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We study the preparation of a quantum state using a circuit of depth t from a factorized state of
N sites. We argue that in the appropriate scaling limit of large t and N , the overlap between states
evolved under generic many-body chaotic dynamics belongs to a family of universal distribution
that generalizes the celebrated Porter-Thomas distribution. This is a consequence of a mapping in
the space of replicas to a model of dilute domain walls. Our result provides a rare example in which
analysis at an arbitrary number of replicas is possible, giving rise to the complete overlap distribu-
tion. Our general picture is derived and corroborated by the exact solution of the random phase
model and of an emergent random matrix model given by the Ginibre ensemble. Finally, numer-
ical simulations of two distinct random circuits show excellent agreement, thereby demonstrating
universality.

Introduction. — The relaxation dynamics of quan-
tum manybody systems has received much attention in
the last decades [1]. In recent years, the focus has shifted
to determining the scrambling capabilities of a system
with implications toward quantum chaos [2–4] and holog-
raphy [5, 6]. A universal concept is based on the compari-
son of quantum states resulting from a dynamical process
with the uniform distribution of states in a Hilbert space
(Haar ensemble). This formulation leads to the notion of
quantum k state design, defined as an ensemble of states
capable of replicating the Haar distribution for all poly-
nomial functions in the state, of degree at most k [7–10].
Both unitary designs (in which states are generated by
applying unitary gates) [11, 12] and non-unitary ones (in
which generalized quantum measurements are also con-
sidered) have been considered recently [13–16]. Under-
standing how many operations are needed to achieve a
good quantum state design is an open question in many
cases, with important applications to quantum computa-
tion, particularly benchmarking [17, 18], quantum circuit
complexity [19–22], and more generally in quantum in-
formation, with a wide range reaching as far as black
holes [6, 23–25]. In this regard, random unitary circuits
(RUC) have served as vital constructs in quantum in-
formation and many-body physics, providing a unique
model for strongly coupled dynamics and effective ran-
domization [26]. Recent explorations involve the use of
RUCs to examine operator growth [3, 27–29] and the
spreading of entanglement [30–32] amid chaotic evolu-
tion, and spectral statistics [4, 33–36].

In this Letter, we deal with the problem of prepar-
ing a random quantum state using different realizations
of a circuit. Assuming that the circuit acts on N q-
qits and has depth t, we focus on the overlap distribu-
tion w = N| ⟨Ψ|Ψ′⟩ |2 = N| ⟨Ψ0|W ′†W |Ψ0⟩ |2 between
two such generated states, where N = qN is the Hilbert

space dimension and W and W ′ are two independent re-
alizations of the circuit with overall depth t with |Ψ0⟩
a factorized reference state. In the limit of large t, the
circuit is expected to provide a k design for arbitrar-
ily large k displaying the emergence of random matri-
ces. In such a regime, the distribution p(w) of w con-
verges to the well-known Porter-Thomas (PT) distribu-
tion p(w) ∼ e−w [37], associated with the overlap be-
tween two uniformly chosen pure states. The timescales
for building a k-designs in this context have been stud-
ied in [38], where it was demonstrated that, in the limit
of large local dimension, a geometrical interpretation
similar to the one proposed for entanglement entropies
emerges [32, 39], suggesting that RUCs form approxi-
mate unitary k designs at t ∼ O(Nk) depth. However,
when both t and N are large, we identify a scaling regime
dependent on a single parameter x = N/NTh(t), with a
corresponding family of universal distributions p(w;x),
largely independent of the microscopic details. Here
NTh(t) denotes a volume scale within which complete
scrambling has occurred.

In 1 + 1 dimensions, the universal scaling regime can
be understood by noting that the overlap w naturally has
the form of a two-dimensional partition function and can
thus be expressed as the product of the transfer matrices
in the spatial direction [Fig. 1(a)]. As discussed recently
in [40], the distribution of singular values of such a matrix
product can be studied in the space of replicas, leading
to an effective 1D model with ferromagnetic interactions
in the space of permutations. The PT distribution cor-
responds to the regime where only ferromagnetic vacua
are relevant. In the scaling limit, x controls the den-
sity of diluted domain-walls excitations and universality
emerges. We confirm this picture with heuristical anal-
ysis using the emergence of random matrices known as
Ginibre ensemble, exact analysis of a RUC in the limit of
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FIG. 1. (a) A representation of the overlap wk =

⟨Ψ0|W ′†(t2 = 1)W (t1 = 3)|Ψ0⟩
⊗k

with k = 3 for depth t and
system size L. The transfer matrix is highlighted in red. The
tensor product, u⊗ u∗ ⊗ · · · ⊗ u⊗ u∗, is highlighted in green,
which, upon ensemble-averaging, can be represented as a sum
of operators of permutation states. (b) In the Thouless scal-
ing limit, the overlap E[wk] can be interpreted as the grand
canonical partition function of a dilute gas of domain walls,
corresponding to transpositions connecting two permutations
and each carrying a fugacity L−1

Th. Correspondingly, the size
of each domain is ∼ LTh(t).

large local Hilbert space dimension, and numerics on two
distinct RUCs. We argue that the existence of a scaling
limit generalizes to a spatial dimension d > 1. In this
case, however, the excitations are identified with isolated
defects in the ordered ferromagnetic sea.

Ensembles of pure states. — We define an ensem-
ble of pure states as a distribution obtained acting on the
reference |Ψ0⟩ through unitary operatorsW drawn from a
certain measure by E := {W |Ψ0⟩ ,W ∼ dµ(W )}. Given
an ensemble E , we further define the overlap distribution
as pE(w) = E[δ(w − N| ⟨Ψ|Ψ′⟩ |2]E , where the average
is over |Ψ⟩ , |Ψ′⟩, both drawn independently from E . The
momentsN−kE[wk]E =: F

(k)
E define the frame potentials.

