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ABSTRACT: The SU(2)r, x U(1)y invariance of the Standard Model Effective Field Theory
(SMEFT) predicts multiple restrictions in the space of Wilson coefficients of U(1).y, invari-
ant effective lagrangians such as the Low-energy Effective Field Theory (LEFT), used for
low-energy flavor-physics observables, or the Higgs Effective Field Theory (HEFT) in uni-
tary gauge, appropriate for weak-scale observables. In this work, we derive and list all such
predictions for semileptonic operators up to dimension 6. We find that these predictions
can be expressed as 2223 linear relations among the HEFT /LEFT Wilson coefficients, that
are completely independent of any assumptions about the alignment of the mass and flavor
bases. These relations connect diverse experimental searches such as rare meson decays,
high-pr dilepton searches, top decays, Z-pole observables, charged lepton flavor violating
observables and non-standard neutrino interaction searches. We demonstrate how these
relations can be used to derive strong indirect constraints on multiple Wilson coefficients
that are currently either weakly constrained from direct experiments or have no direct
bound at all. These relations also imply, in general, that evidence for new physics in a
particular search channel must be accompanied by correlated anomalies in other channels.
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1 Introduction

The Standard Model Effective Field Theory (SMEFT) [1-4] is a model-independent way to
incorporate the effects of beyond Standard Model (BSM) physics at low energies. It mod-
ifies the Standard Model SM lagrangian by the addition of all possible higher dimensional
operators respecting the SM symmetries:

1
a:£SM+EZc§6>0§6)+---, (1.1)

where A is the cut-off scale, typically of the order of TeV or higher. Here, (’)Z(d)

(d)

i

represent

the d-dimensional BSM operators and C; ™ represent the corresponding Wilson coefficients



(WCs). We assume here that the new physics preserves baryon and lepton numbers and
therefore do not include dimension-5 operators. The ellipsis represents higher order oper-
ators with dimension > 6.

SMEFT is manifestly invariant under SU(3)c x SU(2)r, x U(1)y, the SM gauge sym-
metry. As a consequence, there are specific relationships among different flavor observ-
ables. For instance, the SMEFT requirement that the up-type and down-type left-handed
fermionic fields should arise from SU(2), doublets implies relations among flavor observ-
ables probing the up sector and those probing the down sector. In this work, we initiate
a systematic derivation of such relations, beginning with the semileptonic processes in this
article.

In flavor physics, effective field theories (EFT) have long served as a standard frame-
work to parameterize the effects of heavy new physics. However, for most flavor physics
processes, the experimental energy scale is at or below the mass of the b quark; this includes
weak decays of mesons, neutral meson mixing, 7 decays, etc. The relevant EFT at these
energies is the so called Low-energy Effective Field Theory (LEFT)! [9], which assumes
only the SU(3)¢c X U(1)em invariance and not the full SU(3)¢ x SU(2) x U(1)y invariance
of SM.

The flavor structure of new physics (NP) can also be probed at higher scales, for in-
stance, in flavor-violating decays of the Z, W=, and the Higgs boson h, via flavor-violating
production or decay of the top quark ¢, or by constraining the Drell-Yan processes initi-
ating from a flavor off-diagonal diquark state. In order to include both high-energy and
low-energy observables, one of course needs to write all possible SU(3)c x U(1)¢p, invariant
operators, as in LEFT, but terms involving the top quark, Higgs boson and electroweak
bosons also need to be included. An appropriate framework that can encompass both,
low-energy flavor observables as well as this second class of processes involving heavier
SM states, is the so-called Higgs Effective Field Theory (HEFT) [10-12]. This is a more
general framework than SMEFT and also includes scenarios where the EW symmetry is
realized non-linearly. In the unitary gauge, it leads to a lagrangian involving all possible
SU(3)c x U(1)er, invariant operators. Given the HEFT lagrangian, it is possible to de-
rive the corresponding LEFT lagrangian by simply integrating out the heavier SM states
W, Z, h and t.

For a given set of processes, a general parametrization of possible BSM deviations
assuming only SU(3)¢ X U(1).y, invariance gives rise to many more free parameters up
to a given order than the number of SMEFT WCs to that order. This is simply because
the former does not assume the full SU(3)c x SU(2)r, x U(1)y invariance of SM. This
situation has been schematically presented in Fig. 1 where SMEFT can be seen to be
a subset of the more general HEFT. Within this region satisfying SMEFT assumptions,
the smaller number of free parameters implies relationships among the WCs of HEFT.
These relationships can be thought of as predictions of SMEFT at a certain order; these
predictions can be broken only by violating the basic underlying assumptions of SMEFT.

An apparent obstacle in deriving these relations is that, while SMEFT is written in

'LEFT is sometimes referred to as weak effective field theory (WET or WEFT) in literature [5-8].
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Figure 1: Schematic representation of EFTs above and below the electroweak scale. UV4f
represents the subset of SMEFT where the BSM physics only has four-fermion operators.

the flavor basis, HEFT or LEFT operators have to be written in the mass basis if we
wish to connect them to physical observables. The equations connecting HEFT Wilson
coefficients in the mass basis to SMEFT Wilson coefficients in the flavor basis, thus, contain
elements of the rotation matrices of the left-handed and right-handed up-type and down-
type fermions, which cannot be fixed by experiments. We show, however, that only the
measurable elements of the Cabbibo-Kobayashi-Maskawa (CKM) quark-mixing matrix and
the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) lepton-mixing matrix appear in the final
relations among HEFT WCs. This allows us to derive the implications of SMEFT on
flavor physics observables in a way that is completely independent of assumptions about
the alignment of the flavor and the mass bases, often referred to as UV flavor assumptions.

In this work, we consider the 3240 semileptonic four-fermion operators in HEFT that
get contributions from the 1053 SMEFT operators, giving rise to 2187 constraints. In addi-
tion, we consider 144 HEFT operators that can contribute to low-energy flavor observables
via the exchange of Z, W* and h bosons. In SMEFT, these arise from 108 independent
operators, thus implying 36 constraints in the HEFT space. We derive all these 2223 con-
straints and express them as analytic relations independent of any UV flavor assumptions.

Some other recent studies have also considered the implications of the SU(2), x U(1)y
invariance of SMEFT on flavor observables [13-27]. To the best of our knowledge, how-
ever, the present work is the first study to comprehensively derive and list all the 2223
analytic relations relevant for semileptonic processes (see, however, Ref. [16, 19, 20] where
a subset of the above relations has been presented.) Our approach also makes it clear that
these implications can be obtained and presented in a way that is free from all UV flavor
assumptions. A similar approach has been used to derive SMEFT predictions in Higgs
physics in Ref. [28, 29].



The SMEFT predictions derived in this work are expressed as linear relationships
among SU(3)c X U(1)en invariant BSM couplings in the mass basis. These relationships
can be directly translated to exact relations among experimental observables. As we will
see, these relations connect diverse experimental searches: low-energy flavor observables
in different sectors such as kaon, B-meson, charm and 7-decays, the Drell-Yan process
at high-pr, top production and decay channels, Z-decays, and searches for non-standard
neutrino interaction. These relationships thus allow us to utilize experimental limits on a
set of well-constrained observables to put bounds on other, otherwise poorly constrained,
observables. Our work demonstrates that indirect constraints on many WCs — such as
those related to dd — v, u; — ujvv and top decays — obtained in the above manner,
would surpass direct bounds.

Another crucial implication of these relations among WCs is that, in general they
disallow an isolated non-vanishing WC. This is because a nonzero WC will, via the linear
relations, imply a nonzero value for multiple other WCs. This indicates that deviations
from SM would typically not appear in isolated channels. For instance, it is known that the
observed excess in B — Kvv branching fraction can be explained by a nonzero WC for the
operator involving the transition b — svrv. We show that this would imply non-vanishing
values for WCs involving processes such as b — clvy, b — uwlyy , t — cue, t — upue, ete.

While the SMEFT predictions we derive are completely independent of UV flavor as-
sumptions, we find that as far as phenomenological implications are concerned, the sharpest
conclusions can be drawn in an important class of models where the dominant new physics
effects come from four-fermion operators and not from modifications of Z, W* and h cou-
plings. We call these models ‘UV4f’ models and represent them by the dashed rectangle
in Fig. 1. This is a highly motivated class of UV completions that encompasses a majority
of the models proposed to explain the flavor anomalies. These include minimal leptoquark
models [30-33] and many Z’ models [34-38] proposed in the literature.

The plan of this paper is as follows. In Sec. 2, we present the list of relevant operators
in SMEFT, HEFT and LEFT and provide the relations among the WCs. We discuss the
phenomenological applications of these relations in Sec. 3, where we derive the indirect
bounds on WCs associated with left-handed quarks and leptons. In Sec. 4, we discuss
possible directions of NP searches suggested by the relations among the WCs, given some
of the current observed deviations from SM. We present concluding remarks in Sec. 5.
In Appendix A, we write the HEFT operators used in the text in the SU(2); x U(1)y
invariant form, with the electroweak symmetry non-linearly realized, and compare our list
with the previous literature. In Appendix B, we briefly discuss some details of the SMEFT
basis used and the rationale for our choice. In Appendix C, we present all the analytic
relations in terms of semileptonic LEFT WCs and WCs that modify the Z, W+ and Higgs
couplings to fermions. In Appendix D, we present tables of 90% C.L limits on the LEFT
WCs.



2 SMEFT predictions for semileptonic operators

In this section, we present all possible semileptonic operators respecting the U(1)ey, sym-
metry (as the SU(3)¢ symmetry is always respected, we will not mention it separately from
here on), and derive the analytic relations among them that are predicted by SMEFT. We
consider the following lagrangian terms at the weak scale:

Luper D LN+ " epz)? (" 1) Zu+ D lepupaw]? (Fud® fa,) W,
f’ivj fu,fd’ a]

+3 " [esn]? (fi Pr f;) Vht 4 Zcz 0. +hc., (2.1)

where, in addition to the SM lagrangian £

tonic four-fermion operators oilf , we also include corrections to the couplings of Z, W and

and the term containing all possible semilep-

Higgs boson h to fermions.? This is because the diagrams with Higgs, W= and Z exchange
can generate four-fermion effective operators at the low energies relevant to semileptonic
flavor observables. Here f € {ur,ugr,dr,dr,er,er,vr}, fu denotes neutrinos and up-
type quarks (both left-handed and right-handed) whereas f; denotes down-type quarks
and charged leptons. A lagrangian containing all these operators with independent coef-
ficients is equivalent to the HEFT lagrangian, LygpT, in the unitary gauge. This is be-
cause, although formally SU(2); x U(1)y invariance is non-linearly realized in the HEFT
lagrangian, in the unitary gauge HEFT reduces to a lagrangian with all possible U(1)ep-
invariant terms. As we show in Appendix A, our list of operators can be rewritten in an
invariant form with non-linearly realized electroweak symmetry as in Ref. [39]. The HEFT
basis of Appendix A excludes some redundant operators that appeared in the HEFT bases
presented in earlier literature (e.g. [14, 39]) and also includes some operators that were
missed in previous work. Further note that in the UV4f scenario discussed in the Sec. 1,
the coupling modifications of Z, W* and h are absent, i.e. the second, third and fourth
terms on the RHS of eq. (2.1) vanish.

The semileptonic four-fermion operators oi‘lf can be directly probed by high-energy
processes such as the Drell-Yan process ¢;q; — I, top production and decay processes, etc.
We consider these operators in Sec. 2.1 and list the dimension-6 (dim-6) SMEFT operators
that contribute to them. We find that the number of HEFT operators is larger than the
number of dim-6 SMEFT operators, which results in SMEFT predictions for these HEFT
WCs. These predictions are in the form of linear relations among the HEFT WCs; we
explicitly derive these relations in Sec. 2.1.

Next we consider the corrections to the SM couplings of Z, W* and h to fermions,
indicated by the second, third and fourth terms in the RHS of eq.(2.1). Although our

2We have not considered four-quark operators and electroweak dipole operators. Although these can
contribute to semileptonic processes, they do not get matched to semileptonic operators at the tree level.
Furthermore, these operators are constrained from processes which are not semileptonic. The four-quark
operators can get constraints from nonleptonic decays, whereas the dipole operators are bounded by mea-
surements such as the precise observations of dipole moments of elementary particles, the b — s+ process
etc.



reason for inclusion of these operators is that they contribute to low-energy semileptonic
processes via Z, W* and h exchange, these couplings can be probed independently by
studying decays of the Z, W* and h. We list the SMEFT operators contributing to these
in Sec. 2.2. We find that, while the number of SMEFT operators is the same as the
number of HEFT operators for h coupling corrections, the number of contributing SMEFT
operators in the case of gauge boson coupling corrections is smaller. This results in relations
among the corrections to Z and W couplings; we derive these in Sec. 2.2.

Finally, in Sec. 2.3 we rewrite the analytic relations derived in Sec. 2.1 and Sec. 2.2 in
terms of WCs at the low scale relevant for most of the important flavor observables, such
as those connected to meson mixing, rare decays, etc. The lagrangian relevant at these

scales is the sum of the LEFT neutral-current and charged-current lagrangians®
NC only
4G F
LiSrr = Ln + —= Z C; O}, (2.2)
4 G cC only

where the first terms on the RHS arise from the first term in eq. (2.1) by integrating out
Z,W* and h, assuming SM couplings.* Here ‘NC’ and ‘CC’ stand for neutral-current
and charged-current, respectively. In order to obtain the SMEFT predictions for relations
among the LEFT WCs, we need to match the LEFT coefficients above to the HEFT ones
including the effect of Z, W*, and h exchange diagrams. These matching relations can
then be inverted to write the HEFT WCs and the relations among them in terms of the
LEFT ones. We carry out this procedure in Sec. 2.3.

