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Abstract: The SU(2)L×U(1)Y invariance of the Standard Model Effective Field Theory

(SMEFT) predicts multiple restrictions in the space of Wilson coefficients of U(1)em invari-

ant effective lagrangians such as the Low-energy Effective Field Theory (LEFT), used for

low-energy flavor-physics observables, or the Higgs Effective Field Theory (HEFT) in uni-

tary gauge, appropriate for weak-scale observables. In this work, we derive and list all such

predictions for semileptonic operators up to dimension 6. We find that these predictions

can be expressed as 2223 linear relations among the HEFT/LEFT Wilson coefficients, that

are completely independent of any assumptions about the alignment of the mass and flavor

bases. These relations connect diverse experimental searches such as rare meson decays,

high-pT dilepton searches, top decays, Z-pole observables, charged lepton flavor violating

observables and non-standard neutrino interaction searches. We demonstrate how these

relations can be used to derive strong indirect constraints on multiple Wilson coefficients

that are currently either weakly constrained from direct experiments or have no direct

bound at all. These relations also imply, in general, that evidence for new physics in a

particular search channel must be accompanied by correlated anomalies in other channels.
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1 Introduction

The Standard Model Effective Field Theory (SMEFT) [1–4] is a model-independent way to

incorporate the effects of beyond Standard Model (BSM) physics at low energies. It mod-

ifies the Standard Model SM lagrangian by the addition of all possible higher dimensional

operators respecting the SM symmetries:

L = LSM +
1

Λ2

∑
i

C(6)i O
(6)
i + · · · , (1.1)

where Λ is the cut-off scale, typically of the order of TeV or higher. Here, O(d)
i represent

the d-dimensional BSM operators and C(d)i represent the corresponding Wilson coefficients
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(WCs). We assume here that the new physics preserves baryon and lepton numbers and

therefore do not include dimension-5 operators. The ellipsis represents higher order oper-

ators with dimension > 6.

SMEFT is manifestly invariant under SU(3)C × SU(2)L ×U(1)Y , the SM gauge sym-

metry. As a consequence, there are specific relationships among different flavor observ-

ables. For instance, the SMEFT requirement that the up-type and down-type left-handed

fermionic fields should arise from SU(2)L doublets implies relations among flavor observ-

ables probing the up sector and those probing the down sector. In this work, we initiate

a systematic derivation of such relations, beginning with the semileptonic processes in this

article.

In flavor physics, effective field theories (EFT) have long served as a standard frame-

work to parameterize the effects of heavy new physics. However, for most flavor physics

processes, the experimental energy scale is at or below the mass of the b quark; this includes

weak decays of mesons, neutral meson mixing, τ decays, etc. The relevant EFT at these

energies is the so called Low-energy Effective Field Theory (LEFT)1 [9], which assumes

only the SU(3)C×U(1)em invariance and not the full SU(3)C×SU(2)L×U(1)Y invariance

of SM.

The flavor structure of new physics (NP) can also be probed at higher scales, for in-

stance, in flavor-violating decays of the Z,W±, and the Higgs boson h, via flavor-violating

production or decay of the top quark t, or by constraining the Drell-Yan processes initi-

ating from a flavor off-diagonal diquark state. In order to include both high-energy and

low-energy observables, one of course needs to write all possible SU(3)C×U(1)em invariant

operators, as in LEFT, but terms involving the top quark, Higgs boson and electroweak

bosons also need to be included. An appropriate framework that can encompass both,

low-energy flavor observables as well as this second class of processes involving heavier

SM states, is the so-called Higgs Effective Field Theory (HEFT) [10–12]. This is a more

general framework than SMEFT and also includes scenarios where the EW symmetry is

realized non-linearly. In the unitary gauge, it leads to a lagrangian involving all possible

SU(3)C × U(1)em invariant operators. Given the HEFT lagrangian, it is possible to de-

rive the corresponding LEFT lagrangian by simply integrating out the heavier SM states

W, Z, h and t.

For a given set of processes, a general parametrization of possible BSM deviations

assuming only SU(3)C × U(1)em invariance gives rise to many more free parameters up

to a given order than the number of SMEFT WCs to that order. This is simply because

the former does not assume the full SU(3)C × SU(2)L × U(1)Y invariance of SM. This

situation has been schematically presented in Fig. 1 where SMEFT can be seen to be

a subset of the more general HEFT. Within this region satisfying SMEFT assumptions,

the smaller number of free parameters implies relationships among the WCs of HEFT.

These relationships can be thought of as predictions of SMEFT at a certain order; these

predictions can be broken only by violating the basic underlying assumptions of SMEFT.

An apparent obstacle in deriving these relations is that, while SMEFT is written in

1LEFT is sometimes referred to as weak effective field theory (WET or WEFT) in literature [5–8].
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Figure 1: Schematic representation of EFTs above and below the electroweak scale. UV4f

represents the subset of SMEFT where the BSM physics only has four-fermion operators.

the flavor basis, HEFT or LEFT operators have to be written in the mass basis if we

wish to connect them to physical observables. The equations connecting HEFT Wilson

coefficients in the mass basis to SMEFTWilson coefficients in the flavor basis, thus, contain

elements of the rotation matrices of the left-handed and right-handed up-type and down-

type fermions, which cannot be fixed by experiments. We show, however, that only the

measurable elements of the Cabbibo-Kobayashi-Maskawa (CKM) quark-mixing matrix and

the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) lepton-mixing matrix appear in the final

relations among HEFT WCs. This allows us to derive the implications of SMEFT on

flavor physics observables in a way that is completely independent of assumptions about

the alignment of the flavor and the mass bases, often referred to as UV flavor assumptions.

In this work, we consider the 3240 semileptonic four-fermion operators in HEFT that

get contributions from the 1053 SMEFT operators, giving rise to 2187 constraints. In addi-

tion, we consider 144 HEFT operators that can contribute to low-energy flavor observables

via the exchange of Z,W± and h bosons. In SMEFT, these arise from 108 independent

operators, thus implying 36 constraints in the HEFT space. We derive all these 2223 con-

straints and express them as analytic relations independent of any UV flavor assumptions.

Some other recent studies have also considered the implications of the SU(2)L×U(1)Y
invariance of SMEFT on flavor observables [13–27]. To the best of our knowledge, how-

ever, the present work is the first study to comprehensively derive and list all the 2223

analytic relations relevant for semileptonic processes (see, however, Ref. [16, 19, 20] where

a subset of the above relations has been presented.) Our approach also makes it clear that

these implications can be obtained and presented in a way that is free from all UV flavor

assumptions. A similar approach has been used to derive SMEFT predictions in Higgs

physics in Ref. [28, 29].

– 3 –



The SMEFT predictions derived in this work are expressed as linear relationships

among SU(3)C × U(1)em invariant BSM couplings in the mass basis. These relationships

can be directly translated to exact relations among experimental observables. As we will

see, these relations connect diverse experimental searches: low-energy flavor observables

in different sectors such as kaon, B-meson, charm and τ -decays, the Drell-Yan process

at high-pT , top production and decay channels, Z-decays, and searches for non-standard

neutrino interaction. These relationships thus allow us to utilize experimental limits on a

set of well-constrained observables to put bounds on other, otherwise poorly constrained,

observables. Our work demonstrates that indirect constraints on many WCs — such as

those related to dd̄ → νν̄, ui → ujνν̄ and top decays — obtained in the above manner,

would surpass direct bounds.

Another crucial implication of these relations among WCs is that, in general they

disallow an isolated non-vanishing WC. This is because a nonzero WC will, via the linear

relations, imply a nonzero value for multiple other WCs. This indicates that deviations

from SM would typically not appear in isolated channels. For instance, it is known that the

observed excess in B → Kνν branching fraction can be explained by a nonzero WC for the

operator involving the transition b → sνν. We show that this would imply non-vanishing

values for WCs involving processes such as b→ cℓνℓ, b→ uℓνℓ , t→ cµe, t→ uµe, etc.

While the SMEFT predictions we derive are completely independent of UV flavor as-

sumptions, we find that as far as phenomenological implications are concerned, the sharpest

conclusions can be drawn in an important class of models where the dominant new physics

effects come from four-fermion operators and not from modifications of Z,W± and h cou-

plings. We call these models ‘UV4f’ models and represent them by the dashed rectangle

in Fig. 1. This is a highly motivated class of UV completions that encompasses a majority

of the models proposed to explain the flavor anomalies. These include minimal leptoquark

models [30–33] and many Z ′ models [34–38] proposed in the literature.

The plan of this paper is as follows. In Sec. 2, we present the list of relevant operators

in SMEFT, HEFT and LEFT and provide the relations among the WCs. We discuss the

phenomenological applications of these relations in Sec. 3, where we derive the indirect

bounds on WCs associated with left-handed quarks and leptons. In Sec. 4, we discuss

possible directions of NP searches suggested by the relations among the WCs, given some

of the current observed deviations from SM. We present concluding remarks in Sec. 5.

In Appendix A, we write the HEFT operators used in the text in the SU(2)L × U(1)Y
invariant form, with the electroweak symmetry non-linearly realized, and compare our list

with the previous literature. In Appendix B, we briefly discuss some details of the SMEFT

basis used and the rationale for our choice. In Appendix C, we present all the analytic

relations in terms of semileptonic LEFT WCs and WCs that modify the Z, W± and Higgs

couplings to fermions. In Appendix D, we present tables of 90% C.L limits on the LEFT

WCs.
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2 SMEFT predictions for semileptonic operators

In this section, we present all possible semileptonic operators respecting the U(1)em sym-

metry (as the SU(3)C symmetry is always respected, we will not mention it separately from

here on), and derive the analytic relations among them that are predicted by SMEFT. We

consider the following lagrangian terms at the weak scale:

LHEFT ⊃ LSM +
∑
f,i,j

[cfZ ]
ij (f̄iγ

µ fj)Zµ +
∑

fu,fd,i,j

[cfufdW ]ij (f̄uiγ
µ fdj )W

+
µ

+
∑

[cfh]
ij (f̄i PR fj)h+

1

Λ2

∑
i

ci o
4f
sl,i + h.c., (2.1)

where, in addition to the SM lagrangian LSM and the term containing all possible semilep-

tonic four-fermion operators o4fsl , we also include corrections to the couplings of Z,W± and

Higgs boson h to fermions.2 This is because the diagrams with Higgs, W± and Z exchange

can generate four-fermion effective operators at the low energies relevant to semileptonic

flavor observables. Here f ∈ {uL, uR, dL, dR, eL, eR, νL}, fu denotes neutrinos and up-

type quarks (both left-handed and right-handed) whereas fd denotes down-type quarks

and charged leptons. A lagrangian containing all these operators with independent coef-

ficients is equivalent to the HEFT lagrangian, LHEFT, in the unitary gauge. This is be-

cause, although formally SU(2)L × U(1)Y invariance is non-linearly realized in the HEFT

lagrangian, in the unitary gauge HEFT reduces to a lagrangian with all possible U(1)em-

invariant terms. As we show in Appendix A, our list of operators can be rewritten in an

invariant form with non-linearly realized electroweak symmetry as in Ref. [39]. The HEFT

basis of Appendix A excludes some redundant operators that appeared in the HEFT bases

presented in earlier literature (e.g. [14, 39]) and also includes some operators that were

missed in previous work. Further note that in the UV4f scenario discussed in the Sec. 1,

the coupling modifications of Z,W± and h are absent, i.e. the second, third and fourth

terms on the RHS of eq. (2.1) vanish.

The semileptonic four-fermion operators o4fsl can be directly probed by high-energy

processes such as the Drell-Yan process q̄iqj → ll, top production and decay processes, etc.

We consider these operators in Sec. 2.1 and list the dimension-6 (dim-6) SMEFT operators

that contribute to them. We find that the number of HEFT operators is larger than the

number of dim-6 SMEFT operators, which results in SMEFT predictions for these HEFT

WCs. These predictions are in the form of linear relations among the HEFT WCs; we

explicitly derive these relations in Sec. 2.1.

Next we consider the corrections to the SM couplings of Z,W± and h to fermions,

indicated by the second, third and fourth terms in the RHS of eq. (2.1). Although our

2We have not considered four-quark operators and electroweak dipole operators. Although these can

contribute to semileptonic processes, they do not get matched to semileptonic operators at the tree level.

Furthermore, these operators are constrained from processes which are not semileptonic. The four-quark

operators can get constraints from nonleptonic decays, whereas the dipole operators are bounded by mea-

surements such as the precise observations of dipole moments of elementary particles, the b → sγ process

etc.
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reason for inclusion of these operators is that they contribute to low-energy semileptonic

processes via Z,W± and h exchange, these couplings can be probed independently by

studying decays of the Z,W± and h. We list the SMEFT operators contributing to these

in Sec. 2.2. We find that, while the number of SMEFT operators is the same as the

number of HEFT operators for h coupling corrections, the number of contributing SMEFT

operators in the case of gauge boson coupling corrections is smaller. This results in relations

among the corrections to Z and W± couplings; we derive these in Sec. 2.2.

Finally, in Sec. 2.3 we rewrite the analytic relations derived in Sec. 2.1 and Sec. 2.2 in

terms of WCs at the low scale relevant for most of the important flavor observables, such

as those connected to meson mixing, rare decays, etc. The lagrangian relevant at these

scales is the sum of the LEFT neutral-current and charged-current lagrangians3

LNC
LEFT = LNC

SM +
4GF√

2

NC only∑
i

CiO
NC
i , (2.2)

and LCC
LEFT = LCC

SM +
4GF√

2

CC only∑
i

CiO
CC
i , (2.3)

where the first terms on the RHS arise from the first term in eq. (2.1) by integrating out

Z,W± and h, assuming SM couplings.4 Here ‘NC’ and ‘CC’ stand for neutral-current

and charged-current, respectively. In order to obtain the SMEFT predictions for relations

among the LEFT WCs, we need to match the LEFT coefficients above to the HEFT ones

including the effect of Z, W±, and h exchange diagrams. These matching relations can

then be inverted to write the HEFT WCs and the relations among them in terms of the

LEFT ones. We carry out this procedure in Sec. 2.3.

2.1 Predictions for semileptonic operators at high energies

We begin our analysis with the 3240 (1674) semileptonic four-fermion operators5 present

in HEFT (see Table 1), where the number within the parenthesis denotes the number of

independent operators if the WCs of all these operators were real. Note that each entry

in Table 1 represents multiple operators corresponding to different possible values for the

family indices. The first entry [cVedLL]
αβij , for instance, represents 81 (45) operators, since

the indices α, β denote three lepton families and the indices i, j denote three quark families.

In Table 2, we list the 1053 (558) semileptonic four-fermion operators in SMEFT which

would give rise to the above HEFT operators.

The operators in Table 1 and 2 are divided into categories based on their Lorentz

structure and the chiralities of the fields involved. In the following, we discuss the mapping

3Note that, to distinguish different EFTs, we denote the Wilson coefficients by ‘C’ for SMEFT, by ‘c’

for HEFT and by ‘C’ for LEFT. The corresponding operators are denoted by ‘O’, ‘o’ and ’O’ respectively.
4A loop factor of e2/(16π2) is usually included for the NC Lagrangian for LEFT in literature [16, 40].