It is easily verified that the frame potentials are minimal
for the uniform distribution of states, associated with the
Haar ensemble EH := {U |Ψ0⟩ | U ∼ Haar[U(N )]}, as-
sociated with the Haar measure over the unitary group
U(N ) of size N [41]. In this case, one has simply

F
(k)
H =

(N+k−1
k

)−1 ∼ k!N−k associated to the PT dis-

tribution pH(w)
N→∞
= e−w with w ∈ [0,∞) [42]. We

are interested in states |Ψ⟩ , |Ψ′⟩ of N q-qits generated
by realisations W (t1),W

′(t2) of a quantum circuit of
depths t1, t2. Since when at least one between t1 and
t2 is large, only the overall depth t = t1 + t2 is rele-
vant (see Fig. 1(a)), we denote the overlap distribution
by p(w;N, t). However, our derivations also apply to the
interesting case t2 = 0, where a time-evolved state is de-
composed in the computational bases, see below.
Ginibre ensemble and universality. — To be-

gin, we consider a one-dimensional chain with N = L
q-dimensional sites. Although the argument applies in a
more general form, it is useful to keep in mind a brick-wall
RUC where each gate ui,i+1(t) acting on the sites i, i+1
at time t is chosen independently. We use the conven-
tion in which one even and odd layer are applied within
a single time step ∆t = 1. In this setting, the overlap
w can be represented graphically as in Fig. 1(a). Upon
averaging the ensemble, the calculation of w reduces to
that of an appropriate partition function, summing up
the states of each bond. It is useful to define a transfer
matrix Gi in the spatial direction, which is the collection
of all gates (and initial states) that act in the temporal
direction on the i-th q-qits (red in Fig. 1(a)). We denote
the product of such transfer matrices by

G = G1G2 . . . GL . (1)

Then, the overlap w can be expressed in terms of the
matrix elements of G: for periodic boundary conditions
(pbc), one has w = |Tr[G]|2, while for open boundary
conditions (obc), w = |ℓ†Gr|2 where ℓ, r are appropriate
boundary vectors whose specific forms are not important.
Gi are statistically uncorrelated matrices for different i-
s, and are of size M(t) × M(t) with M(t) = q4t−2 in
the geometry of Fig. 1(a). Although the specific rela-
tion between M(t) and t is model–dependent, the ex-
ponential growth is generic. In the following, we will
omit time dependence of M unless needed. When both
t and L are large, we end up with a product of a
large number of large matrices, and this is a regime in
which universality can emerge [40, 43–45]. In a coarse-
grained picture, we group a number ℓ of these matri-

ces G̃a := Gaℓ+1Gaℓ+1 . . . G(a+1)ℓ, with G =
∏L/ℓ

a=1 G̃a,
and for large enough ℓ, we can assume that there is no
privileged basis so that rotational invariance emerges.
Since the evolution in the spatial direction under generic
many-body chaotic dynamic is non-Hermitian, the nat-
ural choice is to sample each G̃a from the simplest non-
Hermitian random matrices, the Ginibre ensemble, where
all matrix elements of G̃a are independently drawn com-
plex Gaussian variables with zero average and variance
ν2. In fact, the universality of the Ginibre ensemble has
recently been shown to emerge from the dual transfer ma-
trices associated to generic many-body quantum chaotic
systems [43] and to non-hermitian dynamics due to quan-
tum measurements [40]. To calculate the k-th moment
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of w, we are interested in k copies of G and G∗, and from
Wick’s theorem we have the identity [40]

E[G̃a ⊗ G̃∗
a ⊗ . . .⊗ G̃a ⊗ G̃∗

a] = ν2k
∑
σ∈Sk

|σ⟩⟩⟨⟨σ| , (2)

where E[. . .] denotes the ensemble average, and Sk is the
symmetric group with k elements. To compactly account
for Wick’s contractions, we introduce the permutation
states |σ⟩⟩ ∈ C2Mk according to ⟨⟨α1, ᾱ1, . . . , αk, ᾱk|σ⟩⟩ =∏k

q=1 δαj ,ᾱσj
and α, ᾱ are indices for rows (and columns)

of G̃a and G̃∗
a, respectively. Introducing the transfer ma-

trix in the permutation space as Tσ,σ′ = ν2k⟨⟨σ|σ′⟩⟩ =

(ν2M)kM−d(σ,σ′) with d(σ, σ′) the transposition dis-
tance between permutations, we can write E[G⊗k] =∑

σ,σ′ [TL/ℓ−1]σ,σ′ |σ⟩⟩⟨⟨σ′|. For large M ≫ 1, we can ex-

pand T (σ, σ′) = (ν2M)(δσ,σ′ + M−1Aσ,σ′ + O(M−2)),
where Aσ,σ′ is the adjacency matrix of the transposition
graph, i.e. it equals one if σ and σ′ differ by one trans-
position, and vanishes otherwise. Introducing the Thou-
less length as LTh(t) ≡ M(t)ℓ(t), we define the Thouless
scaling limit where both L and t are large but such that
x ≡ L/LTh(t) is kept constant [46]. In this limit, we
obtain

lim
t,L→∞

x=L/LTh(t)

E[wk] =
∑
σ,σ′

[exA]σ,σ′δ
(bc)
σ,σ′ , (3)

where δ
(bc)
σ,σ′ reduces to Kronecker delta for pbc and to 1

for obc and we used the normalization E[w] = 1 to fix
ν2 = M−1 [47]. The microscopic structure of the under-
lying circuit can only enter the scaling limit in setting
the length scale LTh(t), while the general form of the
moments only depends on the spectrum of the adjacency
matrix A. Expanding in powers of x, one sees that Eq. (3)
admits a simple interpretation as the grand canonical
partition function of a dilute gas of domain walls, corre-
sponding to transpositions connecting two permutations
and each carrying a fugacity ∼ LTh(t)

−1 (Fig. 1(b)).
Since a domain wall can be placed anywhere along the
entire system, we obtain a factor x = L/LTh(t) for each
of them. Finally, the composition of permutations and
the boundary conditions impose selection rules on the al-
lowed sequences of transpositions: e.g., at the n-th order,
for periodic conditions, only closed paths of length n in
the transposition graph are allowed, the number of which
is given by tr[An]. In this perspective, the cost associ-
ated with an elementary transposition can be identified
with the membrane cost associated with the purity for
a depth t, i.e. Π(t) ∼ LTh(t)

−1 [48], thus justifying the
exponential growth of LTh(t) on general grounds.