2.1 Predictions for semileptonic operators at high energies

We begin our analysis with the 3240 (1674) semileptonic four-fermion operators® present
in HEFT (see Table 1), where the number within the parenthesis denotes the number of
independent operators if the WCs of all these operators were real. Note that each entry
in Table 1 represents multiple operators corresponding to different possible values for the
family indices. The first entry [cY,, L]aﬁij, for instance, represents 81 (45) operators, since
the indices «, 8 denote three lepton families and the indices ¢, j denote three quark families.
In Table 2, we list the 1053 (558) semileptonic four-fermion operators in SMEFT which
would give rise to the above HEFT operators.

The operators in Table 1 and 2 are divided into categories based on their Lorentz
structure and the chiralities of the fields involved. In the following, we discuss the mapping

3Note that, to distinguish different EFTs, we denote the Wilson coefficients by ‘C’ for SMEFT, by ‘¢’
for HEFT and by ‘C” for LEFT. The corresponding operators are denoted by ‘O’ ‘o’ and ’O’ respectively.

“A loop factor of e?/(167?) is usually included for the NC Lagrangian for LEFT in literature [16, 40].
In our convention, we have not included this factor in order to have uniformity in our analytic relations to
be presented later.

5For non-hermitian operators, we consider the operator and its hermitian conjugate as two distinct
operators, as one can treat (O 4+ O") and i(O — OT) as two separate operators with real Wilson coefficients.



Vector operators LLLL Vector operators LLRR
NC Count NC Count
(e8| (@) (dpytdy)  81.(45) || [elunl™® | (eRmuer)(diy dy) 81 (45)
[etur ™ | (€fyuel)(@pyuy) 8L (45) || [elupal®™ | (€fyuel)(@hy ug) 81 (45)
(eYare)™® | Ry (diytdy)  81(5) || [elapal®® | (PR (digytdy) 81 (45)
[z )P | @Ry @) 81 (45) || [elurrl®® | (FRyavi)(@pytuy) 81 (45)
CC CC
[y JoP | (egyu) (@iydl) 162 (81) || [efl*7 | (egvuw]) (@ dy) 162 (81)
Vector operators RRRR Vector operators RRLL
NC Count NC Count
[clarr]*" (é"‘Rfy#e%)(&éﬂ“d%) 81 (45) [elirs]*? (é?ﬂu@%)(fm"di) 81 (45)
eV rrl 1 | (@) @hrudy) 8L (45) || [e¥urn)®® | @vel) (@ ul) 81 (45)
Scalar operators with dg Tensor operators with dg
NC Count NC Count
[cfd,RLLR]aBij (€R ei)(fjiL dﬁ) 162 (81) [CZd,RLLR}a’Bij (é?szeg)(‘ﬁLUWdﬁ) 162 (81)
(20 rLre]®? | (€5 ep)(dpdy) 162 (81) el rore]® (€Romer)(dRotd)) 162 (81)
CC CcC
[chrrrl®® | (egvi)(uy dy) 162 (81) [Chorl® | (@howvi)(@or dy) 162 (81)
Scalar operators with upg Tensor operators with upr
NC Count NC Count
[ rerrl®® | (e el) @y uf) 162 (81) || [cL, rrrrl™® | (€Rouwel) (o ut) 162(81)
[ rrrel®® | (@ el)@pul) 162 (81) || [ch, rorol®® | (Bhouwel)(@pot ui) 162(81)
CC CcC
[chore)® | (eRvi)(akdy) 162 (81) [chorel®® | (Chouwvi)(@hody) 162(81)

Table 1: Semileptonic operators in HEFT. Here ¢’s are the WCs for the corresponding

operators in the flavor basis. The indices «, 5 denote lepton families and 4, 7 denote quark

families. NC and CC correspond to neutral-current and charged-current operators. Count

denotes the number of independent operators; the number inside the brackets is the number

of independent operators if all WCs were real. Note that for vector CC operators as well as

all the scalar and tensor operators we have not explicitly listed their hermitian conjugates

but included them in the count.




Vector operators LLLL Vector operators LLRR

Operator Count Operator Count
[Cfy 1 *9ul”) (@7 a’) 81 (45) || [Cea)*? (1°yd?) (dgydy) 81 (45)
(€1 | (1) (@) 81 (45) || [Ceul™ | (Pl (ahytug) 81 (45)

Vector operators RRRR Vector operators RRLL
Operator Count Operator Count
[Ceal®P | (e%7,eP)(dpytdyy) 81 (45) || [Ceg)*? (@ vueR) (@7’ 81 (45)

[Cea]®? | (&*yue?)(@hrup) 81 (45)

Scalar operators with dg Scalar operators with ug
Operator Count Operator Count
(Cread)®® | (I eR)(dial)  162(81) || [Chy )™ | (12 cpew(@uf) 162 (81)

Tensor operators

Operator Count

[Cf2) Josia (120, €2 ) ean (T o uly) 162 (81)

Table 2: Semileptonic operators in SMEFT. Here C’s are the WCs for the corresponding
operators in the flavor basis. The indices «, 8 denote lepton families and 4, j denote quark
families. Here | = (v, er)?, ¢ = (ur,dr)”, 71 are the Pauli matrices and ey, is the (2 x 2)
anti-symmetric matrix with €;5 = 1. Count denotes the number of independent operators;
the number inside the brackets is the number of independent operators if all WCs were real.
Note that for the scalar and tensor operators we have not explicitly listed their hermitian

conjugates but included them in the count.

between SMEFT and HEFT operators and the resulting SMEFT predictions for each of
these categories.

LLLL vector operators: In this category, there are 486 (261) independent operators in
HEFT, as shown in Table 1, which correspond to the 162 (90) SMEFT operators shown in
Table 2. The SMEFT operators, when expanded in the unitary gauge, give the following



contributions to the HEFT Wilson coefficients:

[eurp]®?9 = (ICSV1994 - [CfD)°00) | (el )P = ([C)))°%0 — [c))e0),  (2.4)
[ehup ] = ([CiV1085 — [eNeBi) | [l )*P9 = (60170 + [eD)%%49) | (2.5)
[y p]%P = 2 [c{)eBi (2.6)

where we have written both the SMEFT and HEFT WCs in the flavor basis. One can
easily read off the 324 (171) SMEFT predictions implied by the above equations:

[clurr]®? = [ear]* (2.7)
[etar )Y = [e)urr)* (2.8)
[CEL]aﬁij = [CZdLL]aﬁij - [Cz‘//dLL]a’Bij : (2.9)

These predictions are in the flavor basis. We would like to have the relations in terms of
HEFT operators in the mass basis for later matching with the LEFT operators and with
the observables. This can be achieved by the use of unitary matrices S r and K g for
quarks and leptons, respectively. The fields are transformed as

ulf — (SH)I), , dy = (DU, uly — (SE) = (S (2.10)
e = (K§)*Pel | vf = (K¥)*P | e — (Kg)*Pel, . (2.11)

The relation in eq. (2.7) gets transformed in the mass basis as®

(K§) (SE)* [V, p]PoM (Seh (K ho8 = (Ky)r (S8, (&), 1P7H (ST (k)78
(2.12)

Suppressing the lepton and quark family indices, the above equation can be rewritten in a
compact form as

eul

K§ St el LSZ” KZT =K} S} ey SZT KZT ) (2.13)

where the matrices S and K carry only quark and lepton indices, respectively. This relation
may be further expressed as

Viel, , V=Ué&, U, (2.14)
using the CKM and PMNS matrices
V =Voxnm =S 8¢ and U= Upyns = KK (2.15)
Following similar steps, we can rewrite the relations from egs. (2.8) and (2.9) in the mass
basis as
Vel Vi=utel, U, (2.16)
viel,u=¢e\;, -Utel,  U. (2.17)

Note that the final SMEFT predictions, i.e. the relations among the HEFT WCs shown
in egs. (2.14), (2.16) and (2.17), involve only the physically measurable CKM and PMNS
matrices. This makes the relations completely independent of any UV flavor assumption.
The relations in egs. (2.14) and (2.16) were derived previously in Ref. [18].

5A hat on top of the HEFT WC indicates that it is in the mass basis, otherwise it is in the flavor basis.



LLRR vector operators: Similar to the previous case, in this category there are 486
(261) independent HEF'T operators and 162 (90) independent SMEFT operators, as shown

in Table 1 and 2, respectively. The HEFT WCs can be written in terms of the SMEFT
ones as follows:

[Cz‘//uLR]aﬁij = [Ceu]a’gijv [C}a/uLR]amj = [Céu]a’gija (2.18)
[charrl™®? = [Ced)®™ . [elarrl™™? = [Ced®™ | [efp]*"7 =0. (2.19)

Thus, here we get 324 (171) relations among the HEFT coefficients. In the flavor basis and
the mass basis, these relations are

vV Vv VAV

CeuLR = CoulLR = CeuLR = UT CouLR U ’ (220)
v oV Vit AV

CedrrR = Cparr =  Cearr =U'CLap U, (2.21)

cfrp=0 = ¢&/rp=0. (2.22)

Note that in this category, only right-handed quark fields appear and the rotation matrices
for the right-handed quarks cancel out in the relations when translated to the mass basis.
As a result, there is no CKM matrix in these relations and only the PMNS matrix U
appears for the leptons. The relations above show that the charged-current HEFT WCs
vanish for this category of operators. This is because in SMEFT, as noted in [14, 41], right-
handed quarks cannot participate in charged-current semileptonic processes at dimension
6 level due to hypercharge conservation.

RRRR vector operators: Right-handed fermions are not charged under SU(2)p.
Thus even in SMEFT, the up-type and down-type right-handed fields can appear indepen-
dently in neutral-current semileptonic operators, as in HEFT. This makes the number of
neutral-current operators of RRRR type in HEFT and SMEFT to be the same as shown
in Tables 1 and 2, respectively. Furthermore, in the absence of right-handed neutrinos,
there are no charged-current operators either in HEFT or in SMEFT in this category. As
a result, in this category, there are no relations among the HEFT coefficients.

RRLL vector operators: In the case of vector operators involving right-handed lep-
tons and left-handed quarks, there are 162 (90) independent operators in HEFT and 81
(45) in SMEFT, respectively. This results in 81 (45) relations among the HEFT WCs. The
mapping between HEFT and SMEFT WCs in the flavor basis and the resulting relations
in the mass basis for this category are

cl=Ce, 0 =Cy = pr=Vel V. (2.23)
Note that the PMNS matrix does not appear in these relations as only right-handed elec-
trons are involved and the corresponding flavor rotations cancel out. Furthermore, there

are no charged-current operators in this category as there is no right-handed neutrino in
SM.

~10 -



Category Analytic relations Count
Vik [eburc)®? Vg = UL, [€)00.L)77 Uss 81 (45)
LLLL Vit [€032.L)°M V] = UL, [€),1.0)777 Usp 81 (45)
VJ@ [é‘L/L]aﬂkj = [é.‘e/dLL]apij U;ﬁ - Ul, [C‘u/dLL]UBij 162 (81)
RRRR No relations
[ée‘z/dLR]aﬁij = ijp [él‘//dLR}pUij Ups 81 (45)
LLRR [V r)® = UL, (€}, .r)""" Upp 81 (45)
[eV 5]*P0 =0 162 (81)
RRLL [€are)*" = Vi (€L, RL)0 7" Viy 81 (45)
Scalar (dr) Vik [éfd,RLLR}aﬂkj = [é}g%LLR]amj Ups 162 (81)
R
[éfd,RLRL]aBij =0 162 (81)
Scalar (ug) €5, R Vi = —[€RLrL] " Uyp 162 (81)
R
[éfu,RLLR]amj =0 162 (81)
Tensor (dg) [éZd, all]aﬁij = 324 (162)
R
[éELLR]aBij = 162 (81)
Tensor (ux) [‘A%Tu,}:le'%L]QWC Vig = _[égLRL]apij Ups 162 (81)
R
[éZu,RLLR]amj =0 162 (81)
7 and W [Cua,w]? = % cos Oy ([€uy 2)™ Vij — Vik [€a, 2]*9) 18 (9)
[éeVLW]ap UP»B = % cos Oy ([éELZ]aﬂ - U:Jrcp [éVLZ]p(T UU,@) 18 (9)

Table 3: Linear relations among the HEFT semileptonic WCs in the mass basis predicted
by the SMEFT. Summation over repeated indices is implicit. Count denotes the number
of independent operators; the number inside the brackets is the number of independent
operators if all WCs are real.

Scalar operators:  There are 486 (243) scalar semileptonic operators with right-handed
down-type quarks and 486 (243) operators with right-handed up-type quarks in HEFT. In
SMEFT, there are 162 (90) operators for each of these scenarios. We find 324 (153) relations
among the HEFT coefficients for each scenario. Mapping of these operators between HEFT
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and SMEFT in the flavor basis gives

S g . g 3
(51 rLLr]™Y = [Creag)™™ , [, rrrrl® =0, (2.24)
[cgd,RLRL}aB” =0, [Cfu,RLRL]am] = —[Clequl®*™ (2.25)

[C%LLRP&] = [Cfedq]’gaﬂ* ) [CJS%LRL]QB” = [thequ]’gaﬂ* . (2.26)

From the above equations, we get the following relations among the HEFT WCs in the
mass basis:

S _ A8 .S _ A8
Vv Ced,RLLR = CRLLR U, Cew,RLRL V=—=Crrr U, (2.27)

N o ~S —
Ced,rLrL =0 5 Ceu,rrLr =0 - (2.28)

Note that both the above relations in eq. (2.27) represent relations among neutral-current
scalar operators (on the LHS) and charged-current scalar operators (on the RHS). The
WCs in eq.(2.28) vanish” since the corresponding SMEFT operators would not satisfy
Ul)y.