In our convention, we have not included this factor in order to have uniformity in our analytic relations to

be presented later.
5For non-hermitian operators, we consider the operator and its hermitian conjugate as two distinct

operators, as one can treat (O+O†) and i(O−O†) as two separate operators with real Wilson coefficients.
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Vector operators LLLL

NC Count

[cVeLdL
]αβij (ēαLγµe

β
L)(d̄

i
Lγ

µdjL) 81 (45)

[cVeuLL]
αβij (ēαLγµe

β
L)(ū

i
Lγ

µujL) 81 (45)

[cVνdLL]
αβij (ν̄αLγµν

β
L)(d̄

i
Lγ

µdjL) 81 (45)

[cVνuLL]
αβij (ν̄αLγµν

β
L)(ū

i
Lγ

µujL) 81 (45)

CC

[cVLL]
αβij (ēαLγµν

β
L)(ū

i
Lγ

µdjL) 162 (81)

Vector operators RRRR

NC Count

[cVedRR]
αβij (ēαRγµe

β
R)(d̄

i
Rγ

µdjR) 81 (45)

[cVeuRR]
αβij (ēαRγµe

β
R)(ū

i
Rγ

µujR) 81 (45)

Vector operators LLRR

NC Count

[cVedLR]
αβij (ēαLγµe

β
L)(d̄

i
Rγ

µdjR) 81 (45)

[cVeuLR]
αβij (ēαLγµe

β
L)(ū

i
Rγ

µujR) 81 (45)

[cVνdLR]
αβij (ν̄αLγµν

β
L)(d̄

i
Rγ

µdjR) 81 (45)

[cVνuLR]
αβij (ν̄αLγµν

β
L)(ū

i
Rγ

µujR) 81 (45)

CC

[cVLR]
αβij (ēαLγµν

β
L)(ū

i
Rγ

µdjR) 162 (81)

Vector operators RRLL

NC Count

[cVedRL]
αβij (ēαRγµe

β
R)(d̄

i
Lγ

µdjL) 81 (45)

[cVeuRL]
αβij (ēαRγµe

β
R)(ū

i
Lγ

µujL) 81 (45)

Scalar operators with dR

NC Count

[cSed,RLLR]
αβij (ēαR e

β
L)(d̄

i
L d

j
R) 162 (81)

[cSed,RLRL]
αβij (ēαR e

β
L)(d̄

i
R d

j
L) 162 (81)

CC

[cSRLLR]
αβij (ēαR ν

β
L)(ū

i
L d

j
R) 162 (81)

Scalar operators with uR

NC Count

[cSeu,RLLR]
αβij (ēαR e

β
L)(ū

i
L u

j
R) 162 (81)

[cSeu,RLRL]
αβij (ēαR e

β
L)(ū

i
R u

j
L) 162 (81)

CC

[cSRLRL]
αβij (ēαR ν

β
L)(ū

i
R d

j
L) 162 (81)

Tensor operators with dR

NC Count

[cTed,RLLR]
αβij (ēαRσµνe

β
L)(d̄

i
Lσ

µνdjR) 162 (81)

[cTed,RLRL]
αβij (ēαRσµνe

β
L)(d̄

i
Rσ

µνdjL) 162 (81)

CC

[cTRLLR]
αβij (ēαRσµνν

β
L)(ū

i
Lσ

µνdjR) 162 (81)

Tensor operators with uR

NC Count

[cTeu,RLLR]
αβij (ēαRσµνe

β
L)(ū

i
Lσ

µνujR) 162(81)

[cTeu,RLRL]
αβij (ēαRσµνe

β
L)(ū

i
Rσ

µνujL) 162(81)

CC

[cTRLRL]
αβij (ēαRσµνν

β
L)(ū

i
Rσ

µνdjL) 162(81)

Table 1: Semileptonic operators in HEFT. Here c’s are the WCs for the corresponding

operators in the flavor basis. The indices α, β denote lepton families and i, j denote quark

families. NC and CC correspond to neutral-current and charged-current operators. Count

denotes the number of independent operators; the number inside the brackets is the number

of independent operators if all WCs were real. Note that for vector CC operators as well as

all the scalar and tensor operators we have not explicitly listed their hermitian conjugates

but included them in the count.
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Vector operators LLLL

Operator Count

[C(1)ℓq ]αβij (l̄αγµl
β)(q̄iγµqj) 81 (45)

[C(3)ℓq ]αβij (l̄αγµτ
I lβ)(q̄iγµτ Iqj) 81 (45)

Vector operators RRRR

Operator Count

[Ced]αβij (ēαγµe
β)(d̄iRγ

µdjR) 81 (45)

[Ceu]αβij (ēαγµe
β)(ūiRγ

µujR) 81 (45)

Vector operators LLRR

Operator Count

[Cℓd]αβij (l̄αγµl
β)(d̄iRγ

µdjR) 81 (45)

[Cℓu]αβij (l̄αγµl
β)(ūiRγ

µujR) 81 (45)

Vector operators RRLL

Operator Count

[Ceq]αβij (ēαRγµe
β
R)(q̄

iγµqj) 81 (45)

Scalar operators with dR

Operator Count

[Cℓedq]αβij (l̄αa e
β
R)(d̄

i
R q

j
a) 162 (81)

Scalar operators with uR

Operator Count

[C(1)ℓequ]
αβij (l̄αa e

β
R)ϵab(q̄

i
b u

j
R) 162 (81)

Tensor operators

Operator Count

[C(3)ℓequ]
αβij (l̄αaσµνe

β
R)ϵab(q̄

i
bσ

µνujR) 162 (81)

Table 2: Semileptonic operators in SMEFT. Here C’s are the WCs for the corresponding

operators in the flavor basis. The indices α, β denote lepton families and i, j denote quark

families. Here l = (νL, eL)
T , q = (uL, dL)

T , τ I are the Pauli matrices and ϵab is the (2× 2)

anti-symmetric matrix with ϵ12 = 1. Count denotes the number of independent operators;

the number inside the brackets is the number of independent operators if all WCs were real.

Note that for the scalar and tensor operators we have not explicitly listed their hermitian

conjugates but included them in the count.

between SMEFT and HEFT operators and the resulting SMEFT predictions for each of

these categories.

LLLL vector operators: In this category, there are 486 (261) independent operators in

HEFT, as shown in Table 1, which correspond to the 162 (90) SMEFT operators shown in

Table 2. The SMEFT operators, when expanded in the unitary gauge, give the following
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contributions to the HEFT Wilson coefficients:

[cVνuLL]
αβij = ([C(1)ℓq ]αβij + [C(3)ℓq ]αβij) , [cVeuLL]

αβij = ([C(1)ℓq ]αβij − [C(3)ℓq ]αβij), (2.4)

[cVνdLL]
αβij = ([C(1)ℓq ]αβij − [C(3)ℓq ]αβij) , [cVedLL]

αβij = ([C(1)ℓq ]αβij + [C(3)ℓq ]αβij) , (2.5)

[cVLL]
αβij = 2 [C(3)ℓq ]αβij , (2.6)

where we have written both the SMEFT and HEFT WCs in the flavor basis. One can

easily read off the 324 (171) SMEFT predictions implied by the above equations:

[cVeuLL]
αβij = [cVνdLL]

αβij , (2.7)

[cVedLL]
αβij = [cVνuLL]

αβij , (2.8)

[cVLL]
αβij = [cVedLL]

αβij − [cVνdLL]
αβij . (2.9)

These predictions are in the flavor basis. We would like to have the relations in terms of

HEFT operators in the mass basis for later matching with the LEFT operators and with

the observables. This can be achieved by the use of unitary matrices SL,R and KL,R for

quarks and leptons, respectively. The fields are transformed as

uiL → (SuL)
ijujL , diL → (SdL)

ijdjL , uiR → (SuR)
ijujR , diR → (SdR)

ijdjL , (2.10)

eαL → (Ke
L)
αβeβL , ναL → (Kν

L)
αβνβL , eαR → (Ke

R)
αβeβR . (2.11)

The relation in eq. (2.7) gets transformed in the mass basis as6

(Ke
L)
αρ (SuL)

ik [ĉVeuLL]
ρσkl (Su†L )ℓj(Ke†

L )σβ = (Kν
L)
αρ (SdL)

ik [ĉVνdLL]
ρσkl (Sd†L )ℓj(Kν†

L )σβ.

(2.12)

Suppressing the lepton and quark family indices, the above equation can be rewritten in a

compact form as

Ke
L S

u
L ĉ

V
euLL S

u†
L Ke†

L = Kν
L S

d
L ĉ

V
νdLL S

d†
L Kν†

L , (2.13)

where the matrices S andK carry only quark and lepton indices, respectively. This relation

may be further expressed as

V † ĉVeuLL V = U † ĉVνdLL U , (2.14)

using the CKM and PMNS matrices

V ≡ VCKM = Su†L SdL and U ≡ UPMNS = Kν†
L Ke

L . (2.15)

Following similar steps, we can rewrite the relations from eqs. (2.8) and (2.9) in the mass

basis as

V ĉVedLL V
† = U † ĉVνuLL U , (2.16)

V † ĉVLL U = ĉVedLL − U † ĉVνdLL U . (2.17)

Note that the final SMEFT predictions, i.e. the relations among the HEFT WCs shown

in eqs. (2.14), (2.16) and (2.17), involve only the physically measurable CKM and PMNS

matrices. This makes the relations completely independent of any UV flavor assumption.

The relations in eqs. (2.14) and (2.16) were derived previously in Ref. [18].

6A hat on top of the HEFT WC indicates that it is in the mass basis, otherwise it is in the flavor basis.
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LLRR vector operators: Similar to the previous case, in this category there are 486

(261) independent HEFT operators and 162 (90) independent SMEFT operators, as shown

in Table 1 and 2, respectively. The HEFT WCs can be written in terms of the SMEFT

ones as follows:

[cVνuLR]
αβij = [Cℓu]αβij , [cVeuLR]

αβij = [Cℓu]αβij , (2.18)

[cVνdLR]
αβij = [Cℓd]αβij , [cVedLR]

αβij = [Cℓd]αβij , [cVLR]
αβij = 0 . (2.19)

Thus, here we get 324 (171) relations among the HEFT coefficients. In the flavor basis and

the mass basis, these relations are

cVeuLR = cVνuLR ⇒ ĉVeuLR = U † ĉVνuLR U , (2.20)

cVedLR = cVνdLR ⇒ ĉVedLR = U † ĉVνdLR U , (2.21)

cVLR = 0 ⇒ ĉVLR = 0 . (2.22)

Note that in this category, only right-handed quark fields appear and the rotation matrices

for the right-handed quarks cancel out in the relations when translated to the mass basis.

As a result, there is no CKM matrix in these relations and only the PMNS matrix U

appears for the leptons. The relations above show that the charged-current HEFT WCs

vanish for this category of operators. This is because in SMEFT, as noted in [14, 41], right-

handed quarks cannot participate in charged-current semileptonic processes at dimension

6 level due to hypercharge conservation.

RRRR vector operators: Right-handed fermions are not charged under SU(2)L.

Thus even in SMEFT, the up-type and down-type right-handed fields can appear indepen-

dently in neutral-current semileptonic operators, as in HEFT. This makes the number of

neutral-current operators of RRRR type in HEFT and SMEFT to be the same as shown

in Tables 1 and 2, respectively. Furthermore, in the absence of right-handed neutrinos,

there are no charged-current operators either in HEFT or in SMEFT in this category. As

a result, in this category, there are no relations among the HEFT coefficients.

RRLL vector operators: In the case of vector operators involving right-handed lep-

tons and left-handed quarks, there are 162 (90) independent operators in HEFT and 81

(45) in SMEFT, respectively. This results in 81 (45) relations among the HEFT WCs. The

mapping between HEFT and SMEFT WCs in the flavor basis and the resulting relations

in the mass basis for this category are

cVed = Ceq , cVeu = Ceq ⇒ ĉVedRL = V † ĉVeuRL V . (2.23)

Note that the PMNS matrix does not appear in these relations as only right-handed elec-

trons are involved and the corresponding flavor rotations cancel out. Furthermore, there

are no charged-current operators in this category as there is no right-handed neutrino in

SM.
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Category Analytic relations Count

LLLL

V †
ik [ĉ

V
euLL]

αβkl Vℓj = U†
αρ [ĉ

V
νdLL]

ρσij Uσβ 81 (45)

Vik [ĉ
V
edLL]

αβkl V †
ℓj = U†

αρ [ĉ
V
νuLL]

ρσij Uσβ 81 (45)

V †
ik [ĉ

V
LL]

αβkj = [ĉVedLL]
αρij U†

ρβ − U†
ασ [c

V
νdLL]

σβij 162 (81)

RRRR No relations

LLRR

[ĉVedLR]
αβij = U†

αρ [ĉ
V
νdLR]

ρσij Uρβ 81 (45)

[ĉVeuLR]
αβij = U†

αρ [ĉ
V
νuLR]

ρσij Uρβ 81 (45)

[ĉVLR]
αβij = 0 162 (81)

RRLL [ĉVedRL]
αβij = V †

ik [ĉ
V
euRL]

ρσkl Vlj 81 (45)

Scalar (dR)
Vik [ĉ

S
ed,RLLR]

αβkj = [ĉSRLLR]
αρij Uρβ 162 (81)

[ĉSed,RLRL]
αβij = 0 162 (81)

Scalar (uR)
[ĉSeu,RLRL]

αβik Vkj = −[ĉSRLRL]
αρij Uρβ 162 (81)

[ĉSeu,RLLR]
αβij = 0 162 (81)

Tensor (dR)
[ĉTed, all]

αβij = 0 324 (162)

[ĉTRLLR]
αβij = 0 162 (81)

Tensor (uR)
[ĉTeu,RLRL]

αβik Vkj = −[ĉTRLRL]
αρij Uρβ 162 (81)

[ĉTeu,RLLR]
αβij = 0 162 (81)

Z and W±
[ĉudLW ]ij = 1√

2
cos θw ([ĉuLZ ]

ik Vkj − Vik [ĉdLZ ]
kj) 18 (9)

[ĉeνLW ]αρ Uρβ = 1√
2
cos θw ([ĉeLZ ]

αβ − U†
αρ [ĉνLZ ]

ρσ Uσβ) 18 (9)

Table 3: Linear relations among the HEFT semileptonic WCs in the mass basis predicted

by the SMEFT. Summation over repeated indices is implicit. Count denotes the number

of independent operators; the number inside the brackets is the number of independent

operators if all WCs are real.

Scalar operators: There are 486 (243) scalar semileptonic operators with right-handed

down-type quarks and 486 (243) operators with right-handed up-type quarks in HEFT. In

SMEFT, there are 162 (90) operators for each of these scenarios. We find 324 (153) relations

among the HEFT coefficients for each scenario. Mapping of these operators between HEFT
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and SMEFT in the flavor basis gives

[cSed,RLLR]
αβij = [Cℓedq]βαji∗ , [cSeu,RLLR]

αβij = 0 , (2.24)

[cSed,RLRL]
αβij = 0 , [cSeu,RLRL]

αβij = −[Cℓequ]βαji∗ , (2.25)

[cSRLLR]
αβij = [Cℓedq]βαji ∗ , [cSRLRL]

αβij = [Cℓequ]βαji ∗ . (2.26)

From the above equations, we get the following relations among the HEFT WCs in the

mass basis:

V ĉSed,RLLR = ĉSRLLR U , ĉSeu,RLRL V = −ĉSRLRL U , (2.27)

ĉSed,RLRL = 0 , ĉSeu,RLLR = 0 . (2.28)

Note that both the above relations in eq. (2.27) represent relations among neutral-current

scalar operators (on the LHS) and charged-current scalar operators (on the RHS). The

WCs in eq. (2.28) vanish7 since the corresponding SMEFT operators would not satisfy

U(1)Y .