Random Phase Model (RPM). — To corroborate
the universality derived in Eq. (3), let us now analyze the
problem in the specific example of the RPM, introduced
in [33]. We consider single-site Haar-random unitaries,

u
(1)
i (t), and two-site gates, [u

(2)
j,j+1(t)]ajaj+1,ajaj+1 =

exp[φ
(j)
aj ,aj+1(t)], coupling neighbouring sites via a diag-

onal random phase (aj = 1, 2 . . . , q). Each coefficient

φ
(j)
aj ,aj+1(t) is an independent Gaussian random real vari-

able with mean zero and variance ϵ, which controls the
coupling strength between neighboring spins. Then, in
the brick-wall geometry of Fig. 1(a), we choose gates on

even/odd layers as uj,j+1(t) = u
(2)
j,j+1(t)u

(1)
j (t)u

(1)
j+1(t) or

uj,j+1(t) = u
(1)
j (t)u

(1)
j+1(t)u

(2)
j,j+1(t) respectively, so that

all commuting 2−site gates are applied one after the
other. The model admits straightforward extensions to
arbitrary d > 1 [27, 46]. Constraining the gates u(j)(t)
and φ(j)(t) to be site- or time-independent (or both),
this model gives access to translational invariant and Flo-
quet models, as explored in [33, 43, 46, 49, 50]. Here we
first consider the case where all gates are drawn inde-
pendently in space and time postponing the discussion
of the Floquet case to the end. Also, we consider the
analytically tractable limit q → ∞ at fixed coupling ϵ.
In order to compute the moments of the overlap E[wk],
we consider k copies of the circuit and first consider the

average over single-site random unitaries u
(1)
j (t). Such an

average can be once again expressed in terms of permu-
tation states, using the formula E[u⊗ u∗ ⊗ . . . u⊗ u∗] =∑

σ,τ∈Sk
Wg(στ−1)|σ⟩⟩⟨⟨τ | q≫1∼ q−k

∑
σ∈Sk

|σ⟩⟩⟨⟨σ|, where
Wg(σ) denotes the Weingarten function [51]. Impor-
tantly, in contrast to Eq. (2), permutation states arise
upon ensemble averaging at each group of unitaries lo-
cated at each space-time coordinate, and the contraction
between permutation states occurs in the temporal direc-
tion for each spatial site, i.e. the vertical direction along
a fixed site in Fig. 1(a). The rapid decay of the overlap
⟨⟨σ|σ′⟩⟩ = qk−d(σ,σ′) when q → ∞ forces the permutations
to be the same in time for every fixed j. In other words,
the Haar average at large q leads to a sum over k!L pos-
sible permutations σj at each spatial site j. The choice
of permutations between neighboring sites j, j + 1 leads
to different φ(j) random phase deletions. Specifically, the
moments of the overlap can be expressed as

E[wk]RPM =
∑

σ1,...,σL∈Sk

L−1∏
j=1

[TRPM]σj ,σj+1
δ(bc)σ1,σL

. (4)

where transfer matrix TRPM is obtained by averaging
over all phases between two neighbouring sites. Using
that phases at different times are uncorrelated, we obtain

[TRPM]σ,σ′ = E[m(k)
σ,σ′ ]t, where the coefficient m

(k)
σ,σ′ is the

contribution from the random phase gate in u
(2)
j,j+1(t) at

a given a time slice, and takes the form

m
(k)
σ,σ′ = q−2k

∑
{a},{b}

k∏
j=1

e
i
[
ϕaj,bj

−ϕaσ(j),bσ′(j)

]
, (5)

where the summations runs over ai, bi = 1, 2, . . . , q, and
contain repetitions when two or more indices ai, bi have
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the same value. However, such coincidences can be ig-
nored in the limit of large q, where we arrive at

E[m(k)
σ,σ′ ]RPM = e−ϵ[k−nF(σσ

′−1)] , (6)

where nF(σ) counts the number of fixed points in per-
mutation σ. With these expressions, we can now eval-
uate the moments in Eq. (4) and the frame potential

F
(k)
RPM = q−kLE[wk]RPM. In the limit of large t at fixed

L, the sum is dominated by the situation where all per-
mutations are the same σi = σ independently of i and
one recovers the PT distribution. Additionally, setting
in this case LTh(t) = e2ϵt, we can expand

[TRPM]σ,σ′ = δσ,σ′ +
Aσ,σ′

LTh(t)
+O(LTh(t))

−2 (7)

where A is once again the adjacency matrix of trans-
position graph. Thus, introducing the scaling variable
x = L/LTh(t), from Eq. (4) we recover Eq. (3).
Spectrum of adjacency matrix. — The matrix

Aσ,σ′ = f(σσ′−1) only depends on the difference between
the elements σ, σ′ in Sk. Also, ∀ ν ∈ Sk, f(νσν

−1) =
f(σ), i.e. it depends only on the conjugacy class. We
can see this as a generalization of a circulant Toeplitz
matrix to a general group G. In our case G = Sk, while
the standard case of circulant matrices corresponds to
the cyclic group G = Zk [42]. Any such matrix can
be diagonalised by a generalized Fourier transform, A =
UΛU†, where

Uσ,(ρ,ij) =

√
dim(ρ)

k!
Rρ(σ

−1)ij , (8)

where ρ labels the irreducible representations of Sk,
dim(ρ) is the corresponding dimension and Rρ(σ)ij are
the components of the matrix representing the permuta-
tions σ on ρ. The matrix U is square and unitary as a
consequence of the known identity

∑
ρ∈Irr(Sk)

dim(ρ)2 =

k!, where Irr(Sk) are the irreducible representations of
Sk. When applying Eq. (8), one has that the eigenval-
ues of A are independent of i, j and are thus in one-
to-one correspondence with each irreps ρ of Sk, with a
degeneracy dim(ρ)2. Their explicit form can be deduced
from Eq. (8) and reads [47]

ν(ρ) =

(
k

2

)
χρ(1

k−221)

χρ(1k)
=

1

2

∑
i

[
ρ2i − (ρti)

2
]
. (9)

where χρ(µ) denotes the character of the irreps ρ on the
conjugacy class µ. In the second equality, we further sim-
plified the expression using the identification between ir-
reps of Sk and integer partitions of k. Thus, we denote
ρ = (ρ1, ρ2, . . .), with

∑
i ρi = k and by ρt the dual parti-

tion, obtained exchanging rows and columns in the corre-
sponding Young diagram, with ρti = #{i|ρi ≥ i}. Then,
we can use Frobenius formula to express the characters
and derive the last form [52].