Tensor operators: There is no tensor operator with right-handed down-type quarks in
SMEFT as these operators cannot conserve U(1)y hypercharge. Thus, all the tensor op-
erators with right-handed down-type quarks in HEFT get zero contribution from SMEFT.
As a result, SMEFT predicts 486 (243) constraints on such HEFT WCs:

AT _ T _ AT _
Ced,RLLR = 0, Ced, RLRL = 0, Crrr=0". (2.29)

For the case of tensor operators with right-handed up-type quarks, the mapping and rela-
tions are exactly the same as the scalar operators:

~T _ AT AT —
Cew,RLRL V=—Crrr U, Cew,RLLR = 0. (2.30)

The reason for the vanishing of the WCs in the last equation is again that the corresponding
SMEFT operators would not preserve the U(1)y hypercharge symmetry. See also references
[13, 14].

In Table 3, we present all the relations among the HEFT WCs corresponding to four-
fermion semileptonic operators, which would be predicted by SMEFT. We express these
relations in the mass basis and explicitly put the indices for the quark and the lepton
families.

2.2 Predictions for the couplings of Z, W= and h to fermions

In addition to quarks and leptons, HEFT also involves Z, W* and h bosons as degrees of
freedom. The BSM couplings of these bosons to the fermions appear as HEFT WCs, as
shown in eq. (2.1). These WCs contribute to low-energy semileptonic processes via Z, W+
and h exchange diagrams. They can also be probed independently by studying decays
of Z,W*, and h. However, when the BSM couplings of these bosons to fermions are

"Note that the vanishing of these HEFT WCs correspond to the relations C's = —Cp and Cs = Cp in
the conventional LEFT for the UV4f models as noted in [13, 14].
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HEFT SMEFT

LL quarks LL quarks

Operator Count Operator Count
ewzl? | @)z 90) || | (HDLH)@)  9(6)
ea 2l | (@t Z, 96) || [Cin)? | (HTD T H) @y rd)  9(6)
[Cuaw]? | (apydy) Wi 18(9)

RR quarks RR quarks

Operator Count Operator Count
cunsl | @yl Ze 96) || [ | (HID )@yl 9(6)
cansl? | (i) Z, 96) || [Cad | (HD, r H)(di# vl 9(6)
[catnw)? | @ dl) Wit 18(9) || (Crna)? | (HID, H) @iy dfy)  18(9)

LL leptons LL leptons

Operator Count Operator Count
lenzl™ | Gy Ze 96) || g | (HIDLH)E) o)

— «@ =g Jo
cerz]®® | (@) z,  96) || (€ | (HID 7L H)(*9# r 1) 9(6)
[ca,w]® | (@) Wi 18(9)

RR leptons RR leptons
Operator Count Operator Count
eens)” | @) Zu  90) || lend® | (D H)Eateh)  9(0)
Scalar operators Scalar quarks
Operator Count Operator Count
[ean®® | (@Fep)h 9(6) || Cen®” | (HTH)(*epH) 9(6)
[can)? | (didf)h 9(6) || [Can] (H' H) (¢ dpH) 9(6)
[cun]? (uy, ek) h 9(6) || [Cunl” (H'H) (g u}, 1) 9(6)

Table 4: Left column: HEFT operators representing the couplings of Z, W* and h
with fermions. Right column: SMEFT operators contributing to the corresponding HEFT
operators (following notations of [2]). Count denotes the number of independent operators;
the number inside the brackets is the number of independent operators if all WCs were
real. The SMEFT basis in which these operators are written is defined in Appendix B.

parameterized in terms of SMEFT WCs, the number of independent WCs are less than
the total number of relevant HEFT WCs. Thus, SMEFT predicts relations among the
corresponding HEFT WCs, as earlier. In this section, we derive these relations.
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In Table 4, we show the 144 (87) HEFT operators and 108 (69) SMEFT operators
that give rise to Z, W* and h couplings to fermions. Once again, the HEFT operators
have been presented in the unitary gauge as U(1)ey, invariant terms. These operators can
be rewritten in an SU(2);, x U(1)y invariant form where this symmetry is non-linearly
realized, as shown in Appendix A. Note that the SMEFT basis we have used is not the
commonly used Warsaw basis. The details of our basis and our rationale for it have been
presented in Appendix B.

While the number of dimension-6 SMEFT and HEFT operators are the same for the
coupling with A, the number of HEFT operators contributing to Z and W+ coupling devi-
ations to left-handed quarks or leptons is 36 (21) and it exceeds the number of contributing
SMEFT operators, 18 (12). This implies 18 (12) relations among the HEFT WCs. The
expressions for the HEFT WCs for these operators in terms of the SMEFT ones can be
written in the flavor basis as

[cuy 27 = nez (C))7 — [CN ), [ew,2]°° = npz ([C))°° — [Ci)1°%) ,  (2.31)
[Csz]”—nLZ([ng]i“r[ng,]ij)7 e, ) = nrz (C))°° + €510 . (2.32)
[cad,wl? = now [CH9 [Cen, ] = npw [Cil? . (2.33)

Here npz = —g/(2 cos By ), where Oy is the Weinberg angle, and nrw = g/(v/2). These
expressions can then be used to derive the relations among the HEFT WCs:

- ij_ 1 Nt . j

[Cua,w]” = 75 Ouw ([€u, 21" Vij — Vir [€a,2]™) | (2.34)
A « 1 A a A o
[Cev,w]™” Ups = E cos Oy, ([€c, 7] p— U;Ep €0, 2177 Usp) - (2.35)

These relations are also shown in the last two rows of Table 3. Once again, the relations
in the mass basis contain only the physically measurable CKM and PMNS matrices.

The relations in eq.(2.34) and (2.35) should be independent of the ch01ce of the
SMEFT basis. In the Warsaw basis, the additional operators Op = (HT Vogzi )? and
Owp = g9 (HIr! H) W/f,, B* would contribute to the couplings of gauge bosons to the
fermions by affecting their mass and kinetic terms. However, their contributions in the
above two relations cancel out. This can be more transparently seen in the SMEFT basis
that we use, where these two operators are traded for two other operators which do not
affect the gauge boson couplings (see Appendix B).

2.3 Predictions for semileptonic operators at low energies

In the previous two subsections, we discussed the predictions of SMEFT at high energies,
i.e., relations among HEFT WCs above the EW scale. Now we consider the SMEFT
predictions for the low-energy observables where the relevant effective field theory is LEFT.
The forms of LEFT operators are the same as in Table 1 apart from the fact that the
operators involving the top quark would not be included in the LEFT lagrangian. We
will now rewrite the relations derived in the previous two subsections in terms of the
LEFT WCs. In order to carry this out, we need the matching relations between the WCs
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of HEFT and LEFT operators. For instance, for operators of the LLLL category, the
matching relations in the flavor basis® are

[él}l/]LL]aﬁij =w [CZ]LL}OCBU + kZL [CQLZ]ij 6015 + kQL [CZLZ]OC/B 5ij > (2'36)

[CL = wler ] + keww [Cua,w]” Gap + kuaw [Cev,w]*” 85 (2.37)
where [ € {v,e}, q € {u,d}, w =v?/(2A?), and the k coefficients are

2 cos 8y,
g

5
(T3 — Qrsin20,) , and keuw = huaw = \gf : (2.38)

ka =

with fr € {vp,ep,up,dp}.

In this work, we have not considered effects of the renormalization group (RG) running
of the LEFT coefficients from the weak scale to the scale of the relevant experiments.
These would need to be included using the RG equations of Ref. [3] for a more precise
phenomenological treatment.

Using matching relations like eq. (2.36) and eq. (2.37), we can now rewrite the relations
of Table 3, which were written in terms of the HEFT WCs, the LEFT WCs, and the BSM
couplings of Z and W*. For the LLLL operators, for example, these relations become

Vik [[C!szL]aﬁ M (keL [Ca, 2] bap + kay, [€c, 2] 51@1” v

= Ucip [[CzYuLL]paij - X (kVL [éULZ]ij 5,00 + kUL [éVLZ]pU 5ij)} Ua,Ba (2-39)
Vik [1C8221 = X (ke euy 21 60 + b [0, 217 010 ) | Vi
= U3, [CLaps)™™ = (ko (4,217 0y + Ky (0,210 8:3)] Uss (2.40)

Vik [[CY125 = x (ke [€ua, w1 60 + (oua ] (€, w]*?) |

= [(Clar)V — (hey (€421 bap + kay [0, 21 8,5)] UL

— Ul [1C80)777 = (ki [ea,2)" G5 + by (0,217 35) | (2.41)
where, for WCs involving top quark, we have defined” [CX]LL]O‘EU = w[éZ]LL]aﬂij and
[CY,]%P4 = wleY %P4, In eq. (2.41), x = 0 (x = 1) if the respective four-fermion operator
contains (does not contain) the top quark. The introduction of x ensures that the HEFT
WCs are replaced by LEFT ones for all the four-fermion operators not containing the top
quark. The relations for the WCs in the other categories can be similarly derived and have
been presented in Appendix C.

We now mention two important scenarios where the SMEFT predictions derived in this
section can be simplified. First, note that apart from neutrino physics experiments, it is
impossible to distinguish the different flavors of neutrinos in observables. These observables
thus depend on combinations of WCs with neutrino flavor indices summed over and are
independent of the basis used for neutrinos. In particular, we can choose to work in a basis

8In our notation, C' corresponds to LEFT coefficient in the flavor basis and C in the mass basis.
9This convention is used for the purpose of giving egs. (2.39) to (2.41) a unified form for all quarks. This
is an exception to our normal convention, where we use ‘C’ only for LEFT WCs.
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aligned to the charged-lepton flavor basis. This amounts to substituting U = 1 in all the
SMEFT predictions, whether it is for HEFT WCs in Table 5 or for LEFT WCs such as
those in egs. (2.39-2.41) or in Appendix C. Secondly, in the UV4f scenario where there are
no modifications to Z, W* and h couplings with respect to SM, the matching equations
in eq. (2.37) get simplified and we can obtain SMEFT predictions involving LEFT WCs
simply by substituting [¢]*? by [C]*’¥ in Table 5. This scenario becomes more relevant
in the phenomenological applications of the SMEFT predictions that we present in the
following section.

3 SMEFT-predicted constraints on new physics

In this section, we will show how the SMEFT predictions derived in Sec. 2 can be used
to obtain bounds on the LEFT Wilson coefficients [C]*%%. We utilize the fact that the
SMEFT predictions give analytic equations that can connect strongly constrained WCs
to poorly constrained ones, thus allowing us to extract stronger bounds on the latter. In
this section, we restrict ourselves to UV4f models, where the UV physics generates only
four-fermionic operators in SMEFT, so that the operators discussed in Sec. 2.2 are absent.
While a more general analysis using the constraints on Z and W couplings (see Ref. [42])
is possible, our primary aim here is to illustrate the power of the SMEFT predictions and
thus we focus on the very well-motivated UV4f scenario. As discussed in the previous
section, in this scenario we can use the relations in Table 3 by simply replacing [¢]*%7 by
[C]2F. Furthermore, as explained at the end of the previous section, the observables in
this section will be insensitive to the flavor of neutrinos, and hence we can take U — 1 in
the SMEFT predictions.

We further restrict ourselves to the operators involving only left-handed quarks and
leptons (i.e. LLLL discussed in Sec. 2.3) as these provide leading corrections with respect
to SM.' The relations amongst LLLL operators in UV4f models are given by

[Clurr]® = Vi | IYdLL]aBleg]; ; (3.1)
[Clap)®?7 = V;L [Courr] Vi

[CYLI™ = Vi, ([Clap )™M — [Clyrpr]*PM) |

as can be obtained from egs.(2.39 —2.41). Recall that RG effects have been ignored in
deriving the above relations, and as discussed in Sec. 2.3, the WCs in the above equations
that involve the top quark have been defined as [C]*¥ = w[¢]*?%. These WCs can be
constrained using data from top production and decays. All other WCs in the above
equation are the standard LEFT WCs of egs. (2.2) and (2.3).

Note that egs. (3.1-3.3) involve 486 (261) WCs [C]*?¥ which arise from 162 (90)
SMEFT coefficients. These three equations therefore correspond to 324 (171) relations
among the WCs. Note that in several earlier analyses (e.g. [15, 16]) the WCs have been

10WWhile low-energy flavor observables get interference level corrections from both RRLL and LLLL
operators, as far as high pr observables are concerned, only LLLL operator contributions can interfere
with SM contribution if fermion masses are neglected.
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assumed to be real. This is of course valid for the WCs of Hermitian operators, i.e where
a = [ and i = j. However, as egs.(3.1-3.3) show, all the WCs are related linearly
with complex coefficients (i.e, combinations of CKM matrix elements) which makes it
inconsistent for all of them to be real. Note that even if all the WCs of SMEFT in the UV
scale are real in the flavor basis, phases will appear in [C]*?% through CKM elements while
matching. We in our analysis consider complex values for all the WCs of non-Hermitian
operators.

