at Φwp

Φwp/Φ0 0.45 0.32 Flux operating point
χ/2π −23.5MHz −0.35MHz Kerr nonlinearity
κin/2π 1.1 MHz 4.92 MHz Internal loss rate
κext/2π 3.75 MHz 1.49 MHz External loss rate
κ/2π 4.85 MHz 6.41 MHz Total loss rate
κϕ/2π 0.75 MHz 0.4 MHz Dephasing rate

state (noted as |0⟩ → |1⟩, where |n⟩ is the photon num-
ber state of the resonator). At larger values of the drive,
several dips appear, representing the so-called Kerr mul-
tiphoton transitions between the ground state and the
higher-excited levels (|0⟩ → |n⟩), highlighted in the sin-
gle traces shown in Fig. 2 (e). According to Eq. (1), all
the dips should appear at ∆ ≃ (n−1)χ. Small deviations
from this prediction are due to higher-order nonlinearities
[47]. For even larger powers, the nonlinearity suppresses

the intracavity photon number with respect to the input
power, resulting in an almost unitary transmission S21.

We report the same measurements for the resonator
in the Duffing regime in Figs. 2 (g-i). In this case, dis-
sipation smears the multiphoton resonances, resulting in
an indistinguishable level structure. Increasing the drive,
the single dip of S21 originally at ∆ = 0 moves to negative
detunings, indicating that the drive is exciting higher lev-
els. Scanning the detuning from negative to positive val-
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FIG. 3. LZSM interference patterns. (a-c, red) Analysis of the N = 10 device, with input power Pin = −138.8 dBm, ensuring
that we are in the qubit regime. (b) The transmission coefficient |S21| as a function of the detuning ∆ and the modulation
strength ζ, for fixed modulation frequency Ω/2π = 30 MHz [see Eq. (1)]. (a) Comparison of the experimental and theoretical
data for |S21|. Solid lines represent the results of the numerical simulations of the full quantum model obtained at ∆ = 0,
∆ = −Ω, and ∆ = −2Ω (see A 1 a). The circles are the experimental data obtained from panel (b), in which ∆ is slightly
re-scaled to account for the nonlinear flux-dependency of the resonator frequency (see Appendix B). (c) |S21| as a function
of ∆ and Ω. (d-f, blue) As in (a-c), but for the N = 32 device, with Pin = −133.3 dBm to ensure that the system is in the
linear regime. From these plots, the two regimes appear almost indistinguishable. (g) The photon number versus ∆ and ζ is
obtained from a simulation using the effective model of Eq. (3) that reproduces the interference pattern in panels (b) and (e).
(h-j) Depiction of the time evolution of the energy level |1⟩, in the frame rotating at the drive frequency ωd, if F = 0. A finite
drive F opens gaps at each crossing between |0⟩ and |1⟩, allowing a non-adiabatic passage between the two. The parameters ∆
and ζ are indicated by green markers in (g). (h) At ∆ = 0, the level |1⟩ becomes resonant with |0⟩ (they form a level crossing,
see the inset). The values of ζ, F , and κ then determine the probability of transitioning out of the vacuum. (i) For non-zero
detuning (e.g. |∆| = Ω) and small modulation (ζ ≪ Ω), the level |1⟩ is never resonant with |0⟩ and it cannot be populated. (j)
For strong enough modulation ζ > |∆|, the level |1⟩ can form again an avoided level crossing, and constructive interference is
possible again.

ues, as done in Fig. 2 (i), reveals the presence of a sharp jump, where the resonator passes from a highly- to a
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lowly-populated phase. This behavior is associated with
optical bistability, i.e., the presence of two metastable
states that require a long time to decay to the steady
state [37, 38]. This phenomenon gives rise to hystere-
sis [35, 36] and makes it difficult to properly resolve the
exact detuning where the transition occurs.

III. LINEAR AND QUBIT LZSM
INTERFERENCE

We can investigate the linear and qubit regimes using
the N = 10 and N = 32 resonators described above. In-
deed, for the N = 10 resonator, the second-excited level
is not significantly populated if F 2 ≪ |χ|κ [48]. For the
N = 10 device parameters and the drive F/2π ≃ 1.6MHz
considered here, the third level is predicted to be popu-
lated less than 0.03%. For the values used in this first
part of the experiment, the system effectively behaves like
an ideal qubit subject to dissipation and dephasing. We
report the experimental data in Figs. 3 (b) and (c). In
Fig. 3 (b) we show the norm of the scattering coefficient
S21 sweeping the detuning ∆, for a fixed modulation fre-
quency Ω, and varying the modulation strength ζ. One
observes the LZSM pattern emerging, with populated re-
gions at ∆ = mΩ, for integer m. Fixing ζ and scanning
Ω, in Fig. 3 (c) we observe again the interference pattern
at ∆ = mΩ. We thus confirm the presence of LZSM
interference and the control over the modulation of the
resonator in the Kerr regime.

We now consider the N = 32 device. In this case,
the oscillator approximately behaves as a purely linear
resonator if F <

√
κ3/|χ| [49]. For the N = 32 device

parameters and the drive F/2π ≃ 3MHz considered here,
we estimate a relative photon-number deviation from a
completely linear resonator of less than 3%. Within this
regime, we repeat the previous measurements and report
them in Figs. 3 (e) and (f). Surprisingly, we observe the
same interference pattern emerging, with no distinguish-
able differences between the qubit and the completely lin-
ear case.

This feature indicates that only the energy difference
between |0⟩ and |1⟩ determines the interference pattern in
both the qubit and the linear regimes [c.f. Figs. 3 (g-j)].
To provide a more quantitative reasoning, we choose m̄
minimizing ∆−m̄Ω and, following the procedure derived
in Appendix A 3, and passing in the frame rotating at
the frequency m̄Ω, we have

Ĥm̄/ℏ ≃ −∆m̄â
†â+ χâ†â†ââ+ Fm̄

(
â+ â†

)
, (3)

where the renormalized detuning ∆m̄ and renormalized
drive Fm̄ are

∆m̄ = (∆− m̄Ω) , Fm̄ = FJm̄

(
ζ

Ω

)
, (4)

with Jm̄ (ζ/Ω) indicating the Bessel function of the first
kind. All dissipative terms maintain their form as in

Eq. (2). In other words, when we can single out a single
relevant frequency ∆m̄ for each of the LZSM interference
dips, the devices behave as a collection of independent
nonlinear resonators, whose driving amplitudes Fm̄ are
modulated via Bessel functions. For the parameters we
consider here, and if we also assume a weak enough drive
to be in the linear and qubit regime [48, 49], we obtain

〈
â†â
〉
≃ 4F 2

m̄

κ

κ+ βκϕ
4∆2

m̄ + (κ+ βκϕ)2
, (5)

with β = 1 for a linear resonator regime and β = 4 in the
weakly driven qubit limit. Namely, the two regimes have
identical interference patterns, only slightly modulated
by the dephasing rate κϕ. To further demonstrate the
validity of these results, additional LZSM interference
patterns are reported in Appendix C, highlighting the
precise control of the number and frequency spacing of
modes over a broad range of modulation strengths and
frequencies.

The approximation of the effective model correctly
captures the value of the photon number, but not that
of the field â (and thus cannot be used to quantitatively
study S21). As is discussed in Appendix A 3, to correctly
capture this feature, one has to resort to a full quantum
simulation of the Floquet model (see Appendix A 1 a).
This is shown in Figs. 3 (a) and (d), where we plot |S21| of
the first three LZSM lobes, comparing the experimental
data with the theoretical predictions both for the qubit
and linear regimes. In both cases, we find an excellent
agreement between theory and experiments. We note that
the maxima and the minima of |S21| of the m̄th LZSM
mode coincides with the extremes of the associated Bessel
function Jm̄, showing the qualitative validity of Eq. (3)
in describing also S21.

We remark here that the Hamiltonian in Eq. (3) could
be obtained approximating the response of an array of
nonlinear resonators, each at a frequency ∆m̄. Therefore,
we can mathematically interpret each of the LZSM dips
as the response of a different Floquet synthetic mode. As
we show below, by increasing the drive, these initially
non-interacting modes will begin to interact.

IV. LZSM BEYOND THE QUBIT
APPROXIMATION

We now focus on those phenomena emerging due to the
simultaneous presence of the multilevel structure of the
nonlinear resonators and the modulation of their eigenen-
ergies, studying the devices beyond their qubit and linear
regimes.