We can now evaluate the scaling functions correspond-
ing to the moments (3). Observe that ρ = (k) cor-
responds to the trivial one-dimensional representation,
∀σ ∈ Sk, R(k)(σ) = 1. It follows that for obc, we are
simply evaluating exA on its maximal eigenvector, lead-
ing to

E[wk]
obc
= k!exν(ρ=(k)) = k!exk(k−1)/2 , (10a)

E[wk]
pbc
= tr[exA] =

∑
ρ⊢k

dim(ρ)2exν(ρ) , (10b)

where the last sum is over ρ integer partition of k.
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FIG. 2. Comparison of the distribution of y = logw between
numerical simulation and the theoretical prediction (black
dashed line) for different values of x and increasing value of
the depth t, which is indicated with darker shades of the same
color. For each t, the value of L ∼ LTh(t) (shown in the insets)
is chosen so that E[y] matches the theoretical prediction. (a):
The pbc, numerical simulation of the RPM at q = 2, ϵ = 1.
For x = 0, we show the pairs (t, L) ∈ {(7, 8), (11, 8), (15, 8)};
for x = 1, (t, L) ∈ {(3, 6), (5, 9), (10, 17)}; for x = 1.5,
(t, L) ∈ {(3, 8), (5, 11), (8, 18)}. The theoretical distribution
of y was generated for w = w0 g using (12) and for a sample
size Nsample = 106 at n = 300. (b): The obc, numerical sim-
ulation for a brick-wall model (BWM) where the local 2-site
gate is chosen independently from the Haar distribution at
q = 2. We show data for x = 0, (t, L) ∈ {(1, 6), (3, 6), (4, 6)};
for x = 1, (t, L) ∈ {(1, 8), (3, 40), (4, 88)}; for x = 1.5,
(t, L) ∈ {(1, 11), (2, 26), (3, 57)}. The theoretical distribution
P (y) was created by the use of (11). Each numerical distri-
butions were obtained from a sample size Nsample = 1.5×106.

Probability distributions of the overlap. — Using
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the information of the moments in Eq. (10), we can now
extract the overlap distribution w. To do so, it is useful to

write w
in law
= w0g as the product of two independent ran-

dom variables, with w0 distributed according to the PT
pH(w0), so that E[wk

0 ] = k!. The residual random variable
g has a distribution that depends on the boundary condi-
tions. For obc, one recognises that Eq. (10a) is obtained
if g is drawn from the Lognormal(µ = −x/2, σ2 = x).
This implies the distribution in the scaling limit

pobc(w;x) =

∫
du e−u2/2+x

√
2π

exp
[
−weu

√
x+ 3x

2

]
. (11)

For pbc, the distribution of g leading to Eq. (10b) cannot
be written down in simple terms. In [40], its generating
function was expressed in terms of a determinant. Alter-
natively, in [42] (see also [53–55]) we show that

gpbc
in law
= lim

n→∞

1

n
tr
[
e
√
xnH+xD

]
, (12)

where H a standard n × n GUE random matrix
with distribution P (H) ∝ exp[−ntr[H2]/2] and D =
diag(−1/2,−3/2, . . . ,−(2n − 1)/2). This form can be
used to efficiently sample the distribution of w = w0g.
In Fig. 2, we compare the theoretical prediction for both
obc and pbc with numerical simulations of two different
finite-q random circuits with excellent agreement.
Generalisation and discussion. — Firstly, an in-

teresting extension are Floquet circuits [4, 33], where the
same gates are repeated in time. In this case, a strong
quenched spatial disorder can lead to many-body local-
ization (MBL), where thermalization and scrambling are
hindered [56–58]. However, at weak disorder, one can
still be in a thermalising phase but where weak links play
an important role affecting transport [59] and entangle-
ment properties [60]. Following the arguments of [60],
we expect the scenario in Fig. 1(b) to change because
it is favorable to place domain walls in correspondence
of weak links. However, after coarse graining, this only
modifies the growth logLTh(t) ∝ tα, where the exponent
α < 1 changes continuously with disorder strength. That
the same distributions also apply to the Floquet case is
confirmed by our simulations away from MBL [42].

Secondly, instead of considering the overlap between
two different realizations of the circuit, we can con-
sider the expansion of the state evolved by the cir-
cuit in the strings of the computational basis w =
| ⟨a = a1, . . . , aL|Ψ⟩ |2, which corresponds to taking t2 =
0, t = t1 and LTh(t = t1). In this case, the distribution
of w on the various string a will still be described by
the universal distributions we have identified here. This
result is important because of its relevance in concrete
experiments. For example, in [18, 61], the statistical
distribution of the a-strings of a state evolved from a
random circuit was used in an attempt to demonstrate
quantum supremacy: a measure of the fidelity of the ex-

periment was obtained precisely by assuming that w fol-
lows the PT distribution. However, here we showed that
in the scaling regime the distribution is modified while
remaining universal. For instance, the participation en-
tropy [62–65] deviates for x > 0 from the PT one as
−E[w logw]obc = 1− γ + x, with γ the Euler’s constant.