In the rest of this section, we focus on deriving bounds on the WCs from semileptonic
processes. To start with, in Sec. 3.1 to Sec. 3.3 we consider only processes involving muon
and muon neutrinos, i.e « = 8 = 2. This is because many of the direct bounds from
the muon channel are quite stringent compared to those from the electron or tau channel.
The terms in egs. (3.1) and (3.2) contain only neutral current WCs. On the other hand,
in eq. (3.3) charged current WCs are expressed in terms of neutral current WCs. Based
on these relations, in Sec. 3.1 and 3.2 we obtain indirect bounds on neutral current WCs
appearing in egs. (3.1) and (3.2) respectively. In Sec. 3.3 we discuss about the indirect
bounds for charged current WCs. In Sec. 3.4, we further indicate how these relations
may be used in conjunction with constraints on lepton flavor violating decays to constrain
Wilson coefficients involving other lepton families.

3.1 Bounds on neutral-current WCs involving (vd) and (eu)

There are 6 complex and 6 real neutral-current WCs in eq. (3.1) with « = 8 = 2. These
WCs correspond to operators either with neutrinos and down-type quarks (vdLL), or
with charged leptons and up-type quarks (euLL). We first discuss direct bounds on these
WCs. We consider both low-energy observables, such as rare decays, as well as high-energy
observables, such as the high-pr Drell-Yan process, top decays, etc. While the former can
directly bound the LEFT WCs [C]*%% the latter can directly bound only the high energy
HEFT WCs, [¢]*W. As we are considering UV4f models here, however, the bounds on
[€]*P% can be converted to bounds on [C]*% in a straightforward way by keeping only the
first term in the matching relations, eq. (2.36) and eq. (2.37).

Direct bounds on the WCs [CV, 12212 [CV. 12213 and [CV,, ;]?#?3 are obtained from
rare decays of K and B mesons. For [CV, ]?212] we have used the recent measurement
of the branching ratio of K* — 77 vv in the NA62 experiment [43]. For [CV, /1?23 we
take the 90% upper bounds on the branching ratios of the decay modes BT — pTvv
and BT — nt vy [44]. For [CV, ;]1%2%, we include the recent measurement of B* —
K*vv branching ratio in [45] along with the 90% upper bound on the branching ratio
of Bt — K*T vy [44]. The theoretical values for the discussed mesonic decay modes
are calculated using the package ‘flavio’ [46]. The bound on [CV,; ]1??!! is obtained from
constraints'' on non-standard interactions of neutrinos in atmospheric and accelerator
neutrino experiments [47, 48]. These bounds are shown in the top panels of Fig. 2. For the
WCs [CV; 117%2% and [CY,; ;]?2%3, there are no direct bounds available.

" The bounds presented in [47] are for the vector and axial vector WCs. We convert these to bounds on
operators in our basis by adding the 1o ranges in quadrature.
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I — [ euLL] 221
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Figure 2: Direct bounds on the complex WCs CV, . (top panels) and CY ;; (middle
panels). The cyan color represents bounds from rare meson decays, orange represents
bounds from high-pT" dimuon searches while purple represents bounds from top productions
and decays. The WCs shown in the bottom panels are real due to the hermiticity of the
corresponding operators. Note that the bottom panel uses the symmetric log scale. See
Appendix D for numerical values of the bounds.

The direct bounds for WCs containing up-type quarks and charged leptons are obtained

from rare decays, high-pr dilepton searches as well as top production and decays. The WC

[CY . ;]72'2 gets constraints from rare decays of D meson [15]. For [CY , 1?21 [CV 2212

and [C p 71?#22 strong bounds are obtained from high-pr dimuon searches at the LHC. In
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the UV4f scenario and with the approximation of negligible RG effects, these bounds can
be taken to be bounds on the LEFT WCs. We use CMS data for the dimuon mode [49]
and the package ‘HighPT’ [50, 51| which provides bounds on SMEFT WCs. In order to
convert these into bounds on isolated LEFT WCs, we turn on those linear combinations
of SMEFT WCs which make that particular LEFT WC nonzero, and leave other dimuon
modes unaffected. Bounds on WCs involving top quark (e.g. [CY ;,]?2!3, [CY 1?13 and
[CY 11?233 ) are obtained from data on top production and decays [52]. These direct
bounds are shown in Fig. 2.

Note that, in order to obtain the direct bounds in Fig. 2, we have only bounded the
individual contribution of the relevant LLLL operator with o = 8 = 2 and ignored possible
contributions from other operators. Under some very reasonable assumptions, however,
including these contributions would not significantly alter the bounds we have obtained.
First of all, as far as the dineutrino decay modes are concerned, the experiments cannot
distinguish between different neutrino flavors. To extract bounds on the 7,1, mode, we
assume that there are no large cancellations between the interference contributions of the
different neutrino flavor modes. Also, for low energy observables a linear combination of
LLLL WCs and WCs of other vector operators in Table 1 enter the interference term in
EFT corrections. In the cases where measurements are sensitive to the interference term,
there can in principle be flat directions where the bounds obtained here get weakened, but
this would again require a fine-tuned cancellation between the interference terms of the
LLLL and other vector operators; we assume such cancellations are absent. Finally, there
are operators in Table 1, such as the scalar and tensor operators, that give contributions
proportional to the square of their WCs but the inclusion of such positive definite terms
would only strengthen our bounds. Thus, under these assumptions, the direct bounds
discussed here hold also in the presence of other operator contributions.

Now we turn to the indirect bounds obtained by using the SMEFT predictions. Count-
ing the real and imaginary parts of the WCs separately, eq. (3.1) involves a total of 18
parameters, connected by 9 linear relations. Our goal is to find indirect bounds on WCs
that are weakly bound or have no direct bound, with the help of these relations. To this
end, we first choose the 9 parameters which have the most stringent bounds:

Re ([CIYdLL]QQlQ) , Tm ([CLLL]QZH) ; Re ([CLLL]ZZB) ; Im ([CIY;ILL}2213) )

Re ([Cz‘//dLL]m%) , Im ([C;YdLL]QQ%) ; Re ([C‘;LL]QQH) , Im ([CZLLL]QQIQ) ) (3.4)

€

and the real WC [CY ;1?11 The remaining 9 parameters can then be written in terms
of these using eq. (3.1), and indirect bounds on them may be obtained. In Fig. 3 we show
the resultant indirect bounds on these parameters. For the complex WCs [CY , ]??!3 and
[Ce‘fJ I L]2223, the region of intersection between the indirect and the direct bounds can put a
tighter constraint on the preferred values. These WCs correspond to single top production
along with two leptons or top decays via t — cff and t — uff channels. It may be noticed

2223 2223

that the constraints on the imaginary part of [CY ;] are strong, making [CY ;]

appear almost as a real WC. This feature may be understood as follows. Eq (3.1) implies

[Coarcl = Vi [Cenrn]® + Vi Vi [Coupr) + O(V) . (3.5)
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Figure 3: Direct bounds from low-energy (cyan) and high-pr (orange) processes, along
with the indirect (green) bounds on the complex WCs [CY ;12213 and [C) ; ;]??*® and on
the real WCs [CV,,]?21, [CV,, 11?22 and [CY ; ;]?*?2. The input parameters used are the
four complex WCs [CV, 12212 [CV. 1213 [CV. %223 and [CY ;;]**'? and one real WC

[CY . 1?21, Note that the bottom panel uses the symmetric log scale. See Appendix D for

Eeu
numerical values of the bounds.

Here A = sin(6,) where 0, ~ 0.227 is the Cabbibo angle. Since [CY ;;]?**3 and [CY,; ;]?**3
are real and V3V, is real up to O(A?), the only imaginary quantity appearing in this
equation is Im([CY ; ;1#2%3); hence it is strongly constrained.

2211 e get a better constraint than

As far as the real WCs are concerned, for [CY,; /]
the available direct bound which may be tested in experiments studying matter effects on
neutrino oscillations. At the same time, [C,YdL L]2222, which has no direct bound, now gets
bounded. For [CY ;]?#?2] the indirect bound is slightly worse than the direct bound. For
the other two, viz. [CV,]?*33 and [C),; ;]?*33, the indirect bounds are much worse than
the direct bounds.

Similar relations have been explored in literature in order to put indirect bounds
on various EFT coefficients, albeit for a smaller subset of WCs, with some UV flavor

assumptions, or by neglecting CKM elements. In [16, 19, 20], similar bounds have been
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calculated assuming the WCs to be real and neglecting terms in egs. (3.1-3.3) having CKM
elements that are higher order in A. The indirect bounds obtained on the real WCs in [16]
become weaker when all the CKM matrix elements are inserted.

Note that our choice of the 9 input parameters need not have been the best one for
finding the best indirect bounds on any parameter. A different set of 9 input parameters
could be optimum. Indeed the best bounds may be obtained by using all the available
direct bounds in a combined fit. Since the primary aim of this paper is to illustrate the
utility of the linear relations in obtaining indirect bounds, we leave the detailed analysis
for future work.

3.2 Bounds on neutral-current WCs involving (ed) and (vu)

In this section, we perform a similar analysis as in Sec. 3.1 for neutral-current WCs involving
the muon family, using the relation in eq. (3.2). The WCs involved correspond to the
operators containing either charged leptons and down-type quarks (edLL), or neutrinos
and up-type quarks (vuLL).

The bounds on (edLL) WCs are typically stronger since they involve charged muon.
The WCs [CY; 1?22, [CY,; 17213 and [CY); ;]?%?® get direct bounds from rare decays of

(& e e
K and B mesons. Bound on the absolute value of [CY,, ]?2!2

is provided in [16]; we
convert this to bounds on the real and the imaginary parts of this WC by taking into
account all possible values for its phase. For [CY,;;]*?!3, we obtain the bound from
the branching ratio measurement of B® — u* u~ [44]. For the real and the imaginary
parts of [CV,, ;12?23 we use a combined fit to the observables B(B(+:0) — K(+0) 4 =),
B(BHO — K*H0) yF =), Ry, B(Bs — pt ™), as well as the angular observables P
and Fy, in BY — K*O u* =, The high-pr dimuon searches give bounds on the three real
WCs [CV 12211 [CY); 17222 and [CY); ;]?233. We show these bounds in Fig. 4. Among
the (vuLL) WCs, only a weak bound is available on [CV ;12?11 from constraints on non-
standard interactions of neutrinos in atmospheric neutrino experiments [47]. Once again,
while these bounds are on the individual contributions of the respective operators, inclu-
sion of other operators would not significantly alter them given the assumptions stated in
Sec. 3.1.

Counting the real and imaginary parts of the WCs separately, eq. (3.1) involves a total
of 18 parameters, connected by 9 linear relations. In order to get stronger bounds on the
(vuLL) WCs, we take the 9 parameters corresponding to the (edLL) WCs as inputs and
derive the indirect bounds using this relation. These bounds have been shown in Fig. 5. It
can be seen that the complex WCs [CV | 12212 [CV 1?23 [CV 12223 and the real WCs
[CV 17222 and [CV ;[ ]#233, which do not have any direct bounds, get indirect constraints.
The first among these WCs would contribute to the invisible decay widths of D mesons
while the next two would contribute to the semileptonic top decays, t — uvv and t — cvv.

The indirect bound also improves the constraints on [CY ; ]?%11

significantly. This indirect
bound would be important for constraining models with neutrino non-standard interactions
(NSI) [47] and can be tested in precision neutrino oscillation experiments.

Note that the indirect constraints suggest that [C’l‘,/u 72?212 is almost real. This can be

— 21 —



103 % [ngLL]QZIQ 103 % [CZlLL]QZB

0.02
0.02
g 0.0 £ 00
-0.02
-0.02
002 00 0.02 002 00 0.02
Re Re
103 X [CXiLL]2223
[ edLL]2233
[ edLL]2222
[ edLL]2211
—0.1 0.0 0.1 -0.01 0 0.01

Re

Figure 4: The top panels and the bottom left panel show direct bounds from meson decays
(cyan) for the complex WCs [CY,; 12212, [CY, 17213, [CY; [ ]?%?3. The orange background
in these three panels indicates that the parameter space of these complex WCs displayed
in this figure is allowed by the high-pr dimuon searches, and only constrained by meson
decays. The bottom right panel shows the constraints from high-pr dimuon searches (or-
ange) on the real WCs [CY, 2211, [CY; 117222 and [CY); ;]**33. Note that the bottom-right

e
panel uses the symmetric log scale. See Appendix D for numerical values of the bounds.

understood by looking at the leading-order contributions to [CY ; ;1%2'2 in eq. (3.2):
[Crurr]?®? = Vaa VEICLL L) + Vaa Vgl Clan 1) + Vaus Vs [Clap 2%
+ Vus Vo [Clap )" + 00\3) : (3.6)

In the above equation, all the CKM coefficients are real up to O(A\*). The WCs [C), /]2
and [CY); 11?%2? are real, while Im([C ; ;]*?!?) has strong constraints of ©0(0.02). Therefore,

g ]2212)

the imaginary part of the left-hand side, i.e. Im ([C,Yu L , is strongly constrained.

— 22 —



103 % [CVULL]2212 103 % [CV ]2213

v vulL
1 0.1
—1 —0.11
~1 0 1 —0.1 0.0 0.1
Re Re

10° x [CFr

0.4 Ol
-0.41 L [CVVuLL]QQH
04 00 04 01001 00 00101
Re

Figure 5: Indirect bounds (green) on the complex WCs [CV 2212 [CV 12213
[CV 1222, and the real WCs [CV 121 [CV 12222 [CV 1?23, The direct bound

is available only for the real WC [CY , ]?*!! (shown in cyan). Note that the bottom-right

1%
panel uses the symmetric log scale. See Appendix D for numerical values of the bounds.