A. Kerr regime

In the Kerr regime and for strong enough drives to
probe the multiphoton transitions [48], we investigate
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FIG. 4. LZSM interferometry for the N = 10 device, in the Kerr regime and strongly-modulated case Ω ≫ |χ|. (a-c) The
magnitude of S21 is measured versus ∆ and ζ for fixed modulation frequency Ω/2π = 150 MHz. As the drive power Pin is
increased, Kerr multiphoton resonances from |0⟩ to |n⟩ appear detuned by (n− 1)χ on the left of bare LZSM resonances. For
large ζ, notice the shift of the pattern to negative detuning, due to the nonlinear dependence of the SQUID array frequency on
the flux, as explained in Appendix B. (d) Photon-number simulation using the effective model of Eq. (3) for the same parameters
as in panel (b), recovering the same interference pattern. (e-g) In the drive frame, energy versus time for different values of ζ
and ∆ including the first three levels of an undriven Kerr resonator (F = 0). Green markers indicate the corresponding value
of ∆ and ζ in (d). (e) For ∆ = 0, although multiple levels cross with |0⟩, only the level |1⟩ form a constructive interference.
(f) For ∆ = χ, the second level |2⟩ crosses |0⟩, and an appropriate choice of parameters leads to constructive interference. (g)
For ∆ = χ+Ω, similar LZSM interference can be constructive again and the level |2⟩ can be populated. We verified that both
the data and full numerical simulations recover that the interference patterns are fully constructive at ∆ = Ω and ζ ≈ 1.84Ω,
where the Bessel function J1(ζ/Ω) is at a maximum, confirming the prediction of the effective model in Eq. (3).

how the frequency and amplitude of the modulation mod-
ifies the multiphoton resonances.

The system’s behavior around the multiphoton reso-
nance |0⟩ → |n⟩ occurring for ∆ ≃ χ(n − 1) can be de-
scribed by a 2 × 2 matrix. For instance, the |0⟩ → |2⟩
multiphoton transition can be described as

Ĥ(2)/ℏ =2[−∆+ χ+ ζ cos(Ω t)] |2⟩⟨2|
+G(2)(|0⟩⟨2|+ h.c.),

(6)

where G(2) represents the effective drive between the vac-
uum and the state |2⟩. For ζ = 0, one has G(2) = F 2/χ
for ∆ = χ. This formula can be generalized to obtain
G(n) for an arbitrary |0⟩ → |n⟩ transitions [50]. The
dissipation maintains its form, instead.

1. Strong modulation case

We first choose Ω ≫ |χ| (strongly modulated case). In
Figs. 4 (a-c) we report the scattering coefficient |S21| as a
function of the detuning ∆ and the strength ζ of the mod-
ulation. As the drive amplitude F is increased, several
additional dips appear, signaling the transitions between
the photon number states |0⟩ and |n⟩ of the resonator.
These dips occur at a frequency lower than each main
LZSM dip associated with the transition |0⟩ → |1⟩. Each
new additional dip is detuned by the same frequency
as the unmodulated multiphoton resonances shown in
Figs. 2 (c-e). Within a first approximation, this effect is
due to the interplay between the modulation in Eq. (3)
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and the nonlinearity of the system, as shown in Fig. 4 (d)
reporting the result of a numerical simulation.

To explain this behavior, we can assume that, around
each of the LZSM dips, we again have a drive of the same
form as Eq. (3). When we then match the condition for a
multiphoton resonance, it is this effective drive that leads
to the excitation of the state |2⟩. One then obtains

Ĥ
(2)
m̄ /ℏ =2[−∆

(2)
m̄ + χ] |2⟩⟨2|+G

(2)
m̄ (|0⟩⟨2|+ h.c.), (7)

where [50]

∆
(2)
m̄ = ∆− m̄Ω, G

(2)
m̄ ≃ F 2

m̄

χ
=
F 2

χ

[
Jm̄

(
ζ

Ω

)]2
. (8)

This formula can be generalized to arbitrary n-photon
resonances with ∆

(n)
m̄ = ∆−m̄Ω andG(n)

m̄ ∝ (Jm̄ (ζ/Ω))n.
We conclude that when the rescaled detuning matches
the condition for the nth multiphoton resonance, and if
the rescaled drive Fm̄ is strong enough, an additional
dip appears. Therefore, we can treat each of the multi-
photon resonances for each LZSM dip as a yet separate
phenomenon.

As sketched in Figs. 4 (e-g), at the multiphoton res-
onance, i.e., at ∆ = mΩ + (n − 1)χ, the states |0⟩ and
|2⟩ can satisfy the conditions for the development of con-
structive interference. In other words, around each of
the main LZSM dips, and for large enough drive am-
plitude, several multiphoton resonances emerge with the
same characteristics as those shown in Figs. 2 (c-e).

2. Weak modulation case

When Ω ≪ |χ| (weakly modulated case), instead, one
can capture the system’s behavior around the second
multiphoton resonance via the Hamiltonian in Eq. (6),
with G(2) = F 2/χ representing the effective drive be-
tween the vacuum and the state |2⟩ if ζ = 0. Remov-
ing the modulation using the same approximation as in
Eq. (3) leads to an equation identical to Eq. (7), where
now

∆
(2)
m̄ = (∆− m̄Ω/2) , G

(2)
m̄ =

F 2

χ
Jm̄

(
2ζ

Ω

)
. (9)

This formula can be generalized to arbitrary n-photon
resonances, with ∆

(n)
m̄ = ∆ − m̄Ω/n and G

(n)
m̄ ∝

Jm̄ (nζ/Ω). Thus, for detunings close to the nth mul-
tiphoton transition, a new LZSM interference pattern
should emerge, characterized by an effective modulation
frequency Ω/n. It is this scaling that differentiates the
weakly and strongly modulated cases, c.f. Figs. 5 (a,e)
and Fig. 4 (d). While previously the system displayed
repeated copies of the multiphoton resonance around the
LZSM dips of the |0⟩ → |1⟩ resonance, here each mul-
tiphoton resonance produces its own LZSM interference
pattern distinguished from |0⟩ → |1⟩.

For the device under consideration, accessing the
weakly modulated case would require κ≪ Ω/n to distin-
guish between the different LZSM dips. To better resolve
this feature, we propose the following driving scheme. We
fix the ratio ζ/Ω to have a constant effective drive, ac-
cording to both effective theories in Eqs. (3) and (7). We
then increase Ω and ζ, to cross from the weakly modu-
lated |χ| > Ω to the strongly modulated case |χ| < Ω.
This is shown in Figs. 5 (b-d) where, for small Ω, we dis-
tinctly see the expected LZSM dips associated with the
second multiphoton resonance |0⟩ → |2⟩ and with a slope
Ω/2

3. Non-perturbative regime

The weak- and strong-modulation regimes are com-
pletely different from each other [c.f. the effective models
in Eqs. (8) and (9)]. We thus expect that there is a non-
perturbative passage from weak- to strong-modulation
through some effective interaction, and the transition be-
tween these two regimes cannot be explained using any
of the two effective theories alone.

Particularly interesting are the values of Ω ≃ n|χ|,
where the system passes from the weak- to the strong-
modulated case for a specific state |n⟩. At these values,
it is possible for a n-photon resonance to exactly match
the LZSM dips of a different m-photon resonance. We
observe the signatures of avoided level crossings between
resonances in Figs. 5(b-c), indicating that the |0⟩ → |1⟩
and |0⟩ → |2⟩ resonances interact through the action of
an effective emergent coupling. In this sense, these differ-
ent resonances constitute a controllable synthetic Floquet
space, where changing Ω and ζ allows selecting an effec-
tive interaction between these multiphoton resonances.
This is also evident in Fig. 5 (d), where the ratio Ω/ζ is
changed, leading both to different interference patterns
and different splittings between the Floquet states.