Thirdly, large-q analysis applied to RPM, suggests that
even for d > 1 the moment E[wk] is described by map-
ping to a model in d-dimensions in which local degrees of
freedom are permutations and the ferromagnetic Boltz-
mann weight J(t) between sites grows exponentially with
t. At large times, there exist k! perfectly ordered ground-
states. The excitations on top of these correspond to
isolated defects [46], in which a site differs by a single
transposition from its neighbors. Since a defect can be
placed anywhere in volume N = Ld and its presence
breaks 2d ferromagnetic bonds, the scaling limit in this
case corresponds to x = N/Nth(t), with Nth(t) = J(t)2d.
There are

(
k
2

)
choices of transpositions for each defect

and summing over their number, we arrive at E[wk]d>1 =
k!
∑∞

n=0(k(k − 1)/2)nxn/n! = k!ek(k−1)x/2. This result
coincides with Eq. (10a) and leads again to Eq. (11), al-
though its origin is different in that at d > 1 the excita-
tions are not domain walls but isolated defects. Numeri-
cal verification of this result is difficult, but recent quan-
tum computing platforms offer a promising framework
for observing our predictions including higher d > 1.
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body localization, Annalen der Physik 529, 1700169
(2017), 1700169.

[59] D. J. Luitz and Y. B. Lev, The ergodic side of the many-
body localization transition, Annalen der Physik 529,
1600350 (2017).

[60] A. Nahum, J. Ruhman, and D. A. Huse, Dynamics of
entanglement and transport in 1d systems with quenched
randomness (2017), arXiv:1705.10364 [cond-mat.dis-nn].

[61] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush,
N. Ding, Z. Jiang, M. J. Bremner, J. M. Martinis, and
H. Neven, Characterizing quantum supremacy in near-
term devices, Nature Physics 14, 595–600 (2018).
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Supplementary Material

Universal distributions of overlaps from unitary dynamics
in generic quantum many-body systems

In this supplementary material we provide additional details about:

A. Haar ensemble

B. Models

C. Diagonalisation of the transfer matrix

D. Numerical simulations

Appendix A: Haar ensemble

The Haar state ensemble is defined as EH := {U |Ψ0⟩ | U ∼ Haar[U(N )]}. To evaluate observables relating to the
Haar ensemble, we recall the formula for the ensemble average of the moments of a Haar-random unitary matrix U ,

E
[
Ui1j1 . . . UinjnU

∗
k1,l1 . . . U

∗
km,lm

]
= δn,m

∑
σ,τ∈Sn

Wg(στ−1)

n∏
µ=1

δiµ,kσ(µ)
δjµ,lτ(µ)

, (SA.1)

where Wg(σ) is the Weingarten function [51]. Sn is the permutation group of n objects. δi,j is the Kronecker delta
function. The Weingarten function Wg(σ) simplifies as the dimension of the Haar-random unitaries, N , increase:

Wg(σ)
N→∞
=

∏
i

N 1−|Ci(σ)|(−1)|Ci(σ)|−1c|Ci(σ)|−1 , (SA.2)

where Ci is the i-th cycle in the cycle-decomposition of σ, and |C| is the size of the cycle C, i.e. the number of elements
it contains. cm = (2m)!/m!(m+ 1)! is the Catalan number.
The k-th moment of the density matrix can now be evaluated as,

ρ
(k)
Haar ≡ ρ(k)[EHaar] =

∑
σ,τ∈Sk

Wg(στ−1) Tr[τ (|Ψ⟩ ⟨Ψ|)⊗k
]σ (SA.3)

=
∑
τ∈Sk

Wg(τ)
∑
σ∈Sk

σ =

∑
σ∈Sk

σk

N (N + 1) . . . (N + k − 1)
, (SA.4)

where σ acts on the k-replicated space. In the third equality, we have used the fact that Tr[τ (|Ψ⟩ ⟨Ψ|)⊗k
] = 1 due to

normalization of the density matrix. In the last equality, we evaluated the summation of Weingarten functions Wg(σ)
over all permutations σ ∈ Sn, which can be obtained by considering the normalization condition,

1 = Tr[ρ
(k)
Haar] =

∑
τ

Wg(τ)
∑
σ

Tr[σ] =
∑
τ

Wg(τ)
∑
σ

N r(σ) =
∑
τ

Wg(τ)N (N + 1) . . . (N + k − 1) , (SA.5)

where r(σ) denotes the number of cycle in permutation σ, and in the last equality we used standard combinatorial
arguments to count the total number of cycles in permutations. Similarly, the frame potential can be evaluated as,

F
(k)
Haar ≡ F (k)[EHaar] =

k!

N (N + 1) . . . (N + k − 1)

N→∞
=

k!

N k
. (SA.6)

Appendix B: Models

In this work, we focus on the quantum circuits with the brick-wall geometry as models of quantum many-body
systems. Such models are defined with an evolution operator given by

W (t) =

t∏
s=1

W̃ (s), W̃ (s) =
⊗

j∈2Z+smod 2

uj,j+1(s) . (SB.1)
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For spatial-temporal random circuits, the two-site gates uj,j+1(s) are independent random variables drawn from the
same ensemble for different i and s. For Floquet model, uj,j+1 are identical for different s.

We consider 2 generic many-body quantum chaotic models below. For the brick-wall model (BWM) [27], ui,i+1(s)
are independent random matrices drawn according to

uBWM
j,j+1 (s) ∈ CUE

(
q2
)
, (SB.2)

where CUE (n) is the circular unitary ensemble of unitaries of size n. For completeness, we repeat the definition
of the random phase model here. For the random phase model (RPM) [33], we consider single-site Haar-random

unitaries, u
(1)
i (t), and two-site gates, [u

(2)
j,j+1(t)]ajaj+1,ajaj+1 = exp[φ

(j)
aj ,aj+1(t)], coupling neighbouring sites via a

diagonal random phase (aj = 1, 2 . . . , q). Each coefficient φ
(j)
aj ,aj+1(t) is an independent Gaussian random real variable

with mean zero and variance ϵ, which controls the coupling strength between neighboring spins. Then, in the brick-wall
geometry, ui,i+1(s) are independent random matrices drawn according to

uRPM
j,j+1(s) =

{
u
(2)
j,j+1(s)u

(1)
j (s)u

(1)
j+1(s) , j even ,

u
(1)
j (t)u

(1)
j+1(t)u

(2)
j,j+1(t) , j odd ,

(SB.3)

so that all commuting 2−site gates are applied one after the other.

