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Abstract: We present a detailed mathematical study of the Monte Carlo replica method

as applied in the global fitting literature from the high-energy physics theory community.

For the first time, we provide a rigorous derivation of the parameter distributions im-

plied by the method, and show that, whilst they agree with Bayesian posteriors for linear

models, they disagree otherwise. We proceed to numerically quantify the disagreement

between the Monte Carlo replica method and the Bayesian method in the context of two

phenomenologically relevant scenarios: fits of the SMEFT Wilson coefficients, and fits of

PDFs (albeit in a toy scenario). In both scenarios, we find that uncertainty estimates of

the quantities of interest are discrepant between the two approaches when non-linearity is

relevant. Our findings motivate future investigation of Bayesian methodologies for global

PDF fits, especially in the context of simultaneous determination of PDFs and SMEFT

Wilson coefficients.
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1 Introduction

Obtaining reliable interval estimates for model parameters is one of the most fundamental

problems in statistics. The usual starting point is the observation of data and its modelling

with a parametric theory. The objective is then to estimate a region in parameter space

that has a statistical meaning. In textbook discussions, this is usually effected by obtaining

confidence regions (in frequentist statistics) or credible regions (in Bayesian statistics).

This paper studies an inference methodology which is often compared to the Bayesian

paradigm, namely the Monte Carlo (MC) replica method. This method has been deployed

in various fits of the Wilson coefficients in the Standard Model Effective Field Theory

(SMEFT) [1–5], and to fits of the parton distribution functions (PDFs) which parametrise

hadron structure [6–16] (and, indeed, in simultaneous extractions of PDFs and SMEFT

Wilson coefficients [17–22]).

The Monte Carlo replica method has a very intuitive basis, described in detail in

Sect. 2. Given an observation drawn from some known distribution (almost exclusively

a multivariate Gaussian in the high-energy physics literature), we can use it to simulate
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further data samples. Each of these samples is subsequently used to estimate the param-

eters of a theoretical model employed for describing the data. Through the collection of

estimates, one intends to propagate uncertainties from the data to the parameter space.

Despite this intuitive basis, it is important to note that - to the best of the authors’

knowledge - little has been said in the literature about the mathematical foundations of the

method, apart from the case of a linear model (see Ref. [23]). There are similarities between

the Monte Carlo replica method and the parametric bootstrap described in the mathematics

literature; however, Monte Carlo seems to be a singular case of the method corresponding

to an instance where a single initial observation is used to simulate the underlying dis-

tribution.1 The literature typically deals only with the limiting case where many initial

observations of the same quantity are used to simulate the underlying distribution; further

detail can be found in Ref. [24, 25].

On the other hand, there has been significant effort in the physics literature to numer-

ically benchmark the Monte Carlo replica method against other frameworks. For example,

in the context of PDF fitting, Ref. [26] compares the use of the Monte Carlo replica method

with other methods of PDF error determination in the context of a toy fit. Only two PDF

flavours are included, and they are fitted to a single deep inelastic scattering (DIS) dataset,

where the corresponding theory predictions are linear in the PDFs. The authors find per-

fect agreement between the Monte Carlo replica method and the other standard methods

of PDF error determination considered; however, as we shall explain in Section 2 and Sec-

tion 3, this is to be expected when using only DIS data, and does not necessarily generalise

to the inclusion of data from proton-proton collisions. Additionally, the benchmarking

exercise between the Monte Carlo replica method and the Hessian method for estimating

PDF uncertainties carried out in Ref. [27] suggests that there is good agreement between

these two approaches. Further benchmarking will be possible given the advent of new

Bayesian PDF fits, which have started appearing in the literature in recent years; see for

example Ref. [28], in which the authors present a novel parton density determination code

to analyse collider data within a Bayesian framework, and Ref. [29] in which Gaussian

processes for the solution of the PDF fitting inverse problem are discussed.

In contrast, in the case of benchmarking Monte Carlo versus Bayesian SMEFT fits,

significant tension was observed in Ref. [20]. Indeed, a careful discussion in App. E of this

work highlighted that the issue was methodological by providing a complete calculation

of the Monte Carlo ‘posterior distribution’ in a very simple toy case. To the authors’

knowledge, this is the first time in the literature that disagreement was explicitly shown

and explained between the two approaches.

This work aims to clarify the Monte Carlo replica method in much more generality, on

two fronts. Firstly, we provide the first rigorous mathematical derivation of the form of the

‘Monte Carlo posterior distribution’, and we show that it is typically inequivalent to the

posterior distribution that would have been inferred from a Bayesian method. Secondly,

we apply our results to further numerical benchmarks in the high-energy physics literature,

1We are grateful for a discussion with the statistician Alastair Young, an expert in bootstrap methods,

for clarifying this point.
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namely global fits of the SMEFT Wilson coefficients and, separately, of the PDFs of the

proton. In general, we find that interval estimates obtained from the Monte Carlo replica

method do not agree with those produced by Bayesian methods.2

The structure of the paper is as follows. In Sect. 2, we introduce the Monte Carlo

replica method and derive the ‘Monte Carlo posterior’ distribution for model parameters,

as compared to the parameter distributions that would be implied by a Bayesian method.

We proceed to give some toy examples of the comparison in analytically tractable cases,

including the important example of a linear model, where the Monte Carlo replica method

and Bayesian method coincide in a simple way. Subsequently, in Sect. 3, we compare the

Monte Carlo replica method with a Bayesian method in the context of two phenomeno-

logically relevant scenarios. We begin by discussing a top-sector fit of the SMEFT Wilson

coefficients, displaying significant disagreement between the Wilson coefficient distribu-

tions implied by the Monte Carlo replica method and a Bayesian method. We continue

by discussing fits of the PDFs of the proton using a simplified toy model for the PDFs

based on linear interpolation. We begin with a fit only to deep inelastic scattering data,

where the two inference methods coincide perfectly. However, we follow up with a dis-

cussion of a fit to hadronic-only (proton-proton) data, in which the PDFs enter theory

predictions quadratically; here, we find significant underestimation of PDF uncertainties

(at worst by around 90%) in the low-x region when the Monte Carlo replica method is used

as compared to a Bayesian method. Finally, we perform a fit using the complete DIS plus

hadronic dataset, still observing an underestimation of uncertainties (at worst by around

60%). Instead, good agreement is found in the mid to high-x region in all of the toy fits.

We summarise the results of this work in Sect. 4.

2 The mathematics of the Monte Carlo replica method

In this section, the main mathematical results of our work are presented, accompanied by

toy examples. The take-home message is that, in general, the Monte Carlo replica method

does not reproduce Bayesian credible regions. In particular, it is quite difficult to assess

a priori whether the outcome of the fit is affected by pathological behaviours or whether

it approximates the Bayesian posterior distribution. The notable exception to this is the

case of linear theories, in which the posterior distribution is Gaussian and well reproduced

by the Monte Carlo methodology. Given this consideration, should the reader choose, they

may proceed to Section 3, where the application of these results to significant examples in

high-energy physics is presented, bypassing the technical details outlined here.

We begin in Sect. 2.1 by reminding the reader of a Bayesian framework for statistical

inference, the paradigm with which the Monte Carlo replica method is most often compared,

before introducing the Monte Carlo replica method itself. We explain how both methods

are applied to obtain uncertainty estimates on theory parameters in the case that data are

distributed according to a multivariate normal distribution; this is the case to which the

2This has one notable exception, as we shall show in Sect. 2, which is the case of linear models; it can

be shown that Monte Carlo and Bayesian fits of a linear model coincide, provided that a sufficiently wide

uniform prior is used for the Bayesian fit.
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Monte Carlo replica method is almost universally applied within the high-energy physics

literature. In Sect. 2.2, we proceed to give a detailed mathematical calculation of the

parameter distributions implied by the Monte Carlo replica method, contrasting them

with distributions obtained from the Bayesian method. In Sect. 2.3, we give a selection of

toy examples, both analytic and numerical, displaying the behaviour in a range of settings.

2.1 Bayesian vs Monte Carlo inference

In traditional statistical inference, there are two standard paradigms for constructing uncer-

tainty estimates on parameters, the Bayesian and frequentist frameworks. The Bayesian

approach assumes that the parameters c of interest are themselves random variables; a

Bayesian 100α% credible region is then a region of parameter space within which the pa-

rameter has a probability α of lying, given some observed data. On the other hand, the

frequentist approach assumes that the parameters c are fixed; a frequentist 100α% confi-

dence region is a region constructed from the observed data in such a manner to ensure that

if the data and confidence region were regenerated 100 times, then 100α of the confidence

intervals would cover the true parameter value. These methods sound extremely similar

at face value, but they are not equivalent in general; agreement is only guaranteed in the

large sample limit by the Bernstein-von Mises theorem [30].

The Bayesian approach is often used in global fits in the high-energy physics theory

literature since it allows us to efficiently constrain a high-dimensional parameter space,

while making use of the pre-processed information provided by experiments. This typi-

cally consists of a single ‘measurement’ of the data, usually a central value of a measured

cross-section and some uncertainty estimate (or covariance matrix in the multi-dimensional

case), see for example Refs. [1–3, 31–33]. Further, the Monte Carlo replica method itself is

most frequently compared with the Bayesian paradigm; see for instance Refs. [1, 4, 16, 23],

and particularly Ref. [26], where the Monte Carlo replica method is described as a ‘frequen-

tist approach to obtaining a Bayesian posterior’. Therefore, in this work we shall choose

to benchmark the Monte Carlo replica method exclusively against the Bayesian practice.

Bayesian method. In order to fix notation for the discussion of the Monte Carlo replica

method in the sequel, let us describe the Bayesian approach in more detail for a specific

setup. Let us suppose that experimental data comprising Ndat datapoints is distributed

according to a multivariate normal distribution:3

d ∼ N (t(c),Σ), (2.1)

where Σ is an Ndat × Ndat experimental covariance matrix (of which we assume perfect

knowledge), and t : RNparam → RNdat is a smooth theory prediction function, taking as

3In principle, other distributions could be considered, however, in the high-energy physics literature the

multivariate normal is often used when applying the Monte Carlo replica method. Further, the Monte

Carlo replica method requires that we can efficiently sample from the distribution from which the data is

drawn, so a normal is a natural candidate with which to begin working. Although, it is worth noting that in

NNPDF and SIMUnet a truncated multivariate normal is technically used, due to rejection of non-positive

pseudodata [22, 34].
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argument a vector ofNparam unknown theory parameters c ∈ RNparam . Given an observation

d0 of the experimental data, our aim is to recover a reliable estimate of the region in which

c lies.

Since in Bayesian statistics, c itself is assumed to be a random variable, it has some

associated prior probability density p(c) reflecting our knowledge of c prior to the experi-

mental observation. Bayes’ theorem then tells us that after the observation, the probability

density of c given d0 is:

p(c|d0) ∝ p(c) · p(d0|c) = p(c) exp

(
−1

2
(d0 − t(c))TΣ−1(d0 − t(c))

)
, (2.2)

where we have inserted the probability density for a multivariate Gaussian p(d0|c) ac-

cording to Eq. (2.1). For convenience, the argument of the exponential in the posterior is

usually written in terms of the χ2-statistic evaluated on the data,

χ2
d0
(c) := (d0 − t(c))TΣ−1(d0 − t(c)). (2.3)

The Bayesian posterior distribution is used to construct uncertainty estimates for the pa-

rameter c; in particular, a 100α% credible region is defined to be a region R such that:

N

∫
R

p(c) exp

(
−1

2
χ2
d0
(c)

)
= α, (2.4)

where N is the appropriate normalisation constant in the proportionality relation Eq. (2.2).