3.3 Bounds on charged-current WCs

Eq. (3.3) allows us to express charged-current WCs as combinations of neutral-current WCs.
Restricting to the muon family of lepton, i.e &« = 8 = 2, there are 9 charged-current WCs
on the left-hand side of eq. (3.3); all of them can be complex in general. All these charged-
current WCs would get indirectly constrained due to the bounds on the neutral-current
WCs. In this section, we first show the direct bounds for the 9 charged-current WCs from
mesonic decays and from high-py monolepton searches. Later, we compare these bounds
with the ones derived indirectly using eq. (3.3).

For the W(Cs [C[‘,/L]lev [61}1/11]22127 [CXL]2213’ [CXLPQQI’ [CXL]2222 and [C[‘,/L]22237 we
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Figure 6: Direct bounds on the charged-current WCs from meson decays (cyan) and from
high-pr mono-muon searches (orange). Note that there are no direct constraints on the
WCs associated with charged current decays of top quark. See Appendix D for numerical
values of the bounds.

obtain direct bounds using the branching ratios [44] of the decay modes 7+ — ptv, KT —
autv, Bt — v DY — ptv, Dy — pv and BT — Dlv, respectively. However, stronger
bounds can be obtained for these WCs from high-pr monolepton searches. In order to do
this'?, we generate bin-wise events in MadGraph [53]. Note that the charged-current NP
would not change the shape of the ¢? dependence from the SM prediction, since the relevant
charged-current operators in SM and NP are identical. We use the results from the ATLAS
analysis in Ref. [54], and incorporate the effect of their cuts by using a re-scaling factor on
our generated events such that they reproduce the ATLAS data for SM. We then perform
a x?2 fit for the isolated charged-current WC to obtain bound on the NP WC. These direct
bounds obtained from the meson decays (cyan) and from the high-pr mono-muon searches

121n [51], bounds on SMEFT coefficients are provided using high-pr single lepton and dilepton searches.
However, no combination of SMEFT coefficients can map to a single charged-current LEFT coefficient
without generating other LEFT coefficient that can contribute to the same single charged-lepton final state
mode. Therefore we calculate these bounds independently
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Figure 7: Direct bounds (orange) on the charged-current WCs from high-pr mono-muon
searches along with the indirect bounds (green) obtained using eq.(3.3). Note that the
quantities in the bottom panels have no direct bounds. See Appendix D for numerical
values of the bounds.

(orange) are shown in Fig. 6.

In order to obtain indirect bounds, we use the best available bounds (direct or in-
direct) for the neutral-current WCs appearing on the right-hand side of eq. (3.3). These
indirect bounds (green) along with the best available direct bounds (orange) are shown in
Fig. 7. The figure shows that this method provides constraints on [CY;]??3L, [C};]?*3? and
[CY;]?%33, where no direct bounds were available. For [C};]??2!, the indirect constraints are
significantly stronger than the direct bounds. These WCs would contribute to branching
ratios of semileptonic decays of top quark and D meson decays, viz. D — wuv, etc.

— 95—



In addition, the imaginary parts of [C};]?21L, [CY;]?'2, [CY.]?#2% and [C},]?*?3 are
constrained more strongly. These WCs would contribute to branching ratios of meson
decays, viz. K — wuv, B — Duv, etc. The reason for strong indirect constraints on
the imaginary parts of these four WCs may be understood using eq. (3.3). For example,
[CY;]??Y! may be written using eq. (3.3) as

[CHLPM = Vig ([CLn) M = [Clanr)®™) + Vs ([Cap ]2 — [Clap]') + O(N?) .
(3.7)

The CKM coefficients appearing on the right-hand side of the above equation are real up
to O(A3). The WCs [CY,; ;1?11 and [C),; ;]?*'! are real. Furthermore, the bounds on the
imaginary parts of [CY,;;]?2!? and [C),; ;]?*1? are of O(0.02) and these WCs appear with
a CKM coefficient of O(\). Thus, the imaginary part of the WC on the left-hand side, i.e.
[CZL]QQH, is strongly constrained. Using similar arguments, we can show that the WCs

[CY 12212, [CY 1722 and [C);]*?33 are expected to be dominantly real.

3.4 Predictions for lepton flavor violating observables

So far we have considered the relations only among WCs involving one lepton family i.e.
muon. In this subsection, we expand our discussion to SMEFT predictions that include all
lepton families, while remaining in the UV4f scenario. These relations will relate diverse
reaction channels like rare decays of B, D and K mesons as well as lepton flavor violating
(LFV) processes such as 7 — ¢ ¢; ¢; and £ N — ¢’ N. Focusing once again on UV4f models,
we shall indicate the methodology by one example and present a set of relevant processes
in Table 5.
From eq. (3.1), we get the following relation among the LEFT WCs:

[Chrr) = Vaa? [Char )M + (Vi Vea [Clap )P + c.c) + (Vi Via [Chap )P + c.c.)
+ [Veal? [Char )2 + (Vi Via [Cryp 1] + ccc) + [Vial? (O] (3.8)

14

where £ = 1 or 2. Among the CKM coefficients in this equation, the leading ones are
[Vaual® ~ O(1) and |V, Vea| ~ O(N). All the other coefficients are O(A\?) or smaller. There-

fore, at the leading order, this equation connects the three WCs [CY, /111 [CV, 1% and

(Crarc)®"

are related to each other.

. Hence the new physics WCs contributing to LFV tau decays and K — wvv

Further relations involving other lepton and quark families are given in Table 5. Some
similar relations have been presented in [15]. Note that such discussions in earlier literature
often assume some flavor structure for the quark sector. We emphasize again that in our
discussion, the implications presented in this section are independent of any NP flavor
structure assumption for the quarks.

So far, we have discussed observables that are insensitive to the flavor of neutrinos.
Neutrino experiments that are sensitive to neutrino flavor can probe the neutrino non-
standard interactions (NSI) generated by the operators in Table 1 containing neutrinos.
The predictions in eq. (3.1)-eq. (3.3) in UV4f models (or the more general predictions in
Table 3) would then imply constraints on NSI from charged LFV. We discuss this in more
detail in Sec. 4.3.
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Eq. J | LHS WC | RHS WCs Transitions Processes
v e [T T uul LFV 7 decay,
eul L [Cl\l/dLL]ZBH s—=dvv K — vy
(3.1) o e | Coud™™ | tu LEV (N = 0N
eul L [Cz‘//(ijL]M 12 s—=dvv K — mvv
v e | oy, jesi cu— 1/l LFV D decays,
euLl vdLL s—>dvv K — nvv [16]
/ t— (7% 66/
v e [C;/dLL]M/l?’ b duy LFV top decay,
euLL oV, ] b B decays to dineutrinos [16]
svv
oV s | v e T—ddl LFV 7 decay,
[ edLL] [ Z/uLL] . .
(3.2) c—uvv D decay to dineutrinos
edLL vuLL c—uvy D decay to dineutrinos
/ b—di LV
[cv, ¢ [Clur )" PR LFV B decay,
edLL cy ) ‘L top decays to dineutrinos
cvv
cv, B3u T udy CC decay of T
V 16311 D T —ddl
C/ ;] [C%EILL]e N s dst LFV 7 decay,
(3.3) (A s duw K —nmvy
/ {—udv
\%4 2011 LFV /N /N
V0011 [C?EILL]MQ td—1td M - /
[CL] [Coarr] / K —ntl
v s—dle K ruy
Coarsl s = dvv
[CV ]36’13
[C‘}z}lLL]MQS b—u; by CC decay of B meson,
(Y] | CevdLL] wis | b di bl LFV B decays,
[ C‘{/dLL] was | b—divv | B decays to dineutrinos [20]
vdLL

Table 5: Correlations among different WCs involving all lepton families, derived from
egs. (3.1-3.3). The second column shows the WC appearing on the left hand side of these
equations, whereas the third column contains the WCs appearing on the right-hand side
of those equations with large CKM coefficients, with values O(\) or more.

4 SMEFT-predicted evidence for new physics

In this section, we discuss how to use the SMEFT predictions derived in Sec. 2 in the
event that measurements provide evidence for certain new physics WCs to be nonzero.
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We will show that, given the SMEFT predictions derived in this work, it is in general not
consistent to assume a single non-zero WC to explain an excess in a certain channel.'®
In fact, we will show that for certain operators a non-zero WC must be accompanied by
multiple other WCs that are non-vanishing. This would imply that the observed excess
must be accompanied by correlated excesses in many other channels. This is because the
SMEFT predictions in Table 5 are linear equations involving multiple WCs, implying that
it is not possible for only one of these coefficients to be nonzero.

For example, consider the situation where an observed deviation from SM in a partic-
ular channel indicates that one of the LLLL LEFT WCs is non-vanishing. In SMEFT, this
LEFT coefficient might arise either from a four-fermion operator or an operator inducing
an off-diagonal W or Z coupling to fermions.

The former situation is realized in the UV4f models, where we can use SMEFT predic-
tions in eq. (3.1). These are 6 linear equations involving 12 (possibly) complex WCs when
a = (. If one of these WCs, (say C1) is found to be nonzero, we can write these equations
in a form where C7 to C12 are expressed as linear combinations of C7 to Cg. Then, as long
as the coefficient of C is nonzero in all these equations (as is generically observed to be
the case), all the 6 coefficients C7 to Ci2 also have to be nonzero. For one of them to be
vanishing, we will need one of the other coefficients, Cy to Cg, to be nonzero in order to
cancel the C contribution. Thus, the nonvanishing nature of C] necessarily implies that
overall at least 7 WCs are nonvanishing in principle. Of course, depending on the CKM
coefficients, the magnitudes of these coefficients may be small or large.

When a # 3, eq. (3.1) gives 9 linear equations, therefore one nonzero WC among these
will imply at least 10 of the WCs of the type (vd) or (eu) nonvanishing. As eq.(3.2) is
completely decoupled from eq. (3.1), it is of course still consistent for all the WCs appearing
in it to vanish. The charged current WCs in eq. (3.3), however, cannot all vanish and one
can use similar arguments to conclude that at least 3 of them must be nonzero whether or
not « equals S.

Similarly, from eq (3.2), for « = 8 (a # ) we have 6 (9) linear relations. These imply
that, if one of the WCs of the kind (ed) or (rvu) is found to be nonzero, then a total of
at least 7 (10) WCs of these kinds should be nonzero in principle. Again, by eq.(3.3) a
non-zero neutral-current WC will lead to at least 3 non-vanishing charged-current WCs.
The CKM coefficients will guide us regarding which of these WCs are likely to have larger
magnitudes. Thus, these relations direct us toward specific decay channels where deviation
from SM is expected to be present.

In the latter situation, i.e. when the LEFT operators arise from modifications of W/Z
couplings, the low-energy pattern of deviations is very different. For example, if one of the
Z coupling to down quarks gets BSM corrections, the penultimate row of Table 3 would
imply at least three W-coupling modifications. Alternatively, if all the W couplings are to
be at their SM value, this would imply modifications of at least 10 of the 18 Z couplings
to up and down-type quarks. Once the W and Z are integrated out, each W-coupling

13For some operators, such as the RRRR vector operators, there are no constraints implied by SMEFT.
For this category of operators, therefore, we can have a single non-zero WC.
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Figure 8: Preferred parameter region at 90% C.L. for [C’,YdLL]O‘B23 in order to explain
the observed excess in B — Kvv branching ratio. The left panel shows lepton flavor
universal (LFU) scenario, where [CV,, ]*#? is nonzero and equal for all o = 8 € {e, u,7}.
The middle panel shows lepton flavor nonuniversal (LFUV) scenario where [CY,, 1423 is
nonzero only for one value of a = 8. The right panel depicts the LFV scenario with o #

af323

and only one [CV,; /] nonzero.

modification will induce 3 non-vanishing semileptonic LEFT WCs, and each Z-coupling
modification will induce 6 non-vanishing semileptonic LEFT WCs. Studying the pattern
of BSM deviations can, therefore, help pinpoint the underlying UV physics. We shall not
consider this scenario further in this section.

4.1 Implications of the measured excess in B — Kvv

In the recent measurement of B — Kvv at Belle II [45], the observed branching ratio has
3.50 excess over the SM value. If this excess were to be explained in terms of the LEFT
coefficients [CV, L]O‘B%, the required values of these WCs in various scenarios are shown in
Fig. 8. In the first scenario, we assume that new physics turns on a lepton flavor universal
(LFU) combination of WCs whereas in the second (i.e. LFUV) and third (i.e. LFV)
scenarios, we assume that a single WC is turned on with a = § and « # [, respectively.

@B23 is non-vanishing at 90%

af323

From this figure, it is clear that the coefficient [CY,; ;]
C.L. for all scenarios considered. As discussed earlier, a nonzero [CY,; /] will indicate
at least seven (ten) non-vanishing WCs appearing in eq. (3.1) for a = 8 (o # 3).

For example, in the LFUV (LFV) scenarios, eq. (3.1) corresponds to 27 (54) equations

of the form
[CY L)% = Vi [Clp )9V + .. (4.1)

in UV4f models. Since the CKM coefficients V,V;; and V,,V,;, which are O(1) and O(\)
respectively, are significant, it is expected that in the absence of any cancellation coming
from other [CY,; ]%%% elements, the WCs [CY ;1913 and [CY ; ;]*%?3 will have significant
nonzero values. Thus the modes t — ce®e” and t — ue® e? will be the ones where there can
be potential new physics. Currently the bounds on these coefficients are |[CY | ]*F13] <
0.003 and HC;; 1149 < 0.02, respectively. Exploration of these modes further may lead
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to discovery of further anomalies in these two channels. These processes will also test
the solution of B — Kvv anomaly in terms of [C%L ;]%%3. This demonstrates that the
semileptonic neutral-current top decays will be strong probes of the origin of the B — Kvv
anomaly in the context of SMEFT.