Tensor operators: There is no tensor operator with right-handed down-type quarks in

SMEFT as these operators cannot conserve U(1)Y hypercharge. Thus, all the tensor op-

erators with right-handed down-type quarks in HEFT get zero contribution from SMEFT.

As a result, SMEFT predicts 486 (243) constraints on such HEFT WCs:

ĉTed,RLLR = 0 , ĉTed,RLRL = 0 , ĉTRLLR = 0 . (2.29)

For the case of tensor operators with right-handed up-type quarks, the mapping and rela-

tions are exactly the same as the scalar operators:

ĉTeu,RLRL V = −ĉTRLRL U , ĉTeu,RLLR = 0 . (2.30)

The reason for the vanishing of the WCs in the last equation is again that the corresponding

SMEFT operators would not preserve the U(1)Y hypercharge symmetry. See also references

[13, 14].

In Table 3, we present all the relations among the HEFT WCs corresponding to four-

fermion semileptonic operators, which would be predicted by SMEFT. We express these

relations in the mass basis and explicitly put the indices for the quark and the lepton

families.

2.2 Predictions for the couplings of Z, W± and h to fermions

In addition to quarks and leptons, HEFT also involves Z,W± and h bosons as degrees of

freedom. The BSM couplings of these bosons to the fermions appear as HEFT WCs, as

shown in eq. (2.1). These WCs contribute to low-energy semileptonic processes via Z,W±

and h exchange diagrams. They can also be probed independently by studying decays

of Z,W±, and h. However, when the BSM couplings of these bosons to fermions are

7Note that the vanishing of these HEFT WCs correspond to the relations CS = −CP and C′
S = C′

P in

the conventional LEFT for the UV4f models as noted in [13, 14].
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HEFT

LL quarks

Operator Count

[cuLZ ]
ij (ūiLγ

µujL)Zµ 9(6)

[cdLZ ]
ij (d̄iLγ

µdjL)Zµ 9(6)

[cudLW ]ij (ūiLγ
µdjL)W

+
µ 18(9)

RR quarks

Operator Count

[cuRZ ]
ij (ūiRγ

µujR)Zµ 9(6)

[cdRZ ]
ij (d̄iRγ

µdjR)Zµ 9(6)

[cudRW ]ij (ūiRγ
µdjR)W

+
µ 18(9)

LL leptons

Operator Count

[cνLZ ]
αβ (ν̄αLγ

µνβL)Zµ 9(6)

[ceLZ ]
αβ (ēαLγ

µeβL)Zµ 9(6)

[ceνLW ]αβ (ēαLγ
µνβL)W

+
µ 18(9)

RR leptons

Operator Count

[ceRZ ]
αβ (ēαRγ

µeβR)Zµ 9(6)

Scalar operators

Operator Count

[ceh]
αβ (ēαL e

β
R)h 9(6)

[cdh]
ij (d̄iL d

j
R)h 9(6)

[cuh]
ij (ūiL e

j
R)h 9(6)

SMEFT

LL quarks

Operator Count

[C(1)Hq]
ij (H†←→D µH)(q̄iγµqj) 9(6)

[C(3)Hq]
ij (H†←→D µ τ

IH)(q̄iγµ τ Iqj) 9(6)

RR quarks

Operator Count

[CHu]ij (H†←→D µH)(ūiRγ
µujR) 9(6)

[CHd]ij (H†←→D µ τ
IH)(d̄iRγ

µ τ IdjR) 9(6)

[CHud]ij (H̃†←→D µH)(ūiRγ
µ djR) 18(9)

LL leptons

Operator Count

[C(1)Hl ]
αβ (H†←→D µH)(l̄αγµlβ) 9(6)

[C(3)Hl ]
αβ (H†←→D µ τ

IH)(l̄αγµ τ I lβ) 9(6)

RR leptons

Operator Count

[CHe]αβ (H†←→D µH)(ēαRγ
µeβR) 9(6)

Scalar quarks

Operator Count

[CeH ]αβ (H†H) (l̄α eβRH) 9(6)

[CdH ]ij (H†H) (q̄i djRH) 9(6)

[CuH ]ij (H†H) (q̄i ujRH̃) 9(6)

Table 4: Left column: HEFT operators representing the couplings of Z, W± and h

with fermions. Right column: SMEFT operators contributing to the corresponding HEFT

operators (following notations of [2]). Count denotes the number of independent operators;

the number inside the brackets is the number of independent operators if all WCs were

real. The SMEFT basis in which these operators are written is defined in Appendix B.

parameterized in terms of SMEFT WCs, the number of independent WCs are less than

the total number of relevant HEFT WCs. Thus, SMEFT predicts relations among the

corresponding HEFT WCs, as earlier. In this section, we derive these relations.
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In Table 4, we show the 144 (87) HEFT operators and 108 (69) SMEFT operators

that give rise to Z,W± and h couplings to fermions. Once again, the HEFT operators

have been presented in the unitary gauge as U(1)em invariant terms. These operators can

be rewritten in an SU(2)L × U(1)Y invariant form where this symmetry is non-linearly

realized, as shown in Appendix A. Note that the SMEFT basis we have used is not the

commonly used Warsaw basis. The details of our basis and our rationale for it have been

presented in Appendix B.

While the number of dimension-6 SMEFT and HEFT operators are the same for the

coupling with h, the number of HEFT operators contributing to Z and W± coupling devi-

ations to left-handed quarks or leptons is 36 (21) and it exceeds the number of contributing

SMEFT operators, 18 (12). This implies 18 (12) relations among the HEFT WCs. The

expressions for the HEFT WCs for these operators in terms of the SMEFT ones can be

written in the flavor basis as

[cuLZ ]
ij = ηLZ ([C(1)Hq]

ij − [C(3)Hq]
ij), [cνLZ ]

αβ = ηLZ ([C(1)Hl ]
αβ − [C(3)Hl ]

αβ) , (2.31)

[cdLZ ]
ij = ηLZ ([C(1)Hq]

ij + [C(3)Hq]
ij) , [ceLZ ]

αβ = ηLZ ([C(1)Hl ]
αβ + [C(3)Hl ]

αβ) , (2.32)

[cudLW ]ij = ηLW [C(3)Hq]
ij , [ceνLW ]αβ = ηLW [C(3)Hq]

αβ . (2.33)

Here ηLZ = −g/(2 cos θW ), where θW is the Weinberg angle, and ηLW = g/(
√
2). These

expressions can then be used to derive the relations among the HEFT WCs:

[ĉudLW ]ij =
1√
2
cos θw ([ĉuLZ ]

ik Vkj − Vik [ĉdLZ ]kj) , (2.34)

[ĉeνLW ]αρ Uρβ =
1√
2
cos θw ([ĉeLZ ]

αβ − U †
αρ [ĉνLZ ]

ρσ Uσβ) . (2.35)

These relations are also shown in the last two rows of Table 3. Once again, the relations

in the mass basis contain only the physically measurable CKM and PMNS matrices.

The relations in eq. (2.34) and (2.35) should be independent of the choice of the

SMEFT basis. In the Warsaw basis, the additional operators OT = (H†←→DH)2 and

OWB = gg′(H†τ I H)W I
µν B

µν would contribute to the couplings of gauge bosons to the

fermions by affecting their mass and kinetic terms. However, their contributions in the

above two relations cancel out. This can be more transparently seen in the SMEFT basis

that we use, where these two operators are traded for two other operators which do not

affect the gauge boson couplings (see Appendix B).

2.3 Predictions for semileptonic operators at low energies

In the previous two subsections, we discussed the predictions of SMEFT at high energies,

i.e., relations among HEFT WCs above the EW scale. Now we consider the SMEFT

predictions for the low-energy observables where the relevant effective field theory is LEFT.

The forms of LEFT operators are the same as in Table 1 apart from the fact that the

operators involving the top quark would not be included in the LEFT lagrangian. We

will now rewrite the relations derived in the previous two subsections in terms of the

LEFT WCs. In order to carry this out, we need the matching relations between the WCs
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of HEFT and LEFT operators. For instance, for operators of the LLLL category, the

matching relations in the flavor basis8 are

[C̃VℓqLL]
αβij = ω [cVℓqLL]

αβij + kℓL [cqLZ ]
ij δαβ + kqL [clLZ ]

αβ δij , (2.36)

[C̃VLL]
αβij = ω [cVLL]

αβij + keνW [cudLW ]ij δαβ + kudW [ceνLW ]αβ δij , (2.37)

where l ∈ {ν, e}, q ∈ {u, d}, ω = v2/(2Λ2), and the k coefficients are

kfL =
2 cos θw

g
(T 3
f −Qf sin2 θw) , and keνW = kudW =

√
2

g
, (2.38)

with fL ∈ {νL, eL, uL, dL}.
In this work, we have not considered effects of the renormalization group (RG) running

of the LEFT coefficients from the weak scale to the scale of the relevant experiments.

These would need to be included using the RG equations of Ref. [3] for a more precise

phenomenological treatment.

Using matching relations like eq. (2.36) and eq. (2.37), we can now rewrite the relations

of Table 3, which were written in terms of the HEFT WCs, the LEFT WCs, and the BSM

couplings of Z and W±. For the LLLL operators, for example, these relations become

Vik

[
[CVedLL]

αβkl −
(
keL [ĉdLZ ]

kl δαβ + kdL [ĉeLZ ]
αβ δkl

)]
V †
ℓj

= U †
αρ

[
[CVνuLL]

ρσij − χ
(
kνL [ĉuLZ ]

ij δρσ + kuL [ĉνLZ ]
ρσ δij

)]
Uσβ, (2.39)

V †
ik

[
[CVeuLL]

αβkl − χ
(
keL [ĉuLZ ]

kl δαβ + kuL [ĉeLZ ]
αβ δkl

)]
Vℓj

= U †
αρ

[
[CVνdLL]

ρσij −
(
kνL [ĉdLZ ]

ij δρσ + kdL [ĉνLZ ]
ρσ δij

)]
Uσβ , (2.40)

V †
ik

[
[CVLL]

αβkj − χ
(
keνW [ĉudLW ]kj δαβ + [kudW ]kj [ĉeνLW ]αβ

)]
=

[
[CVedLL]

αρij −
(
keL [ĉdLZ ]

ij δαρ + kdL [ĉeLZ ]
αρ δij

)]
U †
ρβ

− U †
ασ

[
[CVνdLL]

σβij −
(
kνL [ĉdLZ ]

ij δσβ + kdL [ĉνLZ ]
σβ δij

)]
, (2.41)

where, for WCs involving top quark, we have defined9 [CVℓqLL]
αβij ≡ ω[ĉVℓqLL]

αβij and

[CVLL]
αβij ≡ ω[ĉVLL]αβij . In eq. (2.41), χ = 0 (χ = 1) if the respective four-fermion operator

contains (does not contain) the top quark. The introduction of χ ensures that the HEFT

WCs are replaced by LEFT ones for all the four-fermion operators not containing the top

quark. The relations for the WCs in the other categories can be similarly derived and have

been presented in Appendix C.

We now mention two important scenarios where the SMEFT predictions derived in this

section can be simplified. First, note that apart from neutrino physics experiments, it is

impossible to distinguish the different flavors of neutrinos in observables. These observables

thus depend on combinations of WCs with neutrino flavor indices summed over and are

independent of the basis used for neutrinos. In particular, we can choose to work in a basis

8In our notation, C̃ corresponds to LEFT coefficient in the flavor basis and C in the mass basis.
9This convention is used for the purpose of giving eqs. (2.39) to (2.41) a unified form for all quarks. This

is an exception to our normal convention, where we use ‘C’ only for LEFT WCs.
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aligned to the charged-lepton flavor basis. This amounts to substituting U = 1 in all the

SMEFT predictions, whether it is for HEFT WCs in Table 5 or for LEFT WCs such as

those in eqs. (2.39-2.41) or in Appendix C. Secondly, in the UV4f scenario where there are

no modifications to Z,W± and h couplings with respect to SM, the matching equations

in eq. (2.37) get simplified and we can obtain SMEFT predictions involving LEFT WCs

simply by substituting [ĉ]αβij by [C]αβij in Table 5. This scenario becomes more relevant

in the phenomenological applications of the SMEFT predictions that we present in the

following section.

3 SMEFT-predicted constraints on new physics

In this section, we will show how the SMEFT predictions derived in Sec. 2 can be used

to obtain bounds on the LEFT Wilson coefficients [C]αβij . We utilize the fact that the

SMEFT predictions give analytic equations that can connect strongly constrained WCs

to poorly constrained ones, thus allowing us to extract stronger bounds on the latter. In

this section, we restrict ourselves to UV4f models, where the UV physics generates only

four-fermionic operators in SMEFT, so that the operators discussed in Sec. 2.2 are absent.

While a more general analysis using the constraints on Z and W± couplings (see Ref. [42])

is possible, our primary aim here is to illustrate the power of the SMEFT predictions and

thus we focus on the very well-motivated UV4f scenario. As discussed in the previous

section, in this scenario we can use the relations in Table 3 by simply replacing [ĉ]αβij by

[C]αβij . Furthermore, as explained at the end of the previous section, the observables in

this section will be insensitive to the flavor of neutrinos, and hence we can take U → 1 in

the SMEFT predictions.

We further restrict ourselves to the operators involving only left-handed quarks and

leptons (i.e. LLLL discussed in Sec. 2.3) as these provide leading corrections with respect

to SM.10 The relations amongst LLLL operators in UV4f models are given by

[CVeuLL]
αβij = Vik [C

V
νdLL]

αβklV †
ℓj , (3.1)

[CVedLL]
αβij = V †

ik [C
V
νuLL]

αβklVℓj , (3.2)

[CVLL]
αβij = Vik ([C

V
edLL]

αβkj − [CVνdLL]
αβkj) , (3.3)

as can be obtained from eqs. (2.39 –2.41). Recall that RG effects have been ignored in

deriving the above relations, and as discussed in Sec. 2.3, the WCs in the above equations

that involve the top quark have been defined as [C]αβij ≡ ω [ĉ]αβij . These WCs can be

constrained using data from top production and decays. All other WCs in the above

equation are the standard LEFT WCs of eqs. (2.2) and (2.3).

Note that eqs. (3.1-3.3) involve 486 (261) WCs [C]αβij , which arise from 162 (90)

SMEFT coefficients. These three equations therefore correspond to 324 (171) relations

among the WCs. Note that in several earlier analyses (e.g. [15, 16]) the WCs have been

10While low-energy flavor observables get interference level corrections from both RRLL and LLLL

operators, as far as high pT observables are concerned, only LLLL operator contributions can interfere

with SM contribution if fermion masses are neglected.
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assumed to be real. This is of course valid for the WCs of Hermitian operators, i.e where

α = β and i = j. However, as eqs. (3.1–3.3) show, all the WCs are related linearly

with complex coefficients (i.e, combinations of CKM matrix elements) which makes it

inconsistent for all of them to be real. Note that even if all the WCs of SMEFT in the UV

scale are real in the flavor basis, phases will appear in [C]αβij through CKM elements while

matching. We in our analysis consider complex values for all the WCs of non-Hermitian

operators.

In the rest of this section, we focus on deriving bounds on the WCs from semileptonic

processes. To start with, in Sec. 3.1 to Sec. 3.3 we consider only processes involving muon

and muon neutrinos, i.e α = β = 2. This is because many of the direct bounds from

the muon channel are quite stringent compared to those from the electron or tau channel.