To further highlight an example of these non-
perturbative effects, in Figs. 5 (f-g) we fix Ω = |χ|. First,
we numerically simulate the interplay of these effects in
Fig. 5 (f). We predict a partial overlap between the sec-
ond multiphoton transition |0⟩ → |2⟩ with the first LZSM
dip associated with the |0⟩ → |1⟩ transition at ∆ = −Ω.
For increasing modulation strength ζ, the LZSM struc-
ture predicted by Eq. (7) is observed, although strongly
deformed compared to the prediction of the effective
model due to the presence of the LZSM lobe associated
with the |0⟩ → |1⟩ resonance. These theoretical predic-
tions are completely recovered in the data in Fig. 5 (g).
Finally, in Fig. 5 (h) we fix Ω = 1.5|χ|, and we observe a
line splitting of several resonances, indicating again the
merging and interaction between |0⟩ → |2⟩ and |0⟩ → |1⟩
transitions. For larger drive amplitudes (not shown), the
system shows an extremely rich structure that cannot be
simply assigned to any of these original phenomena. Note
also the asymmetric nature of the interference pattern,
determined by the negative sign of the Kerr nonlinearity.
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FIG. 5. Controllable Floquet states with the N = 10 device in the Kerr regime. Through the figure, we set the drive input
power to Pin = −128 dBm. (a-d) Both modulation strength ζ and frequency Ω are swept together to maintain a constant ratio
ζ/Ω. This choice ensures that the effective drives in Eqs. (3) and (7) are kept constant. This allows enhancing the visibility
of the transition between the strongly- and weakly-modulated cases. (a) Sketch of the results of Eq. (7) for the transition
|0⟩ → |1⟩ (purple, labeled |1⟩) and |0⟩ → |2⟩ (green, labeled |2⟩). For |1⟩, the pattern radiates from ∆ = 0 with frequency
modulation Ω. For the multiphoton transition to |2⟩, the LZSM interference pattern is centered at ∆ = χ and scales with Ω/2.
(b) Simulation of |S21| as a function of ∆ and Ω with the full quantum model in Eq. (2) (see Appendix A for details on the
simulation method), having fixed ζ/Ω = 0.86. The corresponding measurement is shown in panel (c) and perfectly overlaps
with the results of the numerical simulation. The black arrows in (a-d) mark the position of two avoided crossings, where the
“bare levels” in (a) interact and hybridize in (b-d). The crossings are further highlighted by the solid (associated with |1⟩) and
dashed (|2⟩) lines in (b). The amplitude of the different avoided crossings can be controlled by modulating the Bessel functions
Jm̄(nζ/Ω) as shown in (d), where a larger ratio ζ/Ω is chosen. (e) As in panel (a), the sketch of the results of Eq. (7) for Ω = |χ|
and as a function of ∆ and ζ. In this “bare picture”, the two independent LZSM interference patterns scale with Ω and Ω/2 for
|1⟩ and |2⟩, respectively. (f) Full quantum simulation and (g) corresponding measurement of |S21| for Ω = |χ|. The position of
some LZSM resonances in the bare picture is superimposed in (f) as a guideline for the eye. (h) Repeating the measurement
for Ω = 1.5|χ|, we observe line splittings, indicating a modulation of the coupling between different Floquet states.

B. Duffing regime

Finally, we investigate the Duffing regime κ > |χ| for
a drive amplitude sufficiently large to deviate from the
linear regime [49]. For the intermediate drive amplitudes
shown in Figs. 6 (a) and (b), the various dips are well sep-
arated despite showing an asymmetric bending of |S21|.
When compared with Figs. 2 (g) and (h), we observe a
similar deformation of the transmission dips. Therefore,
we assign this feature to the emergence of bistability trig-
gered by the competition between detuning and Kerr non-
linearity. For these parameters, we find that the formula
in Eq. (3) captures the deformation of the dips, as dis-
cussed more in detail in Appendix A3. Thus, the system
behaves as a collection of independent Duffing oscillators

and the overall effect of the modulation is to rescale the
drive amplitude F .

When the driving power is further increased in
Fig. 6 (c), several of the neighboring LZSM dips even-
tually overlap. This case cannot be simply captured as
separated LZSM interferences, and it is qualitatively dif-
ferent from all the previously studied cases. The simpli-
fied picture of Eq. (3) thus breaks down, and the system
becomes multimodal and behaves as a set of interacting
nonlinear cavities. Nonetheless, the full simulation of the
quantum Floquet model matches the data in all regimes,
as shown in Figs. 6 (d-f).

This picture is further confirmed when investigat-
ing LZSM interference for three values of modulation
strength ζ as a function of the driving power Pin, as
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FIG. 6. LZSM interferometry with the N = 32 device in the Duffing regime. (a-c) Measured magnitude of S21 versus ∆
and ζ for increasing drive power Pin. The dashed color lines refer to the values of ζ chosen for panels (d-f). The star in
(c) indicates the value where the analysis of chaos is performed in Fig. 7(d). (d-f) Measured S21 as a function of detuning
and for three specific values of ζ/2π: 41.3MHz (green curve), 101.1MHz (orange curve), and 161.2MHz (purple curve). The
black superimposed curves are the results of the numerical simulation of the full quantum model for the parameters in Table I
(detailed in Appendix A 1 a). The modulation frequency is set to Ω/2π = 30MHz. The systematic discrepancy in the position of
the dips between theory and experiments is due to the nonlinear dependence of the modulation of the flux amplitude discussed
in Appendix B.

shown in Figs. 7 (a-c). At low driving power, we find
a linear regime where m dips appear separated by the
frequency Ω/2π = 30MHz and with visibility given by
Bessel functions Jm̄(ζ/Ω). This regime is remarkably
similar to that of several nonlinear modes separated by
the same frequency Ω. As the driving power increases,
each of these dips initially follows the typical Duffing be-
havior of a single resonator, as already mentioned. For
high enough input power, however, these individual dips
disappear and merge, leading to a very broad response
of the system. At this point, one completely loses the
notion of individual synthetic modes and their bistabil-
ity. As detailed in Ref. [40], when two or more nonlinear
driven cavities merge, dissipative quantum chaos arises.

We theoretically verify that at the point where the mul-
tiple resonances of the LZSM Duffing regime merge, a

chaotic structure of the system can be observed. The
theoretical analysis is detailed in the Appendix A2, and
involves a Floquet Liouvillian analysis. In Fig. 7 (d) we
remark that, as soon as the merging of the Floquet modes
occurs, the Floquet Liouvillian level statistics follows the
Ginibre distribution [see Eq. (A15)] associated with dis-
sipative quantum chaos [51]. Notice also that, to get
a qualitative and quantitative agreement between the-
ory and experimental observations, the theoretical frame-
work presented in Ref. [40] is essential. As detailed in
Appendix A 2, we can observe how the emergence of a
chaotic regime coincides exactly with the merging of the
resonances.

The onset of the chaotic phase can also be controlled
by tuning the spacing between LZSM resonances through
the modulation frequency Ω, as shown in Appendix C.
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For instance, the separated bistable regions of Fig. 6 (b)
would start overlapping by decreasing Ω, potentially re-
sulting in a chaotic state.

V. CONCLUSIONS

This article investigates the physics of Landau-Zener-
Stückelberg-Majorana (LZSM) interference beyond the
conventional two-level approximation. By employing two
nonlinear superconducting resonators—one in the Kerr
(nonlinearity larger than dissipation rate) and the other
in the Duffing (nonlinearity smaller than dissipation
rate) regime—we have established a general paradigm for
studying LZSM interference in bosonic systems. We have
developed a unified model that accurately describes the
observed phenomena across all parameter regimes before
the onset of many-body-like effects.

At low driving powers, we have shown that interference
patterns remain independent of the system nonlinearity,
preventing the distinction between linear and nonlinear
resonators. However, at higher driving powers, we have
uncovered novel effects arising from the interplay between
modulation and nonlinearity, with the dissipation rate
playing a crucial role in shaping the emergent features.

In the Kerr regime, our experiments have highlighted
the influence of Kerr multiphoton resonances on the
LZSM interference pattern, leading to the formation of
avoided level crossings between Floquet states. Con-

versely, in the Duffing regime, we have theoretically
demonstrated and witnessed the effects of the emergence
of optical bistability. We have then theoretically shown
that the onset of dissipative quantum chaos in the Flo-
quet regime coincides with a qualitative change in the
resonator’s properties.

Overall, our work significantly advances the current
understanding of LZSM and Floquet physics, shedding
light on the intricate interplay between interference and
nonlinear effects. Furthermore, our findings pave the way
for controlling and engineering Floquet states and syn-
thetic dimension engineering. The highly tunable nature
of the system opens exciting avenues for future research
in quantum dynamics and quantum control.

