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Abstract

Satisfying safety constraints is a priority concern when solving optimal con-
trol problems (OCPs). Due to the existence of infeasibility phenomenon,
where a constraint-satisfying solution cannot be found, it is necessary to
identify a feasible region before implementing a policy. Existing feasibility
theories built for model predictive control (MPC) only consider the feasibil-
ity of optimal policy, since MPC itself can be viewed as an optimal controller
that solves an optimal action at every step. However, reinforcement learning
(RL), as another important control method, solves the optimal policy in an
iterative manner, which comes with a series of non-optimal intermediate poli-
cies. Feasibility analysis of these non-optimal policies is also necessary for
iteratively improving constraint satisfaction; but that is not available under
existing MPC feasibility theories. This paper proposes a feasibility theory
that applies to both MPC and RL by filling in the missing part of feasibil-
ity analysis for an arbitrary policy. The basis of our theory is to decouple
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policy solving and implementation into two temporal domains: virtual-time
domain and real-time domain. This allows us to separately define initial and
endless, state and policy feasibility, and their corresponding feasible regions.
Based on these definitions, we analyze the containment relationships between
different feasible regions, which enables us to describe the feasible region of
an arbitrary policy. We further provide virtual-time constraint design rules
along with a practical design tool called feasibility function that helps to
achieve the maximum feasible region. The feasibility function either repre-
sents a control invariant set or aggregates infinite steps of constraints into
a single one. We review most of existing constraint formulations and point
out that they are essentially applications of feasibility functions in different
forms. We demonstrate our feasibility theory by visualizing different feasible
regions under both MPC and RL policies in an emergency braking control
task.

Keywords: feasibility, constrained optimal control, model predictive
control, reinforcement learning

1. Introduction

Optimal control is an important theoretical framework for sequential
decision-making and control. The goal of solving an optimal control problem
(OCP) is to find a policy that maximizes some performance index, usually
measured through cumulative rewards. In many real-world control tasks,
such as robotics (Brunke et al., 2022), aerospace engineering (Ravaioli et al.,
2022), and autonomous driving (Guan et al., 2022), the policy not only needs
to optimize performance but also must take safety into consideration. Such
problems can be formulated as constrained OCPs, where some state con-
straints must be strictly satisfied at every time step.

In a constrained OCP, satisfying constraints at a single time step is not
enough to ensure long-term safety. The policy may still run into a state
where no constraint-satisfying solution can be found in future steps. This
issue is called the infeasibility phenomenon (Li, 2023), which is one of the
most important problems in constrained OCPs. Due to the existence of
this phenomenon, we must ensure that any future state encountered by the
policy is always feasible. In other words, the policy must work in a feasible
region where the infeasibility phenomenon never happens. Therefore, it is
necessary to identify the feasible region before implementing a policy in real-
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world environments. To rigorously define and analyze feasible regions, a set
of feasibility theories for constrained OCPs is needed.

Existing feasibility theories are built for model predictive control (MPC),
which solves the optimal action online through receding horizon optimiza-
tion. A central concept in these theories is persistent feasibility (Zhang
et al., 2016; Borrelli et al., 2017), also referred to as recursive feasibility
in some literature (Löfberg, 2012; Boccia et al., 2014), which describes long-
term constraint satisfaction in a receding horizon control (RHC) problem.
Specifically, an RHC problem is persistently feasible if its initially feasible
set equals its maximal positive invariant set. Here, the initially feasible set
contains all states where a constraint-satisfying solution can be found. The
maximal positive invariant set contains all states whose successive trajecto-
ries always stay in this set. Persistent feasibility ensures that as long as there
is a constraint-satisfying solution at the initial step, the receding horizon op-
timization can proceed without encountering the infeasibility phenomenon.
A limitation of persistent feasibility is that it only applies to the optimal
policy of a constrained OCP. This is because the maximal positive invariant
set is defined in the closed-loop system under the MPC controller, which
is the optimal controller of RHC problem. However, reinforcement learn-
ing (RL), as another important control method, solves the optimal policy
in an iterative manner, which comes with a series of non-optimal interme-
diate policies. For such non-optimal policies, the infeasibility phenomenon
may still be encountered even if the RHC problem is persistently feasible.
It is necessary to analyze feasible regions of these non-optimal policies for
improving safety through iteration, which is not available with the concept of
persistent feasibility. Another concept called strong feasibility (Gondhalekar
et al., 2009; Gondhalekar and Jones, 2011) expands the scope of persistent
feasibility from the optimal policy to any initially feasible policy. An RHC
problem is strongly feasible if, from every state in the initially feasible set,
the trajectory under any feasible solution remains in this set. In other words,
the feasible region of any initially feasible policy exactly equals the initially
feasible set in a strongly feasible RHC problem. However, fulfilling strong
feasibility requires a specific type of constraint design where the endlessly
feasible region exactly equals the initially feasible region, a condition that
may not be met for a general constrained OCP. Therefore, a more general
set of theoretical tools is needed for analyzing the feasibility of an arbitrary
policy.