Such regions can be constructed efficiently using numerical algorithms, including Markov

Chain Monte Carlo (MCMC) methods such as Nested Sampling (NS) [35–40].

The Monte Carlo replica method. In the Monte Carlo replica method, we begin by

introducing the pseudodata distribution dp ∼ N (d0,Σ), which is intended to approximate

the actual distribution from which the measurement d0 was drawn. We then define the cor-

responding ‘best-fit parameter ’ values to be those which minimise the χ2-statistic evaluated

on the pseudodata:4

cp(dp) := argmin
c

χ2
dp
(c) = argmin

c
(dp − t(c))TΣ−1(dp − t(c)), (2.5)

essentially defining cp(dp) as a function of a random variable dp. The distribution of the

Monte Carlo replicas cp(dp) is now usually interpreted in the same way as the Bayesian

posterior [1, 12, 26]; we shall call this distribution the Monte Carlo posterior to make the

comparison clear.

It is worth noting that, in practice, the determination of the minimiser is performed

numerically; in particular, this means that the values obtained for cp(dp) may depend on

the numerical setup (e.g. choice of optimiser, initialisation, learning rate). This is also

true for a Bayesian analysis when numerical methods are used. Ideally, we should strive

4This equation does not necessarily hold exactly in practice; often, numerical implementations of the

Monte Carlo replica method also use a random training-validation split when finding the minimum, together

with a cross-validation stopping. We further discuss this in App. C.
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to reduce this ‘methodological uncertainty’ as much as possible, so that the uncertainty on

the parameters is dominated by the information coming from the data; justification that

we have indeed achieved this in our study is presented in App. B.

In the following section, we shall give a detailed calculation of the Monte Carlo poste-

rior, and compare it to the Bayesian posterior.

2.2 Calculation of the Monte Carlo posterior

Naturally, it is important to ask whether the distribution of the Monte Carlo replicas

cp(dp) presented in Eq. (2.5) is comparable to the distribution obtained via the Bayesian

approach in Eq. (2.2), since these methods are so often treated equivalently. In this section,

we present a detailed calculation of the distribution of cp(dp), using basic methods from

probability theory, in order to facilitate this comparison.

We begin by noting that cp(dp) is a function of the random variable dp, which ensures

that its distribution is given by the general formula:

p(c) ∝
∫

dddp δ(c− cp(dp)) exp

(
−1

2
(dp − d0)

TΣ−1(dp − d0)

)
, (2.6)

where an integral without limits denotes an integral over the entire space (in this case,

RNdat). Importantly, this formula assumes that cp(dp) is a single-valued function of the

pseudodata dp; that is, there are not multiple equivalent minima of the χ2-statistic given

in Eq. (2.5). This is not a deficiency of the mathematical approach; in the case that cp(dp)

is only discretely multi-valued, the posterior is simply upgraded to:

p(c) ∝
∫

dddp

Nmulti(dp)∑
i=1

δ
(
c− c(i)p (dp)

)
exp

(
−1

2
(dp − d0)

TΣ−1(dp − d0)

)
, (2.7)

where c
(i)
p (dp) is the ith branch of cp(dp) arising from the pseudodata dp. In particular,

we will need this case in one of the toy examples in the sequel. In the more serious case

that cp(dp) has some continuum of multiple values for a given piece of pseudodata, we say

that the problem contains a flat direction. We discuss this in Appendix B. Therefore, for

simplicity, we shall now proceed to assume that Nbranch(dp) ≡ 1, safe in the knowledge

that generalisation is possible. We now manipulate the integral Eq. (2.6) to present it in a

form where it can be compared to the Bayesian posterior.

Coordinates on pseudodata space. We begin by introducing a new system of coordi-

nates on the space of pseudodata, allowing us to reduce the integral to a convenient form.

Currently, the pseudodata space is parametrised directly in terms of dp, but a natural

alternative parametrisation arises for a pseudodata point dp in terms of its corresponding

best-fit parameter values cp, and a vector λλλ describing the displacement of dp from the

theory prediction of the best-fit parameter values, t(cp). These coordinates (cp,λλλ) will

allow us (in the generic case) to ‘absorb’ the delta functions in Eq. (2.6).

To construct such coordinates, we begin by noting that the function cp(dp) must satisfy

the system of equations:

0 =

(
∂t

∂c

)T

(cp(dp))Σ
−1(dp − t(cp(dp))), (2.8)
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d1

d2

λ
dp

t(cp)

Figure 2.1. A visualisation of the construction of ‘natural’ coordinates on pseudodata space, in

the case where Ndat = 2 and Nparam = 1, and where Σ = σ2I is an uncorrelated covariance matrix

(so that ‘distance’ on pseudodata space coincides with Euclidean distance). In this case, the theory

t : R2 → R may be viewed as constructing a parametric curve t(c) in the plane, shown in blue.

The ‘natural’ coordinates on the point dp in pseudodata space are constructed in terms of the

corresponding best-fit parameter values cp, and the displacement w = M(cp)λ from t(cp) to dp,

where in this case λ ∈ Λ(cp) ⊆ R; see the main text for details. The set Λ(cp) is indicated in

the figure by the green solid line. It consists of all points whose closest point on the theory curve

t : R → R2 is t(cp) (since Σ = σ2I is Euclidean in this figure; in the general case, we mean ‘closest’

with respect to the distance measure induced from the inner product induced by Σ).

since cp(dp) is a minimiser of the χ2-statistic evaluated on pseudodata, and hence is a

stationary point of the χ2-statistic evaluated on pseudodata. In particular, this implies the

relation:

dp = t(cp(dp)) + Σw, where w ∈ Ker

((
∂t

∂c

)T

(cp(dp))

)
. (2.9)

That is, a necessary condition on pseudodata to lead to the best-fit parameter values cp is

that it takes the form dp = t(cp)+Σw, for somew in the above kernel. Importantly though,

it is not a sufficient condition; we have only shown that pseudodata dp = t(cp)+Σw for a

given w leads to cp being a stationary point of the χ2-statistic evaluated on dp - it could be

a maximum or a saddle. Thus, in order to guarantee that pseudodata of the form Eq. (2.9)

leads to cp(dp) as a minimum, we must further restrict to an appropriate range of w.

Now, rank-nullity implies that the dimension of the kernel is at least Ndat −Nparam,

dim

(
Ker

((
∂t

∂c

)T

(cp)

))
≥ Ndat −Nparam. (2.10)

Let us write the dimension of the kernel as N⊥(cp) for short, denoting directions ‘orthogo-

nal’ to the theory surface. Introducing a basisw1, ...,wN⊥(cp) for the kernel, we can package
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the basis as a single matrix:

M(cp) :=
(
w1 w2 · · · wN⊥(cp)

)
, (2.11)

which allows us to express dp in the form:

dp = t(cp(dp)) + ΣM(cp(dp))λλλ, (2.12)

where λλλ ∈ RN⊥(cp(dp)) is a set of coordinates for the ‘orthogonal’ directions to the theory

surface near cp(dp). Recall, λλλ must be additionally restricted to an allowed range which

results in this pseudodata giving cp(dp) as a minimiser of the χ2-statistic; let us write this

range as Λ(cp(dp)).

We would like to state that the ‘natural’ coordinates on pseudodata space are now

(cp,λλλ) indicating where on the theory surface we are (the cp coordinate), and then how far

away we are in an orthogonal direction (the λλλ coordinate). An example of the construction

of these coordinates is shown in Fig. 2.1. However, since (∂t/∂c)T can have less than full

rank, the number of these coordinates can exceed Ndat; near points where this Jacobian

matrix has less than full rank, some of the cp coordinates are redundant (see Fig. 2.2 for an

example). Therefore, near any given c ∈ RNparam where the Jacobian matrix (∂t/∂c)T (c)

has rank N∥(c), we shall assume that we can introduce some smooth parametrisation:5

f : RN∥(c) → RNparam (2.13)

which removes this redundance, allowing us to define a bijective correspondence between

pseudodata dp and coordinates (u,λλλ) (at least locally in u):

dp = t(f(u)) + ΣM(f(u))λλλ. (2.14)

In the case that N∥(c) = Nparam, we are in the happy case where the Jacobian matrix has

full rank, and we can simply take f(u) = u, essentially using the coordinates (cp,λλλ) as

initially desired. Otherwise, this more complicated construction is needed.

Change of coordinates in Eq. (2.6). Let us now consider changing coordinates in

Eq. (2.6) near c to the ‘natural’ system (u,λλλ) that we defined above. The Jacobian of the

transformation dp 7→ (u,λλλ) is given by:∣∣∣∣det(∂t

∂c
(f(u))

∂f

∂u
+

∂ (ΣMλλλ)

∂c
(f(u))

∂f

∂u

∣∣∣∣ΣM(f(u))

)∣∣∣∣ , (2.15)

and hence the integral Eq. (2.6) reduces to:∫
dN∥(c)u δ (c− f(u))

∫
Λ(c)

dN⊥(c)λλλ

∣∣∣∣det(∂t

∂c
(f(u))

∂f

∂u
+

∂ (ΣMλλλ)

∂c
(f(u))

∂f

∂u

∣∣∣∣ΣM(f(u))

)∣∣∣∣
· exp

(
−1

2
(t(c) + ΣM(c)λλλ− d0)

TΣ−1(t(c) + ΣM(c)λλλ− d0)

)
. (2.16)

5Whilst this assumption may seem reasonable, there exist examples of exceptionally pathological multi-

variable functions which fail to have locally constant rank except at isolated points. The authors consider

these unlikely to occur in a physical problem.
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d1

d2

Figure 2.2. An example of a point on a theory surface t(c) = (c2, c3)T (with Euclidean covariance

Σ = σ2I) whose derivative does not have full rank at c = 0. In this case, the ‘natural’ coordinates

(c, λ) constructed on the remainder of this space do not apply at this point; instead, the required

coordinates are (λ1, λ2) with c neglected (the ‘local parametrisation’ function in this case is simply

a constant, f : {∅} → R given by f(∅) = 0). The space Λ(0) is a two-dimensional subset of the left

half-plane, indicated in green in the figure. At c = 0, there will be a delta function singularity in

the Monte Carlo posterior, which is not present in the Bayesian posterior.

Expanding the exponent, this can be manipulated into the form:

exp

(
−1

2
χ2
d0
(c)

)

·
∫

dN∥(c)u δ (c− f(u))

∫
Λ(c)

dN⊥(c)λλλ

∣∣∣∣det(∂t

∂c
(f(u))

∂f

∂u
+

∂ (ΣMλλλ)

∂c
(f(u))

∂f

∂u

∣∣∣∣ΣM(f(u))

)∣∣∣∣
· exp

(
−1

2
λλλTM(c)TΣM(c)λλλ+ λλλTM(c)T (d0 − t(c))

)
, (2.17)

which allows comparison with the Bayesian posterior in Eq. (2.2). We see that the ap-

proaches are in general very different: the Bayesian posterior of Eq. (2.2) and the Monte

Carlo posterior above are equivalent if and only if the prior in the Bayesian approach

is chosen according to the complicated c-dependent multiplicative factor featuring in the

above equation.