As future perspectives, the merging of multiple inter-
ference peaks both in the Kerr and Duffing regimes of-
fers several potential applications. In the Kerr regime,
we show the presence of an “effective interaction” be-
tween Floquet states, that can be either enabled or sup-
pressed by tuning the modulation parameters. These
could be used to, e.g., engineer transition and interac-
tion between states with different decay rates, and pro-
vide opportunities to simulate non-Markovian baths [52].
Conversely, in the Duffing regime, this Floquet approach
to dissipative chaos has reduced susceptibility to disorder
and fabrication mismatches when compared to alterna-
tive implementations in extended systems [53–55]. This
opens possibilities to use this LZSM interference to sim-
ulate emergent chaotic features in engineered dissipative
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and time-dependent configurations, such as ultrastrongly
coupled light-matter systems [56, 57], devices in the noisy
intermediate-scale quantum (NISQ) era [41, 42], and two-
photon driven systems [36, 58]. Finally, LZSM protocols
have been used as quantum simulators of Kibble-Zurek
mechanisms [59, 60]. The extension of a similar protocol
to multilevel phenomena is still lacking.
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Appendix A: Theoretical and numerical methods

1. Construction and solution of the
Floquet-Liouvillian problem

The periodically modulated systems in Eq. (2) can be
described using a stroboscopic Lindblad master equation
of period T . The equation of motion of such a system is

ℏ∂tρ̂(t) = L(t)ρ̂(t), L(t+ T ) = L(t). (A1)

While the temporal dependence of L(t) prevents the
emergence of a true steady state, one can still reach a
stroboscopic stationary regime.

a. The average Floquet steady-state

We are interested in the average properties of the sys-
tem along one modulation period T = 2π/Ω after a time
long enough for the system to have reached a strobo-

scopic stationary regime. To solve this problem, we as-
sume that, for a long enough time,

ρ̂(t) =

+∞∑
m=−∞

ρ̂me
imΩt. (A2)

One can easily verify that

1

T

∫ t+T

t

ρ̂(τ)dτ = ρ̂0. (A3)

At this point, one has to determine ρ̂0. A convenient way
to find it is to solve it through Fourier analysis (see, e.g.,
[61, 62]).

The equation of motion can be recast as

ℏ
d

dt
ρ̂(t) =

+∞∑
m=−∞

imΩρ̂me
imΩt

=
[
L0 + L1e

iΩt + L−1e
−iΩt

]
ρ̂(t)

=

+∞∑
m=−∞

[
L0 + L1e

iΩt + L−1e
−iΩt

]
ρ̂me

imΩt,

(A4)

where L0 is the time-independent part of the Liouvillian
in Eq. (2) (i.e., ζ = 0), while L1 and L−1 represent the
decomposition of the modulation. Collecting each term
evolving with Ω we have

+∞∑
m=−∞

[(L0 − imΩ) ρ̂m + L1ρ̂m−1 + L−1ρ̂m+1] e
iΩt = 0.

(A5)
If we now assume that each term of the sum is station-

ary, we obtain the recursion relation

(L0 − imΩ) ρ̂m + L1ρ̂m−1 + L−1ρ̂m+1 = 0. (A6)

By truncating this recursion (i.e., assuming ρ̂m = 0 if
m > M or m < −M), the problem can be then self-
consistently solved.

b. Analysis of the Floquet Liouvillian spectrum

A different approach to solving the Floquet problem
consists of constructing the so-called Floquet evolution
superoperator (a Floquet map for Lindbladian systems).
Indeed, using the time ordering T , we can formally solve
Eq. (A1) as

ρ̂(t) = T
[
exp

(∫ t

0

L(t′)dt′/ℏ
)]

ρ̂(0) = F(t, 0)ρ̂(0).

(A7)
F(t, t0) is the evolution superoperator for the time-
dependent Lindblad master equation. We can then for-
mally introduce the Floquet Liouvillian LF as

F(T, 0) = exp (LFT/ℏ) . (A8)
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The stroboscopic steady state is the state such that

LFρ̂
F
ss = 0, or F ρ̂Fss = ρ̂Fss. (A9)

To construct F(T, 0) [63], let us consider

F(T, 0)ρ̂i,j , ρ̂i,j = |i⟩⟨j|. (A10)

Since ρ̂i,j are an orthonormal basis of the operators space
(i.e., any operator can be written as a linear combination
of ρ̂i,j), we conclude that the matrix form of F(T, 0) can
be obtained as

F[m=i·(N+1)+j,:] = vec [ρ̂i,j(T )] , (A11)

where F[m,:] indicates the mth row of the evolution oper-
ator in its matrix form, and vec [ρ̂i,j(T )] is the vectorized
form of the initial density matrix ρ̂i,j evolved for a time
T .

2. Analysis of dissipative quantum chaos

To determine the chaotic or integrable nature of the
system, we extend the methods in Ref. [40] to Floquet
systems. The Floquet Liouvillian superoperator LF can
be diagonalized obtaining its right (left) eigenvectors η̂j
(σ̂j) and the Liouvillian spectrum {λj}

LFη̂j = λj η̂j , L†
Fσ̂j = λ∗j σ̂j , (A12)

which satisfy the bi-orthonormality condition Tr{σ̂†
j η̂l} =

δjl.
Integrability and dissipative quantum chaos in the

open quantum system can be characterized via the sta-
tistical distribution of the spacings of the complex Liou-
villian eigenvalues {λj} [51]. In particular, one studies
the distribution of nearest-neighbor eigenvalue spacings

p(s) =
∑
j

δ(sj − s), (A13)

where sj = |λj − λNN
j |, with λNN

j the eigenvalue closest
to λj in the complex plane.

a. Level statistics

In integrable dissipative systems, s follows a 2D Pois-
son distribution

p2D(s) =
π

2
se−

π
4 s2 , (A14)

while for chaotic dissipative systems the level spacing
distribution follows the Ginibre distribution of Gaussian
non-Hermitian random matrices ensembles

pGinUE(s) =

(
+∞∏
k=1

Γ(1 + k, s2)

k!

)
+∞∑
j=1

2s2j+1e−s2

Γ(1 + j, s2)
.

(A15)
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FIG. 8. Analysis of dissipative quantum chaos using the
SSQT criterion detailed in Ref. [40] and generalized to Floquet
states here. (a) Theoretical indicator of chaos ⟨cos θ⟩ intro-
duced in Ref. [66] computed on the full Floquet-Liouvillian
spectrum (red line) and on the eigenvalues selected by the
SSQT criterion as discussed in Appendix A2 (green line).
While the spectral analysis on the full Liouvillian indicates
the presence of chaos independently of the drive amplitude
for the parameters considered in the plot, the SSQT criterion
identifies the broadening of the Duffing peaks in Fig. 7 (a-c)
(grey rectangle) with a dissipative quantum chaotic phase for
the Floquet steady state ρ̂Fss. When the number of selected
eigenvalues is smaller than 100 a statistically significant anal-
ysis can not be carried out, and we set ⟨cos θ⟩ = 0. (b) Purity
Tr([ρ̂F

ss]
2) of the Floquet steady state ρ̂F

ss. The onset of steady-
state quantum chaos in panel (a) coincides with the drop of
the purity of the steady state below 0.1. We use the param-
eters of Fig. 7 (a), the cutoff in the Hilbert space is fixed to
90, and cmin is selected according to [67].

An unfolding procedure, in which the uncorrelated part
is removed from p(s) in Eq. (A13), is required to evaluate
the level statistics from the spectrum and for the proper
characterization of chaos [64]. We adopt that described
in Ref. [65].

An alternative, efficient way to perform this analysis
is the complex spacing ratio [66]

zj =
λNN
j − λj

λNNN
j − λj

= rje
iθj , (A16)

with λNN
j the eigenvalue closest to λj in the complex

plane, and λNNN
j the second-nearest neighbor to λj . The

average values ⟨r⟩ of rj and ⟨cos θ⟩ of cos θj , can be used
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as indicators of dissipative quantum chaos. For a 2D
Poisson distribution, associated with an integrable sys-
tem, ⟨r⟩ = 0.66, and −⟨cos θ⟩ = 0. For the Ginibre
distribution, i.e., chaos, ⟨r⟩ = 0.74, and −⟨cos θ⟩ = 0.24.

The above spectral signatures alone, however, do not
correctly capture the emergence of dissipative quantum
chaos in the system considered in this work. For instance,
in Fig. 8 (a) we plot the indicator ⟨cos θ⟩ as a function of
the input power Pin. For these input powers, the predic-
tion of the spectral analysis of the Floquet Liouvillian is
that the system is always in a chaotic phase, despite it
being almost a pure state for weak Pin [c.f. Fig. 8 (b)].
We conclude that this straightforward analysis of chaos
cannot capture the relevant features of the model under
consideration.

b. Spectral statistics of quantum trajectories for Floquet
systems

Here, we generalize the theoretical framework of the
spectral statistics of quantum trajectories (SSQT) intro-
duced in Ref. [40]. First, one remarks that the Lind-
blad master equation admits also a stochastic unraveling
in terms of quantum trajectories |ψ(t)⟩, combining the
Hamiltonian dynamics with a continuous monitoring of
the environment [68, 69]. The wave function |ψ(t)⟩ can
be interpreted as a single stochastic realization of the
dissipative dynamics whose average reproduces the pre-
dictions of the Lindblad master equation Eq. (2). As dis-
cussed in Ref. [40], since the system discussed in this arti-
cle does not have any weak or strong Liouvillian symme-
try, all the possible unravelings are expected to give the
same information about steady-state integrability and
chaos. We can therefore assume a diagonal unraveling
which we can write down considering the spectral de-
composition of the Floquet steady state

ρ̂Fss =
∑
k

pk|ψk⟩⟨ψk|. (A17)

Using the spectral decomposition introduced in
Eq. (A12), one can then define

ρ̂k =|ψk⟩⟨ψk| =
∑
j

ck,j(t) η̂j . (A18)

This procedure allows associating to each eigenvalue λj
the relative spectral weight ck,j . We select the Liouvil-
lian eigenvalues λj , for which |ck,j(t)| > cmin [67]. On
each ρ̂k we perform the spectral analysis by computing,
e.g., the complex spacing ratio for the selected eigenval-
ues ⟨cos θ⟩k. We finally obtain ⟨cos θ⟩ =∑k pk⟨cos θ⟩k.