In order to fill this gap, we propose a set of feasibility theories for con-
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Figure 1: Illustration of core concepts in feasibility theory. The first two rows show state
trajectories and feasible regions of an RL policy trained for 50 steps under a Hamilton-
Jacobian (HJ) reachability constraint. The third row shows the results of 10000 training
steps. The red marks represent endlessly feasible states, the blue marks for initially feasible
states, and the gray marks for infeasible states. The purple-shaded areas represent real-
time constraints, and the orange-shaded areas represent virtual-time constraints. A state
with a red cross indicates violation of real-time or virtual-time constraints. The data in
the figure comes from a numerical example of emergency braking control, and details can
be found in Section 8.
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strained OCPs that apply to both MPC and RL. Our theory is based on an
extension of the temporal domain decoupling view in MPC to RL. We point
out that any optimal control method follows the practice of solving OCP in
virtual-time domain and implementing optimal policy in real-time domain.
This decoupling view allows us to define the feasibility of an arbitrary policy,
which is necessary for analyzing the feasible regions of intermediate non-
optimal policies during RL training. Figure 1 illustrates the core concepts
of our feasibility theory. Each real-time step corresponds to a virtual-time
constrained OCP, whose optimal solution is either computed at each step
online (like MPC) or solved offline before policy implementation (like RL).
The constraint in virtual-time domain can be different from that in real-time
domain. Whether the virtual-time constraint can be satisfied and how long it
can be satisfied leads to different types of feasibility and feasible regions. For
a typical safe RL algorithm, the feasible region of its policy starts as a small
set and gradually expands during training, finally approaching the feasible
region of the optimal policy. MPC, on the other hand, directly computes
the optimal control sequences, and therefore, its feasible region is always the
same. The main contributions of this paper are summarized as follows.

• We propose a set of feasibility theories for constrained OCPs that ap-
ply to both MPC and RL. Based on a decoupling view of virtual-time
and real-time domains, we separately define initial and endless feasi-
bility, which describe short-term and long-term constraint satisfaction
respectively. We further distinguish state and policy feasibility, which
are defined based on the existence of a policy and on a given policy. By
combining different types of feasibility, we derive four kinds of feasible
regions. We further define the maximum feasible region and reveal its
relationship to real-time constraints.

• We give and prove containment relationships of all kinds of feasible re-
gions, which provides a tool for analyzing the feasibility of an arbitrary
policy. In particular, we analyze the containment relationship between
a policy-specific feasible region and the maximum feasible region, which
is a priority concern when solving a constrained OCP. For an arbitrary
policy, its feasible region is also bounded from above and below, ap-
pearing as an intermediate between some known feasible regions.

• We provide a collection of virtual-time constraint design rules along
with a practical design tool called feasibility function that helps to
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achieve the maximum feasible region. Specifically, it is revealed by the
above-mentioned containment relationships that the maximum feasi-
ble region of the optimal policy can be achieved by simply designing
a maximum initially feasible region when initially and endlessly feasi-
ble regions are equal. The feasibility function ensures this equality by
either constructing a control invariant set or aggregating infinite steps
of constraints into a single-step one. We review most of existing con-
straint formulations and point out that they are essentially applications
of feasibility functions in different forms.

The rest of this paper is organized as follows. Section 2 introduces a
decoupling view of two temporal domains. Section 3 illustrates the infea-
sibility phenomenon. We define feasibility and feasible regions in Section 4
and further analyze containment relationships of feasible regions in Section
5. After that, we provide feasibility function for constraint design in Section
6 and review existing constraint formulations in Section 7. Finally, Section
8 demonstrate feasible regions with experiments and Section 9 concludes the
paper.