In the case that (∂t/∂c)T has full rank at c, the general formula given in Eq. (2.17)

significantly simplifies. We can take f(u) = u, andN∥(c) = Nparam, N⊥(c) = Ndat−Nparam,
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which allows us to absorb all of the delta functions in Eq. (2.17), reducing it to:

exp

(
−1

2
χ2
d0
(c)

) ∫
Λ(c)

dNdat−Nparamλλλ

∣∣∣∣det(∂t

∂c
+

∂ (ΣMλλλ)

∂c

∣∣∣∣ΣM(c)

)∣∣∣∣
· exp

(
−1

2
λλλTM(c)TΣM(c)λλλ+ λλλTM(c)T (d0 − t(c))

)
. (2.18)

Summary. We have shown that, in the general multivariable case for a general theory

prediction, the Bayesian posterior and the Monte Carlo posterior coincide only for a very

judicious choice of Bayesian prior (which seems unlikely to be motivated). Choosing such

a prior, the resulting coincident posteriors have the following features:

• At points c where the Jacobian matrix (∂t/∂c)T has full-rank, the posterior is a

‘scaled’ version of the Bayesian posterior obtained under the assumption of a suffi-

ciently wide uniform prior. Note that the overall scale factor is c-dependent and may

lead to shape differences. The integral factor that multiplies the Bayesian posterior

depends on the size of the region Λ(c) of the pseudodata which gives rise to the

best-fit value c in the Monte Carlo approach.

• At points c where the Jacobian matrix (∂t/∂c)T does not have full-rank, the posterior

has delta function singularities. The strength of these singularities again corresponds

to the size of the region Λ(c) of the pseudodata which gives rise to the best-fit value

c in the Monte Carlo approach.

In the subsequent section, we shall exhibit toy examples showcasing these phenomena,

before extending to examples in the high-energy physics literature in Sect. 3.

2.3 Toy examples: linear, quadratic and circular theories

In this section, we present a selection of toy examples, demonstrating the ideas of the

previous section more concretely. We give three examples: (i) a linear theory, where the

Bayesian and Monte Carlo posteriors coincide in a simple way (they are coincident provided

the Bayesian prior is a sufficiently wide uniform distribution); (ii) a quadratic theory of

one datapoint, which exhibits the delta function behaviour discussed above; (iii) a circular

theory, which does not exhibit the delta function behaviour but nonetheless demonstrates

an unusual scaling behaviour because of the integral factors in Eq. (2.18).

A further analytic example is given in App. A, namely a calculation of the Monte Carlo

posterior in the case of a purely quadratic theory of multiple datapoints.

Example 1 - Linear theory. The most basic example is the case of a linear theory,

t(c) = t0 + tlinc, where t0 ∈ RNdat and tlin is an Ndat × Nparam matrix. In this case, the

relevant Jacobian matrix is: (
∂t

∂c

)T

= tTlin, (2.19)

which is independent of c. In particular, the matrix M(c) may be constructed indepen-

dently of c, obeying the property M(c)T tlin = 0 by definition. Assuming that tTlin is of
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full-rank (else we in fact get a flat direction), we may use Eq. (2.18) to calculate the Monte

Carlo posterior:

exp

(
−1

2
χ2
d0
(c)

) ∫
Λ(c)

dNdat−Nparamλλλ

∣∣∣∣det(tlin∣∣∣∣ΣM)∣∣∣∣ exp(−1

2
λλλTMTΣMλλλ+ λλλTMT (d0 − t0)

)
.

(2.20)

Observe that the c-dependence has entirely dropped out from the Monte Carlo ‘scale factor’,

except for in the integration range Λ(c). To compute this range, we must determine for

which values λλλ the pseudodata t(c)+ΣMλλλ leads to c minimising the χ2-statistic evaluated

on this pseudodata. The χ2-statistic evaluated on this pseudodata is given by:

χ2(c′) =
(
t(c′)− t(c)− ΣMλλλ

)T
Σ−1

(
t(c′)− t(c)− ΣMλλλ

)
=
(
tlin(c

′ − c)− ΣMλλλ
)T

Σ−1
(
tlin(c

′ − c)− ΣMλλλ
)

(2.21)

= (c′ − c)T tTlinΣ
−1tlin(c

′ − c) + λλλTMTΣMλλλ.

This expression is minimised by c′ such that tlin(c
′ − c) = 0, since Σ−1 is positive def-

inite. But assuming that tlin is full-rank, this has a unique solution c′ = c. Thus

Λ(c) = RNdat−Nparam for all values of c, indicating that the Monte Carlo ‘scale factor’

is c-independent.

It follows that the Monte Carlo posterior for this linear theory is proportional to:

exp

(
−1

2
χ2
d0
(c)

)
, (2.22)

which is simply the Bayesian posterior obtained from a sufficiently wide uniform prior. Thus

we have shown: for a linear theory, the Bayesian and Monte Carlo approaches coincide

(provided that the Bayesian approach uses a sufficiently wide uniform prior). This result

will be very important in the phenomenological study of PDFs in Sect. 3.2.

Example 2 - Quadratic theory, one datapoint. Consider t(c) = t0 + tlinc+ tquadc
2,

a quadratic theory in one parameter, with tquad > 0. In this case, the Jacobian matrix is:

∂t

∂c
= tlin + 2ctquad, (2.23)

which has full rank unless c = −tlin/2tquad. Thus for all c ̸= −tlin/2tquad, we can choose

M(c) empty, which seems to give the Monte Carlo posterior for c ̸= −tlin/2tquad as:∣∣∣∣det(∂t

∂c

)∣∣∣∣ exp(−1

2
χ2
d0(c)

)
= |2ctquad + tlin| exp

(
−1

2
χ2
d0(c)

)
. (2.24)

However, it is important to observe that in this case, the function cp(dp) is in fact multi-

valued; we can see this by writing the theory prediction as:

t(c) = tquad

(
c+

tlin
2tquad

)2

+ t0 −
t2lin

4tquad
. (2.25)
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This shows that there is a symmetry in the parameter c about c = −tlin/2tquad; two

equivalent values of c give the same prediction provided that c ̸= −tlin/2tquad. Thus

we must additionally include a factor of 2 in the Monte Carlo posterior accounting for the

multi-valuedness; this follows from the more general form of the posterior given in Eq. (2.7).

In the remaining case, c = −tlin/2tquad, we take M(−tlin/2tquad) = 1, and parametrise

the lower rank surface with f : {∅} → R by f(∅) = −tlin/2tquad. Then, the Monte Carlo

posterior about c = −tlin/2tquad takes the form:

exp

(
−1

2
χ2
d0(c)

)
δ

(
c+

tlin
2tquad

) ∫
Λ(−tlin/2tquad)

dλ σ2 exp

(
−1

2
σ2λ2 + λ(d0 − t(c))

)
,

(2.26)

where σ2 is the one-by-one covariance matrix. The set Λ(−tlin/2tquad) consists of all λ

such that the pseudodata t(−tlin/2tquad) + σ2λ leads to −tlin/2tquad as a minimiser of the

χ2-statistic on this pseudodata. We note that the χ2-statistic on this pseudodata is given

by:

χ2(c′) =
1

σ2

(
t(c′)− t

(
− tlin
tquad

)
− σ2λ

)2

(2.27)

=
1

σ2

(
tquad

(
c′ +

tlin
2tquad

)2

− σ2λ

)2

, (2.28)

using the form of the theory prediction given in Eq. (2.25). If λ > 0, then we can solve

the quadratic in the bracket to obtain a value of c′ different from −tlin/2tquad which gives

a χ2-statistic of zero to the pseudodata. Otherwise, if λ ≤ 0, the minimiser is given by

c′ = −tlin/2tquad. Hence we see that Λ(−tlin/2tquad) = (−∞, 0].

Putting everything together, it follows that the complete Monte Carlo posterior is

given by:

exp

(
−1

2
χ2
d0(c)

)δ(c+ tlin
2tquad

) 0∫
−∞

dλ σ2 exp

(
−1

2
σ2λ2 + λ(d0 − t(c))

)
+ 2|2ctquad + tlin|

 ,

(2.29)

which (through an appropriate substitution in the integral) matches the formula given in

Appendix E of Ref. [20], where a very brief discussion of the statistical validity of the

Monte Carlo method was first presented.6

Importantly, this demonstrates a singular behaviour of the Monte Carlo posterior at

the point c = −tlin/2tquad as compared to the Bayesian posterior. Indeed, this can result in

a significant bias in the central value and a significant underestimation of the uncertainties

for the parameter c, since the posterior is highly concentrated around c = −tlin/2tquad.

This phenomenon is showcased in the phenomenologically relevant cases of the SMEFT in

Sect. 3.1 and of PDFs in Sect. 3.2.
6It should be noted that Eq. (E.11) in the reference Ref. [20] actually contains an erratum, namely

the division by |2ctquad + tlin| in the second term of the equation should actually be a multiplication, as

presented here.
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Example 3 - Circular theory. Consider a theory t : R → R2 given by:

t(c) = t0

(
cos(c)

sin(c)

)
, (2.30)

with Euclidean covariance matrix Σ = σ2I. In this case, the relevant Jacobian matrix is:

∂t

∂c
= t0

(
− sin(c)

cos(c)

)
, (2.31)

which is always of full-rank. We see that we may take M(c) = t(c), and hence the Monte

Carlo posterior is given for all c by:

exp

(
−1

2
χ2
d0
(c)

) ∫
Λ(c)

dλ t20σ
2(1 + λσ2) exp

(
−1

2
t20σ

2λ2 + λ
(
t(c) · d0 − t20

))
. (2.32)

To determine the integration range Λ(c), we can use some geometry. Since we are working

with a Euclidean covariance matrix, Σ = σ2I, the Monte Carlo best-fit parameter according

to a particular pseudodata value dp is simply the closest point on the theory surface to

the pseudodata value dp. Now, the closest point on the theory surface to the pseudodata

t(c) + λσ2t(c) is c (modulo 2π) for λ ∈ [−1/σ2,∞), and c+ π (modulo 2π) otherwise; see

Fig. 2.3 for a more detailed description. In particular, this implies that Λ(c) = [−1/σ2,∞).

This allows us to directly calculate the Monte Carlo posterior, via a change of variables:

u = t0σλ− (t(c) · d0 − t20)

t0σ
. (2.33)

This yields the final Monte Carlo posterior as:

exp

(
−1

2
χ2
d0
(c)

)
exp

(
(t(c) · d0 − t20)

2

2t20σ
2

) ∞∫
− t(c)·d0

t0σ

du

(
σ2u+

σt(c) · d0

t0

)
exp

(
−1

2
u2
)

∝ exp

(
−1

2
χ2
d0
(c)

)
exp

(
(t(c) · d0 − t20)

2

2t20σ
2

)(
exp

(
−(t(c) · d0)

2

2t20σ
2

)
+

t(c) · d0√
2t0σ

√
πerfc

(
−t(c) · d0√

2t0σ

))
,

(2.34)

where erfc is the complementary error function, defined by:

erfc(z) =
2√
π

∞∫
z

dt e−t2 . (2.35)

This formula can be simplified by absorbing the ‘Bayesian’ part of the posterior, yielding

a Monte Carlo posterior which is proportional to the compact form:

1 +
t(c) · d0√

2t0σ

√
π exp

(
(t(c) · d0)

2

2t20σ
2

)
erfc

(
−t(c) · d0√

2t0σ

)
. (2.36)
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d1
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− 1
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(
−∞,− 1
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)

t(cp)

Figure 2.3. A depiction of the circular theory described in Example 3. The dashed grey line

indicates the possible values of dp described by the range of λ shown. Pseudodata of the form

dp = t(cp)+λσ2t(cp) = (1+λσ2)t(cp) has best-fit parameter value cp if and only if λ ∈ [−1/σ2,∞),

the green portion of the dashed line indicated in the figure. On the other hand, pseudodata of this

form has best-fit parameter value cp + π otherwise.