In Fig. 8 (a), the green curve represents the results
of the SSQT criterion. Compared to the spectral statis-
tics applied to the full Floquet Liouvillian spectrum, we
see a profoundly different behavior of the system as a
function of the drive amplitude. Notably, the onset of
dissipative chaos in the Floquet steady state coincides

with the merging and broadening of the dips of the scat-
tering coefficient |S21| in Fig. 7 (a-c), as indicated by the
grey rectangle. Comparing the results of Fig. 8 (a) with
the purity of ρ̂F

ss in Fig. 8 (b), this time we observe that
it drops below 0.1 only when we enter the steady-state
chaotic region. This result ultimately demonstrates the
necessity of the SSQT criterion to correctly interpret the
onset of chaos in open quantum systems.

3. Derivation of an effective model for the study of
the nonlinear modulated resonators

To simplify the equation of motion, we want to elim-
inate the frequency modulation. To do this, we use the
interaction picture ˆ̃ρ(t) = Û†(t)ρ̂Û(t), where

Û(t) = T exp

[∫ t

0

−i dt′ ζ cos(Ω t′)â†â
]

= exp

[
−i ζ

Ω
sin(Ω t) â†â

]
.

(A19)

We obtain

ℏ∂t ˆ̃ρ(t) = −i[ ˆ̃H, ˆ̃ρ(t)] + κDâ ˆ̃ρ(t) + κϕDâ†â ˆ̃ρ(t) , (A20)

where

ˆ̃H/ℏ = ∆â†â+ χâ†â†ââ

+F

{
â exp

[
−i ζ

Ω
sin(Ω t)

]
+ h.c.

}
.

(A21)

Equations (A20) and (A21) can be straightforwardly de-
rived thanks to

Û†(t) â Û(t) = â exp

[
−i ζ

Ω
sin(Ω t)

]
. (A22)

We finally use the Jacobi-Anger expansion, reading

eiz sin θ ≡
∞∑

m=−∞
Jm(z) eimθ , (A23)

where Jm(z) is the mth Bessel function of the first kind,
to obtain (up to a phase)

ˆ̃H/ℏ = ∆â†â+ χâ†â†ââ

+

∞∑
m=−∞

FJm

(
ζ

Ω

)[
âe−imΩt + â†eimΩt

]
.

(A24)

Notice that both dissipation and Kerr nonlinearity re-
main unchanged by this set of transformations.

Up to this point, no approximations have been made.
For the small-drive amplitudes considered in Sec. III,
however, we can assume that only one of the driving fre-
quencies is relevant, and discard the fast-rotating terms.
Namely, we select only those frequencies around which
∆m̄ = ∆− m̄Ω ≃ 0, finally obtaining Eq. (3).
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FIG. 9. Comparison between the full Floquet analysis and the effective model derived in Appendix A3. We show the photon
number n computed with the Floquet steady state [panel (a)] and with the effective Hamiltonian Eq. (3) [panel (b)]. The
full quantum solution and the effective model exhibit a good agreement. We plot in panels (c) and (d) the Wigner function
W (α) = 2/π · Tr

[
D̂αe

iπâ†âD̂†
αρ̂

]
, with D̂α = exp(αâ† − α∗â), of the Floquet steady state and the effective model respectively.

The green lines in panels (c) and (d) encircles the region where W (α) > 7×10−3 according to the effective model. We conclude
that the effective model is reliable when computing ⟨â†â⟩, i.e., the distance from the center of the distribution W (α). On the
contrary, ⟨â⟩ can not be captured by the simple treatment presented in Appendix A3, as evident from the different angular
distribution of W (α) obtained from the full and effective model. All physical parameters as in Fig. 6 (d). We set ζ/Ω ≈ 1.67
and ∆/Ω = −1.1.

In Fig. 9 we benchmark the validity of the effective
Hamiltonian given by Eq. (3) for the N = 32 device in
the Duffing regime at intermediate input power. All the
physical parameters have been chosen as in Fig. 6 (d).
We compare the photon number n computed with the
Floquet steady state [Fig. 9 (a)] and with the effective
model [Fig. 9 (b)] showing that the two approaches ex-
hibit a good agreement. While the approximation is re-
markably predictive in determining the photon number,
this is not the case for the coherence ⟨â⟩. In Figs. 9 (c-
d) we compute the Wigner functions obtained from the
full quantum simulation of the Floquet steady state and
that obtained according to the effective model. While the
effective model nicely reproduces the radial distribution
of the Wigner function (and thus the photon number),
it completely misses the phase, which remains accessi-
ble only within the full Floquet-Lindbald treatment de-
scribed in Appendix A 1 a. In both Figs. 9 (c) and (d)
we report the contour of the effective Wigner function,
showing that W (α) of the full quantum model contains
the effective Wigner function, but the phase coherence
is reduced with respect to the effective model. We ar-
gue that these dephasing-like effects are due to higher-
order processes not accounted for in the effective model,
emerging from the combination of Hamiltonian and dis-
sipative terms, and treating them would require higher-
order time-dependent perturbation theories such as the
Floquet-Magnus expansion.

Appendix B: Experimental details

1. Fabrication

The devices are fabricated on a 525 µm thick high-
resistivity intrinsic 4 inch silicon wafer. The substrate
is cleaned using piranha solution, followed by the re-
moval of native oxide via a 1% hydrofluoric acid treat-
ment. Immediately after, a 150 nm thick layer of alu-
minum is deposited by e-beam evaporation at a rate of
0.2 nm s−1. Alignment markers are defined through pho-
tolithography, e-beam evaporation of a 5 nm thick Ti
layer and a 55 nm thick Pt layer, and subsequent lift-
off. The waveguide and control lines are patterned via
photolithography and wet etching for 2min 30 s in Tech-
niEtch Alu80 etchant. E-beam lithography is employed
to define the Josephson junctions of the SQUID array.
The wafer is coated with a bilayer resist stack consist-
ing of 500 nm of MMA EL9 and 450 nm of PMMA 495K
A8. The mask is then patterned using e-beam lithog-
raphy (Raith EBPG5000+ at 100 keV) and developed
in a 1:3 MIBK:IPA solution for 2min. The Josephson
junctions have a square shape with a width of approx-
imately 350 nm. The Josephson junctions are formed
by double-angle evaporation in an ultra-high vacuum
Plassys MEB550SL3 system using the Manhattan tech-
nique [70]. This involves the deposition of 50 nm of alu-
minum at 0.5 nm s−1 at +45◦ tilt angle, followed by an
oxidation step of 10min in 0.15 Torr of pure dioxygen, a
second aluminum deposition of 120 nm at 0.5 nm s−1 and
−45◦ tilt angle, and a capping oxidation layer formed
during 10min in 4 Torr of pure O2. Lift-off is performed
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FIG. 10. Schematics of the full wiring of the cryostat and room-temperature electronics.

in 80 ◦C 1165 remover for 4 h to 8 h. A final patching step
is carried out to close the loops of the isolated Joseph-
son junctions formed with the Manhattan technique and
to connect one side of the SQUID array to the ground
plane. The same bilayer resist stack is used, and e-beam
lithography is employed to expose the patch areas. The
native oxide of the bottom aluminum layer is removed in
the Plassys system by argon ion plasma milling, and a
200 nm thick aluminum layer is deposited directly after
at a rate of 0.5 nm s−1. Finally, the wafer is diced into
4x7mm2 chips using a nickel-bonded diamond blade.