Eq. (3.3), in this LFUV (LFV) scenario, gives the 9 (18) equations of the form

[CLL)™ = Vi ([Coarr)®®® — [Clapr)™™) - (4.2)

14

Since the CKM coefficients V.5 and Vs, which are O(1) and O(\), respectively, are signif-
icant, it is expected that in the absence of any cancellation coming from other [CY,, ]*#%
or [CV,; ;1% elements, the WCs [C};]*¥* and [C};]*%'3 will have significant nonzero
values. Thus, charged-current semileptonic B meson decays would also be sensitive probes
of the origin of B — Kvv anomaly.

Similar discussions can be found in [26, 27]. In [26], relations among the WCs in the
LLRR category, as shown in Table 3, have been used to relate by — sp77 and bg — srvv.
These relations, as discussed in [26], predict excess branching fractions for the modes
B - K®rr, B, — 77, ete. In [27], matching relations have been derived among the
SMEFT and LEFT WCs, assuming up-alignment. These have been then used to obtain
the effects of the observed excess in B — Kvv on other processes, namely, B — D) ¢y,
B — K¥¢t(= B, — 1v., By — 7777, Dy — 711, etc.

4.2 TImplications of the R(D*)) anomalies

One possible explanation of multiple anomalies observed in the b — c¢7v channels, such
as R(D), R(D*) and R(J/v), is to have nonzero values for the LEFT WC [C};]33%3. We
show the preferred range of this WC at 90% C.L. in Fig. 9. Note that this preferred range

' : V 13323 _
does not include the point [C},]**** = 0.
V 13323
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Figure 9: Preferred parameter region at 90% C.L. for the WC [C},]33%3.
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From eq. (3.3), we can write [C}/] in terms of the neutral-current WCs as

(CLL™ = Ve [[CF00)™ = (O] + Voo [[Cipc ¥ = [l ]

Voo [[Clnn)™ = [Clar ] (4.3)

Since [CY]?323 # 0, it suggests that at least one WC appearing on the right-hand side
of eq. (4.3) has to be nonzero. Relevant interesting modes could be of the type b — dr,
b — st7, b — dvrv and b — svr which suggests that the NP can manifest in observables
related to processes such as B — 77, Bs — 77, B — K®77, B — K®pp, ete.

4.3 Implications of the violation of SMEFT predictions

In this subsection, we consider a scenario where many anomalies have been observed and
multiple LEFT coefficients must have non-zero values to explain them. According to our
results, these LEFT WCs must obey the SMEFT predictions of Table 5. We now discuss
what an observation of a violation of these predictions would imply.

First of all, if low-energy measurements indicate a violation of the UV4f predictions
in eq.(3.1-3.3), it may only mean that the UV model is not in the UVA4f category, but
still maps to SMEFT when heavier degrees of freedom are integrated out. It would only
indicate that we are outside the UVA4f region of Fig. 1, and not necessarily outside the
SMEFT region. We must then check whether or not the more general predictions Table 3
are obeyed. This would require looking for deviations in W and Z decays and/or high-pp
Drell-Yan data.'®

If the violation of the predictions persists at the level of Table 3 (or the equations in
Appendix. C), it would imply that one of the assumptions used in deriving these predictions
is incorrect. Note, first of all, that we have only included dim-6 operators in our analysis.
Inclusion of dimension-8 (dim-8) operators will result in a violation of these predictions at
O(v*/A%). For instance, the dim-8 operator

[Orgs]™™ = (14,7 (@ 7' ) (H 7' H) (4.4)
will break the equality in the first row of Table 3, as follows:
Vik (€8l Vi = UL, (600007 Usg ~ " /A [Coga] - (4.5)

Similarly, other operators at dim-8 or higher order will introduce a breaking of the other
predictions in Table 3. Such effects are, however, higher order in the SMEFT expansion
parameter v2/A?, and are thus expected to be small.

If larger, O(1) violations of the predictions are observed, it would indicate something
more radical, namely, that one of the assumptions of SMEFT itself is violated and we lie
outside the SMEFT region of Fig. 1. This would be the case if (i) the scale of new physics
is below the weak scale, (ii) there is heavy new physics that does not decouple because it

141f we use only the high-pr data to test our predictions, we can directly use Table 3 and thus test the
validity of our predictions without taking into account Z and W¥ decays.
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gets a large fraction of its mass from the electroweak vacuum expectation value [55, 56],
or (iii) the observed 125 GeV scalar, h, is not a part of the SU(2) doublet that breaks the
electroweak symmetry [14, 55-57].

As an example, consider the case of neutrino NSI that are induced by operators con-
taining neutrinos in Table 1. As mentioned in Sec. 3.4, for a given choice of the quark flavor
indices, egs. (3.1-3.3) (or the equations in Table 3), imply relations between the NSI and
the stringently constrained lepton flavor violating operators [58]. These predictions can,
however, be evaded in new physics scenarios where dim-8 operators become important. For
instance, if the leading contribution to the NSI is from dim-8 (and not dim-6) operators
like

[O13q)*7 = (H'7" H) (1%, 7' 17) (@ "¢) (4.6)

new physics affects only the neutrino and not the charged-lepton sector. Even in this case,
however, dim-6 charged-lepton flavor-violating effects will be generated at loop level [59].
A more natural way of decoupling these two sectors is if the new physics scale is below the
electroweak scale (see, e.g. Ref. [60]).

5 Concluding remarks

In this work, we have systematically derived the consequences of the SU(2)r x U(1)y
invariance of SMEFT on semileptonic flavor observables. These consequences arise from the
fact that a complete parametrization of BSM deviations in flavor physics observables can
be only achieved by writing a lagrangian that respects U(1)en, and not the full symmetry
of SMEFT. For instance, while the left-handed up and down type fermions form SU(2)y,
doublets and always appear together in SMEFT operators, as far as flavor observables are
concerned, searches in the up and down sectors are completely independent. Therefore,
BSM deviations in these channels must be parameterized by independent operators.

To be more precise, while the most general U (1), invariant lagrangian has 3240 inde-
pendent semileptonic four-fermion operators (see Table 1) and another set of 144 operators
that contribute to semileptonic processes via Z, W* and h exchange (see Table 4), the
number of dim-6 SMEFT operators in these categories are 1053 (see Table 2) and 108 (see
Table 4), respectively. This then results in 2223 constraints in the space of WCs of the
U(1)en, invariant lagrangian that can be thought of as predictions of SMEFT at the dim-6
level. One of the main results of this work is the derivation of these 2223 constraints.
We present these constraints as linear relations among the WCs of the U(1)ey, invariant
lagrangian, in Table 3. These relations are a succinct expression of the consequences of the
SU(2)p x U(1)y invariance of SMEFT for semileptonic operators. They are completely
independent of UV flavor assumptions as we find that the elements of the rotation matrices
of the left-handed and right-handed up-type and down-type fermions do not individually
appear in them but only in combinations that form CKM and PMNS elements. We then
show how these relations can be written in terms of LEFT WCs by integrating out the
Z,W#* and h bosons. We refer the reader to Fig. 1 where this scenario has been pictorially
represented.
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The U(1)ep, invariant lagrangian we have considered is in fact equivalent, in the unitary
gauge, to the HEFT lagrangian which is generally written in an SU(2), x U(1)y invariant
form but with the gauge symmetry being realized non-linearly. We show this explicitly in
Appendix A where we present a one-to-one mapping between the invariant HEFT operators
and the list of U(1)ep, invariant operators in Table 1 and Table 4. In the process, we find
some HEFT operators that were missed in earlier literature and others that were considered
but are actually redundant.

The SMEFT predictions we have derived have powerful phenomenological consequences
as they connect observables in different sectors, such as rare decays in the kaon, B-Meson
and charm sectors; decays of the top, Z, W and 7; lepton flavor violating observables and
even neutrino NSI. On the one hand, they can be used to express poorly constrained WCs
in terms of strongly constrained ones, thus allowing us to put new stronger indirect bounds
on the former. On the other hand, if evidence for new physics is seen, they in general imply
that BSM effects cannot appear in a single isolated channel because these linear relations
imply that if one WC is non-zero, multiple others also must be non-vanishing.

To illustrate the usefulness of these relations in phenomenology, we focus on the well-
motivated UV4f scenario, where the UV physics only involves four-fermion operators, and
HEFT WCs corresponding to BSM couplings of the Z, W+ and Higgs to fermions are
absent. We further restrict ourselves to the operators with only left-handed fermions, i.e the
LLLL class of operators. In this scenario, there are three sets of relations among the LEFT
WCs. The first set relates the WCs of the neutral-current operators (vr,vy,vr) (dpy*dy) and
(€ryuer) (ury*ur). The second set consists of relations among the WCs of the neutral-
current operators (eryer) (dpy*dy) and (v y,vr) (apy*ur). In the third set, the charged-
current WCs are related to the above neutral-current coefficients.

The main phenomenological results of this work are as follows:

1. Indirect bounds from SMEFT predictions: In Sec. 3.1- 3.3, we consider LLLL
operators in UV4f models. Using bounds from meson decays and high-pr Drell-Yan
searches and applying the SMEFT predictions, we obtain novel bounds on WCs
related to dd — v, u; — ujvv and top decays, that are much stronger than the
direct bounds. Our main results are summarised in Fig. 3, 5 and 7 .

2. Connecting quark and lepton flavor violation: In Sec. 3.4, we show how the
SMEFT predictions derived by us connect flavor violation in the quark and lepton
sectors. In Table 5, we present a list of processes spanning diverse observation chan-
nels (e.g. LFV tau decays, LFV /N — ¢'N transitions, rare semileptonic B, D and K
decays, top production and decays, etc.) that are connected via our analytic relations
among the WCs.

3. Evidence for new physics from SMEFT predictions: In Sec. 4, we show that
the relations among the WCs of the type LLLL imply that a single nonzero WC re-
quires that there are at least 9 other nonzero WCs. We then discuss the specific cases
of the observed excess in the B — Kwvv branching fraction and R(D*)) anomalies,
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and list other search channels that should see a correlated signal if these anomalies
survive in the future.

In future studies, we aim to extend the approach developed here and apply it to other
flavor physics observables. In this work, we have considered only a subset of operators
appearing in LEFT, HEFT and SMEFT, namely the set of semileptonic operators. In
future work, we will extend our analysis by including all operators up to dimension-6 in
order to find SMEFT-predicted relations among the corresponding LEFT and HEFT WCs.
These predictions will allow us to interconnect many other important flavor observables.
For instance, predictions can be obtained for dipole operators connected to observables
such as the b — sv process, for four quark operators that are associated to the AF = 2
meson-mixing processes and nonleptonic meson decays, for four-lepton operators associated
to LFV processes such as u — 3e, etc. We, thus, hope that this work will initiate a rich
program in quark and lepton flavor phenomenology that uncovers many more SMEFT-
predicted links between observables.
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A Semileptonic HEFT operators in SU(2), x U(1)y invariant form

In Table 1 and Table 4, we have presented all possible U(1)¢pm-invariant semileptonic op-
erators relevant to this work. In this Appendix, we show that these operators can be
rewritten as SU(2);, x U(1)y invariant operators of HEFT with the symmetry realized
non-linearly. Following the notation and approach used in Ref. [39], we introduce the
Goldstone matrix U = exp(2ip*T*/v), where ¢, are the Goldstones of the breaking of
SU2)r x SU(2)p — SU(2)y. Under SU(2)r x SU(2)g, the matrix U transforms as
U— grU gjq, where gr, and gr are the respective group elements. We also introduce the
SU(2) g quark and lepton doublets denoted by r = (ug, dr)” and n = (0,eg)”, respectively.

As the correct symmetry-breaking pattern in SM is SU(2)r x U(1)y — U(1)em, and
not SU(2)p x SU(2)gr — SU(2)y, one must include explicit sources of SU(2)gr breaking
(see for eg. Ref. [61]). For bosonic operators, this is usually done by introducing the two
spurions L, = UD,U tand 77, = UT3U'. For fermionic operators, we need other sources of
SU(2)g breaking. As shown in Ref. [39], this can be achieved by including factors of UP;
in the operators where the projection matrices P; are defined as

1
P = 5 +T5, Po=T1+ils, Pn=1T)—1il5. (Al)
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LLLL LLRR
orrs = (Iul) (7"q) orrs = (Iul) (ay'u)
orra = (Il (47"7%q) orrs = (Iul) (dy*d)
orz10 = (I UTUT) (¢y*UT3UTq) ory1 = (({UP_r) (FPLU)
orr1l = ([vul) (Gy*UT3UTq) OLRI4A = ([VMUTBUTZ) (uyHu)
o112 = (Z_’YNUTSUTD (Gv"q) OLRl5 = (l_quT?’UTl) (dy*d)
orr14 = (Ivuq) ((y*UTUT)
RRLL RRRR
oLr7 = (eyue) (1V"q) orrs = (€Ve) (UV"u)
orr16 = (Evue) (V'UT*UTq) orrs = (eyue) (dy*d)
Scalar with dg Tensor with dg
oryr = (GUP_r) (({UP_n) orys = (qo"UP_r) ([UWUP_n)
orry = (q7"1) (ev,d) * og713 = (FP-0"Uq) (lo,,, UP-n)
orris = (Gy*UT3UT) (E7,d) e 05714 = (qo U Pyor) (10, U Payl)
Scalar with ug Tensor with upg
os79 = (qUPy7) (U P_n) osr11 = (o™ UPyr) (lo,, UP_n)
opyy = ((UP-n) (7P+U'q) o osr16 = (TP Uq) (lo, UP-)
osr10 = (U Pa17) (U Pygn) osr12 = (qo"UParr) (o U Pion)

Table 6: List of semileptonic SU(2)r, x U(1)y invariant HEFT operators. Note that this
list is somewhat different from the list presented in [39] (see the text for more details).
Some redundant operators present in [39] are omitted from this list. On the other hand,
some operators (preceded by a bullet) which were absent in [39] have been added and have
been named using a similar nomenclature. Note that 7¢ = T%/2 are the Pauli matrices.