Note that this formula for the Monte Carlo posterior does not contain any singular

behaviour; however, it still only agrees with the Bayesian approach if an extremely specific,

unmotivated prior is chosen. If instead we choose a sufficiently wide uniform prior for the

Bayesian method, we can readily compare the two posteriors through some plots to exhibit

the behaviour. In Fig. 2.4 we show a comparison of the two posteriors in two cases: (i) when

|d0| ≫ t0; (ii) when |d0| ≪ t0. In particular, we see that the Monte Carlo approach can

both underestimate the parameter uncertainty that the Bayesian approach would imply,

and overestimate this uncertainty. This is important, because it is not immediately obvious

from the formula Eq. (2.18) that both possibilities can occur.

Further, this motivates the phenomenological study in the sequel; we emphasise the

general point that Eq. (2.18) is sufficiently complicated that the authors do not have a full

understanding of its analytic behaviour. Therefore, in realistic scenarios, our strategy in

benchmarking the agreement of the Bayesian and Monte Carlo posteriors is to compute

both and check.

3 Applications in high energy physics

In this section, we apply the mathematical discussion from Section 2 to some phenomeno-

logical examples in high-energy physics. In particular, we contrast the Bayesian and Monte

Carlo posteriors in the case of fits of SMEFT Wilson coefficients in Sect. 3.1, before per-
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Figure 2.4. A comparison of the Monte Carlo and Bayesian posterior distributions for the circular

theory described in Example 3. In the first panel, we show the distributions when |d0| ≫ t0 (in

particular, with d0 = (2, 0), t0 = 0.5 and σ = 1); in this case, the Monte Carlo posterior is much

more peaked compared to the Bayesian posterior. On the other hand, in the second panel we show

the distributions when |d0| ≪ t0 (in particular, with d0 = (2, 0), t0 = 8 and σ = 1); in this case,

the opposite behaviour is observed.

forming the same exercise in the context of uncertainty estimation for the PDFs of the

proton in Sect. 3.2.

In summary, in Sect. 3.1 we show that current global SMEFT fits cannot reliably

make use of the Monte Carlo replica method. We find that uncertainties on SMEFT

Wilson coefficients produced by the Monte Carlo replica method are discrepant from those

estimated by a Bayesian method. Similarly, in Sect. 3.2 we show that, in a heavily simplified

model parametrisation, global PDF fits also suffer from the same issue. We demonstrate

that when data from proton-proton collisions are included, the Monte Carlo replica method

applied to our toy model leads to significantly smaller uncertainty estimates for the low-x

PDFs, as compared to a Bayesian approach.

3.1 SMEFT fits

The Standard Model Effective Field Theory (SMEFT) treats the SM as a low-energy effec-

tive limit of an ultraviolet theory. As such, it extends the SM Lagrangian by a series of

non-renormalisable operators built from the SM fields and respecting the SM symmetries:

LSMEFT = LSM +

∞∑
d=5

Nd∑
i=1

c
(i)
d O(i)

d

Λd−4
, (3.1)

where Λ is some characteristic energy scale of New Physics (i.e. the scale at which we expect

the SM to break down, becoming unreliable as an effective theory), and the sum over d is

a sum over the dimension of the operators. At each dimension d, there are Nd independent

operators, O(i)
d , indexed by i = 1, ..., Nd, with corresponding couplings c

(i)
d . The couplings

c
(i)
d are called Wilson coefficients, and parametrise deviations from the SM. See Ref. [41]

for a review. At d = 5, neutrino measurements place strong constraints on c
(i)
5 ; however,
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global fits of the dimension six operators have become a topic of interest in both theoretical

and experimental literature in recent years, see for example Refs. [1–5, 20, 31, 42–57].

Cross-section predictions from the dimension-six SMEFT generically take the form:

t(c) = tSM + tlinc+ tquad(c⊗ c), (3.2)

where tSM is a Ndat × 1 vector of SM predictions, tlin is an Ndat × Nop matrix of linear

SMEFT predictions (with Nop the number of SMEFT operators in the fit), and tquad is an

Ndat ×N2
op matrix of quadratic SMEFT predictions. The use of the Kronecker product ⊗

of two vectors allows us to express the quadratic predictions in a fully vectorial form.

Importantly, this is a non-linear theory, and as we saw in Example 2 of Sect. 2.3 this

can lead to discrepancies between the Monte Carlo posterior and the Bayesian posterior

(unless a specific highly non-trivial prior is chosen). The quadratic behaviour of the SMEFT

theory predictions additionally implies that there may be delta function singularities as we

saw in Example 2 of Sect. 2.3. We show that this is likely to be the case in the global fit

carried out below.

In the remainder of this section, we will compare the Bayesian and Monte Carlo poste-

rior distributions of the SMEFT Wilson coefficients constrained specifically by top sector

observables. A comparison between the Bayesian and Monte Carlo posteriors was previ-

ously discussed in Appendix E of Ref. [20], for the simple case of one Wilson coefficient

constrained by a single differential measurement. There it was found that the choice of

methodology led to a marked difference in the posterior obtained: the Bayesian posterior

was significantly wider than the Monte Carlo posterior, which exhibited the ‘spiked’ be-

haviour induced by the presence of a delta function as discussed in Sec. 2.2. In this section,

we assess whether this discrepancy remains at the level of a global fit.

To do so, we perform an analysis of the 175 measurements used in the simultaneous

PDF and SMEFT fit of Ref. [20], encompassing tt̄, tt̄+X, single top, single top +X, tt̄tt̄,

tt̄bb̄ and top decay observables. These observables will be used to determine the posterior

distributions of 25 Wilson coefficients of the dimension-6 SMEFT, the notation for which

can be found in Table B.1 of [20]. Datapoints and theory predictions are taken directly

from Ref. [20], and we include the quadratic effect of the dimension-6 coefficients on our

SMEFT theory predictions. The SMEFiT code [1] is used to compare the Nested Sampling

and Monte Carlo replica methodologies due to the availability of both methodologies in

the public code. Note that the SMEFiT collaboration is aware of the limitations of the

Monte Carlo replica method and has now deprecated the feature, stressing that it can be

reliably used only for linear fits.

Fig. 3.1 shows the marginalised credible intervals at 68% and 95% on the SMEFT

coefficients, resulting from the Nested Sampling and Monte Carlo replica methodologies.

Firstly, we observe that the discrepancy between the methodologies, as observed in the 1-

parameter fit of Ref. [20], remains at the level of the global fit. In a global fit of 25 Wilson

coefficients to all available top datasets, visible discrepancies between the two approaches

are found. In many of the four-fermion operators, the Monte Carlo replica method leads to

a systematic shift downwards from the SM, for example c8ut and c8,3qq , while the coefficients

ctG and c1qt are similarly shifted upwards from the SM. In some cases the constraints found
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by the Monte Carlo replica method are significantly wider than those obtained by Nested

Sampling, for example c8qd and c11qq , while ctZ is found to be very well constrained by the

Monte Carlo replica method compared to Nested Sampling.
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Figure 3.1. Marginalised constraints on the top sector of the SMEFT, comparing the Monte Carlo

replica method and Nested Sampling.

The Bayesian and Monte Carlo posteriors, some of which are shown in Fig. 3.2, illumi-

nate the source of the discrepancies found above. We observe that the narrow constraint on

ctZ obtained from the Monte Carlo replica method results from a spiked distribution, which

showcases the delta function behaviour discussed in Sect. 2.2. Similarly spiked behaviour

is observed in the posterior distributions of the four-fermion operators, in particular c1,1qq

and c8qd, while the posterior distributions of c1qt and c8ut are found to be highly skewed and

non-Gaussian relative to the Bayesian posteriors. Finally, we observe that for ctG, both

methodologies obtain Gaussian-like posterior distributions of similar widths; however the

Monte Carlo replica method shifts the distribution in the positive direction, leading to a

stronger pull from the SM than that obtained with Nested Sampling.

3.2 PDF fits

The parton distributions of the proton are essential ingredients in collider predictions when-

ever there are protons in the initial state. Roughly speaking, the PDFs represent the prob-

ability densities in x for the various constituents of the proton to participate in a collision,

whilst carrying a fraction x of the parent proton’s momentum; the participating constituent

then goes on to participate in a ‘hard reaction’ with other particle species in the collision.

In more detail, PDFs take the functional form fa(x,Q
2) where a denotes the flavour of

the constituent, x denotes the momentum fraction, and Q2 denotes a characteristic scale

for the process, usually set to the energy of some particles in the collision.7 Predictions for

the cross-section of a given collision are usually estimated in terms of a discretised version

of the factorisation theorems for the relevant processes, evaluated on some discrete x-grid

7The scale is called the factorisation scale, and plays a similar role to the arbitrary scale introduced in

renormalisation theory.
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Figure 3.2. Selection of SMEFT posteriors showcasing significant differences in the results ob-

tained by Nested Sampling and the Monte Carlo replica method.

(x1, ..., xNgrid
), taking the general form for the ith datapoint in a dataset:

ti =



Nflav∑
a=1

Ngrid∑
α=1

FKi,aαfa(xα, Q
2
0), if the ith point is deep-inelastic scattering data;

Nflav∑
a,b=1

Ngrid∑
α,β=1

FKi,aαbβfa(xα, Q
2
0)fb(xβ, Q

2
0), if the ith point is hadronic data.

(3.3)

The arrays FKi,aα and FKi,aαbβ are called fast-kernel tables in the PDF-fitting parlance,

and encode both the evolution of the PDFs from some fixed initial scale Q2
0 (usually taken

to be Q0 = 1.65 GeV), together with the convolution of the evolved PDFs with a cross-

section for the hard reaction.

Importantly, we observe that for deep-inelastic scattering data, the theory predictions

are linear in the PDFs, but the contribution for hadronic (proton-proton) data is in fact

purely quadratic in the PDFs. This will have significant consequences for the use of the

Monte Carlo replica method for inferring the PDFs from collider data, as we shall discuss

below.

In order to compare the Monte Carlo replica method and the Bayesian approach,

we have developed a private code that allows both methodologies to be adopted when

fitting PDFs. In particular, Bayesian PDFs are produced using the Nested Sampling

algorithm ultranest [58–60], which is a well-established algorithm to sample from multi-

modal posterior distributions and infer estimates of parameter uncertainties. Because of

this, it is an ideal framework to perform statistical inference in the presence of non-linearity.
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Throughout the study we employ the publicly available FK tables and datasets pro-

vided by the NNPDF collaboration [12].

3.2.1 A toy PDF model

The PDFs, being functions, have infinitely many degrees of freedom, and hence cannot

be determined completely by finite amounts of data; the problem is ill-posed. Therefore,

PDF collaborations typically assume a specific functional form for the PDFs at the ini-

tial scale Q2 = Q2
0. Most collaborations, for example CTEQ [61, 62], JAM [13–15] and

MSHT [63, 64], use a fixed functional form with O(30−40) parameters, while the NNPDF

collaboration [12] uses a flexible Neural Network.