Appendix C: Diagonalisation of the transfer matrix

An n-by-n matrix M is a Toeplitz matrix [66] if Mij = m(i − j) with i, j = 1, 2, . . . , n for some function m. As
explained in the main text, given any function f : G → C, we can generalise the notion of the Toeplitz matrix to an
arbitrary group G introducing a |G| × |G| matrix (with |G| the order of the group G):

Fσ,σ′ = f(σσ′−1) , ∀ σ, σ′ ∈ G . (SC.1)

Similarly to the case of standard Toeplitz matrices, the spectrum can be investigated using a generalized notion of
the Fourier transform [66]. Given a finite group G, the group’s representations ρ : G → GL(dρ,C) with dimension dρ,

and a function f : G → C, we define its Fourier transform f̂(ρ) as a function over the space of representations of G
which reads

f̂(ρ) =
∑
σ∈G

f(σ)ρ(σ) . (SC.2)

The inverse of this relation can be shown to be given by [67]

f(g) =
1

|G|
∑

ρ∈Irr(G)

dim(ρ) Tr[ρ(g−1)f̂(ρ)] , (SC.3)

where the sum is restricted to the irreducible representation Irr(G). The nice property of this Fourier transform is
that it converts convolutions into product. In other words for two functions h, g : G → C, one gets

h(σ) =
∑
σ′∈G

f(σσ′−1)g(σ′) ⇒ ĥ(ρ) = f̂(ρ)ĝ(ρ) . (SC.4)

Now let’s consider an eigenvector of the matrix F in Eq. (SC.1). Labelling its components as c(σ) for any σ ∈ G, it
must satisfy ∑

σ′∈G
f(σσ′−1)c(σ′) = λc(σ) . (SC.5)

Taking the Fourier transform of both side, this implies

f̂(ρ)ĉ(ρ) = λĉ(ρ) , ∀ρ ∈ Irr(G) (SC.6)
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Note that each side of this equation are matrices of size dim(ρ) × dim(ρ). To solve this equation, let’s write the

spectral decomposition of the matrix f̂(ρ) in braket notation:

f̂(ρ) =

dim(ρ)∑
j=1

λj(ρ) |j⟩ ⟨j| . (SC.7)

Then, we see that for any ρ̃ ∈ Irr(G) and any pair i, j ∈ {1, . . . ,dim(ρ)}, the following choice of ĉ(ρ) provides a solution
of Eq. (SC.6)

ĉ(ρ) ≡ ĉ(i,j,ρ̃)(ρ) =

{
0 , ρ ̸= ρ̃ ,

|i⟩ ⟨j| , ρ = ρ̃ ,
(SC.8)

where |i⟩ and ⟨j| refer respectively to the right and left eigenvectors of f̂(ρ). Once plugged in Eq. (SC.6), it leads to

f̂(ρ)ĉ(i,j,ρ̃)(ρ) = λi(ρ̃)ĉ
(i,j,ρ̃)(ρ) . (SC.9)

This shows that the spectrum of the matrix F is given by the λi(ρ) for ρ ∈ Irr(G) and i = 1, . . . ,dim(ρ) with a
degeneracy dim(ρ), labeled by the index j. This provides a full spectral decomposition, since one has the known
equality ∑

ρ∈Irr(G)

dim(ρ)2 = |G| . (SC.10)

Now let us consider the case where the function f is a class function, i.e. it is invariant under the group conjugation

f(ωσω−1) = f(σ) , (SC.11)

for every ω, σ ∈ G. In this case, one can see that

[f̂(ρ), ρ(σ)] = 0 , ∀ σ ∈ G . (SC.12)

Indeed, by definition we have

f̂(ρ)ρ(σ) =
∑
σ′∈G

f(σ′)ρ(σ′)ρ(σ) =
∑
σ′∈G

f(σ′)ρ(σ′σ) =
∑
σ′′∈G

f(σ′′σ−1)ρ(σ′′) =

=
∑
σ′′∈G

f(σ−1σ′′)ρ(σ′′) =
∑

σ′′′∈G
f(σ′′′)ρ(σσ′′′) = ρ(σ)

∑
σ′′′∈G

f(σ′′′)ρ(σ′′′) = ρ(σ)f̂(ρ) . (SC.13)

Because of Schur’s lemma, if ρ ∈ Irr(G), f̂(ρ) must be a multiple of the identity

f̂(ρ) = λ(ρ)1 , (SC.14)

and therefore in the spectral decomposition Eq. (SC.7), λj(ρ) = λ(ρ) for all j’s. For generalised Toeplitz matrices
obtained by class functions, the eigenvalues are labelled by the irreducible representations ρ and each has a degeneracy
given by dim(ρ)2. We can finally obtain an equation for λ(ρ) by taking the trace of both sides in Eq. (SC.2) and
using (SC.14)

Tr[f̂(ρ)] = dim(ρ)λ(ρ) =
∑
σ∈G

f(σ)χρ(σ) , (SC.15)

where χρ(σ) = Tr[ρ(σ)] is the character of the representation ρ. Since both the function f and the character are class
function, we can rewrite the sum as a sum over conjugacy classes Cl(G)

λ(ρ) =
∑
σ∈G

f(σ)χρ(σ)

χρ(1)
=

∑
µ∈Cl(G)

f(µ)χρ(µ) dim(µ)

χρ(1)
, (SC.16)
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where we used that χρ(1) = dim(ρ), since the representation of the neutral element is the dim(ρ) dimensional identity
and we denote as dim(µ) the size of the conjugacy class µ. As a consistency check, we can look at the trivial case
where f(µ) = 1 irrespectively of µ. In this case, from Eq. (SC.16), we have

λ(ρ) =
∑
σ∈G

χρ(σ)

χρ(1)
= δρ,1|G| , (SC.17)

where we indicate as ρ = 1 the trivial one-dimensional representation where all elements are sent to 1. Eq. (SC.17)
from the orthogonality of the characters

1

|G|
∑
σ∈G

χρ(σ)χρ′(σ) = δρ,ρ′ , (SC.18)

choosing ρ′ = 1. Eq. (SC.17) is consistent with the fact that for f = 1, the matrix F reduces to a matrix made of 1’s,
which thus has only one non-vanishing eigenvalue and which equals the size of the matrix itself, i.e. |G|.