2. Measurement setup

A schematic of the measurement setup is shown
in Fig. 10. The 4x7 mm2 die is wire bonded with alu-
minum wire on custom-printed circuit board. The die is
then glued directly on a high-purity copper sample holder
that is thermally anchored at the mixing chamber stage
of a LD Bluefors cryostat with a typical base temper-

ature of 15 mK. The sample holder is protected against
external magnetic fields using two mu-metal shields. The
SQUID array is coupled to a 50 Ohm coplanar waveg-
uide in a notch configuration. The input signal is gener-
ated by a vector network analyzer (VNA) R&S ZNB20
and transmitted via a heavily attenuated coaxial line to
the device feedline. The output signal passes through
two double-circulators before being amplified at 4K by
a LNF-LNC4_8C HEMT amplifier and at room tem-
perature by an Agile AMT-A0284 low-noise amplifier.
The signal is collected and demodulated in the VNA.
Six-ports Radiall R591723605 coaxial switches are placed
on the mixing chamber plate on both sides of the feed-
line to allow switching between different devices. Both
N = 10 and N = 32 devices presented in this work were
connected between the same switches and thus shared
the same input and output lines. The static flux of the
SQUID array is controlled by applying a direct current
to a NbTi external coil mounted underneath the sample
holder. The direct current is applied via twisted NbTi
pairs using a Yokogawa GS200 source. The frequency
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FIG. 11. Measurement of the magnitude of the transmission |S21| as a function of the flux ΦX in the SQUID arrays for the
N = 32 Duffing device (left, blue) and the N = 10 Kerr device (right, red). The flux working points used throughout the paper
are indicated by cross markers. The black horizontal segments approximately denote the maximum flux modulation reported
is in this work with respectively ±0.4 GHz and ±1.1 GHz for the Duffing and Kerr devices.

modulation of the SQUID array is performed by apply-
ing a signal generated by a R&S SGS 100A signal gen-
erator to the local flux line of the device. The DC noise
is attenuated using a high-pass filter with a cutoff fre-
quency of 100 kHz at room temperature. The line is fur-
ther attenuated and filtered at the mixing chamber stage
with a Minicircuits VLFX-300+ low-pass filter (LPF).
We found that without this LPF, the internal loss rate
of the SQUID arrays was increased by up to a factor of
ten. We also included an additional 20 dB of attenuation
between the LPF and the flux line to eliminate spurious
standing wave modes between the LPF and the on-chip
ground termination of the flux line. Devices N = 10 and
N = 32 were housed in different sample holders in sepa-
rate shields and thus did not share the same external coil
and flux lines.

3. Device characterization

The flux-dependence of the SQUID array frequency is
reported for both devices in Fig. 11. The value of the
flux ΦX is controlled by applying a direct current to the
external coil. We convert the current applied to the flux
threading the SQUIDs by fitting a larger flux modulation
sweep over more than one period. The two devices are
made of SQUIDs with identical junctions and have a sim-
ilar total capacitance. As a consequence their maximum
frequency differs due to the total number of SQUID N
in the two arrays.

We observe an unexplained dip in the flux modulation
of device N = 32 (blue). This feature is periodically

repeated for Φ0 increments of the flux ΦX , and we ob-
serve no hysteretic effect. This spurious dip was observed
across several cooldowns at the same position. A similar
device with N = 46 SQUIDs located on the same chip
does not show a similar dip. Cross markers in Fig. 11
indicate the flux operating point of both devices, and the
segment on the x-axes show the maximum flux modula-
tion performed in this work. The N = 32 SQUID array
is always operated far from the unexpected feature which
thus does not impact the results of the experiment.

Because of the nonlinear flux dependence of the fre-
quency of the resonators, the applied frequency modu-
lation is not exactly sinusoidal, ζ cos(Ωt), as stated in
the Hamiltonian Eq. (1). Moreover, for large modulation
strength ζ, the frequency modulation is not symmetric
around ωwp. This results in a deviation of the LZSM
resonances m̄ away from ∆m̄. We observe this deviation
in our measurements, most clearly in Fig. 4 where ζ is
as large as 1.1GHz. It is also apparent in Fig. 6 (d-f)
where the data are systematically shifted to negative fre-
quencies compared to the superimposed numerical sim-
ulations. The deviation from the LZ mode position ex-
pected for an ideal modulation is towards negative de-
tuning because of the curvature of the flux dependence
of the frequency. The deviation increases when the flux
operating point is brought closer to zero flux where the
curvature is more important. This phenomenon is re-
ported and explained in Ref. [71].

From the measurement of the room-temperature
normal-state resistance, we estimate the single junction
Josephson energy to EJ/h ≈ 170GHz. The frequencies
and Kerr non-linearities of the SQUID array modes can
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be simulated using a lumped-model and assuming EJ ≫
EC [44]. From this model, we estimate the plasma fre-
quency of the junctions to ℏωP =

√
8EJEC ≈ h×39GHz.

The zero-flux frequency of the Kerr N = 10 device is out
of our measurement bandwidth of 4-8 GHz, but we es-
timate it to be approximately 13GHz from the lumped
model discussed above. We find a single junction charg-
ing energy EC = e2/2CJ ≈ h×1.1GHz. Even for the flux
operating point ΦX/Φ0 ≈ 0.455 of theN = 10 device, the
effective Josephson energy of the SQUID remains much
larger than the charging energy, ensuring the validity of
the Kerr approximation of the Josephson Hamiltonian.

We then carefully characterize the two devices at their
chosen flux operating points. The parameters of the de-
vices, reported in Table I, are obtained by fitting S21

without modulating the frequency. The SQUID array is
modeled as a Kerr resonator according to the Hamilto-
nian of Eq. (1) with ζ = 0. First we fit the transmission
at low enough power to ensure an average occupation of
less than one photon. This allows us to neglect the Kerr
nonlinearity and the dephasing. The expression of the
linear transmission coefficient S21 is obtained from stan-
dard notch configuration input-output theory [36, 72] as

S21 = 1− κext

κext + κint + 2i∆
× eiϕ

cosϕ
. (B1)

Following the diameter correction method [73], we add
the last term to compensate for impedance mismatch.
To fit the measured transmissions to this expression, we
first normalize the data by a background transmission
measured with the SQUID threaded by a different flux,
such that its frequency lies outside of the measurement
range. All experimental data reported in this work are
normalized this way. We then extract the precise oper-
ating frequency as well as the internal and external loss
rates of each device.

To determine the Kerr nonlinearity χ and the dephas-
ing rate κϕ, we need to fit the power dependence of the
transmission which is reported in Fig. 2. A simple an-
alytical model could be used for weakly anharmonic de-
vices satisfying |χ| ≪ κ [36, 74]. Instead we directly solve
the Lindblad master equation [Eq. (2)] to find the intra-
cavity field α, again setting ζ = 0 in the Hamiltonian.
This model is valid for both devices studied in this work
and accounts for dephasing. Using input-output theory,
we convert α to the transmission scattering parameter
using the following relation

S21 = 1− i
κext α

2F
. (B2)

The drive amplitude F is related to the input power Pin

as

F =

√
Pinκext
ℏωd

. (B3)

We start by fitting the device N = 10 in the Kerr
regime. We perform a global simultaneous fit of approx-
imately ten frequency sweeps at different driving pow-
ers. We use the parameters obtained from the low-power

fit and keep three independent fitting parameters: κϕ,
χ, and the attenuation of the input drive line. Because
single multiphoton transitions are well-resolved with the
Kerr device, we can obtain all three parameters with-
out prior calibration of the input attenuation. The Kerr
multiphoton resonances reported in Fig. 2 (c-e) are not
equispaced by χ, instead the spacing increases for larger
|n⟩. We attribute this effect to non-negligible higher-
order nonlinearities from the expansion of the Josephson
cosine potential. To accurately reproduce the experimen-
tal data of the N = 10 device, we also include a term of
the form χ(5)(â†)3â3 in the model, and find a value of
χ(5) ≈ 5%χ [47].

Finding the Kerr nonlinearity of the Duffing device,
however, requires knowing the input attenuation. But
the feedline of the Kerr and Duffing devices are connected
on the same microwave switch, as depicted in Fig. 10.
Therefore we assume that the input attenuation obtained
from the fit of the Kerr device is also valid for the Duffing
device. We perform a similar global fit of the power de-
pendence of the transmission of the Duffing device, this
time with only two free fitting parameters: χ and κϕ.
Simulations of the Kerr shift of both devices are shown
in Fig. 2.

Appendix C: Additional data

In this section, we report additional measurements per-
formed with the N = 32 Duffing device in the linear
regime. In Fig. 12 we repeat the linear regime LZSM
interferometry measurements of Fig. 3(d-f) for different
values of Ω and ζ. The drive power is set to the same
low value as in Fig. 3 to remain in the linear regime with
a low photon occupation number. In panels (a-d), we
sweep the modulation strength ζ for increasing values of
modulation frequency Ω. LZSM resonances are visible for
ζ ≥ |∆|, irrespective of the value of Ω. As expected from
Eq. (3), the spacing between LZSM resonances is equal to
Ω. In panels (e-h), we sweep the modulation frequency Ω
for increasing modulation strengths ζ. We observe more
and more LZSM resonances as ζ is increased, and again
the extension of the resonances is approximately confined
to |∆| < ζ. These measurements highlight the superb
control offered by the platform on the position and num-
ber of modes, as for instance in panel (a) we observe
clearly LZSM resonances up to mode m̄ = 25.