It remains an open question to what extent the Monte Carlo replica method as applied

in a realistic PDF fit agrees or disagrees with a Bayesian method for uncertainty propa-

gation. This paper does not intend to solve this problem, and we consider it important

future work to address this issue (especially in the context of PDF-SMEFT interplay, as

discussed in Ref. [20] and Sect. 3.1).

In this work we aim lower, and take a first step towards answering this question, by

instead working with a simplified PDF model and artificially generated data.8 In the

remainder of this section, we discuss the toy model (based on linear interpolation of the

PDF grid), and describe the generation of the artificial data used in this study.

The toy model. In our toy model, to reduce dimensionality, we first suppose that the

structure of the proton can be completely described in terms of three flavours in the evo-

lution basis, Σ, g, V , the singlet, gluon and valence distributions respectively, where the

singlet and the valence are defined in terms of the quark flavours as:

Σ = u+ ū+ d+ d̄+ s+ s̄+ 2c , (3.4)

V = (u− ū) + (d− d̄) + (s− s̄) . (3.5)

Samples of these flavours taken from a realistic PDF fit (namely the recent NNPDF4.0

determination) are shown in Fig. 3.3. These three flavours have the following structure:

(i) the singlet is a monotonically decreasing function; (ii) the gluon is peaked at x ≈ 10−2;

(iii) the valence is peaked at x ≈ 0.2.

Now, in standard PDF fits, a parametrisation (either polynomial-based or neural net-

work) is assumed in order to model the structure of these flavours. However, both poly-

nomial and neural network parametrisations are non-linear, so even in the DIS case where

PDFs enter linearly into theory predictions, the results of Sect. 2.3 imply that we cannot

expect exact agreement between the Monte Carlo replica method and the Bayesian method.

Hence, in order to produce a useful benchmark exercise where agreement is demonstrated

in a PDF fitting context, we introduce the following ‘linear interpolation’ parametrisation

of the PDFs.

8To avoid confusion, we reserve the term pseudodata exclusively for discussion of Monte Carlo pseudo-

data. The term artificial data instead describes artificial central experimental values, d0, in the discussion

of the previous chapters.
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Figure 3.3. The singlet Σ, gluon g, and valence V distributions in the NNPDF4.0 fit; their

respective percentage uncertainties (at 68%) are also shown in the panel below. The singlet is

monotonically decreasing, whilst the gluon and valence distributions have peaks at around x ≈ 10−2

and x ≈ 0.2 respectively.

In our parametrisation, for each flavour f , we select a ‘reduced x-grid’:(
xf1 , ..., x

f
Ngrid(f)

)
. (3.6)

This reduced x-grid is now treated as an interpolation grid, from which each flavour of PDF

is constructed. In particular, we define the PDF at the initial scale as a linear interpolant

of its values on this reduced x-grid, via:

f(x,Q2
0) =



f(xf1 , Q
2
0) if x ≤ xf1 ;(

xfi+1 − x

xfi+1 − xfi

)
f(xfi , Q

2
0) +

(
x− xfi

xfi+1 − xfi

)
f(xi+1, Q

2
0) if x ∈ [xi, xi+1], for i = 1, ..., Ngrid(f);

f(xfNgrid(f)
, Q2

0) if x > xfNgrid(f)
.

(3.7)

In particular, the ‘parameters’ which describe this PDF model are simply the values of the

PDF on the reduced x-grid; once these values f(xf1 , Q
2
0), ..., f(x

f
Ngrid(f)

, Q2
0) are specified,

then the PDF itself is specified everywhere. We have chosen to extrapolate simply by

taking the value of the PDF below the lowest grid point to always be equal to its value at

the lowest grid point; similarly for the highest grid point.

This somewhat elementary approach has the following distinct advantages:

• Importantly for our purposes, the PDF parametrisation is linear ; therefore, DIS

predictions are truly linear predictions of the PDF parameters, and predictions for

proton-proton collisions are truly quadratic predictions of the PDF parameters. In

particular, this allows us to benchmark the Monte Carlo approach directly against a

Bayesian approach in the DIS-only case.
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• As we increase the number of grid points and flavours, the model becomes increas-

ingly realistic. This implies that if we take the grid to be the FK-table grid in our

parametrisation, and use all of the fitted flavours, the linear interpolation becomes

completely immaterial, since the FK-table only ‘sees’ the PDF at the - now complete

- interpolation grid. With the advent of increased computational power, making use

of tools such as GPUs for instance, such a direct fit of the grid could be within reach

in the next few years.

On a practical note, for this study we have selected grids such that as much of the

‘structure’ displayed in Fig. 3.3 is retained. We choose 12 grid points in each case, giving

a total of 36 fitted parameters. The precise choice is:

(1.57× 10−4, 3.62× 10−4, 8.31× 10−4, 1.90× 10−4, 4.32× 10−3, 9.70× 10−3,

2.11× 10−2, 4.34× 10−2, 8.23× 10−2, 1.41× 10−1, 2.20× 10−1, 3.14× 10−1) for Σ;

(3.8)

(3.62× 10−4, 5.49× 10−4, 8.31× 10−4, 1.90× 10−3, 4.33× 10−3, 9.70× 10−3,

2.11× 10−2, 4.34× 10−2, 8.23× 10−2, 1.41× 10−1, 2.20× 10−1, 3.14× 10−1) for g;

(3.9)

(3.05× 10−2, 4.34× 10−2, 6.05× 10−2, 8.23× 10−2, 1.09× 10−1, 1.78× 10−1,

2.65× 10−1, 3.67× 10−1, 4.80× 10−1, 5.40× 10−1, 6.01× 10−1, 6.65× 10−1) for V .

(3.10)

Observe that we have populated the region near x ≈ 0.2 for the valence with significantly

more points, in order to model its peak structure in this region. For the singlet and gluon

distributions, we reduce the number of points for x < 10−4, where the uncertainty becomes

larger, implying a lack of constraints from the dataset. In particular, because of the choice

of the grid points, all of the parameters are constrained by the data and do not lie in the

extrapolation region.

Generation of the artificial data. Due to the extremely simplified nature of the PDF

model in this study, we choose to use purely artificial data throughout. Our artificial data

is produced assuming that the true PDF law of Nature is a linear interpolant of the above

form (thereby bypassing any modelling error), and random noise is added on top according

to the experimental covariance matrix.

In more detail, we assume that the true law of Nature is NNPDF4.0 [12], and produce

predictions for the dataset in question (either DIS only, proton-proton only, or the full

dataset, explored in turn in the sequel) using this PDF set; write these predictions as t0.

The artificial data is then generated as a sample from the multivariate normal distribution:

N (t0,Σ), (3.11)

where Σ is the relevant t0 covariance matrix.9

9See Ref. [65] for details on the definition of the t0 covariance matrix.
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3.2.2 Results for DIS-only fits

The vast majority of the data which enters a PDF fit is deep inelastic scattering data,

which depends linearly on the PDFs.10 As indicated in Eq. (3.3), DIS predictions take the

form:

t(f) = FK · f,

where FK is the Ndat×(NgridNflav) fast-kernel table for the prediction. Importantly for our

purposes, this is a linear prediction, so Monte Carlo and Bayesian uncertainty estimates

on PDFs in the grid parametrisation obtained from DIS data only must agree according

to the general theory presented in Sect. 2.

Using a private code, we have benchmarked this agreement in the context of the model

and artificial data described above, using the entire DIS dataset entering the NNPDF4.0

analysis [12], consisting of 2968 datapoints. We display the resulting PDFs in Fig. 3.4; as

anticipated, agreement is exceptional between the Monte Carlo and Bayesian approaches.

The three PDF fits in Fig. 3.4 are obtained as follows. The Monte Carlo PDF is, as

one might expect, produced using the Monte Carlo replica method. The Nested Sampling

PDF is a Bayesian PDF produced using the Nested Sampling algorithm; a uniform prior is

used on each of the grid points to ensure the agreement described in Sect. 2. Finally, the

‘analytic’ PDF is produced by sampling from the analytic posterior distribution that can

be calculated for this linear problem; it is found to be:

N
(
(FK)TΣ−1FK)−1FKTΣ−1d0, (FK

TΣ−1FK)−1

)
. (3.12)

This ‘analytic’ result allows us to test the efficacy of the numerical approaches presented

by the Monte Carlo and Nested Sampling techniques.

3.2.3 Results for hadronic-only fits

In this section, we repeat the exercise of Sect. 3.2.2, but now using hadronic-only data

instead of DIS-only data. In the context of PDF fitting, hadronic data refers to data coming

from proton-proton collisions; as a result, the theory predictions for these processes take

a quadratic form, as presented in Eq. (3.3). In particular, we can expect some singular

behaviour of the Monte Carlo posterior, as presented in the toy examples of Sect. 2 and in

the SMEFT fits of Sect. 3.1.

The settings remain precisely the same as in Sect. 3.2.2, except we now use the complete

NNPDF4.0 hadronic dataset, with the exception of jet data.11 This dataset comprises a

total of 1027 points.

The result of Monte Carlo replica fits and Bayesian fits of these data are presented in

Fig. 3.5. In this instance, good agreement between the Monte Carlo PDF and the Nested

Sampling PDF is found in the mid to high-x region, whereas significant disagreement is

observed at low-x; in particular, the uncertainty on the Monte Carlo PDF is reduced

10Excluding, for example, ratio observables - the NMC measurement of F d
2 /F

p
2 is an example [66].

11The study is conducted by making use of the new theory pipeline of NNPDF and when producing

results, jet data was not available. We note, however, that it has been recently implemented.
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Figure 3.4. A comparison of three PDF fits to DIS-only data using the simplified model described

above. The meaning of the Monte Carlo, Nested Sampling, and Analytic PDF sets is described in

the text. The columns display the flavours Σ, g, V from left to right. The rows display the absolute

values of the PDFs, the ratio of the PDFs to the Monte Carlo PDF, and the uncertainties on each

of the PDF sets, from top to bottom. Agreement is outstanding between the three exercises.

compared to the Nested Sampling PDF for the singlet and gluon at lower values of x.

The most striking reduction is for the gluon at x = 5.49 × 10−4, which undergoes a 90%

reduction in uncertainty when going from the Bayesian PDF to the Monte Carlo PDF.

The valence distribution, on the other hand, agrees well between the Bayesian and

Monte Carlo fits. However, due to the theoretical calculation being poorly understood in

the non-linear case, we cannot say with confidence precisely why this behaviour occurs. A

possible conjecture comes from the fact that the valence in this region is particularly well-

constrained by these data, so that about its best-fit value V ∗, we can write V ≈ V ∗ +∆V

with ∆V particularly small. Then quadratic contributions V 2 can be linearised via V 2 ≈
(V ∗)2 + 2V ∗ · ∆V , resulting in a Gaussian posterior around the best-fit value, where we

expect good agreement between the methodologies.

3.2.4 Results for global fits

Finally, in this section, we repeat the benchmarking study of the previous two sections for

the global dataset, using both the DIS and hadronic data. Given the excellent agreement

between the DIS-only Monte Carlo and Bayesian fits, and the poor agreement between the
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Figure 3.5. A comparison of three PDF fits to hadronic-only data using the simplified model

described above. The meaning of the Monte Carlo and Nested Sampling PDFs is described in the

text. The columns display the flavours Σ, g, V from left to right. The rows display the absolute

values of the PDFs, the ratio of the PDFs to the Monte Carlo PDF, and the uncertainties on each of

the PDF sets, from top to bottom. Significant disagreement is observed between the two exercises.

hadronic-only Monte Carlo and Bayesian fits, it is our general expectation that the result

of the global fit will be some middle ground between the two cases.