Appendix D: Derivation of Eq. (12) in the main text

We start using the standard results of [55] about the spectrum of a random matrix with an external deterministic
source. Consider a matrix M distributed according to

Pro(M) = exp[−nTr[V (M)−AM ]] , (SD.1)

where V is the potential and A is a deterministic matrix that we can assume to be diagonal without loss of generality
A = diag(a1, . . . , an). Then, the eigenvalues {w1, . . . , wn} of M follow the joint probability distribution

Pro(w1, . . . , wn) =
1

Zn
det(wk−1

α )nα,k=1 det(e
nakwα)nα,k=1

n∏
α=1

e−nV (wα) , (SD.2)

where the constant Zn enforces normalisation. For Eq. (12), one sets

M =
√
xnH + xD , (SD.3)

where H and D are as defined in the main text, which is equivalent to choosing in Eq. (SD.2)

V (M) =
M2

2xn
, A =

D

n
, (SD.4)

leading to

Pro(w1, . . . , wn) =
1

Zn
det(wk−1

α )nα,k=1 det(e
−(k−1/2)wα)nα,k=1e

−
∑n

α=1

w2
α

2x . (SD.5)

We are interested in computing the moments of Tr[eM ], i.e.

Ωk(x) :=

〈(∑
α

ewα
)k〉

=

∫
dw1 . . . dwn Pro(w1, . . . , wn)

(∑
α

ewα

)k

. (SD.6)

The calculation will be analogous to [53], but we report it here with the appropriate notation and normalisations for
convenience. As a proxy for the calculation of Ωk(x), we first introduce Schur’s polynomials. To an integer partition
ρ = (ρ1, . . . , ρn) of the integer k =

∑n
j=1 ρj , with ρ1 ≥ ρ2 ≥ . . . ≥ ρn ≥ 0, one associates the corresponding Schur

polynomial in n variables y1, . . . , yn via [68]

sρ(y) :=
det(y

ρj+n−j
α )nj,α=1

det(yk−1
α )nk,α=1

=
det(y

hj
α )nj,α=1

det(yk−1
α )nk,α=1

, (SD.7)
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where we denote hj ≡ ρj + n− j. Schur polynomials are symmetric and homogeneous of degree k. Setting yα = ewα

and using the Vandermonde determinant formula

det(yk−1
α )nα,k=1 =

∏
α<β

(yβ − yα) , (SD.8)

we can deduce

(−1)n(n−1)/2e(n−1/2)
∑

α wα det(e−(k−1/2)wα)nα,k=1 = det(e(k−1)wα)nα,k=1 , (SD.9)

which allows us to express the average as

⟨sρ(y = ew)⟩ = (−1)n(n−1)/2

Zn

∫
dw1 . . . dwn det(w

k−1
α )nα,k=1 det(e

wα(hj−n+1/2))nj,α=1e
−

∑n
α=1

w2
α

2x . (SD.10)

We can use Andreief identity [69] to express it in terms of a single determinant

⟨sρ(y)⟩ =
(−1)n(n−1)/2(2πx)n/2n!

Zn
det(Ik,ρj−j+1/2)

n
k,j=1 , (SD.11)

where we defined

Ik,ℓ =

∫ ∞

−∞

dw√
2πx

wk−1eℓw−w2

2x = ∂k−1
µ

[
exµ

2/2
]∣∣∣

µ=ℓ
=

(
−i

√
x

2

)k−1

eℓ
2x/2Hk−1

(
iℓ
√
x/2
)
, (SD.12)

and in the last equality we used the Hermite polynomials Hp(z) = (−1)pez
2

∂p
z [e

−z2

]. Note that in these conventions,
the leading coefficient is Hp(z) = 2pzp +O(zp−1). Thus, by using the properties of determinants, we can combine the
rows to extract only the leading coefficient out of each Hermite polynomials, obtaining

det[Ik,ρj−j+1/2]
n
k,j=1 = xn(n−1)/2 exp

x
2

∑
j

(ρj − j + 1/2)2

 det[(ρj − j + 1/2)k−1] . (SD.13)

This last determinant is once again a Vandermonde one which can be expressed via (SD.8). We can now plug this
back in Eq. (SD.11) and fix the normalization Zn using that for the trivial partition of 0, ρ1 = ρ2 = . . . ρn = 0, so
that sρ=0(y) = 1 identically. We finally obtain

⟨sρ(y)⟩ = exp

x
2

∑
j

(ρj − j + 1/2)2 − (j + 1/2)2

 sρ(1) , (SD.14)

where we recognized the equality ∏
1≤j<j′≤n

ρj − ρj′ − j + j′

j′ − j
= sρ(y1 = 1, . . . , yn = 1) , (SD.15)

which expresses the number of semistandard Young diagram of shape ρ and n entries [68]. Eq. (SD.14) is consistent
with the fact that for x = 0, the distribution (SD.5) reduces to Pro(w1, . . . , wn) =

∏
α δ(wα) as the matrix M vanishes

identically. Then, using the identity [68] ∑
j

(j − 1)ρj =
1

2

∑
i

ρtj(ρ
t
j − 1) , (SD.16)

with ρt the dual partition of ρ, we obtain that

1

2

∑
j

(ρj − j + 1/2)2 − (j + 1/2)2 = ν(ρ) , (SD.17)

as defined in Eq. (9). Now, we can relate the average of Schur polynomials to Mk(x) using (see Eq. 3.10 in [70])(∑
α

yα

)k
=
∑
ρ⊢k

dim(ρ)sρ(y) ⇒ Mk(x) =
∑
ρ⊢k

dim(ρ)exν(ρ)sρ(1) . (SD.18)
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Finally, we consider the limit of large n. We have the standard identity [68]

lim
n→∞

sρ(1)

nk
=

dim(ρ)

k!
, (SD.19)

which leads to the final result employed in the main text

E(gk) = lim
n→∞

Mk(x)

nk
=

1

k!