The terms in eqs. (3.1) and (3.2) contain only neutral current WCs. On the other hand,

in eq. (3.3) charged current WCs are expressed in terms of neutral current WCs. Based

on these relations, in Sec. 3.1 and 3.2 we obtain indirect bounds on neutral current WCs

appearing in eqs. (3.1) and (3.2) respectively. In Sec. 3.3 we discuss about the indirect

bounds for charged current WCs. In Sec. 3.4, we further indicate how these relations

may be used in conjunction with constraints on lepton flavor violating decays to constrain

Wilson coefficients involving other lepton families.

3.1 Bounds on neutral-current WCs involving (νd) and (eu)

There are 6 complex and 6 real neutral-current WCs in eq. (3.1) with α = β = 2. These

WCs correspond to operators either with neutrinos and down-type quarks (νdLL), or

with charged leptons and up-type quarks (euLL). We first discuss direct bounds on these

WCs. We consider both low-energy observables, such as rare decays, as well as high-energy

observables, such as the high-pT Drell-Yan process, top decays, etc. While the former can

directly bound the LEFT WCs [C]αβij , the latter can directly bound only the high energy

HEFT WCs, [ĉ]αβij . As we are considering UV4f models here, however, the bounds on

[ĉ]αβij can be converted to bounds on [C]αβij in a straightforward way by keeping only the

first term in the matching relations, eq. (2.36) and eq. (2.37).

Direct bounds on the WCs [CVνdLL]
2212, [CVνdLL]

2213 and [CVνdLL]
2223 are obtained from

rare decays of K and B mesons. For [CVνdLL]
2212, we have used the recent measurement

of the branching ratio of K+ → π+νν in the NA62 experiment [43]. For [CVνdLL]
2213 we

take the 90% upper bounds on the branching ratios of the decay modes B+ → ρ+ ν ν

and B+ → π+ ν ν [44]. For [CVνdLL]
2223, we include the recent measurement of B+ →

K+ν ν branching ratio in [45] along with the 90% upper bound on the branching ratio

of B+ → K∗+ ν ν [44]. The theoretical values for the discussed mesonic decay modes

are calculated using the package ‘flavio’ [46]. The bound on [CVνdLL]
2211 is obtained from

constraints11 on non-standard interactions of neutrinos in atmospheric and accelerator

neutrino experiments [47, 48]. These bounds are shown in the top panels of Fig. 2. For the

WCs [CVνdLL]
2222 and [CVνdLL]

2233, there are no direct bounds available.

11The bounds presented in [47] are for the vector and axial vector WCs. We convert these to bounds on

operators in our basis by adding the 1σ ranges in quadrature.
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Figure 2: Direct bounds on the complex WCs CVνdLL (top panels) and CVeuLL (middle

panels). The cyan color represents bounds from rare meson decays, orange represents

bounds from high-pT dimuon searches while purple represents bounds from top productions

and decays. The WCs shown in the bottom panels are real due to the hermiticity of the

corresponding operators. Note that the bottom panel uses the symmetric log scale. See

Appendix D for numerical values of the bounds.

The direct bounds for WCs containing up-type quarks and charged leptons are obtained

from rare decays, high-pT dilepton searches as well as top production and decays. The WC

[CVeuLL]
2212 gets constraints from rare decays of D meson [15]. For [CVeuLL]

2211, [CVeuLL]
2212

and [CVeuLL]
2222, strong bounds are obtained from high-pT dimuon searches at the LHC. In
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the UV4f scenario and with the approximation of negligible RG effects, these bounds can

be taken to be bounds on the LEFT WCs. We use CMS data for the dimuon mode [49]

and the package ‘HighPT ’ [50, 51] which provides bounds on SMEFT WCs. In order to

convert these into bounds on isolated LEFT WCs, we turn on those linear combinations

of SMEFT WCs which make that particular LEFT WC nonzero, and leave other dimuon

modes unaffected. Bounds on WCs involving top quark (e.g. [CVeuLL]
2213, [CVeuLL]

2213 and

[CVeuLL]
2233 ) are obtained from data on top production and decays [52]. These direct

bounds are shown in Fig. 2.

Note that, in order to obtain the direct bounds in Fig. 2, we have only bounded the

individual contribution of the relevant LLLL operator with α = β = 2 and ignored possible

contributions from other operators. Under some very reasonable assumptions, however,

including these contributions would not significantly alter the bounds we have obtained.

First of all, as far as the dineutrino decay modes are concerned, the experiments cannot

distinguish between different neutrino flavors. To extract bounds on the ν̄µνµ mode, we

assume that there are no large cancellations between the interference contributions of the

different neutrino flavor modes. Also, for low energy observables a linear combination of

LLLL WCs and WCs of other vector operators in Table 1 enter the interference term in

EFT corrections. In the cases where measurements are sensitive to the interference term,

there can in principle be flat directions where the bounds obtained here get weakened, but

this would again require a fine-tuned cancellation between the interference terms of the

LLLL and other vector operators; we assume such cancellations are absent. Finally, there

are operators in Table 1, such as the scalar and tensor operators, that give contributions

proportional to the square of their WCs but the inclusion of such positive definite terms

would only strengthen our bounds. Thus, under these assumptions, the direct bounds

discussed here hold also in the presence of other operator contributions.

Now we turn to the indirect bounds obtained by using the SMEFT predictions. Count-

ing the real and imaginary parts of the WCs separately, eq. (3.1) involves a total of 18

parameters, connected by 9 linear relations. Our goal is to find indirect bounds on WCs

that are weakly bound or have no direct bound, with the help of these relations. To this

end, we first choose the 9 parameters which have the most stringent bounds:

Re
(
[CVνdLL]

2212
)
, Im

(
[CVνdLL]

2212
)
, Re

(
[CVνdLL]

2213
)
, Im

(
[CVνdLL]

2213
)
,

Re
(
[CVνdLL]

2223
)
, Im

(
[CVνdLL]

2223
)
, Re

(
[CVeuLL]

2212
)
, Im

(
[CVeuLL]

2212
)
, (3.4)

and the real WC [CVeuLL]
2211. The remaining 9 parameters can then be written in terms

of these using eq. (3.1), and indirect bounds on them may be obtained. In Fig. 3 we show

the resultant indirect bounds on these parameters. For the complex WCs [CVeuLL]
2213 and

[CVeuLL]
2223, the region of intersection between the indirect and the direct bounds can put a

tighter constraint on the preferred values. These WCs correspond to single top production

along with two leptons or top decays via t→ cℓℓ and t→ uℓℓ channels. It may be noticed

that the constraints on the imaginary part of [CVeuLL]
2223 are strong, making [CVeuLL]

2223

appear almost as a real WC. This feature may be understood as follows. Eq (3.1) implies

[CVνdLL]
2233 = |Vtb|2[CVeuLL]2233 + V ∗

cb Vtb [C
V
euLL]

2223 +O(λ3) . (3.5)
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Figure 3: Direct bounds from low-energy (cyan) and high-pT (orange) processes, along

with the indirect (green) bounds on the complex WCs [CVeuLL]
2213 and [CVeuLL]

2223 and on

the real WCs [CVνdLL]
2211, [CVνdLL]

2222 and [CVeuLL]
2222. The input parameters used are the

four complex WCs [CVνdLL]
2212, [CVνdLL]

2213, [CVνdLL]
2223 and [CVeuLL]

2212 and one real WC

[CVeuLL]
2211. Note that the bottom panel uses the symmetric log scale. See Appendix D for

numerical values of the bounds.

Here λ = sin(θc) where θc ∼ 0.227 is the Cabbibo angle. Since [CVeuLL]
2233 and [CVνdLL]

2233

are real and V ∗
cbVtb is real up to O(λ3), the only imaginary quantity appearing in this

equation is Im([CVeuLL]
2223); hence it is strongly constrained.

As far as the real WCs are concerned, for [CVνdLL]
2211 we get a better constraint than

the available direct bound which may be tested in experiments studying matter effects on

neutrino oscillations. At the same time, [CVνdLL]
2222, which has no direct bound, now gets

bounded. For [CVeuLL]
2222, the indirect bound is slightly worse than the direct bound. For

the other two, viz. [CVνdLL]
2233 and [CVνdLL]

2233, the indirect bounds are much worse than

the direct bounds.

Similar relations have been explored in literature in order to put indirect bounds

on various EFT coefficients, albeit for a smaller subset of WCs, with some UV flavor

assumptions, or by neglecting CKM elements. In [16, 19, 20], similar bounds have been
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calculated assuming the WCs to be real and neglecting terms in eqs. (3.1-3.3) having CKM

elements that are higher order in λ. The indirect bounds obtained on the real WCs in [16]

become weaker when all the CKM matrix elements are inserted.

Note that our choice of the 9 input parameters need not have been the best one for

finding the best indirect bounds on any parameter. A different set of 9 input parameters

could be optimum. Indeed the best bounds may be obtained by using all the available

direct bounds in a combined fit. Since the primary aim of this paper is to illustrate the

utility of the linear relations in obtaining indirect bounds, we leave the detailed analysis

for future work.

3.2 Bounds on neutral-current WCs involving (ed) and (νu)

In this section, we perform a similar analysis as in Sec. 3.1 for neutral-current WCs involving

the muon family, using the relation in eq. (3.2). The WCs involved correspond to the

operators containing either charged leptons and down-type quarks (edLL), or neutrinos

and up-type quarks (νuLL).

The bounds on (edLL) WCs are typically stronger since they involve charged muon.

The WCs [CVedLL]
2212, [CVedLL]

2213 and [CVedLL]
2223 get direct bounds from rare decays of

K and B mesons. Bound on the absolute value of [CVedLL]
2212 is provided in [16]; we

convert this to bounds on the real and the imaginary parts of this WC by taking into

account all possible values for its phase. For [CVedLL]
2213, we obtain the bound from

the branching ratio measurement of B0 → µ+ µ− [44]. For the real and the imaginary

parts of [CVedLL]
2223, we use a combined fit to the observables B(B(+,0) → K(+,0) µ+ µ−),

B(B(+,0) → K∗ (+,0) µ+ µ−), RK(∗) , B(Bs → µ+ µ−), as well as the angular observables P ′
5

and FL in B0 → K∗0 µ+ µ−. The high-pT dimuon searches give bounds on the three real

WCs [CVedLL]
2211, [CVedLL]

2222 and [CVedLL]
2233. We show these bounds in Fig. 4. Among

the (νuLL) WCs, only a weak bound is available on [CVνuLL]
2211 from constraints on non-

standard interactions of neutrinos in atmospheric neutrino experiments [47]. Once again,

while these bounds are on the individual contributions of the respective operators, inclu-

sion of other operators would not significantly alter them given the assumptions stated in

Sec. 3.1.

Counting the real and imaginary parts of the WCs separately, eq. (3.1) involves a total

of 18 parameters, connected by 9 linear relations. In order to get stronger bounds on the

(νuLL) WCs, we take the 9 parameters corresponding to the (edLL) WCs as inputs and

derive the indirect bounds using this relation. These bounds have been shown in Fig. 5. It

can be seen that the complex WCs [CVνuLL]
2212, [CVνuLL]

2213, [CVνuLL]
2223 and the real WCs

[CVνuLL]
2222 and [CVνuLL]

2233, which do not have any direct bounds, get indirect constraints.

The first among these WCs would contribute to the invisible decay widths of D mesons

while the next two would contribute to the semileptonic top decays, t→ uνν and t→ cνν.

The indirect bound also improves the constraints on [CVνuLL]
2211 significantly. This indirect

bound would be important for constraining models with neutrino non-standard interactions

(NSI) [47] and can be tested in precision neutrino oscillation experiments.

Note that the indirect constraints suggest that [CVνuLL]
2212 is almost real. This can be
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Figure 4: The top panels and the bottom left panel show direct bounds from meson decays

(cyan) for the complex WCs [CVedLL]
2212, [CVedLL]

2213, [CVedLL]
2223. The orange background

in these three panels indicates that the parameter space of these complex WCs displayed

in this figure is allowed by the high-pT dimuon searches, and only constrained by meson

decays. The bottom right panel shows the constraints from high-pT dimuon searches (or-

ange) on the real WCs [CVedLL]
2211, [CVedLL]

2222 and [CVedLL]
2233. Note that the bottom-right

panel uses the symmetric log scale. See Appendix D for numerical values of the bounds.

understood by looking at the leading-order contributions to [CVνuLL]
2212 in eq. (3.2):

[CVνuLL]
2212 = Vud V

∗
cs[C

V
edLL]

2212 + Vud V
∗
cd[C

V
edLL]

2211 + Vus V
∗
cs [C

V
edLL]

2222

+ Vus V
∗
cd [C

V ∗
edLL]

2212 +O(λ3) . (3.6)

In the above equation, all the CKM coefficients are real up to O(λ3). The WCs [CVedLL]
2211

and [CVedLL]
2222 are real, while Im([CVνuLL]

2212) has strong constraints ofO(0.02). Therefore,
the imaginary part of the left-hand side, i.e. Im

(
[CVνuLL]

2212
)
, is strongly constrained.
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Figure 5: Indirect bounds (green) on the complex WCs [CVνuLL]
2212, [CVνuLL]

2213,

[CVνuLL]
2223, and the real WCs [CVνuLL]

2211, [CVνuLL]
2222, [CVνuLL]

2233. The direct bound

is available only for the real WC [CVνuLL]
2211 (shown in cyan). Note that the bottom-right

panel uses the symmetric log scale. See Appendix D for numerical values of the bounds.

3.3 Bounds on charged-current WCs

Eq. (3.3) allows us to express charged-current WCs as combinations of neutral-current WCs.

Restricting to the muon family of lepton, i.e α = β = 2, there are 9 charged-current WCs

on the left-hand side of eq. (3.3); all of them can be complex in general. All these charged-

current WCs would get indirectly constrained due to the bounds on the neutral-current

WCs. In this section, we first show the direct bounds for the 9 charged-current WCs from

mesonic decays and from high-pT monolepton searches. Later, we compare these bounds

with the ones derived indirectly using eq. (3.3).

For the WCs [CVLL]
2211, [CVLL]

2212, [CVLL]
2213, [CVLL]

2221, [CVLL]
2222 and [CVLL]

2223, we
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Figure 6: Direct bounds on the charged-current WCs from meson decays (cyan) and from

high-pT mono-muon searches (orange). Note that there are no direct constraints on the

WCs associated with charged current decays of top quark. See Appendix D for numerical

values of the bounds.

obtain direct bounds using the branching ratios [44] of the decay modes π+ → µ+ν, K+ →
πµ+ν, B+ → π0lν D+ → µ+ν, Ds → µν and B+ → Dlν, respectively. However, stronger

bounds can be obtained for these WCs from high-pT monolepton searches. In order to do

this12, we generate bin-wise events in MadGraph [53]. Note that the charged-current NP

would not change the shape of the q2 dependence from the SM prediction, since the relevant

charged-current operators in SM and NP are identical. We use the results from the ATLAS

analysis in Ref. [54], and incorporate the effect of their cuts by using a re-scaling factor on

our generated events such that they reproduce the ATLAS data for SM. We then perform

a χ2 fit for the isolated charged-current WC to obtain bound on the NP WC. These direct

bounds obtained from the meson decays (cyan) and from the high-pT mono-muon searches

12In [51], bounds on SMEFT coefficients are provided using high-pT single lepton and dilepton searches.