The results of the Monte Carlo and Bayesian fits to the full dataset are presented in

Fig. 3.6. As expected, we find that the Monte Carlo fit still shows some discrepancy from the

Nested Sampling one in the low-x region, but the disagreement is less pronounced than in

the purely hadronic case. In particular, the singlet PDF Σ shows a less significant reduction

in uncertainties in the low-x region, of order 20% now, in going from the Nested Sampling

to the Monte Carlo PDFs. On the other hand, the gluon PDF still shows a considerable

discrepancy with the Bayesian result, displaying a conspicuous underestimation of PDF

error bands; the worst discrepancy is around 60%.

In summary, in the broad dataset considered, the impact of the hadronic data on

the full fit is already enough to cause the two methodologies to diverge. Whilst we have

only demonstrated this discrepancy in the case of a simplified PDF model, we believe that

the result motivates further efforts towards the implementation of Bayesian methods to

quantify uncertainties in more realistic fits, especially if in the coming decade new and

more accurate hadronic data from the LHC is included in global PDF fits.

– 24 –



10 4 10 3 10 2 10 1

x

1.0

1.5

2.0

2.5

3.0
x

(x
)

 at 1.65 GeV
Monte Carlo
Nested Sampling

10 3 10 2 10 1

x
0.0

0.5

1.0

1.5

2.0

2.5

3.0

xg
(x

)

g at 1.65 GeV

Monte Carlo
Nested Sampling

10 1

x

0.2

0.4

0.6

0.8

1.0

xV
(x

)

V at 1.65 GeV
Monte Carlo
Nested Sampling

10 4 10 3 10 2 10 1

x

0.990

0.995

1.000

1.005

1.010

Ra
tio

 to
 M

on
te

 C
ar

lo

 at 1.65 GeV
Monte Carlo
Nested Sampling

10 3 10 2 10 1

x

0.8

0.9

1.0

1.1

1.2

Ra
tio

 to
 M

on
te

 C
ar

lo

g at 1.65 GeV
Monte Carlo
Nested Sampling

10 1

x

0.925

0.950

0.975

1.000

1.025

1.050

1.075

Ra
tio

 to
 M

on
te

 C
ar

lo

V at 1.65 GeV
Monte Carlo
Nested Sampling

10 4 10 3 10 2 10 1

x

0.000

0.005

0.010

0.015

0.020

0.025

0.030

PD
F 

un
ce

rta
in

ty

 at 1.65 GeV
Monte Carlo
Nested Sampling

10 3 10 2 10 1

x

0.0

0.1

0.2

0.3

PD
F 

un
ce

rta
in

ty

g at 1.65 GeV
Monte Carlo
Nested Sampling

10 1

x

0.000

0.005

0.010

0.015

PD
F 

un
ce

rta
in

ty

V at 1.65 GeV

Monte Carlo
Nested Sampling

Figure 3.6. The same as figures Fig. 3.4 and Fig. 3.5, but now fitting the PDFs using the

complete global dataset (combining the DIS and hadronic data from the previous cases). The level

of disagreement between the Monte Carlo and Bayesian fits is reduced as compared to the hadronic-

only case, but there is still significant tension between the two approaches.

4 Conclusions

For the first time, this work explored the mathematical foundations of the Monte Carlo

replica method beyond linear models, before benchmarking the Monte Carlo replica method

against a Bayesian approach in two global fit scenarios from the high-energy physics liter-

ature.

In Sect. 2, we produced an original calculation of the Monte Carlo ‘posterior’ distribu-

tion and showed it is only comparable to the Bayesian method in special cases (e.g. for a

linear model, the two approaches agree if a sufficiently wide uniform prior is used for the

Bayesian). The final result, Eq. (2.17), has some of its behaviour understood (particularly

the delta function singularities that can appear in the posterior), but for the most part it

remains intractably difficult to manipulate.

In Sect. 3.1, we provided a benchmark of the Bayesian method against the Monte

Carlo replica method in the context of a fit of the SMEFT Wilson coefficients in the top

sector. We find poor agreement between the implied parameter bounds, and as a result,

we discourage the use of the Monte Carlo replica method in this arena of global fits. Many

SMEFT fit collaborations [2, 31, 57] have already embraced a Bayesian perspective.
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In Sect. 3.2, we perform the same benchmarking exercise between the two approaches

in the context of a toy fit of PDFs to a global dataset. We found exceptionally good

agreement between the Monte Carlo replica method and the Bayesian method when the

DIS-only dataset was used (indeed, this must be the case according to the calculation given

in Sect. 2). However, when the fit was instead performed on the hadronic-only dataset,

we found that the PDF uncertainties implied by the Monte Carlo replica method, despite

agreeing well at high-x, were significantly reduced compared to the Bayesian method at

low-x. This behaviour persisted, although milder, when we performed a final fit using the

global DIS plus hadronic dataset. Whilst the toy fit we performed was a simplification of

a modern PDF fit, the results imply that caution is necessary when using the Monte Carlo

replica method, especially as more hadronic data are added to the fits. On the other hand,

the authors wish to emphasise the point that the level of disagreement, if any, in a realistic

PDF fit remains unknown.

While conducting the PDF analysis, we implemented a framework to perform Bayesian

inference using Nested Sampling. The developed tool will be featured in a forthcoming

publication. We believe that further efforts should be dedicated towards the development

of a fully Bayesian approach to PDF fitting, especially if fit simultaneously in combination

with EFT coefficients. This work offers a compelling motivation for such a programme.
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A Additional analytic example: purely quadratic theory

In this appendix, we give a further calculation of the Monte Carlo posterior for a toy

example. Consider t(c) = t0+ tquadc
2, a purely quadratic theory in one parameter. In this

case, the Jacobian matrix is: (
∂t

∂c

)T

= 2ctTquad. (A.1)

This is of full rank unless c = 0. The matrix M(c) can be chosen independently of c to

consist of Ndat−1 columns which are orthogonal to the vector tquad, so that MT tquad = 0.

Further, the function cp(dp) is double-valued for c ̸= 0, because of the symmetry c 7→ −c

in the theory prediction. It follows that away from c = 0, the Monte Carlo posterior takes

the form:

2 exp

(
−1

2
χ2
d0
(c)

) ∣∣∣∣det(2ctquad∣∣∣∣ΣM)∣∣∣∣ ∫
Λ(c)

dNdat−1λλλ exp

(
−1

2
λλλTMTΣMλλλ+ λλλTMT (d0 − t0)

)
(A.2)

The set Λ(c) is the set of λλλ such that the pseudodata t(c)+ΣMλλλ leads to c as a minimum

of the χ2-statistic on this pseudodata. We note that the χ2 on this pseudodata is given by:

χ2(c′) =
(
t(c′)− t(c)− ΣMλλλ

)T
Σ−1

(
t(c′)− t(c)− ΣMλλλ

)
(A.3)

=
(
tquad(c

′ − c)2 − ΣMλλλ
)T

Σ−1
(
tquad(c

′ − c)2 − ΣMλλλ
)

(A.4)

= (c′ − c)4tTquadΣ
−1tquad + λλλTMTΣMλλλ. (A.5)

Since Σ is positive definite, we have that tTquadΣ
−1tquad > 0 and λλλTMTΣMλλλ > 0, which

shows that the minimum is at c′ = c. Thus Λ(c) = RNdat−1, the full range. Evaluating the

integral then, we have that for c ̸= 0 the Monte Carlo posterior takes the form:

2 exp

(
−1

2
χ2
d0
(c)

) ∣∣∣∣det(2ctquad∣∣∣∣ΣM)∣∣∣∣
√

(2π)Ndat−1

det(MTΣM)
exp

(
1

2
(d0 − t0)

TM(MTΣM)−1MT (d0 − t0)

)
,

(A.6)

using the standard formula for the Gaussian integral. We can simplify this with a couple

of tricks. First, observe that by the Gram-Schmidt procedure, we may choose the columns

of M to be orthogonal with respect to the inner product induced by Σ without loss of

generality, so that:

MTΣM = I. (A.7)

This also allows us to compute the determinant factor. First, we note:

det

(
2ctquad

∣∣∣∣ΣM) = 2cdet(Σ) det

(
Σ−1tquad

∣∣∣∣M) . (A.8)

Further, Σ−1tquad and M are already orthogonal with respect to the inner product induced

by Σ. Normalising Σ−1tquad with respect to this inner product, we have:

(Σ−1tquad)
TΣ(Σ−1tquad) = tTquadΣ

−1tquad. (A.9)
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It follows that:12

det

(
Σ−1tquad

tTquadΣ
−1tquad

∣∣∣∣M
)

= ±
√

det(Σ−1), (A.10)

and hence the Monte Carlo posterior simplifies to:

4
√
(2π)Ndat−1 det(Σ)tTquadΣ

−1tquad|c| exp
(
−1

2
χ2
d0
(c)

)
exp

(
1

2
(d0 − t0)

TMMT (d0 − t0)

)
.

(A.11)

We can also recognise MMT = M(MTΣM)−1MT as the projector onto the subspace

orthogonal to tTquadΣ
−1, which gives:

M(MTΣM)−1MT = Σ−1 −
Σ−1tquadt

T
quadΣ

−1

tTquadΣ
−1tquad

. (A.12)

Hence the Monte Carlo posterior reduces to the (M -independent) simplified form:

4
√

(2π)Ndat−1 det(Σ)tTquadΣ
−1tquad|c| exp

(
−1

2
χ2
d0
(c)

)

· exp
(
1

2
(d0 − t0)

T

(
Σ−1 −

Σ−1tquadt
T
quadΣ

−1

tTquadΣ
−1tquad

)
(d0 − t0)

)
. (A.13)

One can check that this reduces to the previous case with tlin = 0 when we work with

Ndat = 1.

On the other hand, about c = 0, we can parametrise the theory via f : {∅} → R with

f(∅) = 0. Further, the matrix M(0) can simply be taken to be the Ndat × Ndat identity

matrix. The Monte Carlo posterior is then given by:

exp

(
−1

2
χ2
d0
(c)

)
δ(c) det(Σ)

∫
Λ(0)

dNdatλλλ exp

(
−1

2
λλλTΣλλλ+ λλλT (d0 − t0)

)
. (A.14)

To compute the set Λ(0), we must find all λλλ such that the pseudodata t(0) +Σλλλ gives rise

to the best-fit value of the parameter c. The χ2-statistic evaluated on this pseudodata is

given by:

χ2(c′) =
(
t(c′)− t(0)− Σλλλ

)T
Σ−1

(
t(c′)− t(0)− Σλλλ

)
(A.15)

=
(
tquadc

′2 − Σλλλ
)T

Σ−1
(
tquadc

′2 − Σλλλ
)

(A.16)

= c′
4
tTquadΣ

−1tquad − 2c′
2
tTquadλλλ+ λλλTΣλλλ (A.17)

= tTquadΣ
−1tquad

(
c′
2 −

tTquadλλλ

tTquadΣ
−1tquad

)2

−
(tTquadλλλ)

2

tTquadΣ
−1tquad

+ λλλTΣλλλ. (A.18)

12Note that if A is a square matrix with orthonormal columns with respect to the inner product induced

by Σ, we have 1 = det(ATΣA) = det(Σ) det(A)2, which implies det(A) = ±
√

det(Σ−1).