Next, in Fig. 13 we repeat the Duffing regime LZSM
interferometry of Fig. 6, but this time sweeping the mod-
ulation frequency Ω at fixed ζ. We repeat this measure-
ment for three increasing values of drive power Pin. For
the lowest drive shown in panel (a), individual LZSM
resonances remain mostly isolated. However, when com-
pared to the linear regime of weak drive, LZSM reso-
nances appear distorted with a rounded shape. This
rounding is a combination of the Kerr nonlinearity bend-
ing the peak to negative frequencies, and the modulation
of the effective drives Fm̄ that controls the peak bendings.
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FIG. 12. Extended data of LZSM interference patterns in the linear regime. The measurements are performed on the device
N = 32 with the same weak drive power as in Fig. 3 (d-f). In panels (a-d), the same sweep of modulation strength ζ is repeated
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For increasing drive power, as shown in panels (b) and
(c), the interference pattern gets more distorted and indi-
vidual resonances start merging together. In this regime,
the effective model of Eq. (3) is no longer valid and a

full Floquet-Lindblad treatment is required. As we have
theoretically shown, the broadening and distortion of the
LZSM interference pattern in the Duffing regime is asso-
ciated to a dissipative quantum chaotic phase.

[1] Alexandre Blais, Arne L. Grimsmo, S. M. Girvin, and
Andreas Wallraff, “Circuit quantum electrodynamics,”
Rev. Mod. Phys. 93, 025005 (2021).

[2] Ehud Altman, Kenneth R. Brown, Giuseppe Carleo, Lin-
coln D. Carr, Eugene Demler, Cheng Chin, Brian De-
Marco, Sophia E. Economou, Mark A. Eriksson, Kai-
Mei C. Fu, Markus Greiner, Kaden R.A. Hazzard,
Randall G. Hulet, Alicia J. Kollár, Benjamin L. Lev,
Mikhail D. Lukin, Ruichao Ma, Xiao Mi, Shashank
Misra, Christopher Monroe, Kater Murch, Zaira Nazario,
Kang-Kuen Ni, Andrew C. Potter, Pedram Roushan,
Mark Saffman, Monika Schleier-Smith, Irfan Siddiqi,
Raymond Simmonds, Meenakshi Singh, I.B. Spielman,
Kristan Temme, David S. Weiss, Jelena Vučković, Vladan
Vuletić, Jun Ye, and Martin Zwierlein, “Quantum simu-
lators: Architectures and opportunities,” PRX Quantum
2, 017003 (2021).

[3] Lev Landau, “Zur theorie der energieubertragung. ii,”
Physikalische Zeitschrift der Sowjetunion 2, 46 (1932).

[4] Clarence Zener, “Non-adiabatic crossing of energy lev-
els,” Proceedings of the Royal Society of London. Series
A, Containing Papers of a Mathematical and Physical
Character 137, 696–702 (1932).

[5] ECG Stückelberg, “Theorie der unelastischen stösse zwis-
chen atomen,” Helv. Phys. Acta 5, 369 (1932).

[6] Ettore Majorana, “Atomi orientati in campo magnetico
variabile,” Il Nuovo Cimento (1924-1942) 9, 43–50 (1932).

[7] Oleh V. Ivakhnenko, Sergey N. Shevchenko,
and Franco Nori, “Nonadiabatic lan-
dau–zener–stückelberg–majorana transitions, dynamics,
and interference,” Physics Reports 995, 1–89 (2023).

[8] William D. Oliver, Yang Yu, Janice C. Lee, Karl K.
Berggren, Leonid S. Levitov, and Terry P. Orlando,
“Mach-Zehnder interferometry in a strongly driven su-
perconducting qubit,” Science 310, 1653–1657 (2005).

[9] Mika Sillanpää, Teijo Lehtinen, Antti Paila, Yuriy
Makhlin, and Pertti Hakonen, “Continuous-Time Mon-
itoring of Landau-Zener Interference in a Cooper-Pair
Box,” Physical Review Letters 96, 187002 (2006).

[10] J. Stehlik, Y. Dovzhenko, J. R. Petta, J. R. Johansson,
F. Nori, H. Lu, and A. C. Gossard, “Landau-Zener-
Stückelberg interferometry of a single electron charge
qubit,” Physical Review B 86, 121303 (2012).

[11] F. Forster, G. Petersen, S. Manus, P. Hänggi, D. Schuh,
W. Wegscheider, S. Kohler, and S. Ludwig, “Characteri-
zation of Qubit Dephasing by Landau-Zener-Stückelberg-
Majorana Interferometry,” Physical Review Letters 112,
116803 (2014).

[12] Lilian Childress and Jean McIntyre, “Multifrequency spin
resonance in diamond,” Physical Review A 82, 033839
(2010).

[13] David Niepce, Jonathan J. Burnett, Marina Kudra,
Jared H. Cole, and Jonas Bylander, “Stability of su-
perconducting resonators: Motional narrowing and the
role of Landau-Zener driving of two-level defects,” Sci-

ence Advances 7 (2021), 10.1126/sciadv.abh0462.
[14] E. Dupont-Ferrier, B. Roche, B. Voisin, X. Jehl, R. Wac-

quez, M. Vinet, M. Sanquer, and S. De Franceschi, “Co-
herent Coupling of Two Dopants in a Silicon Nanowire
Probed by Landau-Zener-Stückelberg Interferometry,”
Physical Review Letters 110, 136802 (2013).

[15] Jiangbo He, Dong Pan, Mingli Liu, Zhaozheng Lyu,
Zhongmou Jia, Guang Yang, Shang Zhu, Guangtong Liu,
Jie Shen, Sergey N. Shevchenko, Franco Nori, Jianhua
Zhao, Li Lu, and Fanming Qu, “Quantifying quantum
coherence of multiple-charge states in tunable Josephson
junctions,” npj Quantum Information 10, 1–8 (2024).

[16] Gang Cao, Hai-Ou Li, Tao Tu, Li Wang, Cheng Zhou,
Ming Xiao, Guang-Can Guo, Hong-Wen Jiang, and
Guo-Ping Guo, “Ultrafast universal quantum control
of a quantum-dot charge qubit using Landau–Zener–
Stückelberg interference,” Nature Communications 4,
1401 (2013).

[17] Anasua Chatterjee, Sergey N. Shevchenko, Sylvain Bar-
raud, Rubén M. Otxoa, Franco Nori, John J. L. Mor-
ton, and M. Fernando Gonzalez-Zalba, “A silicon-based
single-electron interferometer coupled to a fermionic sea,”
Physical Review B 97, 045405 (2018).

[18] Mikael Kervinen, Jhon E. Ramírez-Muñoz, Alpo Väli-
maa, and Mika A. Sillanpää, “Landau-Zener-Stückelberg
Interference in a Multimode Electromechanical System
in the Quantum Regime,” Physical Review Letters 123,
240401 (2019).

[19] P. Y. Wen, O. V. Ivakhnenko, M. A. Nakonechnyi,
B. Suri, J.-J. Lin, W.-J. Lin, J. C. Chen, S. N.
Shevchenko, Franco Nori, and I.-C. Hoi, “Landau-Zener-
Stückelberg-Majorana interferometry of a superconduct-
ing qubit in front of a mirror,” Physical Review B 102,
075448 (2020).

[20] Yu-Han Chang, Dmytro Dubyna, Wei-Chen Chien,
Chien-Han Chen, Cen-Shawn Wu, and Watson Kuo,
“Circuit quantum electrodynamics with dressed states of
a superconducting artificial atom,” Scientific Reports 12,
22308 (2022).

[21] Jonas Lidal and Jeroen Danon, “Generation of
Schrödinger-cat states through photon-assisted Landau-
Zener-Stückelberg interferometry,” Physical Review A
102, 043717 (2020).

[22] Lu Wang, Fulu Zheng, Jiaming Wang, Frank Großmann,
and Yang Zhao, “Schrödinger-Cat States in Landau–
Zener–Stückelberg–Majorana Interferometry: A Multi-
ple Davydov Ansatz Approach,” The Journal of Physical
Chemistry B 125, 3184–3196 (2021).

[23] O. V. Ivakhnenko, S. N. Shevchenko, and Franco Nori,
“Simulating quantum dynamical phenomena using clas-
sical oscillators: Landau-Zener-Stückelberg-Majorana in-
terferometry, latching modulation, and motional averag-
ing,” Scientific Reports 8, 12218 (2018).