However, no combination of SMEFT coefficients can map to a single charged-current LEFT coefficient

without generating other LEFT coefficient that can contribute to the same single charged-lepton final state

mode. Therefore we calculate these bounds independently
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Figure 7: Direct bounds (orange) on the charged-current WCs from high-pT mono-muon

searches along with the indirect bounds (green) obtained using eq. (3.3). Note that the

quantities in the bottom panels have no direct bounds. See Appendix D for numerical

values of the bounds.

(orange) are shown in Fig. 6.

In order to obtain indirect bounds, we use the best available bounds (direct or in-

direct) for the neutral-current WCs appearing on the right-hand side of eq. (3.3). These

indirect bounds (green) along with the best available direct bounds (orange) are shown in

Fig. 7. The figure shows that this method provides constraints on [CVLL]
2231, [CVLL]

2232 and

[CVLL]
2233, where no direct bounds were available. For [CVLL]

2221, the indirect constraints are

significantly stronger than the direct bounds. These WCs would contribute to branching

ratios of semileptonic decays of top quark and D meson decays, viz. D → πµν, etc.
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In addition, the imaginary parts of [CVLL]
2211, [CVLL]

2212, [CVLL]
2222 and [CVLL]

2223 are

constrained more strongly. These WCs would contribute to branching ratios of meson

decays, viz. K → πµν, B → Dµν, etc. The reason for strong indirect constraints on

the imaginary parts of these four WCs may be understood using eq. (3.3). For example,

[CVLL]
2211 may be written using eq. (3.3) as

[CVLL]
2211 = Vud ([C

V
edLL]

2211 − [CVνdLL]
2211) + Vus ([C

V
edLL]

2212 − [CVνdLL]
2212) +O(λ3) .

(3.7)

The CKM coefficients appearing on the right-hand side of the above equation are real up

to O(λ3). The WCs [CVedLL]
2211 and [CVνdLL]

2211 are real. Furthermore, the bounds on the

imaginary parts of [CVedLL]
2212 and [CVνdLL]

2212 are of O(0.02) and these WCs appear with

a CKM coefficient of O(λ). Thus, the imaginary part of the WC on the left-hand side, i.e.

[CVLL]
2211, is strongly constrained. Using similar arguments, we can show that the WCs

[CVLL]
2212, [CVLL]

2222 and [CVLL]
2233 are expected to be dominantly real.

3.4 Predictions for lepton flavor violating observables

So far we have considered the relations only among WCs involving one lepton family i.e.

muon. In this subsection, we expand our discussion to SMEFT predictions that include all

lepton families, while remaining in the UV4f scenario. These relations will relate diverse

reaction channels like rare decays of B, D and K mesons as well as lepton flavor violating

(LFV) processes such as τ → ℓ qi qj and ℓN → ℓ′N . Focusing once again on UV4f models,

we shall indicate the methodology by one example and present a set of relevant processes

in Table 5.

From eq. (3.1), we get the following relation among the LEFT WCs:

[CVeuLL]
ℓ311 = |Vud|2 [CVνdLL]ℓ311 + (V ∗

ud Vcd [C
V
νdLL]

ℓ312 + c.c.) + (V ∗
ud Vtd [C

V
νdLL]

ℓ313 + c.c.)

+ |Vcd|2 [CVνdLL]ℓ322 + (V ∗
cd Vtd [C

V
νdLL]

ℓ323 + c.c.) + |Vtd|2 [CVνdLL]ℓ333 , (3.8)

where ℓ = 1 or 2. Among the CKM coefficients in this equation, the leading ones are

|Vud|2 ∼ O(1) and |V ∗
udVcd| ∼ O(λ). All the other coefficients are O(λ2) or smaller. There-

fore, at the leading order, this equation connects the three WCs [CVeuLL]
ℓ311, [CVνdLL]

ℓ311 and

[CVνdLL]
ℓ312. Hence the new physics WCs contributing to LFV tau decays and K → π ν ν

are related to each other.

Further relations involving other lepton and quark families are given in Table 5. Some

similar relations have been presented in [15]. Note that such discussions in earlier literature

often assume some flavor structure for the quark sector. We emphasize again that in our

discussion, the implications presented in this section are independent of any NP flavor

structure assumption for the quarks.

So far, we have discussed observables that are insensitive to the flavor of neutrinos.

Neutrino experiments that are sensitive to neutrino flavor can probe the neutrino non-

standard interactions (NSI) generated by the operators in Table 1 containing neutrinos.

The predictions in eq. (3.1)-eq. (3.3) in UV4f models (or the more general predictions in

Table 3) would then imply constraints on NSI from charged LFV. We discuss this in more

detail in Sec. 4.3.
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Eq. ↓ LHS WC RHS WCs Transitions Processes

(3.1)

[CVeuLL]
ℓ311 [CVνdLL]

ℓ311

[CVνdLL]
ℓ312

τ → uu ℓ

s→ d ν ν

LFV τ decay,

K → πνν

[CVeuLL]
ℓℓ′11 [CVνdLL]

ℓℓ′11

[CVνdLL]
ℓℓ′12

ℓ u→ ℓ′ u

s→ d ν ν

LFV ℓN → ℓ′N

K → πνν

[CVeuLL]
ℓ312 [CVνdLL]

ℓ312 c u→ τ ℓ

s→ d ν ν

LFV D decays,

K → πνν [16]

[CVeuLL]
ℓℓ′i3 [CVνdLL]

ℓℓ′13

[CVνdLL]
ℓℓ′23

t→ ui ℓ ℓ
′

b→ d ν ν

b→ s ν ν

LFV top decay,

B decays to dineutrinos [16]

(3.2)

[CVedLL]
ℓ3ij [CVνuLL]

ℓ312 τ → d d ℓ

c→ u ν ν

LFV τ decay,

D decay to dineutrinos

[CVedLL]
ℓℓ′ij [CVνuLL]

ℓℓ′12 ℓ d→ ℓ′ d

c→ u ν ν

LFV ℓN → ℓ′N

D decay to dineutrinos

[CVedLL]
ℓℓ′i3 [CVνuLL]

ℓℓ′13

[CVνuLL]
ℓℓ′23

b→ di ℓ ℓ
′

t→ u ν ν

t→ c ν ν

LFV B decay,

top decays to dineutrinos

(3.3)

[CVLL]
ℓ311

[CVedLL]
ℓ311

[CVedLL]
ℓ312

[CVνdLL]
ℓ311

τ → u d ν

τ → d d ℓ

τ → d s ℓ

s→ dν ν

CC decay of τ

LFV τ decay,

K → π ν ν

[CVLL]
ℓℓ′11

[CVedLL]
ℓℓ′11

[CVedLL]
ℓℓ′12

[CVνdLL]
ℓℓ′11

ℓ→ u d ν

ℓ d→ ℓ′ d

s→ d ℓ ℓ′

s→ dν ν

LFV ℓN → ℓ′N

K → π ℓ ℓ′

K → π ν ν

[CVLL]
ℓℓ′i3

[CVedLL]
ℓℓ′13

[CVedLL]
ℓℓ′23

[CVνdLL]
ℓℓ′13

[CVνdLL]
ℓℓ′23

b→ ui ℓ ν

b→ di ℓ ℓ
′

b→ di ν ν

CC decay of B meson,

LFV B decays,

B decays to dineutrinos [20]

Table 5: Correlations among different WCs involving all lepton families, derived from

eqs. (3.1-3.3). The second column shows the WC appearing on the left hand side of these

equations, whereas the third column contains the WCs appearing on the right-hand side

of those equations with large CKM coefficients, with values O(λ) or more.

4 SMEFT-predicted evidence for new physics

In this section, we discuss how to use the SMEFT predictions derived in Sec. 2 in the

event that measurements provide evidence for certain new physics WCs to be nonzero.
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We will show that, given the SMEFT predictions derived in this work, it is in general not

consistent to assume a single non-zero WC to explain an excess in a certain channel.13

In fact, we will show that for certain operators a non-zero WC must be accompanied by

multiple other WCs that are non-vanishing. This would imply that the observed excess

must be accompanied by correlated excesses in many other channels. This is because the

SMEFT predictions in Table 5 are linear equations involving multiple WCs, implying that

it is not possible for only one of these coefficients to be nonzero.

For example, consider the situation where an observed deviation from SM in a partic-

ular channel indicates that one of the LLLL LEFT WCs is non-vanishing. In SMEFT, this

LEFT coefficient might arise either from a four-fermion operator or an operator inducing

an off-diagonal W or Z coupling to fermions.

The former situation is realized in the UV4f models, where we can use SMEFT predic-

tions in eq. (3.1). These are 6 linear equations involving 12 (possibly) complex WCs when

α = β. If one of these WCs, (say C1) is found to be nonzero, we can write these equations

in a form where C7 to C12 are expressed as linear combinations of C1 to C6. Then, as long

as the coefficient of C1 is nonzero in all these equations (as is generically observed to be

the case), all the 6 coefficients C7 to C12 also have to be nonzero. For one of them to be

vanishing, we will need one of the other coefficients, C2 to C6, to be nonzero in order to

cancel the C1 contribution. Thus, the nonvanishing nature of C1 necessarily implies that

overall at least 7 WCs are nonvanishing in principle. Of course, depending on the CKM

coefficients, the magnitudes of these coefficients may be small or large.

When α ̸= β, eq. (3.1) gives 9 linear equations, therefore one nonzero WC among these

will imply at least 10 of the WCs of the type (νd) or (eu) nonvanishing. As eq. (3.2) is

completely decoupled from eq. (3.1), it is of course still consistent for all the WCs appearing

in it to vanish. The charged current WCs in eq. (3.3), however, cannot all vanish and one

can use similar arguments to conclude that at least 3 of them must be nonzero whether or

not α equals β.

Similarly, from eq (3.2), for α = β (α ̸= β) we have 6 (9) linear relations. These imply

that, if one of the WCs of the kind (ed) or (νu) is found to be nonzero, then a total of

at least 7 (10) WCs of these kinds should be nonzero in principle. Again, by eq. (3.3) a

non-zero neutral-current WC will lead to at least 3 non-vanishing charged-current WCs.

The CKM coefficients will guide us regarding which of these WCs are likely to have larger

magnitudes. Thus, these relations direct us toward specific decay channels where deviation

from SM is expected to be present.

In the latter situation, i.e. when the LEFT operators arise from modifications of W/Z

couplings, the low-energy pattern of deviations is very different. For example, if one of the

Z coupling to down quarks gets BSM corrections, the penultimate row of Table 3 would

imply at least three W -coupling modifications. Alternatively, if all the W couplings are to

be at their SM value, this would imply modifications of at least 10 of the 18 Z couplings

to up and down-type quarks. Once the W and Z are integrated out, each W -coupling

13For some operators, such as the RRRR vector operators, there are no constraints implied by SMEFT.

For this category of operators, therefore, we can have a single non-zero WC.
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Figure 8: Preferred parameter region at 90% C.L. for [CVνdLL]
αβ23 in order to explain

the observed excess in B → Kνν branching ratio. The left panel shows lepton flavor

universal (LFU) scenario, where [CVνdLL]
αβ23 is nonzero and equal for all α = β ∈ {e , µ , τ}.

The middle panel shows lepton flavor nonuniversal (LFUV) scenario where [CVνdLL]
αβ23 is

nonzero only for one value of α = β. The right panel depicts the LFV scenario with α ̸= β

and only one [CVνdLL]
αβ23 nonzero.

modification will induce 3 non-vanishing semileptonic LEFT WCs, and each Z-coupling

modification will induce 6 non-vanishing semileptonic LEFT WCs. Studying the pattern

of BSM deviations can, therefore, help pinpoint the underlying UV physics. We shall not

consider this scenario further in this section.

4.1 Implications of the measured excess in B → Kνν

In the recent measurement of B → Kνν at Belle II [45], the observed branching ratio has

3.5σ excess over the SM value. If this excess were to be explained in terms of the LEFT

coefficients [CVνdLL]
αβ23, the required values of these WCs in various scenarios are shown in

Fig. 8. In the first scenario, we assume that new physics turns on a lepton flavor universal

(LFU) combination of WCs whereas in the second (i.e. LFUV) and third (i.e. LFV)

scenarios, we assume that a single WC is turned on with α = β and α ̸= β, respectively.

From this figure, it is clear that the coefficient [CVνdLL]
αβ23 is non-vanishing at 90%

C.L. for all scenarios considered. As discussed earlier, a nonzero [CVνdLL]
αβ23 will indicate

at least seven (ten) non-vanishing WCs appearing in eq. (3.1) for α = β (α ̸= β).

For example, in the LFUV (LFV) scenarios, eq. (3.1) corresponds to 27 (54) equations

of the form

[CVeuLL]
αβij = Vi2 [C

V
νdLL]

αβ23V †
3j + ... (4.1)

in UV4f models. Since the CKM coefficients VcsV
∗
tb and VusV

∗
tb, which are O(1) and O(λ)

respectively, are significant, it is expected that in the absence of any cancellation coming

from other [CVνdLL]
αβij elements, the WCs [CVeuLL]

αβ13 and [CVeuLL]
αβ23 will have significant

nonzero values. Thus the modes t→ c eα eβ and t→ ueα eβ will be the ones where there can

be potential new physics. Currently the bounds on these coefficients are |[CVeuLL]αβ13| <
0.003 and |[CVeuLL]αβ23| < 0.02, respectively. Exploration of these modes further may lead
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to discovery of further anomalies in these two channels. These processes will also test

the solution of B → Kνν anomaly in terms of [CVνdLL]
αβ23. This demonstrates that the

semileptonic neutral-current top decays will be strong probes of the origin of the B → Kνν

anomaly in the context of SMEFT.

Eq. (3.3), in this LFUV (LFV) scenario, gives the 9 (18) equations of the form

[CVLL]
αβi3 = Vi2 ([C

V
edLL]

αβ23 − [CVνdLL]
αβ23) . (4.2)

Since the CKM coefficients Vcs and Vus, which are O(1) and O(λ), respectively, are signif-

icant, it is expected that in the absence of any cancellation coming from other [CVνdLL]
αβij

or [CVedLL]
αβij elements, the WCs [CVLL]

αβ23 and [CVLL]
αβ13 will have significant nonzero

values. Thus, charged-current semileptonic B meson decays would also be sensitive probes

of the origin of B → Kνν anomaly.

Similar discussions can be found in [26, 27]. In [26], relations among the WCs in the

LLRR category, as shown in Table 3, have been used to relate bR → sRττ and bR → sRνν.

These relations, as discussed in [26], predict excess branching fractions for the modes

B → K(∗)ττ , Bs → ττ , etc. In [27], matching relations have been derived among the

SMEFT and LEFT WCs, assuming up-alignment. These have been then used to obtain

the effects of the observed excess in B → Kνν on other processes, namely, B → D(∗)ℓνℓ,

B → K(∗)ℓ+ℓ−, Bq → τντ , Bs → τ+τ−, Ds → τ+ντ , etc.

4.2 Implications of the R(D(∗)) anomalies

One possible explanation of multiple anomalies observed in the b → cτ ν̄ channels, such

as R(D), R(D∗) and R(J/ψ), is to have nonzero values for the LEFT WC [CVLL]
3323. We

show the preferred range of this WC at 90% C.L. in Fig. 9. Note that this preferred range

does not include the point [CVLL]
3323 = 0.