∑
ρ⊢k

dim(ρ)2exν(ρ) . (SD.20)

Appendix E: Numerical simulations

In this section we provide additional numerical results on the temporal-random and Floquet variations of two
models, RPM and BWM, defined in Appendix B.

1. Temporal-random circuits

In the main text, we have demonstrated the convergence of the RPM, BWM in the pbc and obc cases. In this section,
we further validate our findings by showcasing their consistency with the theoretical prediction in the complementary
boundary conditions as demonstrated in Fig. S1. Fig. S2 serves to explicitly confirm the universality of the Thouless
scaling limit as predicted by our theoretical framework. The numerical results in this paper were obtained in the
following way:

• RPM : The simulation was carried out in the time direction for systems up to maximum size Lmax = 20 and up
to maximum time tmax = 20 with an effective coupling strength ϵ = 1 and q = 2. We computed the states of
|Ψ(t)⟩ = W (t) |Ψ0⟩, which in turn were used to generate the ensemble of w = N| ⟨Ψ|Ψ′⟩ |2 for a sample size of
Nsample = 1.5× 106.

• BWM : Similarly, we obtained the ensemble w using the same methodology as for the RPM with q = 2,
Lmax = 20, tmax = 20, but with employing the unitary circular ensemble (CUE) for the local gate uj,j+1(t).
The BWM poses a greater numerical challenge due to the rapid growth of LTh(t) over time, as observed in
Fig. S1 and Fig. 2. To address this, we employed the spatial transfer matrix method for simulating ⟨Ψ|Ψ′⟩ with
Lmax = 120 and tmax = 5. This method was specifically applied for the obc case, as the pbc scenario necessitates
even more demanding computations, where we reached up to tmax = 2.

The theoretical distributions of the random variable y = logw were found using (11),(12) for obc and pbc, respectively.
This analysis was carried out for Nsample = 106 at x = 0, 0.5, 1, 1.5. Fig. S3, illustrates that in the obc scenario, the
distribution exhibits robust n− convergence at n = 300, which was utilized for numerical comparison. The Thouless
length LTh(t) in our simulations was derived as LTh(t) = Lint(t)/x. Here, Lint(t) denotes the system size at which the
numerical estimation of the average of E[y]sim(L = Lint(t), t) matches the theoretical prediction E[y]RPM/BWM for a
specific time t and value of x. The fact that the LTh(t) length estimates obtained by this procedure give close values
for different x gives us strong confidence in the validity of the approach.
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FIG. S1. Convergence of the numerical distributions (colored lines) to the theoretical ones (black-dashed line). (a): The
obc numerical simulations of the RPM. For x = 0, we provide data for (t, L) ∈ {(10, 6), (15, 6), (20, 6)}; for x = 1, (t, L) ∈
{(3, 8), (5, 10), (10, 19)}; and for x = 1.5, (t, L) ∈ {(3, 10), (5, 13), (7, 18)}. (b): Pbc numerical simulations for the BWM at q = 2
and up to Lmax = 20, tmax = 20. We provide data for x = 0 at (t, L) ∈ {(3, 15), (5, 15)}; for x = 0.5 at (t, L) ∈ {(1, 5), (2, 10)};
for x = 1 at (t, L) ∈ {(1, 7), (2, 16)}.
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FIG. S2. Convergence of both of the RPM (blue curves) and BWM (coloured triangles) models to the same scaling limit
(black dashed curve) for x = 1. (a) The obc numerical simulations of RPM at (t, L) ∈ {(3, 8), (5, 10), (10, 19)} and of BWM at
(t, L) ∈ {(1, 8), (3, 40), (4, 88)}; (b) The pbc numerical simulations of RPM at (t, L) ∈ {(3, 6), (5, 9), (10, 17)} and of BWM at
(t, L) ∈ {(1, 7), (2, 16)}.
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FIG. S3. The convergence in n for the pbc theoretical prediction on P (y), generated using (12). The lines of the same colour
correspond to n = {10, 25, 50, 100, 150} from lighter to darker shade, with the black dashed line corresponding to n = 300.
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2. Floquet circuits

Here we present our numerical findings concerning Floquet circuits, where the local gate uj,j+1(s) = uj,j+1 are
independent of time step s for both the RPM and BWM models. Fig. S4 illustrates the convergence of the Floquet
BWM to our theoretical predictions, while the Floquet RPM at q = 2 does not show convergence to our theoretical
predictions. This observation aligns with prior works [33, 71], which suggests that the q = 2 Floquet RPM displays
characteristics of a many-body localized (MBL) phase, except at large effective coupling ϵ. In the MBL, we do not
expect the Thouless length to grow unbounded and exponentially fast with time t (see inset of Fig. S4(a)), thus
invalidating the coarse-grained picture G̃a of the transfer matrix in the spatial direction.
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FIG. S4. The numerical distributions for the Floquet circuits (a): RPM with obc, q = 2, ϵ = 1, Lmax = 20, and tmax = 20. We
present the distributions for x = 0 at (t, L) ∈ {(5, 8), (10, 8), (20, 8)}; for x = 1.5 at (t, L) ∈ {(11, 11), (13, 14), (15, 17)}. (b)
BWM with obc, q = 2 for x = 0 at (t, L) ∈ {(1, 6), (3, 6), (5, 6)}; for x = 1 at (t, L) ∈ {(1, 8), (3, 19), (4, 80)}; for x = 1.5 at
(t, L) ∈ {(1, 11), (3, 55), (4, 116)}.
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