[24] Xin Zhou, Chun Zhao, Dingbang Xiao, Jiangkun Sun,
Guillermo Sobreviela, Dustin D. Gerrard, Yunhan Chen,

http://dx.doi.org/ 10.1103/RevModPhys.93.025005
http://dx.doi.org/ 10.1103/PRXQuantum.2.017003
http://dx.doi.org/ 10.1103/PRXQuantum.2.017003
http://dx.doi.org/10.1016/j.physrep.2022.10.002
http://dx.doi.org/10.1126/science.1119678
http://dx.doi.org/10.1103/PhysRevLett.96.187002
http://dx.doi.org/10.1103/PhysRevB.86.121303
http://dx.doi.org/10.1103/PhysRevLett.112.116803
http://dx.doi.org/10.1103/PhysRevLett.112.116803
http://dx.doi.org/10.1103/PhysRevA.82.033839
http://dx.doi.org/10.1103/PhysRevA.82.033839
http://dx.doi.org/10.1126/sciadv.abh0462
http://dx.doi.org/10.1126/sciadv.abh0462
http://dx.doi.org/10.1103/PhysRevLett.110.136802
http://dx.doi.org/10.1038/s41534-023-00798-2
http://dx.doi.org/ 10.1038/ncomms2412
http://dx.doi.org/ 10.1038/ncomms2412
http://dx.doi.org/10.1103/PhysRevB.97.045405
http://dx.doi.org/10.1103/PhysRevLett.123.240401
http://dx.doi.org/10.1103/PhysRevLett.123.240401
http://dx.doi.org/ 10.1103/PhysRevB.102.075448
http://dx.doi.org/ 10.1103/PhysRevB.102.075448
http://dx.doi.org/ 10.1038/s41598-022-26828-1
http://dx.doi.org/ 10.1038/s41598-022-26828-1
http://dx.doi.org/ 10.1103/PhysRevA.102.043717
http://dx.doi.org/ 10.1103/PhysRevA.102.043717
http://dx.doi.org/ 10.1021/acs.jpcb.1c00887
http://dx.doi.org/ 10.1021/acs.jpcb.1c00887
http://dx.doi.org/ 10.1038/s41598-018-28993-8


21

Ian Flader, Thomas W. Kenny, Xuezhong Wu, and Ash-
win A. Seshia, “Dynamic modulation of modal coupling
in microelectromechanical gyroscopic ring resonators,”
Nature Communications 10, 4980 (2019).

[25] Heribert Lorenz, Sigmund Kohler, Anton Parafilo,
Mikhail Kiselev, and Stefan Ludwig, “Classical analogue
to driven quantum bits based on macroscopic pendula,”
Scientific Reports 13, 18386 (2023).

[26] Lorenzo Bernazzani and Guido Burkard, “Fluctuating
parametric drive of coupled classical oscillators can sim-
ulate dissipative qubits,” Physical Review Research 6,
013284 (2024).

[27] Iacopo Carusotto, Andrew A. Houck, Alicia J. Kollár,
Pedram Roushan, David I. Schuster, and Jonathan Si-
mon, “Photonic materials in circuit quantum electrody-
namics,” Nature Physics 16, 268–279 (2020).

[28] Iacopo Carusotto and Cristiano Ciuti, “Quantum fluids
of light,” Rev. Mod. Phys. 85, 299–366 (2013).

[29] J. S. Huber, G. Rastelli, M. J. Seitner, J. Kölbl,
W. Belzig, M. I. Dykman, and E. M. Weig, “Spectral ev-
idence of squeezing of a weakly damped driven nanome-
chanical mode,” Phys. Rev. X 10, 021066 (2020).

[30] Shiqian Ding, Gleb Maslennikov, Roland Hablützel,
and Dzmitry Matsukevich, “Cross-Kerr nonlinearity for
phonon counting,” Phys. Rev. Lett. 119, 193602 (2017).

[31] T. Yamaji, S. Kagami, A. Yamaguchi, T. Satoh,
K. Koshino, H. Goto, Z. R. Lin, Y. Nakamura,
and T. Yamamoto, “Spectroscopic observation of the
crossover from a classical Duffing oscillator to a Kerr
parametric oscillator,” Phys. Rev. A 105, 023519 (2022).

[32] Patrick Winkel, Kiril Borisov, Lukas Grünhaupt, Dennis
Rieger, Martin Spiecker, Francesco Valenti, Alexey V.
Ustinov, Wolfgang Wernsdorfer, and Ioan M. Pop, “Im-
plementation of a transmon qubit using superconducting
granular aluminum,” Phys. Rev. X 10, 031032 (2020).

[33] Note that here multiphoton resonance refers to the fact
that absorbing n photons leads to the nth excited state
of the resonator. This is not the multiphoton Rabi reso-
nance, where n driving photons are absorbed to populate
the excited level of the qubit.

[34] Mark I. Dykman, Fluctuating Nonlinear Oscillators:
From Nanomechanics to Quantum Superconducting Cir-
cuits (Oxford University Press, 2012).

[35] Qi-Ming Chen, Michael Fischer, Yuki Nojiri, Michael
Renger, Edwar Xie, Matti Partanen, Stefan Pogorza-
lek, Kirill G. Fedorov, Achim Marx, Frank Deppe, and
Rudolf Gross, “Quantum behavior of the Duffing oscilla-
tor at the dissipative phase transition,” Nature Commu-
nications 14 (2023), 10.1038/s41467-023-38217-x.

[36] Guillaume Beaulieu, Fabrizio Minganti, Simone Frasca,
Vincenzo Savona, Simone Felicetti, Roberto Di Candia,
and Pasquale Scarlino, “Observation of first- and second-
order dissipative phase transitions in a two-photon driven
Kerr resonator,” (2023), 10.48550/ARXIV.2310.13636.

[37] M. Foss-Feig, P. Niroula, J. T. Young, M. Hafezi, A. V.
Gorshkov, R. M. Wilson, and M. F. Maghrebi, “Emer-
gent equilibrium in many-body optical bistability,” Phys-
ical Review A 95, 043826 (2017).

[38] Filippo Vicentini, Fabrizio Minganti, Riccardo Rota,
Giuliano Orso, and Cristiano Ciuti, “Critical slowing
down in driven-dissipative Bose-Hubbard lattices,” Phys.
Rev. A 97, 013853 (2018).

[39] Zejian Li, Ferdinand Claude, Thomas Boulier, Elisa-
beth Giacobino, Quentin Glorieux, Alberto Bramati,

and Cristiano Ciuti, “Dissipative phase transition with
driving-controlled spatial dimension and diffusive bound-
ary conditions,” Phys. Rev. Lett. 128, 093601 (2022).

[40] Filippo Ferrari, Luca Gravina, Debbie Eeltink, Pasquale
Scarlino, Vincenzo Savona, and Fabrizio Minganti,
“Steady-state quantum chaos in open quantum systems,”
(2023), 10.48550/ARXIV.2305.15479.

[41] Daniel Dahan, Geva Arwas, and Eytan Grosfeld, “Clas-
sical and quantum chaos in chirally-driven, dissipative
Bose-Hubbard systems,” npj Quantum Information 8
(2022), 10.1038/s41534-022-00518-2.

[42] Joachim Cohen, Alexandru Petrescu, Ross Shillito, and
Alexandre Blais, “Reminiscence of classical chaos in
driven transmons,” PRX Quantum 4, 020312 (2023).

[43] Nicholas A. Masluk, Ioan M. Pop, Archana Kamal,
Zlatko K. Minev, and Michel H. Devoret, “Microwave
Characterization of Josephson Junction Arrays: Imple-
menting a Low Loss Superinductance,” Physical Review
Letters 109, 137002 (2012).

[44] T. Weißl, B. Küng, E. Dumur, A. K. Feofanov,
I. Matei, C. Naud, O. Buisson, F. W. J. Hekking, and
W. Guichard, “Kerr coefficients of plasma resonances
in Josephson junction chains,” Physical Review B 92,
104508 (2015).

[45] Yu. Krupko, V. D. Nguyen, T. Weißl, É. Dumur, J. Puer-
tas, R. Dassonneville, C. Naud, F. W. J. Hekking, D. M.
Basko, O. Buisson, N. Roch, and W. Hasch-Guichard,
“Kerr nonlinearity in a superconducting Josephson meta-
material,” Physical Review B 98, 094516 (2018).

[46] Daniel A. Lidar, “Lecture notes on the the-
ory of open quantum systems,” (2019),
10.48550/ARXIV.1902.00967.

[47] The resonator exhibits deviation from the pure Kerr non-
linearity prediction due to non-negligible effects of higher
nonlinearities, e.g., terms of the form χ(5)(â†)3â3. We
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