Figure 9: Preferred parameter region at 90% C.L. for the WC [CVLL]
3323.
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From eq. (3.3), we can write [CVLL]
3323 in terms of the neutral-current WCs as

[CVLL]
3323 = Vcd

[
[ĈVedLL]

3313 − [CVνdLL]
3313

]
+ Vcs

[
[ĈVedLL]

3323 − [CVνdLL]
3323

]
+ Vcb

[
[ĈVedLL]

3333 − [CVνdLL]
3333

]
. (4.3)

Since [CVLL]
3323 ̸= 0, it suggests that at least one WC appearing on the right-hand side

of eq. (4.3) has to be nonzero. Relevant interesting modes could be of the type b → dττ ,

b → sττ , b → dνν and b → sνν which suggests that the NP can manifest in observables

related to processes such as B → ττ , Bs → ττ , B → K(∗)ττ , B → K(∗)νν, etc.

4.3 Implications of the violation of SMEFT predictions

In this subsection, we consider a scenario where many anomalies have been observed and

multiple LEFT coefficients must have non-zero values to explain them. According to our

results, these LEFT WCs must obey the SMEFT predictions of Table 5. We now discuss

what an observation of a violation of these predictions would imply.

First of all, if low-energy measurements indicate a violation of the UV4f predictions

in eq. (3.1–3.3), it may only mean that the UV model is not in the UV4f category, but

still maps to SMEFT when heavier degrees of freedom are integrated out. It would only

indicate that we are outside the UV4f region of Fig. 1, and not necessarily outside the

SMEFT region. We must then check whether or not the more general predictions Table 3

are obeyed. This would require looking for deviations in W and Z decays and/or high-pT
Drell-Yan data.14

If the violation of the predictions persists at the level of Table 3 (or the equations in

Appendix. C), it would imply that one of the assumptions used in deriving these predictions

is incorrect. Note, first of all, that we have only included dim-6 operators in our analysis.

Inclusion of dimension-8 (dim-8) operators will result in a violation of these predictions at

O(v4/Λ4). For instance, the dim-8 operator

[Oℓq3]αβij = (l̄αγµl
β)(q̄iγµτ Iqj)(H†τ IH) (4.4)

will break the equality in the first row of Table 3, as follows:

V †
ik [ĉ

V
euLL]

αβkl Vℓj − U †
αρ [ĉ

V
νdLL]

ρσij Uσβ ∼ v4/Λ4 [Cℓq3] . (4.5)

Similarly, other operators at dim-8 or higher order will introduce a breaking of the other

predictions in Table 3. Such effects are, however, higher order in the SMEFT expansion

parameter v2/Λ2, and are thus expected to be small.

If larger, O(1) violations of the predictions are observed, it would indicate something

more radical, namely, that one of the assumptions of SMEFT itself is violated and we lie

outside the SMEFT region of Fig. 1. This would be the case if (i) the scale of new physics

is below the weak scale, (ii) there is heavy new physics that does not decouple because it

14If we use only the high-pT data to test our predictions, we can directly use Table 3 and thus test the

validity of our predictions without taking into account Z and W± decays.
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gets a large fraction of its mass from the electroweak vacuum expectation value [55, 56],

or (iii) the observed 125 GeV scalar, h, is not a part of the SU(2) doublet that breaks the

electroweak symmetry [14, 55–57].

As an example, consider the case of neutrino NSI that are induced by operators con-

taining neutrinos in Table 1. As mentioned in Sec. 3.4, for a given choice of the quark flavor

indices, eqs. (3.1–3.3) (or the equations in Table 3), imply relations between the NSI and

the stringently constrained lepton flavor violating operators [58]. These predictions can,

however, be evaded in new physics scenarios where dim-8 operators become important. For

instance, if the leading contribution to the NSI is from dim-8 (and not dim-6) operators

like

[Ol3q]αβij = (H̃†τ IH̃)(l̄αγµτ
I lβ)(q̄iγµqj) , (4.6)

new physics affects only the neutrino and not the charged-lepton sector. Even in this case,

however, dim-6 charged-lepton flavor-violating effects will be generated at loop level [59].

A more natural way of decoupling these two sectors is if the new physics scale is below the

electroweak scale (see, e.g. Ref. [60]).

5 Concluding remarks

In this work, we have systematically derived the consequences of the SU(2)L × U(1)Y
invariance of SMEFT on semileptonic flavor observables. These consequences arise from the

fact that a complete parametrization of BSM deviations in flavor physics observables can

be only achieved by writing a lagrangian that respects U(1)em and not the full symmetry

of SMEFT. For instance, while the left-handed up and down type fermions form SU(2)L
doublets and always appear together in SMEFT operators, as far as flavor observables are

concerned, searches in the up and down sectors are completely independent. Therefore,

BSM deviations in these channels must be parameterized by independent operators.

To be more precise, while the most general U(1)em invariant lagrangian has 3240 inde-

pendent semileptonic four-fermion operators (see Table 1) and another set of 144 operators

that contribute to semileptonic processes via Z,W± and h exchange (see Table 4), the

number of dim-6 SMEFT operators in these categories are 1053 (see Table 2) and 108 (see

Table 4), respectively. This then results in 2223 constraints in the space of WCs of the

U(1)em invariant lagrangian that can be thought of as predictions of SMEFT at the dim-6

level. One of the main results of this work is the derivation of these 2223 constraints.

We present these constraints as linear relations among the WCs of the U(1)em invariant

lagrangian, in Table 3. These relations are a succinct expression of the consequences of the

SU(2)L × U(1)Y invariance of SMEFT for semileptonic operators. They are completely

independent of UV flavor assumptions as we find that the elements of the rotation matrices

of the left-handed and right-handed up-type and down-type fermions do not individually

appear in them but only in combinations that form CKM and PMNS elements. We then

show how these relations can be written in terms of LEFT WCs by integrating out the

Z,W± and h bosons. We refer the reader to Fig. 1 where this scenario has been pictorially

represented.
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The U(1)em invariant lagrangian we have considered is in fact equivalent, in the unitary

gauge, to the HEFT lagrangian which is generally written in an SU(2)L×U(1)Y invariant

form but with the gauge symmetry being realized non-linearly. We show this explicitly in

Appendix A where we present a one-to-one mapping between the invariant HEFT operators

and the list of U(1)em invariant operators in Table 1 and Table 4. In the process, we find

some HEFT operators that were missed in earlier literature and others that were considered

but are actually redundant.

The SMEFT predictions we have derived have powerful phenomenological consequences

as they connect observables in different sectors, such as rare decays in the kaon, B-Meson

and charm sectors; decays of the top, Z,W± and τ ; lepton flavor violating observables and

even neutrino NSI. On the one hand, they can be used to express poorly constrained WCs

in terms of strongly constrained ones, thus allowing us to put new stronger indirect bounds

on the former. On the other hand, if evidence for new physics is seen, they in general imply

that BSM effects cannot appear in a single isolated channel because these linear relations

imply that if one WC is non-zero, multiple others also must be non-vanishing.

To illustrate the usefulness of these relations in phenomenology, we focus on the well-

motivated UV4f scenario, where the UV physics only involves four-fermion operators, and

HEFT WCs corresponding to BSM couplings of the Z, W± and Higgs to fermions are

absent. We further restrict ourselves to the operators with only left-handed fermions, i.e the

LLLL class of operators. In this scenario, there are three sets of relations among the LEFT

WCs. The first set relates the WCs of the neutral-current operators (ν̄LγµνL) (d̄Lγ
µdL) and

(ēLγµeL) (ūLγ
µuL). The second set consists of relations among the WCs of the neutral-

current operators (ēLγµeL) (d̄Lγ
µdL) and (ν̄LγµνL) (ūLγ

µuL). In the third set, the charged-

current WCs are related to the above neutral-current coefficients.

The main phenomenological results of this work are as follows:

1. Indirect bounds from SMEFT predictions: In Sec. 3.1- 3.3, we consider LLLL

operators in UV4f models. Using bounds from meson decays and high-pT Drell-Yan

searches and applying the SMEFT predictions, we obtain novel bounds on WCs

related to dd̄ → νν̄, ui → ujνν̄ and top decays, that are much stronger than the

direct bounds. Our main results are summarised in Fig. 3, 5 and 7 .

2. Connecting quark and lepton flavor violation: In Sec. 3.4, we show how the

SMEFT predictions derived by us connect flavor violation in the quark and lepton

sectors. In Table 5, we present a list of processes spanning diverse observation chan-

nels (e.g. LFV tau decays, LFV ℓN → ℓ′N transitions, rare semileptonic B, D and K

decays, top production and decays, etc.) that are connected via our analytic relations

among the WCs.

3. Evidence for new physics from SMEFT predictions: In Sec. 4, we show that

the relations among the WCs of the type LLLL imply that a single nonzero WC re-

quires that there are at least 9 other nonzero WCs. We then discuss the specific cases

of the observed excess in the B → Kνν branching fraction and R(D(∗)) anomalies,
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and list other search channels that should see a correlated signal if these anomalies

survive in the future.

In future studies, we aim to extend the approach developed here and apply it to other

flavor physics observables. In this work, we have considered only a subset of operators

appearing in LEFT, HEFT and SMEFT, namely the set of semileptonic operators. In

future work, we will extend our analysis by including all operators up to dimension-6 in

order to find SMEFT-predicted relations among the corresponding LEFT and HEFT WCs.

These predictions will allow us to interconnect many other important flavor observables.

For instance, predictions can be obtained for dipole operators connected to observables

such as the b → sγ process, for four quark operators that are associated to the ∆F = 2

meson-mixing processes and nonleptonic meson decays, for four-lepton operators associated

to LFV processes such as µ → 3e, etc. We, thus, hope that this work will initiate a rich

program in quark and lepton flavor phenomenology that uncovers many more SMEFT-

predicted links between observables.
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A Semileptonic HEFT operators in SU(2)L × U(1)Y invariant form

In Table 1 and Table 4, we have presented all possible U(1)em-invariant semileptonic op-

erators relevant to this work. In this Appendix, we show that these operators can be

rewritten as SU(2)L × U(1)Y invariant operators of HEFT with the symmetry realized

non-linearly. Following the notation and approach used in Ref. [39], we introduce the

Goldstone matrix U = exp(2iφaT a/v), where φa are the Goldstones of the breaking of

SU(2)L × SU(2)R → SU(2)V . Under SU(2)L × SU(2)R, the matrix U transforms as

U → gLUg
†
R, where gL and gR are the respective group elements. We also introduce the

SU(2)R quark and lepton doublets denoted by r ≡ (uR, dR)
T and η ≡ (0, eR)

T , respectively.

As the correct symmetry-breaking pattern in SM is SU(2)L × U(1)Y → U(1)em, and

not SU(2)L × SU(2)R → SU(2)V , one must include explicit sources of SU(2)R breaking

(see for eg. Ref. [61]). For bosonic operators, this is usually done by introducing the two

spurions Lµ = UDµU
† and τL = UT3U

†. For fermionic operators, we need other sources of

SU(2)R breaking. As shown in Ref. [39], this can be achieved by including factors of UPi
in the operators where the projection matrices Pi are defined as

P± ≡
1

2
± T3, P12 ≡ T1 + iT2, P21 ≡ T1 − iT2 . (A.1)
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LLLL LLRR

oLL3 = (l̄γµl) (q̄γ
µq) oLR5 = (l̄γµl) (ūγ

µu)

oLL4 = (l̄γµτ
al) (q̄γµτaq) oLR6 = (l̄γµl) (d̄γ

µd)

oLL10 = (l̄γµUτ
3U †l) (q̄γµUτ3U †q) oFY 11 = (ℓ̄UP−r) (r̄P+U

†l)

oLL11 = (l̄γµl) (q̄γ
µUτ3U †q) oLR14 = (l̄γµUτ

3U †l) (ūγµu)

oLL12 = (l̄γµUτ
3U †l) (q̄γµq) oLR15 = (l̄γµUτ

3U †l) (d̄γµd)

oLL14 = (l̄γµq) (q̄γ
µUτ3U †l)

RRLL RRRR

oLR7 = (ēγµe) (q̄γ
µq) oRR5 = (ēγµe) (ūγ

µu)

oLR16 = (ēγµe) (q̄γ
µUτ3U †q) oRR6 = (ēγµe) (d̄γ

µd)

Scalar with dR Tensor with dR

oFY 7 = (q̄UP−r) (ℓ̄UP−η) oFY 8 = (q̄σµνUP−r) (l̄σµνUP−η)

oLR9 = (q̄γµl) (ēγµd) • oST13 = (r̄P−σ
µνUq) (l̄σµνUP−η)

oLR18 = (q̄γµUτ3U †l) (ēγµd) • oST14 = (q̄σµνUP12r) (η̄σµνUP21l)

Scalar with uR Tensor with uR

oST9 = (q̄UP+r) (ℓ̄UP−η) oST11 = (q̄σµνUP+r) (l̄σµνUP−η)

oFY 9 = (ℓ̄UP−η) (r̄P+U
†q) • oST16 = (r̄P+σ

µνUq) (l̄σµνUP−η)

oST10 = (q̄UP21r) (ℓ̄UP12η) oST12 = (q̄σµνUP21r) (l̄σµνUP12η)

Table 6: List of semileptonic SU(2)L×U(1)Y invariant HEFT operators. Note that this

list is somewhat different from the list presented in [39] (see the text for more details).

Some redundant operators present in [39] are omitted from this list. On the other hand,

some operators (preceded by a bullet) which were absent in [39] have been added and have

been named using a similar nomenclature. Note that τa = T a/2 are the Pauli matrices.

In the above equation, Ti are the SU(2)L generators. One can keep track of the hypercharge

invariance of the operators by keeping in mind that, while UP+ and UP12 extract the

Y = −1 components of U , the projections UP− and UP21 extract the Y = 1 components

of U .

We first consider four-fermion operators. In Table 6, we present all possible SU(2)L×
U(1)Y invariant HEFT operators with two quarks and two leptons, up to dimension 6.

Note that this list has some differences from the list of operators presented in Ref. [39] that

we will discuss in detail in the following. Working in the unitary gauge, i.e. taking U → 1,

we now write each of the operators in Table 6 in terms of the operators in Table 1. This

would confirm that there is a one-to-one mapping between these two sets of operators in

the unitary gauge.
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For LLLL vector operators:

oLL3 = oVνuLL + oVeuLL + oVνdLL + oVedLL , (A.2)

oLL4 = oVνuLL − oVeuLL − oVνdLL + oVedLL + 2oVLL + 2o′VLL , (A.3)

oLL10 = oVνuLL − oVeuLL − oVνdLL + oVedLL , (A.4)

oLL11 = oVνuLL + oVeuLL − oVνdLL − oVedLL , (A.5)

oLL12 = oVνuLL − oVeuLL + oVνdLL − oVedLL , (A.6)

oLL14 = oVνuLL + oVLL − o′VLL − oVedLL , (A.7)

where we have suppressed the quark and lepton flavor indices. Here [o′VLL]
αβij = ([oVLL]

βαji)†

and [oVLL]
αβij are two independent operators. The 6 operators listed in Table 6, therefore,

receive contributions from 6 independent operators of this category in Table 1, providing

a one-to-one mapping between these two lists. In this category, there is one more operator

in [39] i.e oLL13 = (q̄γµUτ3U †l)(l̄γµUτ
3U †q). But this operator is not independent of the

6 operators appearing on the ‘LLLL’ block of Table 6. Indeed, it can be written as

oLL13 = oVνuLL − oVLL − (o′VLL) + oVedLL , (A.8)

which is equivalent to the relation,

oLL13 =
1

2
(oLL3 + 2oLL10 − oLL4) . (A.9)

This operator has therefore been omitted in our list.