In the above equation, T; are the SU(2), generators. One can keep track of the hypercharge
invariance of the operators by keeping in mind that, while UP; and UPjy extract the
Y = —1 components of U, the projections UP_ and U P»; extract the Y = 1 components
of U.

We first consider four-fermion operators. In Table 6, we present all possible SU(2), x
U(1)y invariant HEFT operators with two quarks and two leptons, up to dimension 6.
Note that this list has some differences from the list of operators presented in Ref. [39] that
we will discuss in detail in the following. Working in the unitary gauge, i.e. taking U — 1,
we now write each of the operators in Table 6 in terms of the operators in Table 1. This
would confirm that there is a one-to-one mapping between these two sets of operators in
the unitary gauge.
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For LLLL vector operators:

OLL3 = Oyy11 + Oburr + Olars + Otarr » (A.2)
OLL4 = Olyrr, — Oburr — Ovarr, + Otarr, + 201, + 207 (A.3)
0LL10 = Opyrr, — Oburr — Opars + Obarr » (A.4)
OLL11 = Oy, + OburL — Oparr, — OMdLL » (A.5)
OLL12 = Opyrr, — Oburr + Opars — OwarL » (A.6)
OLL14 =0}, + 0L — O — Olury (A7)

where we have suppressed the quark and lepton flavor indices. Here [0} ] = ([0} ]2t
and [OEL]O‘&j are two independent operators. The 6 operators listed in Table 6, therefore,
receive contributions from 6 independent operators of this category in Table 1, providing
a one-to-one mapping between these two lists. In this category, there is one more operator
in [39] i.e orr13 = (*UT3UT) (I, UT3UTq). But this operator is not independent of the
6 operators appearing on the ‘LLLL’ block of Table 6. Indeed, it can be written as

v v v %
07113 = 0,,1;, —Orr, — (071) + Ocarr » (A.8)

which is equivalent to the relation,

orri13 = §(OLL3 +2o0pr10 — 0LL4) . (Ag)

This operator has therefore been omitted in our list.
For LLRR vector operators:

_ .V 1% _ Vv \%
OLR5 = Opy,R + OcuLR > OLR6 = OpgrR T OcdLR > (A.10)
1
1% v 1%
OFrY11 = D) OLR > OLR14 = OpyLR — OcuLR > (A.11)
v \%
OLR15 = OypdrLR — OcdLR » (A.12)

Note that the operator opy11 as defined in Table 6 consists of two scalar currents. However,
this operator maps to a vector operator after the Fierz transformation and hence it is
included in the category LLRR.
For RRLL vector operators:

_ v % v %
OLR7 = Ogyrr T Ocqrr, »  OLR16 = OcyuRrL — OcdRL - (A.13)

For RRRR vector operators:

\% 1%
ORR5 = OcyRR +  ORR6 = OcqRR - (A.14)
For scalar operators:
1S 1S
OFY7 = OcdRLRL > 0ST9 = O¢uRLRL » (A.15)
_ s s 8
OLRY = —20R1LR — 20.4RLLR - OFY9 = OcyRLLR » (A.16)
s s 18
OLRI18 = —20R1 R T 20.4RLLR > 05710 = ORLRL - (A17)
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Here [ogl(u)RLLR]aﬁij = ([ofd(u)RLLR]ﬁ INT and [0 5] = ([0%,p]P*7%)T. Note that
the operators oprg and ojpig are defined as products of vector currents in Table 6.

However, they map to scalar operators after Fierz transformations, as can be seen from
egs. (A.16-A.17).

In [39], there is one more scalar operator, ogr3 = &;;(q*u)(l7¢) . This operator is not
independent from the scalar operators appearing in Table 6 and can be written as

0573 = O5T9 — OSTI0 - (A.18)

Hence this operator has been omitted in our list.

For tensor operators:

1T T

OFY8 = O¢dRLRL » 05711 = O¢yRLRL > (A.19)
T T

OST13 = O¢4RLLR > 05716 = O¢yRLLR > (A.20)
T 1T

0ST14 = ORLLR o512 = (ORLRL) » (A.21)

where [0']*%% = ([0]%%)T. The three tensor operators osr13, 05714 and 0g716 are absent
in the list of HEFT operators presented in [39]. On the other hand, the operator ogry =
€ij (@' u) (FoHe) included in [39] is not an independent one. It can be written as

0574 = OST11 — OSTI2 (A.22)

and has been omitted in our list.

For HEFT operators with BSM coupling of Z, W to the fermions, we reproduce the
list provided in [39] in Table 7. In addition, we have also included the HEFT operators that
modify the coupling of h to fermions. Once again there is a one-to-one mapping between

HEFT operators with Z, W couplings
oyv1 = (gy*q) (UTiD,UTs) oypve = ((y*UT3U'q) (UTiD,UT3)
oypvs = ((Y*UP12U'q) (UTiD,UPy1) +h.c. | oyyy = (ay'u) (UTiD,UTs)
oypvs = (dy*d) (UiD,UTs) oyve = (ay*d) (UTiD,UPy) + h.c.
oyvr = (Iy*1) (UTiD,UTs) oypvs = (IVUT3UT) (UTiD,UTs)
oypve = (IW*UPUTL) (UTiD,UPs) +hec. | ogyvio = (eyte) (UTiD,UT3)
oyn1 = h (qUP_r) oyn2 = h (qUPyr)
oyn3 = h (l_UP,n)

Table 7: HEFT operators in [39] with Z, W+ and h couplings to fermions.
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the operators in Table 7 and Table 4:
g

g
OpV1 = —5 5 (Ou,z+04,2) , Oypva= ~Seosd (Ou,z — 04, 2) , (A.23)
g g
Oyv3 = _fEOUdLW ) Oyv4 = —mouRZ ) (A.24)
g g
OyVs = ~5 5 %drZ » Oyv6 = _EoudRW ; (A.25)
g
=7 =9 (o, , A.26
Opvr = —5 5 (0uz+0c,2) , Opvs = —5 " (04,7 — 0c, 7) (A.26)
=9 f =9I A.27
0yV9 ﬁ(oeVLW) , 0yV10 5 o050 % (A.27)
Oyhl = Odp , Oyh2 = Ouh , Oyh3 = Ochy - (A.28)

Thus, we have explicitly demonstrated the one-to-one mapping between the HEFT
operators in the U(1)en, invariant language and the HEFT operators in SU(2)r, x SU(2)r
language in the unitary gauge.

B Details of the SMEFT basis used

To obtain the SMEFT predictions, we have used the (my,mz,apy) input parameter
scheme and the basis as proposed in Ref. [62]. Note that this basis is different from the
Warsaw basis that is conventionally used for SMEFT. In this appendix, we discuss the
difference and the rationale for the choice of this basis.

In the Warsaw basis, the two operators'®
Ows =gd H't' HW, B"" | (B.1)

—
Or = (H'" D H)? (B.2)

would contribute to the couplings of gauge bosons to the fermions by affecting their mass
and kinetic terms. One needs to carefully normalize the kinetic term to bring it to the
canonical form and also take into account input parameter shifts. These subtleties become
relevant when we try to write the Z and W+ coupling modifications in SMEFT as in
eqs.(2.31-2.33).

Instead, in the basis of Ref. [62], the operators Oy g and O are traded for the following
two operators:

<=
Owp = Owp — 2ig (HT D “H) 0" B,
. -/
Owr =2 (mt T“%WH) Dwp, - (HTﬁNH) 9 B, (B.3)

This way of writing the operators eliminates their contributions to any mass or kinetic
term [62], thus allowing us to obtain the SMEFT predictions in a straightforward way.

5Note that in Ref. [2] the operator O would actually appear as a linear combination of the operators,
(H' D, H)*(H' D, H) and (H'H)d,0"(HTH). The combination of these operators orthogonal to Or,
On = 3(0u|H|?)?, is part of the basis of Ref. [62].
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Note that the final predictions we obtain should be independent of the basis being
used and the Warsaw basis should also yield the same predictions, albeit with more com-
plicated intermediate calculations. We show in the following that, in the Warsaw basis,
the contributions of the two operators Op and Oy g to the HEFT WCs associated with Z,
W¥ couplings to the fermions cancel out in the final relations. In the Warsaw basis, these
HEFT WCs receive the following SMEFT contributions [42]:

[cuy 2] = nz ([CH))7 — [C5I ) + £(1/2, 2/3) (B.4)
[ca, 217 = nrz (€07 + [C5NY) + f(=1/2, —1/3) (B.5)
[cud, w7 = nuw [Col™ + f(1/2, 2/3) — f(~1/2, ~1/3) | (B.6)

where 777 = —g/(2 cosf), now = g/(v/2) and the term f(T3,Q) is defined as [42]

92 912 g/2
g —g 9°—g
with [fv]¥ = ([Cgl)]ll—i—[C§2]22)/2+[Cé;)]1221/4. From egs. (B.4-B.6), we obtain the SMEFT
prediction

1
Cud W = ﬁ cos Oy, (cuLZ - CdLZ) s (B.S)

which is the same as the one in Table 3. We see that in the prediction shown in eq. (B.8), the
function f(72,Q) and the operators within do not appear. Similarly for Z, W* coupling
to leptons, we recover the prediction already presented in Table 3,

1
Cevy W = 5 €08 Ou (CeLz — Cuyz) - (B.9)

Thus, even in the Warsaw basis, the contributions to our relations from Owp and Or
cancel out, confirming that the final relations among the HEFT WCs are independent of
the choice of the basis for SMEFT.

C Linear relations among LEFT and HEFT operators

In Sec. 2.3, we have presented SMEFT predictions for LEFT WCs of the class LLLL. In
this appendix, we provide a similar analysis for the other classes of LEFT operators. We
first write the matching of four-fermion semileptonic WCs between LEFT and HEFT. We
then substitute the HEFT WCs with the LEFT WCs for each of the analytic relations
presented in Table 3. As a result, we get relations among the LEFT WCs which also
involve the BSM couplings of Z, W* and Higgs bosons to fermions. These relations for the
vector operators are listed in Table 8. For the scalar and the tensor operators, the relations
are presented in Table 9.

Now we present the matching relations among LEFT and HEFT operators in the flavor
basis.
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Class Analytic relations for WCs of vector operators Count
rrnr | Vie [[Clann)®™™ = (key, [€a, 21" as + kay, [€e, 217 61a)] Vi) 81 (45)
= Uczp [[CXLLL]pmJ - X (kVL [éULZ]ZJ §p0 + kup, [él/LZ]pU 61’1)] Uﬂﬁ

V;J(g HCXLLL]M%Z - X (keL [CULZ]kl 0ap + kuy, [CeLZ]aB 6kl)} Vi 81 (45)
= UL, [CYart)?™ = (Fuy [€a, 217 6po + Kay, [€0,2]°7 615)] U
‘/7;{: HOJ‘:/L]QBM - X (keuW [éudLW]kj 5a[3 + [kudW}kj [éeVLW]aﬁ)]
= [[CYLL)* = (e, [€4,2]7 Sap + kay [0, 2] 613)] UL, 162 (81)
— Ul [[CUapL]?® = (kup [€a, 2] 60p + kay [€0,2]7 6ij)]
RRRR No relations
1o | 1Clanrl®™™ = (ke, [€4n2]"7 dag + kay [€e, 277 015) 81 (45)
= Uchp [[CxiLR]paZj - (kVL [édRZ]Zj 5PU + de [éVLZ]pU 6”)] Udﬁ
[C;;LR}Q[W - X (keL [éuRZW 5Oz6 + kUR [éeLZ]aﬁ 51’]’) 81 (45)
= U;Ep UCIY;LLR]I)UU — X (kVL [éuRZ]U 6/70' + kuR [éVLZ]pJ 517)] UUB
[CZR]aﬂij = X keow [éudRW]ij 162 <81)
rerr | [Coanrtl®® = (keq [€a,2]7 Oap + ka, [€c, 2] 615) 81 (45)
VL TGl = X (b [y 21 G+ by (602 50)] Vi

Table 8: Relations among the LEFT semileptonic vector WCs and the BSM coupling of
Z,W# and Higgs bosons to fermions, in the mass basis. Note that for the UV4f models,
these BSM couplings vanish and this table becomes similar to Table 3, but in terms of only

LEFT WCs.