– 28 –



It follows that if tTquadλλλ ≤ 0, we have that c′ = 0 is the unique minimiser of the χ2-

statistic evaluated on the relevant pseudodata; otherwise, we get different roots. Hence

Λ(0) = {λλλ : tTquadλλλ ≤ 0}, which yields the Monte Carlo posterior about c = 0:

exp

(
−1

2
χ2
d0
(c)

)
δ(c) det(Σ)

∫
tTquadλλλ≤0

dNdatλλλ exp

(
−1

2
λλλTΣλλλ+ λλλT (d0 − t0)

)
. (A.19)

Overall then, the Monte Carlo posterior takes the form:

exp

(
−1

2
χ2
d0
(c)

)[
δ(c) det(Σ)

∫
tTquadλλλ≤0

dNdatλλλ exp

(
−1

2
λλλTΣλλλ+ λλλT (d0 − t0)

)

+ 4
√
(2π)Ndat−1 det(Σ)tTquadΣ

−1tquad|c| exp
(
1

2
(d0 − t0)

T

(
Σ−1 −

Σ−1tquadt
T
quadΣ

−1

tTquadΣ
−1tquad

)
(d0 − t0)

)]
(A.20)

B Numerical challenges of the Monte Carlo replica method

In this section, we discuss some technical challenges related to the MC methodology. As

an initial disclaimer, these are not insurmountable issues and with enough fine-tuning and

understanding of the problem at hand, they can be overcome. However, during the course

of this and previous studies [20, 22], we often had to deal with unexpected difficulties which

hindered the results of the fits.

The origin of the problem is that while our objective is to obtain a sample from the

posterior distribution of the model parameters, this is achieved not through a sampling

algorithm, but through an optimisation procedure which relies on gradient descent. For

this reason, the presence of multiple local minima and of degeneracies, that is, continuous

surfaces all of which have equal minimal χ2-statistic, can impact the result of the fit in ways

that could be difficult to spot. These problems are instead well tackled by dedicated poste-

rior sampling algorithms like Nested Sampling or MCMC, where multimodal distributions

can be mapped efficiently and reliably.

The first and most basic issue has to do with making sure that the global minimum

was actually reached. In our experience, this can be problematic in two distinct cases:

when the posterior has a multimodal character and in the presence of strong correlations.

Both of these can ruin a successful optimisation because in the first case, one could get

trapped in a local minima while in the second, convergence to the true minimum can be

very slow (since, in presence of strong correlations, the gradient can be very small).

The methodological uncertainty problem is well known by NNPDF, which has designed

a suite of closure tests specifically to estimate the level of success of the neural network in

finding the global minimum. In a level 0 closure test, multiple replicas are generated with

the same pseudodata and all fit with the same model, the only difference being a distinct

initialisation. In the ideal case, all of the replicas would find the same minimum and the

resulting PDF set would have no uncertainty. However, this is not what it is observed by

– 29 –



10 4 10 3 10 2 10 1

x

1.0

1.5

2.0

2.5

3.0

x
(x

)
 at 1.65 GeV

Monte Carlo 1
Monte Carlo 2
Monte Carlo 3
Monte Carlo Merged

10 3 10 2 10 1

x

5.0

2.5

0.0

2.5

5.0

7.5

xg
(x

)

g at 1.65 GeV
Monte Carlo 1
Monte Carlo 2
Monte Carlo 3
Monte Carlo Merged

10 1

x

0.2

0.4

0.6

0.8

1.0

xV
(x

)

V at 1.65 GeV

Monte Carlo 1
Monte Carlo 2
Monte Carlo 3
Monte Carlo Merged

10 4 10 3 10 2 10 1

x

0.8

0.9

1.0

1.1

1.2

Ra
tio

 to
 M

on
te

 C
ar

lo
 M

er
ge

d  at 1.65 GeV
Monte Carlo 1
Monte Carlo 2
Monte Carlo 3
Monte Carlo Merged

10 3 10 2 10 1

x
4

2

0

2

4

6

Ra
tio

 to
 M

on
te

 C
ar

lo
 M

er
ge

d g at 1.65 GeV
Monte Carlo 1
Monte Carlo 2
Monte Carlo 3
Monte Carlo Merged

10 1

x
0.6

0.8

1.0

1.2

Ra
tio

 to
 M

on
te

 C
ar

lo
 M

er
ge

d V at 1.65 GeV
Monte Carlo 1
Monte Carlo 2
Monte Carlo 3
Monte Carlo Merged

10 4 10 3 10 2 10 1

x

0.0

0.1

0.2

0.3

0.4

0.5

PD
F 

un
ce

rta
in

ty

 at 1.65 GeV
Monte Carlo 1
Monte Carlo 2
Monte Carlo 3
Monte Carlo Merged

10 3 10 2 10 1

x

0

2

4

6

PD
F 

un
ce

rta
in

ty

g at 1.65 GeV
Monte Carlo 1
Monte Carlo 2
Monte Carlo 3
Monte Carlo Merged

10 1

x

0.00

0.01

0.02

0.03

0.04

0.05

0.06

PD
F 

un
ce

rta
in

ty

V at 1.65 GeV
Monte Carlo 1
Monte Carlo 2
Monte Carlo 3
Monte Carlo Merged

Figure B.1. Plots showing the “merging” procedure used to obtain the final result of the hadronic

fit in Sect. 3.2.3. The figures show that fits ran with different initialisations found different results,

discovering local minima. The merging procedure adopted selects the best replica in terms of the

training χ2 from all the fits, making the result more robust and increasing the confidence that the

global minimum has been reached.

the collaboration and a methodological uncertainty is found, indicating a dependence on

the initialisation of the parameters when performing the fit.

In our studies, we have repeatedly found similar problems and at times, the strong

dependence on the initialisation has been surprising. In particular, the presence of de-

generacies can be quite disruptive and without further analysis difficult to discover. As a

matter of fact, while in a posterior sampling algorithm the flat directions are discovered

automatically, in a Monte Carlo replica setting they can disguise as constrained directions

simply because of a poor initialisation.

Specifically, in order to obtain the final result presented in Sec. 3.2.3, we ran multiple

Monte Carlo replica fits, changing only the initialisation of the model, and we ‘merged’

them in order to obtain the fitted replicas with the lowest training χ2. By doing so, the

result of the fit becomes more and more robust, since we are able to reject replicas that

are stuck in local minima, even if they apparently had a good χ2. In Fig. B.1, we show

an example of this from the hadronic PDF fit where we merged 7 different fits (3 of them

shown in the plots). It can clearly be seen that the final merged result is considerably

different from some of the preliminary fits that had been obtained.
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These are common problems in machine learning and plenty of techniques have been

designed to confront them. However, it must be noted that the objective is to estimate with

high precision physical quantities and not get a ball-park estimate. Making sure that these

are reliable is of paramount importance, especially for the years ahead. The transparency

and ease of use of the posterior sampling methods go in this direction and allow for a much

more controlled fit environment.

C Impact of training-validation splits

In one of the footnotes in Sect. 2.1, we briefly mentioned that the Monte Carlo replica

method is often applied using a ‘training-validation split’, together with a cross-validation

stopping, when the best-fit parameters are found for a given piece of pseudodata. In more

detail, given a piece of pseudodata dp generated from the simulated distribution N (d0,Σ),

we additionally generate a random subset S ⊆ {1, ..., Ndat} of ‘training indices’ as some

fraction ftrain of the full set of data indices. The best-fit values of the parameters are

then given by some from of gradient descent, starting at some random initial value of

the parameters (the choice of the initialisation is a point discussed in App. B), such that

the χ2-statistic to the pseudodata evaluated only on the training subset {(dp)i : i ∈ S} is

minimised, while the χ2-statistic to the pseudodata evaluated only on the validation subset

{(dp)i : i ̸∈ S} is also still decreasing. At the point where the χ2-statistic to the pseudodata

evaluated on the validation subset starts increasing, the minimisation is halted.

This point is discussed briefly in the SMEFiT code paper, Ref. [1]; in particular, they

state that a training-validation split with a cross-validation stopping is not required for

the Monte Carlo replica method in the context of the SMEFT fits they conduct. A direct

quote from their paper is the following: ‘We note that as opposed to the PDF fit case no

cross-validation is required here, since overlearning is not possible for a discrete parameter

space, where the best-fit value coincides with the absolute maximum of the likelihood.’ In

our paper we work entirely with discrete PDFs evaluated on a grid of 36 points, so we

consider the SMEFiT reasoning adequate to justify the lack of the inclusion of a training-

validation split in our study.

On the other hand, for completeness, we have also computed all of the Monte Carlo

PDF results using training-validation splits (different replica by replica), with a training

fraction ftrain = 0.75, and cross-validation stopping. In Fig. C.1, we display a comparison

of the result of the DIS-only Monte Carlo PDF fit using the parametrisation and data

discussed in Sect. 3.2.2 with the same Monte Carlo fit conducted with a training-validation

split. We observe that the uncertainties are systematically inflated as a result of including

the training-validation split; for the linear problem, this is well understood, because each

replica effectively sees less data, so we expect larger uncertainties as a result. In particular,

we have learned that the use of a training-validation split for the linear problem artificially

inflates uncertainties, as compared with the analytic solution we presented in Sect. 3.2.2,

with which Monte Carlo without a training-validation split agrees perfectly.

– 31 –



10 4 10 3 10 2 10 1

x

1.0

1.5

2.0

2.5

3.0
x

(x
)

 at 1.65 GeV
Monte Carlo
Monte Carlo tr/val

10 3 10 2 10 1

x

0

1

2

3

xg
(x

)

g at 1.65 GeV
Monte Carlo
Monte Carlo tr/val

10 1

x
0.0

0.2

0.4

0.6

0.8

1.0

xV
(x

)

V at 1.65 GeV
Monte Carlo
Monte Carlo tr/val

10 4 10 3 10 2 10 1

x
0.97

0.98

0.99

1.00

1.01

1.02

Ra
tio

 to
 M

on
te

 C
ar

lo

 at 1.65 GeV
Monte Carlo
Monte Carlo tr/val

10 3 10 2 10 1

x

0.0

0.5

1.0

1.5

2.0

Ra
tio

 to
 M

on
te

 C
ar

lo

g at 1.65 GeV
Monte Carlo
Monte Carlo tr/val

10 1

x

0.8

0.9

1.0

1.1

1.2

1.3

Ra
tio

 to
 M

on
te

 C
ar

lo

V at 1.65 GeV
Monte Carlo
Monte Carlo tr/val

10 4 10 3 10 2 10 1

x

0.00

0.02

0.04

0.06

PD
F 

un
ce

rta
in

ty

 at 1.65 GeV
Monte Carlo
Monte Carlo tr/val

10 3 10 2 10 1

x

0.0

0.2

0.4

0.6

0.8

PD
F 

un
ce

rta
in

ty

g at 1.65 GeV
Monte Carlo
Monte Carlo tr/val

10 1

x
0.00

0.02

0.04

0.06

0.08

0.10

PD
F 

un
ce

rta
in

ty

V at 1.65 GeV
Monte Carlo
Monte Carlo tr/val

Figure C.1. A comparison of Monte Carlo PDF fits to DIS-only data using the complete dataset

when minimising to the pseudodata, versus using a random training-validation split for each pseu-

dodata replica, and applying cross-validation. As we saw in Sect. 3.2.2, the Monte Carlo result

using the complete dataset agrees perfectly with both a numerical and analytic Bayesian approach,

as expected. On the other hand, when using random training-validation splits and applying cross-

validation, the uncertainties in the Monte Carlo approach are systematically overestimated.