For LLRR vector operators:

oLR5 = oVνuLR + oVeuLR , oLR6 = oVνdLR + oVedLR , (A.10)

oFY 11 = −
1

2
oVLR , oLR14 = oVνuLR − oVeuLR , (A.11)

oLR15 = oVνdLR − oVedLR , (A.12)

Note that the operator oFY 11 as defined in Table 6 consists of two scalar currents. However,

this operator maps to a vector operator after the Fierz transformation and hence it is

included in the category LLRR.

For RRLL vector operators:

oLR7 = oVeuRL + oVedRL , oLR16 = oVeuRL − oVedRL . (A.13)

For RRRR vector operators:

oRR5 = oVeuRR , oRR6 = oVedRR . (A.14)

For scalar operators:

oFY 7 = o′SedRLRL , oST9 = o′SeuRLRL , (A.15)

oLR9 = −2oSRLLR − 2oSedRLLR . oFY 9 = o′SeuRLLR , (A.16)

oLR18 = −2oSRLLR + 2oSedRLLR , oST10 = o′SRLRL . (A.17)
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Here [o′Sed(u)RLLR]
αβij = ([oSed(u)RLLR]

βαji)† and [o′SRLRL]
αβij = ([oSRLRL]

βαji)†. Note that

the operators oLR9 and oLR18 are defined as products of vector currents in Table 6.

However, they map to scalar operators after Fierz transformations, as can be seen from

eqs. (A.16–A.17).

In [39], there is one more scalar operator, oST3 = εij(q̄
iu)(l̄je) . This operator is not

independent from the scalar operators appearing in Table 6 and can be written as

oST3 = oST9 − oST10 . (A.18)

Hence this operator has been omitted in our list.

For tensor operators:

oFY 8 = o′TedRLRL , oST11 = o′TeuRLRL , (A.19)

oST13 = o′TedRLLR , oST16 = o′TeuRLLR , (A.20)

oST14 = oTRLLR oS12 = (o′TRLRL) , (A.21)

where [o′]αβij ≡ ([o]βαji)†. The three tensor operators oST13, oST14 and oST16 are absent

in the list of HEFT operators presented in [39]. On the other hand, the operator oST4 =

εij (q̄
iσµν u) (l̄

jσµνe) included in [39] is not an independent one. It can be written as

oST4 = oST11 − oST12 , (A.22)

and has been omitted in our list.

For HEFT operators with BSM coupling of Z, W± to the fermions, we reproduce the

list provided in [39] in Table 7. In addition, we have also included the HEFT operators that

modify the coupling of h to fermions. Once again there is a one-to-one mapping between

HEFT operators with Z, W± couplings

oψV 1 = (q̄γµq) ⟨U †iDµUT3⟩ oψV 2 =
(
q̄γµUT3U

†q
)
⟨U †iDµUT3⟩

oψV 3 =
(
q̄γµUP12U

†q
)
⟨U †iDµUP21⟩ + h.c. oψV 4 = (ūγµu) ⟨U †iDµUT3⟩

oψV 5 =
(
d̄γµd

)
⟨U †iDµUT3⟩ oψV 6 = (ūγµd) ⟨U †iDµUP21⟩ + h.c.

oψV 7 =
(
l̄γµl

)
⟨U †iDµUT3⟩ oψV 8 =

(
l̄γµUT3U

†l
)
⟨U †iDµUT3⟩

oψV 9 =
(
l̄γµUP12U

†l
)
⟨U †iDµUP21⟩ + h.c. oψV 10 = (ēγµe) ⟨U †iDµUT3⟩

oψh1 = h (q̄UP−r) oψh2 = h (q̄UP+r)

oψh3 = h
(
l̄UP−η

)
Table 7: HEFT operators in [39] with Z, W± and h couplings to fermions.
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the operators in Table 7 and Table 4:

oψV 1 = −
g

2 cos θ
(ouLZ + odLZ) , oψV 2 = −

g

2 cos θ
(ouLZ − odLZ) , (A.23)

oψV 3 = −
g√
2
oudLW , oψV 4 = −

g

2 cos θ
ouRZ , (A.24)

oψV 5 = −
g

2 cos θ
odRZ , oψV 6 = −

g√
2
oudRW , (A.25)

oψV 7 = −
g

2 cos θ
(oνLZ + oeLZ) , oψV 8 = −

g

2 cos θ
(oνLZ − oeLZ) , (A.26)

oψV 9 = −
g√
2
(oeνLW )† , oψV 10 = −

g

2 cos θ
oeRZ , (A.27)

oψh1 = odh , oψh2 = ouh , oψh3 = oeh . (A.28)

Thus, we have explicitly demonstrated the one-to-one mapping between the HEFT

operators in the U(1)em invariant language and the HEFT operators in SU(2)L × SU(2)R
language in the unitary gauge.

B Details of the SMEFT basis used

To obtain the SMEFT predictions, we have used the (mW ,mZ , αEM ) input parameter

scheme and the basis as proposed in Ref. [62]. Note that this basis is different from the

Warsaw basis that is conventionally used for SMEFT. In this appendix, we discuss the

difference and the rationale for the choice of this basis.

In the Warsaw basis, the two operators15

OWB = gg′H†τ I HW I
µν B

µν , (B.1)

OT = (H†←→DH)2 (B.2)

would contribute to the couplings of gauge bosons to the fermions by affecting their mass

and kinetic terms. One needs to carefully normalize the kinetic term to bring it to the

canonical form and also take into account input parameter shifts. These subtleties become

relevant when we try to write the Z and W± coupling modifications in SMEFT as in

eqs.(̇2.31-2.33).

Instead, in the basis of Ref. [62], the operatorsOWB andOT are traded for the following

two operators:

OWB′ = OWB − 2ig′
(
H†←→D µH

)
∂νBµν ,

OW ′ =
ig

2

(
H†τa

←→
D µH

)
DνW a

µν −
ig′

2

(
H†←→D µH

)
∂νBµν . (B.3)

This way of writing the operators eliminates their contributions to any mass or kinetic

term [62], thus allowing us to obtain the SMEFT predictions in a straightforward way.

15Note that in Ref. [2] the operator OT would actually appear as a linear combination of the operators,

(H† Dµ H)∗(H† Dµ H) and (H†H)∂µ∂
µ(H†H). The combination of these operators orthogonal to OT ,

OH = 1
2
(∂µ|H|2)2, is part of the basis of Ref. [62].
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Note that the final predictions we obtain should be independent of the basis being

used and the Warsaw basis should also yield the same predictions, albeit with more com-

plicated intermediate calculations. We show in the following that, in the Warsaw basis,

the contributions of the two operators OT and OWB to the HEFT WCs associated with Z,

W± couplings to the fermions cancel out in the final relations. In the Warsaw basis, these

HEFT WCs receive the following SMEFT contributions [42]:

[cuLZ ]
ij = ηLZ ([C(1)Hq]

ij − [C(3)Hq]
ij) + f(1/2, 2/3) , (B.4)

[cdLZ ]
ij = ηLZ ([C(1)Hq]

ij + [C(3)Hq]
ij) + f(−1/2, −1/3) , (B.5)

[cudLW ]ij = ηLW [C(3)Hq]
ij + f(1/2, 2/3)− f(−1/2, −1/3) , (B.6)

where ηLZ ≡ −g/(2 cos θ), ηLW = g/(
√
2) and the term f(T 3, Q) is defined as [42]

f(T 3, Q) = I
[
−CWB Q

g2 g′2

g2 − g′2 + (CT − δv)
(
T 3 +Q

g′2

g2 − g′2
)]

, (B.7)

with [δv]ij = ([C(3)Hl ]
11+[C(3)Hl ]

22)/2+[C(1)ℓℓ ]1221/4. From eqs. (B.4-B.6), we obtain the SMEFT

prediction

cudLW =
1√
2
cos θw (cuLZ − cdLZ) , (B.8)

which is the same as the one in Table 3. We see that in the prediction shown in eq. (B.8), the

function f(T 3, Q) and the operators within do not appear. Similarly for Z, W± coupling

to leptons, we recover the prediction already presented in Table 3,

ceνLW =
1√
2
cos θw (ceLZ − cνLZ) . (B.9)

Thus, even in the Warsaw basis, the contributions to our relations from OWB and OT
cancel out, confirming that the final relations among the HEFT WCs are independent of

the choice of the basis for SMEFT.

C Linear relations among LEFT and HEFT operators

In Sec. 2.3, we have presented SMEFT predictions for LEFT WCs of the class LLLL. In

this appendix, we provide a similar analysis for the other classes of LEFT operators. We

first write the matching of four-fermion semileptonic WCs between LEFT and HEFT. We

then substitute the HEFT WCs with the LEFT WCs for each of the analytic relations

presented in Table 3. As a result, we get relations among the LEFT WCs which also

involve the BSM couplings of Z,W± and Higgs bosons to fermions. These relations for the

vector operators are listed in Table 8. For the scalar and the tensor operators, the relations

are presented in Table 9.

Now we present the matching relations among LEFT and HEFT operators in the flavor

basis.
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Class Analytic relations for WCs of vector operators Count

LLLL
Vik

[
[CV

edLL]
αβkl −

(
keL [ĉdLZ ]

kl δαβ + kdL
[ĉeLZ ]

αβ δkl
)]
V †
ℓj

= U†
αρ

[
[CV

νuLL]
ρσij − χ

(
kνL

[ĉuLZ ]
ij δρσ + kuL

[ĉνLZ ]
ρσ δij

)]
Uσβ

81 (45)

V †
ik

[
[CV

euLL]
αβkl − χ

(
keL [cuLZ ]

kl δαβ + kuL
[ceLZ ]

αβ δkl
)]
Vℓj

= U†
αρ

[
[CV

νdLL]
ρσij −

(
kνL

[ĉdLZ ]
ij δρσ + kdL

[ĉνLZ ]
ρσ δij

)]
Uσβ

81 (45)

V †
ik

[
[CV

LL]
αβkj − χ

(
keνW [ĉudLW ]kj δαβ + [kudW ]kj [ĉeνLW ]αβ

)]
=

[
[CV

edLL]
αρij −

(
keL [ĉdLZ ]

ij δαρ + kdL
[ĉeLZ ]

αρ δij
)]
U†
ρβ

− U†
ασ

[
[CV

νdLL]
σβij −

(
kνL

[ĉdLZ ]
ij δσβ + kdL

[ĉνLZ ]
σβ δij

)] 162 (81)

RRRR No relations

LLRR
[CV

edLR]
αβij −

(
keL [ĉdRZ ]

ij δαβ + kdR
[ĉeLZ ]

αβ δij
)

= U†
αρ

[
[CV

νdLR]
ρσij −

(
kνL

[ĉdRZ ]
ij δρσ + kdR

[ĉνLZ ]
ρσ δij

)]
Uσβ

81 (45)

[CV
euLR]

αβij − χ
(
keL [ĉuRZ ]

ij δαβ + kuR
[ĉeLZ ]

αβ δij
)

= U†
αρ

[
[CV

νuLR]
ρσij − χ

(
kνL

[ĉuRZ ]
ij δρσ + kuR

[ĉνLZ ]
ρσ δij

)]
Uσβ

81 (45)

[ĈV
LR]

αβij = χkeνW [ĉudRW ]ij 162 (81)

RRLL
[CV

edRL]
αβij −

(
keR [ĉdLZ ]

ij δαβ + kdL
[ĉeRZ ]

αβ δij
)

= V †
ik

[
[CV

euRL]
αβkl − χ

(
keR [ĉuLZ ]

kl δαβ + kuL
[ĉeRZ ]

αβ δkl
)]
Vlj

81 (45)

Table 8: Relations among the LEFT semileptonic vector WCs and the BSM coupling of

Z,W± and Higgs bosons to fermions, in the mass basis. Note that for the UV4f models,

these BSM couplings vanish and this table becomes similar to Table 3, but in terms of only

LEFT WCs.

For LLLL vector operators:

[C̃VνuLL]
αβij = ω [cVνuLL]

αβij + χ
(
kνL [cuLZ ]

ij δαβ + kuL [cνLZ ]
αβ δij

)
, (C.1)

[C̃VeuLL]
αβij = ω [cVeuLL]

αβij + χ
(
keL [cuLZ ]

ij δαβ + kuL [ceLZ ]
αβ δij

)
, (C.2)

[C̃VνdLL]
αβij = ω [cVνdLL]

αβij + kνL [cdLZ ]
ij δαβ + kdL [cνLZ ]

αβ δij , (C.3)

[C̃VedLL]
αβij = ω [cVedLL]

αβij + keL [cdLZ ]
ij δαβ + kdL [ceLZ ]

αβ δij , (C.4)

[C̃VLL]
αβij = ω [cVLL]

αβij + χ
(
keνW [cudLW ]ij δαβ + kudW [ceνLW ]αβ δij

)
, (C.5)

Where l ∈ {ν, e}, q ∈ {u, d}, ω = v2/(2Λ2), and the k coefficients are

kfL =
2 cos θw

g
(T 3
f −Qf sin2 θw) , and keνW = kudW =

√
2

g
, (C.6)

where fL ∈ {νL, eL, uL, dL}, as defined in Sec. 2.3.
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Class Analytic relations for WCs of scalar operators Count

Scalar

(dR)

Vik

(
[CS

edRLLR]
αβkj − [ĉeh]

βα ∗Mkj
d kdh −Mαβ

e keh[ĉdh]
kj

−Mαρ
e [ĉeLZ ]

ρβ Mkj
d yd + [ĉeRZ ]

αρMρβ
e Mkj

d yd

−yeMαβ
e [ĉdLZ ]

kmMmj
d + yeM

αβ
e Mkm

d [ĉdRZ ]
mj

)
=

[
[ĈS

RLLR]
αρij − χ

(
Mασ

e [ĉeνLW ]σρMkj
d yud

+yeνM
αρ
e [ĉudLW ]ikMkj

u − yeνMαρ
e Mkj

u [ĉudRW ]kj
)]
Uρβ

162 (81)

[CS
edRLRL]

αβij = [ĉeh]
βα ∗M ij

d kdh + kehM
αβ
e [ĉdh]

ji ∗

−Mαρ
e [ĉeLZ ]

ρβ M ij
d yd + [ĉeRZ ]

αρMρβ
e M ij

d yd

− yeMαβ
e M ik

d [ĉdLZ ]
kj + yeM

αβ
e [ĉdRZ ]

ikMkj
d

162 (81)

Scalar

(uR)

[
[CS

euRLRL]
αβik − χ

(
[ĉeh]

βα ∗M ik
u kuh + kehM

αβ
e [ĉuh]

ki ∗

−Mαρ
e [ĉeLZ ]

ρβ M ik
u yu + [ĉeRZ ]

αρMρβ
e M ik

u yu

−yeMαβ
e M im

u [ĉuLZ ]
mk + yeM

αβ
e [ĉuRZ ]

imMmk
uRL

)]
Vkj

= −
[
[CS

RLRL]
αρij − χ

(
Mασ

e [ĉeνLW ]σρMkj
u yud

−yeνMαρ
e [ĉudRW ]ikMkj

d + yeνM
αρ
e Mkj

u [ĉudLW ]kj
)]

Uρβ

162 (81)

[CS
euRLLR]

αβij = χ
(
[ĉeh]

βα ∗M ij
u kuh +Mαβ

e keh[ĉuh]
ij

+Mαρ
e [ĉeLZ ]

ρβ M ij
u yu − [ĉeRZ ]

αρMρβ
e M ij

u yu

+yeM
αβ
e [ĉuLZ ]

ikMkj
u − yeMαβ

e M ik
u [ĉuRZ ]

kj
) 162 (81)

Tensor

(dR)

[CT
ed, all]

αβij = 0 324 (162)

[CT
RLLR]

αβij = 0 162 (81)

Tensor

(uR)

[CT,αβik
eu,RLRL Vkj = −[CT

RLRL]
αρij Uρβ 162 (81)

[CT
eu,LRRL]

αβij = 0 162 (81)

Table 9: Relations among the LEFT semileptonic scalar WCs and HEFT WCs for the

BSM coupling of Z,W± and Higgs bosons to fermions, in the mass basis. Note that for

the UV4f models, these BSM couplings vanish and this table becomes similar to Table 3,

but in terms of only LEFT WCs.