For LLLL vector operators:

(Courr

2o = wlel, ) + x (kVL [Cur 2] dap + ko, [e0, 2] b5 ) ’
aBij — [V 1P 4 (keL [Cuy 217 Bap + kuy [cep 2] 5ij) :

[CIY;ILL}QMJ =w [Cz‘//dLL]aﬁij + ky, [CdLZ]ij dap + kay, [CuLz]aﬁ i,

P = w [ty )Y + ke, [cay 27 6ap + kay [Cep 2] 645,

Where | € {v,e}, q € {u,d}, w = v?/(2A?), and the k coefficients are

ka =

_ 2cos 0y
g

(T} — Qfsin®0y) , and keyw = kyaw =

=[S

where fr € {vp,er,ur,dr}, as defined in Sec. 2.3.
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Class Analytic relations for WCs of scalar operators Count
Vi ([CSimzorl®™ = [Een)™™ MY kan = M kenlean]™
— M7 (€0, 2] My ya + [€cn 2] ME° My
Scalar | YoM (4,21 M + y MET M [&4,2)"™ ) 162 (81)
@) | = 10R00m) — x (M ew )7 MYy
+Yer M [éudLW}ikaljj — Yer M lefj [éUdRW]kj)] Upp
[CeSdRLRL]aﬁij = [éeh]ﬁa : Méj Kan + kehMeaﬁ [édh]ji .
— M{?[ee, 2] My ya + [€en 2] ME® M ya 162 (81)
— e M MF[ea, 21 + ye M (€02 My
[[CfuRLRL]amk - X ([éeh]ﬂa * M kup + ke, MOP (€]
— MEP[ee, 7" MFyy + [€c,2]* ME® M Py,
Scalar _yeMgﬁ Mqim[éuLZ]mk + yeMeaﬁ [éuRZ]im 1T1§L)] Vij 162 (81)
(ur) == [[CIS%LRL]apij —x (M7 [€cr, w]?” My yua
e ME? [utav) M7 e, MO M 0,17 )| Uy
(Courprrl®™™ = X ([€cn]”® M7 kun + M2 ken[€un]?
+ M [€ey 2] M7y — [Cenz)® MEP My, 162 (81)
-HJeMeaB [éuLZ}ikaj - yeMeaB Mzik [éuRZ]kj)
Tensor [Cer an]aﬁij =0 324 (162)
(dr) [CF . RlP =0 162 (81)
Tensor [Cg;fzgg;u Vij = _[CIT%;LRL]QPM Ups 162 (81)
(UR) [C;,LRRL]QBU =0 162 (81)

Table 9: Relations among the LEFT semileptonic scalar WCs and HEFT WCs for the
BSM coupling of Z, W* and Higgs bosons to fermions, in the mass basis. Note that for
the UV4f models, these BSM couplings vanish and this table becomes similar to Table 3,

but in terms of only LEFT WCs.

For LLRR vector operators:

[OIXLLR]aﬁij =w [C‘VfuLL]aﬁij +X (k?z/L [CuRZ]Zj 0aB + kug Cupz ]aﬁ 5ij) ) .7)
[C’XLLR]O‘/BU =w [Cc‘a/uLR]aﬁij +X (keL [CuRZ]ij 5a,3 + kuR CGLZ]OCB (5ij> ) (C'S)
[CN’IYdLR]aﬁij =w [Cz‘//dLR]aBij + Ky [Capz ]ij bap + kag [cuy 2 ]aﬂ dij (C.9)
[C;{iLR]am] =w [C‘e/dLR]aBU + ke, [CdRZ]” 0ap + kdp [CGLZ]aﬁ Oij (C.10)

[CLRI™ = w ey g™ + X (kevw [Cudpw]? Gag) - (C.11)
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Here, kep, kuy and kg, are

2 cos Oy, .
ki, = — CO; (Qfsin®6,,) . (C.12)
For RRRR vector operators:
[GZLRRP&]' =w [CZuRR]aBij + X <k€R [cuRZ]ij 5&5 + kUR CeRZ]aﬁ 5ij> ) (C‘l?’)
[CglRR}a&j =w [C}a/;lRR]a/Bij + Keg [CdRZ]ij 0o + kdy [Cepz ]aﬁ dij - (C.14)

In this category, the number of independent SMEFT and HEFT operators are the same.
As a result, there is no prediction for the LEFT WCs in this category.
For RRLL vector operators:

—~

C.15)
C.16)

[C’XLRL]aﬁij =w [C;/URL]amj + X (kER [CULZ]ij 0ap + kuy, [CeRZ]a[B dij ) )

[OZJRL]aﬁij =w [CZdRL]aﬁij + kep, [CdLZ ]ij ap + ka,, [CeRZ]aﬁ dij -

—~

For scalar operators:

[égiRLLR]a&j =w [CeSdRLLR]aﬁij + [Ceh]ﬂa *M;]LR Kan + Mg]?L ken[Can]”
+ MSJQL [Ce 2]’ MgLRyd - [CERZ]apMcf)}gL MgLRyd
+ ye My [ea, 21" Mgy, — ve My Mif g [eanz]" (C.17)
(CoirLri)™ = wleSirLrl ™ + [een)®™* Mipy kan + kenMCpy, [ean)’™
- Mg}’%)L [Ce 2] M;%Lyd + [CGRZ]apMé)LBR M?ﬁyd
— ye Mgy, My lea, 21V + ye NIy [eanz] ™ Mjh, . (C.18)
[(jfuRLLR]aﬁij =w [CeSuRLLR]aﬁij +X ([Ceh]ﬂa *Mi]LR Kun + MS}EL ken [Cuh]ij
+ Measz [Cep 2] MqijLRyU — [Cerz ]apMep]gL M;JLRyu
+y6M:]§L [CULZ]ikM%L - yeMggL Mg [CURZ]kj) ) (C.19)
(Corrre]® = wlctrrr) ™™ + X ([Ceh]ﬂ O My keun + ke MCy [ean]?™
- M:IQL [Ce 2] M%Lyu + [CGRZ]apMepgR Mi@%Lyu

e NIy, M lew, 21 -+ ye IG5 feunzl™ My ) (C.20)

~ g g - - - L
[CIS%LLR]QBU =w [C%LLR]QBU +X (M%L [CeVLW]pIB MZJJLRyud + yenggL [CUdLW]ZkMdiR
~ Yo MRy M5 pleuaw]*) (C.21)
~ g g - o - L
[C}%LRL]QBZJ =w [C%LRL]QBH + X <M:1§L [CeuLW]pB M;]RLyud - erMgsz [CUdRW]ZkMd;%L

+ erMea}gL M&%L [CudLW]kj) ) (0'22)
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where
Y _ou ut Y _od dt > _ 1re et
Myrr = Sy My Sy, Mgarr = S; Mg Sy, Merr=Kj M Ky (C.23)

with M. = diag(me, my, m.), M, = diag(my, m., my), and My = diag(mq, ms, mp).
For M trL, L and R are interchanged compared to the M ¢Lr expressions in eq. (C.23). The
k-coeflicients are

[

— . (C.24)
Qm%

ken = kun = kan =
Note that the BSM couplings of W* and Z bosons can also contribute to scalar LEFT
operators because of the second term in the unitary gauge propagator for massive vectors.
In the matching relations above for the Z and W# couplings to fermions, the corresponding
coefficients are

Y = T;QZ(kaZ - kfRZ) sy Yud = Yev = k;;?:/ . (0'25)
Note that in the UV4f scenario, the vanishing of HEFT WCs cde rLp and cesu LRRL
results in the vanishing of the LEFT WCs C’fd LrLp and Cfu .rRL- In conventional LEFT
notation [40], these identities are presented as C's = —Cp and Cy = C'p in both of these
categories.
For tensor operators:

[CLirri]l®® = wclrrrl®® . [CLrrirl®® = w (el rrr]™Y | (C.26)
<7 g T g <7 g T g

[CeuLRRL]aBZJ =w [ceuLRRL]aﬁZ] ) [CeuLRLR]a’BU =w [ceuLRRL}a&j ) (C.27)
[C}QLLR]QB” =w [CgLLR]aﬂU , and [CgLRL]aﬁzJ =w [CELRL]aﬂW . (C.28)

The relations among the tensor LEFT WCs remain the same as for the HEFT WCs.

Note that, while writing the relations in Tables 8 and 9, we have replaced the four-
fermion HEFT WCs with the corresponding LEFT ones using the matching relations.
However, when the high energy bounds for the four-fermion WCs are stronger than the
low energy bounds, it may be more efficient to use some of the original HEF'T WCs instead
of replacing them with the LEFT ones.

D Tables for direct and indirect bounds on the WCs

In this section, we have listed the 90% C.L. bounds on the WCs (on both their real and
the imaginary parts if they are complex ) obtained in Sec. 3. The actual bounds especially
between real and imaginary parts of the WCs are correlated and the figures shown in sec.
3 are a better representation of the bounds. However, for the sake of simplicity, we present
the 90% C.L. bounds for individual quantities.

In Tables 10 to 13, we present the direct bounds derived from low-energy observables
(e.g. meson decays, neutrino oscillation), high-energy observables (e.g. high-py dimuon
searches, production and decays of top quark) and indirect bounds derived using egs. (3.1)
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and (3.2).
and the indirect bounds derived from eq. (3.3). Note that the high-energy bounds directly
constrain only the HEFT WCs, [¢]*’¥ but here we work in the context of the UVA4f
scenario, which allows us to provide high-energy bounds on LEFT WCs.

In Table 14, we present the direct bounds from high-pr monomuon searches

WC Low energy High energy Indirect

oV, 121 [-0.042, 0.049] - [-0.00021, 0.00046]
Re ([CY,; ;1%2'?) | [-0.00001, 0.00001] - -
Im ([CY,, ;1?%'2) | [-0.00001, 0.00001] - -
Re ([CY,; ;1%'3) | [-0.0010, 0.0012] - -

Im ([CY,, 1?%'3) | [-0.0012, 0.0011] - -

oV, 1222 - - [-0.0029, 0.0032]
Re ([CY,, 1%%3) | [-0.0014, 0.00078] - -
Im ([CY,, ]**) | [-0.0011, 0.0011] - -

oV, 1233 - - [-4.34, 4.44]

Table 10: 90% C.L. bounds for the WCs of the type C'. arL- Lhe low-energy bounds (sec-
ond column) correspond to bounds from rare decays of K and B mesons. For [CV, ]?211,
the low-energy bound is from atmospheric and accelerator neutrino experiments. There is
no high-energy bound on these WCs. The fourth column shows the indirect bounds derived

using eq. (3.1).
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WC

Low energy

High energy

Indirect

(Cous"

[-0.000077, 0.00033]

Re ([CY, . .]%*'%) | [-0.00056, 0.00056] | [-0.00091, 0.00091] -

Im ([CY,, [1#2'?) | [-0.00056, 0.00056] | [-0.00091, 0.00091] -

Re ([C..]7"?) - [-0.0025, 0.0025] | [-0.0078, 0.0077]

([CeVuLL 2213) - [-0.0025, 0.0025] [-0.013, 0.013]

oY 12222 - [-0.0039, 0.00093] | [-0.0067, 0.0071]
Re ([CY . 17%%) - [-0.0208, 0.0208] [-0.18, 0.19]
m ([CY,; 172%3) - [-0.021, 0.021] [-0.0040, 0.0041]

[CY. | []2238 - [-0.20, 0.20] [-4.34, 4.44]

Table 11: 90% C.L. bounds for the WCs of the type C’;;LL.
(second column) correspond to bounds from rare D meson decays. The high-energy bounds

The low-energy bounds

(third column) correspond to bounds derived from high-py dimuon searches and from top
production and decays, particularly for [CY ;12213 [CV . 1?%23 and [CY ; ;]*?33. The fourth
column shows the indirect bounds derived using eq. (3.1).

WC Low energy High energy Indirect
[Courr)®" - -0.0010, 0.00014] ]
Re ([CY; 1%*'2) | [-0.00001, 0.00001] | [-0.0011, 0.0011] -
Im ([CY; ;1%'%) | [0.00001, 0.00001] | [-0.0011, 0.0011] -
Re ([CY,, . ]?#1?) | [0.00003, 0.00001] | [-0.0017, 0.0017] -
Im ([CY; ;]%'3) | [0.00002, 0.00003] | [-0.0017, 0.0017] -
[Clipn)? - [-0.0043, 0.0014] _
Re ([CY,;,1?%%3) | [-0.00013, 0.00010] | [-0.0041, 0.0041] -
m ([CY,;,]?%3) | [-0.00017, 0.00017] | [-0.0041, 0.0041] -
[Clurr)? - -0.0096, 0.0054] -

Table 12: 90% C.L. bounds for the WCs of the type C;ilLL.
(second column) correspond to bounds from rare decays of K and B mesons. High-energy

The low-energy bounds

bounds (third column) correspond to bounds derived from high-py dimuon searches. The

indirect bounds are absent as we have used these WCs as inputs to eq. (3.2).
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WC Low energy | High energy Indirect
CV P2 | [0.075, 0.052] ; 0.0012, 0.00021]
Re ([C,pL)*'?) - - [:0.00098, 0.00053]
Im ([C), )" - - [-0.000012, 0.000013)]
Re ([C),rr]*") - - [-0.000057, 0.000074]
([CVVULL 221%) - - [:0.000070, 0.000092]
[Ch ) - - [:0.0042, 0.0013]
Re ([CY, [ .]7*%) - - [-0.00044, 0.00049]
m ([CY,, [ 17%%) ) - [-0.00017, 0.00017]
[Chur)?? - - [:0.0096, 0.0054]

Table 13: 90% C.L. bounds for the WCs of the type C;/u .- The low-energy bound (second

2211 i obtained from atmospheric and accelerator neutrino experiments.

column) for [CV /]
There is no high-energy bound on these WCs. The fourth column shows the indirect bounds

derived using eq. (3.2).
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Table 14: 90% C.L. bounds for the charged-current WCs of the type CXL. The high-
energy bounds (second column) are derived from high-py mono-muon searches. The third
column shows the indirect bounds derived using eq. (3.3).
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