On the other hand, in Fig. C.2, we display a comparison of the result of the hadronic-

only Monte Carlo PDF fit using the parametrisation and data discussed in Sect. 3.2.3

with the same Monte Carlo fit conducted with a training-validation split. This time, we

have no theoretical control of the Monte Carlo replica method in either case, as discussed

in the main text. Somewhat surprisingly, our intuition fails us, and we instead see that

the uncertainties are not systematically inflated, but seem to be ‘reshuffled’ between the

flavours instead. Further, the central value is also distorted by the use of a training-

validation split. This emphasises the point that we have little control over the Monte

Carlo replica method in the non-linear case, and it is difficult to predict the result of a fit

prior to performing it.

References

[1] T. Giani, G. Magni, and J. Rojo, SMEFiT: a flexible toolbox for global interpretations of

particle physics data with effective field theories, arXiv:2302.06660.

– 32 –

http://arxiv.org/abs/2302.06660


10 4 10 3 10 2 10 1

x

1.0

1.5

2.0

2.5

3.0
x

(x
)

 at 1.65 GeV
Monte Carlo
Monte Carlo tr/val

10 3 10 2 10 1

x

0.5

1.0

1.5

2.0

2.5

3.0

xg
(x

)

g at 1.65 GeV

Monte Carlo
Monte Carlo tr/val

10 1

x
0.0

0.2

0.4

0.6

0.8

1.0

xV
(x

)

V at 1.65 GeV
Monte Carlo
Monte Carlo tr/val

10 4 10 3 10 2 10 1

x

0.96

0.98

1.00

1.02

1.04

1.06

Ra
tio

 to
 M

on
te

 C
ar

lo

 at 1.65 GeV
Monte Carlo
Monte Carlo tr/val

10 3 10 2 10 1

x
0.6

0.8

1.0

1.2

1.4

Ra
tio

 to
 M

on
te

 C
ar

lo

g at 1.65 GeV
Monte Carlo
Monte Carlo tr/val

10 1

x

0.6

0.8

1.0

1.2

1.4

Ra
tio

 to
 M

on
te

 C
ar

lo

V at 1.65 GeV
Monte Carlo
Monte Carlo tr/val

10 4 10 3 10 2 10 1

x

0.00

0.02

0.04

0.06

0.08

0.10

PD
F 

un
ce

rta
in

ty

 at 1.65 GeV
Monte Carlo
Monte Carlo tr/val

10 3 10 2 10 1

x

0.0

0.1

0.2

0.3

0.4

PD
F 

un
ce

rta
in

ty

g at 1.65 GeV
Monte Carlo
Monte Carlo tr/val

10 1

x

0.00

0.02

0.04

0.06

0.08

PD
F 

un
ce

rta
in

ty

V at 1.65 GeV
Monte Carlo
Monte Carlo tr/val

Figure C.2. The same as Fig. C.1, but for fits to hadronic-only data. In this case, the uncertainties

seem to be reshuffled amongst the flavours, and the central value appears to be distorted by the

use of training-validation splits and cross-validation stopping.

[2] SMEFiT Collaboration, J. J. Ethier, G. Magni, F. Maltoni, L. Mantani, E. R. Nocera,

J. Rojo, E. Slade, E. Vryonidou, and C. Zhang, Combined SMEFT interpretation of Higgs,

diboson, and top quark data from the LHC, JHEP 11 (2021) 089, [arXiv:2105.00006].

[3] J. J. Ethier, R. Gomez-Ambrosio, G. Magni, and J. Rojo, SMEFT analysis of vector boson

scattering and diboson data from the LHC Run II, Eur. Phys. J. C 81 (2021), no. 6 560,

[arXiv:2101.03180].

[4] N. P. Hartland, F. Maltoni, E. R. Nocera, J. Rojo, E. Slade, E. Vryonidou, and C. Zhang, A

Monte Carlo global analysis of the Standard Model Effective Field Theory: the top quark

sector, JHEP 04 (2019) 100, [arXiv:1901.05965].

[5] A. Biekoetter, T. Corbett, and T. Plehn, The Gauge-Higgs Legacy of the LHC Run II,

SciPost Phys. 6 (2019), no. 6 064, [arXiv:1812.07587].

[6] NNPDF Collaboration, R. D. Ball, L. Del Debbio, S. Forte, A. Guffanti, J. I. Latorre,

A. Piccione, J. Rojo, and M. Ubiali, A Determination of parton distributions with faithful

uncertainty estimation, Nucl. Phys. B 809 (2009) 1–63, [arXiv:0808.1231]. [Erratum:

Nucl.Phys.B 816, 293 (2009)].

[7] R. D. Ball, L. Del Debbio, S. Forte, A. Guffanti, J. I. Latorre, J. Rojo, and M. Ubiali, A first

unbiased global NLO determination of parton distributions and their uncertainties, Nucl.

Phys. B 838 (2010) 136–206, [arXiv:1002.4407].

– 33 –

http://arxiv.org/abs/2105.00006
http://arxiv.org/abs/2101.03180
http://arxiv.org/abs/1901.05965
http://arxiv.org/abs/1812.07587
http://arxiv.org/abs/0808.1231
http://arxiv.org/abs/1002.4407


[8] NNPDF Collaboration, R. D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, S. Forte,

A. Guffanti, J. I. Latorre, J. Rojo, and M. Ubiali, Unbiased global determination of parton

distributions and their uncertainties at NNLO and at LO, Nucl. Phys. B 855 (2012) 153–221,

[arXiv:1107.2652].

[9] R. D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244–289,

[arXiv:1207.1303].

[10] NNPDF Collaboration, R. D. Ball et al., Parton distributions for the LHC Run II, JHEP

04 (2015) 040, [arXiv:1410.8849].

[11] NNPDF Collaboration, R. D. Ball et al., Parton distributions from high-precision collider

data, Eur. Phys. J. C 77 (2017), no. 10 663, [arXiv:1706.00428].

[12] NNPDF Collaboration, R. D. Ball et al., The path to proton structure at 1% accuracy, Eur.

Phys. J. C 82 (2022), no. 5 428, [arXiv:2109.02653].

[13] JAM Collaboration, C. Cocuzza, A. Metz, and N. Sato, Simultaneous Extraction of

Unpolarized PDFs and Nuclear Effects, SciPost Phys. Proc. 8 (2022) 098.

[14] Jefferson Lab Angular Momentum (JAM) Collaboration, N. T. Hunt-Smith,

W. Melnitchouk, N. Sato, A. W. Thomas, X. G. Wang, and M. J. White, Global QCD

analysis and dark photons, JHEP 09 (2023) 096, [arXiv:2302.11126].

[15] N. T. Hunt-Smith, C. Cocuzza, W. Melnitchouk, N. Sato, A. W. Thomas, and M. J. White,

On the resolution of the sign of gluon polarization in the proton, arXiv:2403.08117.

[16] NNPDF Collaboration, R. D. Ball, J. Cruz-Martinez, L. Del Debbio, S. Forte, Z. Kassabov,

E. R. Nocera, J. Rojo, R. Stegeman, and M. Ubiali, Response to ”Parton distributions need

representative sampling”, arXiv:2211.12961.

[17] S. Carrazza, C. Degrande, S. Iranipour, J. Rojo, and M. Ubiali, Can New Physics hide inside

the proton?, Phys. Rev. Lett. 123 (2019), no. 13 132001, [arXiv:1905.05215].

[18] A. Greljo, S. Iranipour, Z. Kassabov, M. Madigan, J. Moore, J. Rojo, M. Ubiali, and

C. Voisey, Parton distributions in the SMEFT from high-energy Drell-Yan tails, JHEP 07

(2021) 122, [arXiv:2104.02723].

[19] S. Iranipour and M. Ubiali, A new generation of simultaneous fits to LHC data using deep

learning, JHEP 05 (2022) 032, [arXiv:2201.07240].

[20] Z. Kassabov, M. Madigan, L. Mantani, J. Moore, M. Morales Alvarado, J. Rojo, and

M. Ubiali, The top quark legacy of the LHC Run II for PDF and SMEFT analyses, JHEP 05

(2023) 205, [arXiv:2303.06159].

[21] E. Hammou, Z. Kassabov, M. Madigan, M. L. Mangano, L. Mantani, J. Moore, M. M.

Alvarado, and M. Ubiali, Hide and seek: how PDFs can conceal new physics, JHEP 11

(2023) 090, [arXiv:2307.10370].

[22] M. N. Costantini, E. Hammou, Z. Kassabov, M. Madigan, L. Mantani, M. Morales Alvarado,

J. M. Moore, and M. Ubiali, SIMUnet: an open-source tool for simultaneous global fits of

EFT Wilson coefficients and PDFs, arXiv:2402.03308.

[23] L. Del Debbio, T. Giani, and M. Wilson, Bayesian approach to inverse problems: an

application to NNPDF closure testing, Eur. Phys. J. C 82 (2022), no. 4 330,

[arXiv:2111.05787].

[24] P. Hall, The bootstrap and edgeworth expansion, 1992.

– 34 –

http://arxiv.org/abs/1107.2652
http://arxiv.org/abs/1207.1303
http://arxiv.org/abs/1410.8849
http://arxiv.org/abs/1706.00428
http://arxiv.org/abs/2109.02653
http://arxiv.org/abs/2302.11126
http://arxiv.org/abs/2403.08117
http://arxiv.org/abs/2211.12961
http://arxiv.org/abs/1905.05215
http://arxiv.org/abs/2104.02723
http://arxiv.org/abs/2201.07240
http://arxiv.org/abs/2303.06159
http://arxiv.org/abs/2307.10370
http://arxiv.org/abs/2402.03308
http://arxiv.org/abs/2111.05787


[25] J. Shao and D. Tu, The jackknife and bootstrap, 1996.

[26] N. T. Hunt-Smith, A. Accardi, W. Melnitchouk, N. Sato, A. W. Thomas, and M. J. White,

Determination of uncertainties in parton densities, Phys. Rev. D 106 (2022), no. 3 036003,

[arXiv:2206.10782].

[27] R. D. Ball et al., Benchmarking of parton distributions and their uncertainties, in HERA and

the LHC: 4th Workshop on the Implications of HERA for LHC Physics, pp. 53–73, 3, 2009.

[28] F. Capel, R. Aggarwal, M. Botje, A. Caldwell, O. Schulz, and A. Verbytskyi,

PartonDensity.jl: a novel parton density determination code, arXiv:2401.17729.

[29] A. Candido, L. Del Debbio, T. Giani, and G. Petrillo, Bayesian Inference with Gaussian

Processes for the Determination of Parton Distribution Functions, arXiv:2404.07573.

[30] A. W. v. d. Vaart, Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic

Mathematics. Cambridge University Press, 1998.

[31] J. Ellis, M. Madigan, K. Mimasu, V. Sanz, and T. You, Top, Higgs, Diboson and Electroweak

Fit to the Standard Model Effective Field Theory, JHEP 04 (2021) 279, [arXiv:2012.02779].

[32] N. Castro, J. Erdmann, C. Grunwald, K. Kröninger, and N.-A. Rosien, EFTfitter—A tool for
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