For LLRR vector operators:

[C̃VνuLR]
αβij = ω [cVνuLL]

αβij + χ
(
kνL [cuRZ ]

ij δαβ + kuR cνLZ ]
αβ δij

)
, (C.7)

[C̃VeuLR]
αβij = ω [cVeuLR]

αβij + χ
(
keL [cuRZ ]

ij δαβ + kuR ceLZ ]
αβ δij

)
, (C.8)

[C̃VνdLR]
αβij = ω [cVνdLR]

αβij + kνL [cdRZ ]
ij δαβ + kdR [cνLZ ]

αβ δij , (C.9)

[C̃VedLR]
αβij = ω [cVedLR]

αβij + keL [cdRZ ]
ij δαβ + kdR [ceLZ ]

αβ δij , (C.10)

[C̃VLR]
αβij = ω [cVLR]

αβij + χ
(
keνW [cudRW ]ij δαβ

)
. (C.11)
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Here, keR , kuR and kdR are

kfR = −2 cos θw
g

(Qf sin
2 θw) . (C.12)

For RRRR vector operators:

[C̃VeuRR]
αβij = ω [cVeuRR]

αβij + χ
(
keR [cuRZ ]

ij δαβ + kuR ceRZ ]
αβ δij

)
, (C.13)

[C̃VedRR]
αβij = ω [cVedRR]

αβij + keR [cdRZ ]
ij δαβ + kdR [ceRZ ]

αβ δij . (C.14)

In this category, the number of independent SMEFT and HEFT operators are the same.

As a result, there is no prediction for the LEFT WCs in this category.

For RRLL vector operators:

[C̃VeuRL]
αβij = ω [cVeuRL]

αβij + χ
(
keR [cuLZ ]

ij δαβ + kuL [ceRZ ]
αβ δij

)
, (C.15)

[C̃VedRL]
αβij = ω [cVedRL]

αβij + keR [cdLZ ]
ij δαβ + kdL [ceRZ ]

αβ δij . (C.16)

For scalar operators:

[C̃SedRLLR]
αβij = ω [cSedRLLR]

αβij + [ceh]
βα ∗M̃ ij

dLR kdh + M̃αβ
eRL keh[cdh]

ij

+ M̃αρ
eRL [ceLZ ]

ρβ M̃ ij
dLRyd − [ceRZ ]

αρM̃ρβ
eRL M̃

ij
dLRyd

+ yeM̃
αβ
eRL [cdLZ ]

ikM̃kj
dRL − yeM̃

αβ
eRL M̃

ik
dLR [cdRZ ]

kj , (C.17)

[C̃SedRLRL]
αβij = ω [cSedRLRL]

αβij + [ceh]
βα ∗ M̃ ij

dRL kdh + kehM̃
αβ
eRL [cdh]

ji ∗

− M̃αρ
eRL[ceLZ ]

ρβ M̃ ij
dRLyd + [ceRZ ]

αρM̃ρβ
eLR M̃

ij
dRLyd

− yeM̃αβ
eRL M̃

ik
dRL[cdLZ ]

kj + yeM̃
αβ
eRL [cdRZ ]

ik M̃kj
dRL , (C.18)

[C̃SeuRLLR]
αβij = ω [cSeuRLLR]

αβij + χ
(
[ceh]

βα ∗M̃ ij
uLR kuh + M̃αβ

eRL keh[cuh]
ij

+ M̃αρ
eRL [ceLZ ]

ρβ M̃ ij
uLRyu − [ceRZ ]

αρM̃ρβ
eRL M̃

ij
uLRyu

+yeM̃
αβ
eRL [cuLZ ]

ikM̃kj
uRL − yeM̃

αβ
eRL M̃

ik
uLR [cuRZ ]

kj
)
, (C.19)

[C̃SeuRLRL]
αβij = ω [cSeuRLRL]

αβij + χ
(
[ceh]

βα ∗ M̃ ij
uRL kuh + kehM̃

αβ
eRL [cuh]

ji ∗

− M̃αρ
eRL[ceLZ ]

ρβ M̃ ij
uRLyu + [ceRZ ]

αρM̃ρβ
eLR M̃

ij
uRLyu

−yeM̃αβ
eRL M̃

ik
uRL[cuLZ ]

kj + yeM̃
αβ
eRL [cuRZ ]

ik M̃kj
uRL

)
, (C.20)

[C̃SRLLR]
αβij = ω [cSRLLR]

αβij + χ
(
M̃αρ
eRL[ceνLW ]ρβ M̃ ij

dLRyud + yeνM̃
αβ
eRL [cudLW ]ikM̃kj

dLR

− yeνM̃αβ
eRL M̃

ik
uLR[cudRW ]kj

)
, (C.21)

[C̃SRLRL]
αβij = ω [cSRLRL]

αβij + χ
(
M̃αρ
eRL[ceνLW ]ρβ M̃ ij

uRLyud − yeνM̃
αβ
eRL [cudRW ]ikM̃kj

dRL

+ yeνM̃
αβ
eRL M̃

ik
uRL[cudLW ]kj

)
, (C.22)
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where

M̃uLR = SuLMu S
u†
R , M̃dLR = SdLMd S

d†
R , M̃eLR = Ke

LMeK
e†
R , (C.23)

with Me = diag(me, mµ, mτ ), Mu = diag(mu, mc, mt), and Md = diag(md, ms, mb).

For M̃fRL, L and R are interchanged compared to the M̃fLR expressions in eq. (C.23). The

k-coefficients are

keh = kuh = kdh =
v

2m2
h

. (C.24)

Note that the BSM couplings of W± and Z bosons can also contribute to scalar LEFT

operators because of the second term in the unitary gauge propagator for massive vectors.

In the matching relations above for the Z andW± couplings to fermions, the corresponding

coefficients are

yf =
1

m2
Z

(kfLZ − kfRZ) , yud = yeν =
kudW
m2
W

. (C.25)

Note that in the UV4f scenario, the vanishing of HEFT WCs cSedLRLR and cSeuLRRL
results in the vanishing of the LEFT WCs CSedLRLR and CSeuLRRL. In conventional LEFT

notation [40], these identities are presented as CS = −CP and C ′
S = C ′

P in both of these

categories.

For tensor operators:

[C̃TedLRRL]
αβij = ω [cTedLRRL]

αβij , [C̃TedLRLR]
αβij = ω [cTedLRRL]

αβij , (C.26)

[C̃TeuLRRL]
αβij = ω [cTeuLRRL]

αβij , [C̃TeuLRLR]
αβij = ω [cTeuLRRL]

αβij , (C.27)

[C̃TRLLR]
αβij = ω [cTRLLR]

αβij , and [C̃TRLRL]
αβij = ω [cTRLRL]

αβij . (C.28)

The relations among the tensor LEFT WCs remain the same as for the HEFT WCs.

Note that, while writing the relations in Tables 8 and 9, we have replaced the four-

fermion HEFT WCs with the corresponding LEFT ones using the matching relations.

However, when the high energy bounds for the four-fermion WCs are stronger than the

low energy bounds, it may be more efficient to use some of the original HEFT WCs instead

of replacing them with the LEFT ones.

D Tables for direct and indirect bounds on the WCs

In this section, we have listed the 90% C.L. bounds on the WCs (on both their real and

the imaginary parts if they are complex ) obtained in Sec. 3. The actual bounds especially

between real and imaginary parts of the WCs are correlated and the figures shown in sec.

3 are a better representation of the bounds. However, for the sake of simplicity, we present

the 90% C.L. bounds for individual quantities.

In Tables 10 to 13, we present the direct bounds derived from low-energy observables

(e.g. meson decays, neutrino oscillation), high-energy observables (e.g. high-pT dimuon

searches, production and decays of top quark) and indirect bounds derived using eqs. (3.1)
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and (3.2). In Table 14, we present the direct bounds from high-pT monomuon searches

and the indirect bounds derived from eq. (3.3). Note that the high-energy bounds directly

constrain only the HEFT WCs, [ĉ]αβij , but here we work in the context of the UV4f

scenario, which allows us to provide high-energy bounds on LEFT WCs.

WC Low energy High energy Indirect

[CVνdLL]
2211 [-0.042, 0.049] - [-0.00021, 0.00046]

Re
(
[CVνdLL]

2212
)

[-0.00001, 0.00001] - -

Im
(
[CVνdLL]

2212
)

[-0.00001, 0.00001] - -

Re
(
[CVνdLL]

2213
)

[-0.0010, 0.0012] - -

Im
(
[CVνdLL]

2213
)

[-0.0012, 0.0011] - -

[CVνdLL]
2222 - - [-0.0029, 0.0032]

Re
(
[CVνdLL]

2223
)

[-0.0014, 0.00078] - -

Im
(
[CVνdLL]

2223
)

[-0.0011, 0.0011] - -

[CVνdLL]
2233 - - [-4.34, 4.44]

Table 10: 90% C.L. bounds for the WCs of the type CVνdLL. The low-energy bounds (sec-

ond column) correspond to bounds from rare decays of K and B mesons. For [CVνdLL]
2211,

the low-energy bound is from atmospheric and accelerator neutrino experiments. There is

no high-energy bound on these WCs. The fourth column shows the indirect bounds derived

using eq. (3.1).
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WC Low energy High energy Indirect

[CVeuLL]
2211 - [-0.000077, 0.00033] -

Re
(
[CVeuLL]

2212
)

[-0.00056, 0.00056] [-0.00091, 0.00091] -

Im
(
[CVeuLL]

2212
)

[-0.00056, 0.00056] [-0.00091, 0.00091] -

Re
(
[CVeuLL]

2213
)

- [-0.0025, 0.0025] [-0.0078, 0.0077]

Im
(
[CVeuLL]

2213
)

- [-0.0025, 0.0025] [-0.013, 0.013]

[CVeuLL]
2222 - [-0.0039, 0.00093] [-0.0067, 0.0071]

Re
(
[CVeuLL]

2223
)

- [-0.0208, 0.0208] [-0.18, 0.19]

Im
(
[CVνdLL]

2223
)

- [-0.021, 0.021] [-0.0040, 0.0041]

[CVeuLL]
2233 - [-0.20, 0.20] [-4.34, 4.44]

Table 11: 90% C.L. bounds for the WCs of the type CVeuLL. The low-energy bounds

(second column) correspond to bounds from rare D meson decays. The high-energy bounds

(third column) correspond to bounds derived from high-pT dimuon searches and from top

production and decays, particularly for [CVeuLL]
2213, [CVeuLL]

2223 and [CVeuLL]
2233. The fourth

column shows the indirect bounds derived using eq. (3.1).

WC Low energy High energy Indirect

[CVedLL]
2211 - [-0.0010, 0.00014] -

Re
(
[CVedLL]

2212
)

[-0.00001, 0.00001] [-0.0011, 0.0011] -

Im
(
[CVedLL]

2212
)

[-0.00001, 0.00001] [-0.0011, 0.0011] -

Re
(
[CVedLL]

2213
)

[-0.00003, 0.00001] [-0.0017, 0.0017] -

Im
(
[CVedLL]

2213
)

[-0.00002, 0.00003] [-0.0017, 0.0017] -

[CVedLL]
2222 - [-0.0043, 0.0014] -

Re
(
[CVedLL]

2223
)

[-0.00013, 0.00010] [-0.0041, 0.0041] -

Im
(
[CVedLL]

2223
)

[-0.00017, 0.00017] [-0.0041, 0.0041] -

[CVedLL]
2233 - [-0.0096, 0.0054] -

Table 12: 90% C.L. bounds for the WCs of the type CVedLL. The low-energy bounds

(second column) correspond to bounds from rare decays of K and B mesons. High-energy

bounds (third column) correspond to bounds derived from high-pT dimuon searches. The

indirect bounds are absent as we have used these WCs as inputs to eq. (3.2).
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WC Low energy High energy Indirect

[CVνuLL]
2211 [-0.075, 0.052] - [-0.0012, 0.00021]

Re
(
[CVνuLL]

2212
)

- - [-0.00098, 0.00053]

Im
(
[CVνuLL]

2212
)

- - [-0.000012, 0.000013]

Re
(
[CVνuLL]

2213
)

- - [-0.000057, 0.000074]

Im
(
[CVνuLL]

2213
)

- - [-0.000070, 0.000092]

[CVνuLL]
2222 - - [-0.0042, 0.0013]

Re
(
[CVνuLL]

2223
)

- - [-0.00044, 0.00049]

Im
(
[CVνuLL]

2223
)

- - [-0.00017, 0.00017]

[CVνuLL]
2233 - - [-0.0096, 0.0054]

Table 13: 90% C.L. bounds for the WCs of the type CVνuLL.The low-energy bound (second

column) for [CVνuLL]
2211 is obtained from atmospheric and accelerator neutrino experiments.

There is no high-energy bound on these WCs. The fourth column shows the indirect bounds

derived using eq. (3.2).
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WC High energy Indirect

Re
(
[CVLL]

2211
)

[-0.0006, 0.0002] [-0.0012, 0.00028]

Im
(
[CVLL]

2211
)

[-0.0014, 0.0014] [-0.0000070, 0.0000078]

Re
(
[CVLL]

2212
)

[-0.0016, 0.0009] [-0.0015, 0.00084]

Im
(
[CVLL]

2212
)

[-0.0013, 0.0013] [-0.000024, 0.000019]

Re
(
[CVLL]

2213
)

[-0.0017, 0.0013] [-0.0015, 0.0015]

Im
(
[CVLL]

2213
)

[-0.0015, 0.0016] [-0.0018, 0.0018]

Re
(
[CVLL]

2221
)

[-0.0014, 0.0022] [-0.00010, 0.00033]

Im
(
[CVLL]

2221
)

[-0.0018, 0.0018] [-0.000056, 0.000059]

Re
(
[CVLL]

2222
)

[-0.006, 0.002] [-0.0066, 0.0037]

Im
(
[CVLL]

2222
)

[-0.0043, 0.0043] [-0.000052, 0.000054]

Re
(
[CVLL]

2223
)

[-0.005, 0.005] [-0.0095, 0.0098]

Im
(
[CVLL]

2223
)

[-0.005, 0.005] [-0.0014, 0.0014]

Re
(
[CVLL]

2231
)

- [-0.0012, 0.0010]

Im
(
[CVLL]

2231
)

- [-0.0011, 0.0011]

Re
(
[CVLL]

2232
)

- [-0.00087, 0.0017]

Im
(
[CVLL]

2232
)

- [-0.0012, 0.0012]

Re
(
[CVLL]

2233
)

- [-0.21, 0.20]

Im
(
[CVLL]

2233
)

- [-0.000059, 0.000059]

Table 14: 90% C.L. bounds for the charged-current WCs of the type CVLL. The high-

energy bounds (second column) are derived from high-pT mono-muon searches. The third

column shows the indirect bounds derived using eq. (3.3).
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