2. Constrained Optimal Control Problems in Two Temporal Do-
mains

2.1. Constrained optimal control problems

A constrained OCP can be described by a deterministic Markov decision
process (X ,U , f, r, γ, dinit), where X ⊆ Rn is the state space, U ⊆ Rm is the
action space, f : X × U → X is the dynamic model, r : X × U → R is the
reward function, γ ∈ (0, 1] is a discounting factor and dinit is the initial state
distribution.

The constraint is specified through inequalities

h(xt+i) ≤ 0, i = 0, 1, 2, . . . ,∞, (1)

where h : X → R is the constraint function. The constrained set is defined
as Xcstr = {x ∈ X |h(x) ≤ 0}. Its complement is the unconstrained set,
X̄cstr = X \ Xcstr, which contains all states violating the constraints. Our
aim is to find a policy π : X → U that maximizes the expected cumulative
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rewards under the state constraints,

max
π

Ext∼dinit(x)

{
∞∑
i=0

γir(xt+i, ut+i)

}
,

s.t. xt+i+1 = f(xt+i, ut+i),

h(xt+i) ≤ 0, i = 0, 1, 2, . . . ,∞.

(2)

2.2. Real-time domain and virtual-time domain

To explain what feasibility is, it is necessary to recall the working mech-
anism of optimal control. In essence, any optimal controller works in two
separated temporal domains, i.e., virtual-time domain and real-time domain.
Under this perspective, the optimal policy is implemented in the real-time
domain, while the solving algorithm is designed in the virtual-time domain.
That is to say, constrained MPC/RL algorithm design should be discussed
in the virtual-time domain, rather than in the real-time domain. This new
viewpoint is our basis for understanding what feasibility is. The separation of
the virtual-time domain from the real-time domain inspire us that a different
constraint can be used in virtual-time domain from that in real-time domain
since constrained OCP is not defined in the real-time domain. Therefore,
one can choose a new constraint function in the virtual-time domain:

g(xi|t) ≤ 0, i = 0, 1, 2, . . . , n, (3)

where g(·) is the virtual-time constraint function, and n is the horizon length
of virtual-time constrain. This length can be either finite or infinite. With
virtual-time constraint (3), we can define the virtual-time OCP as follows.

max
π

Ex0|t∼dinit(x)

{
N∑
i=0

γir(xi|t, ui|t)

}
,

s.t. xi+1|t = f(xi|t, ui|t),

g(xi|t) ≤ 0, i = 0, 1, 2, . . . , n,

(4)

where N is the horizon length of virtual-time objective, which can be either
finite (as in MPC) or infinite (as in RL).

It must be noted that (2) and (4) are not defined in the same temporal
domain. The former is defined in the real-time domain, and the latter is
defined in the virtual-time domain. The two domains are distinguished by
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their subscripts, of which t + i represents the (t + i)-th step in the real-
time domain and i|t represents the i-th point in the virtual-time domain
starting from time t. The virtual-time constraint (3) can be different from
the real-time constraint (1) in two aspects: (1) constraint function and (2)
time horizon. The real-time constraint is determined by the control task itself
and cannot be modified by algorithm designers. Moreover, this constraint
should be satisfied in infinite horizon because any real-world control task
is continuing without termination. In contrast, the virtual-time constraint
does not need to be posed at every step. It even does not need to have
the same function form at all steps. That is to say, except at some special
time instances, the constraints in virtual-time domain can be changed or
even removed. In fact, a virtual-time constraint can be designed freely as
long as it satisfies one requirement: it must be not weaker than the real-time
constraint in the current step, i.e., if g(x0|t) ≤ 0, then h(xt) ≤ 0. Besides
building the basic structure of defining feasibility, this domain-separating
perspective provides us with great flexibility to build various virtual-time
constraints, as well as the formulation of their constrained OCPs. As an
example, a commonly used constraint design in MPC is that the first n− 1
virtual-time constraints are the same as the real-time constraint h, and the
last constraint g(xn|t), called the terminal constraint, is designed differently,
typically stronger than h to ensure that h is satisfied at every real-time step.

3. Illustration of Infeasibility Phenomenon

Infeasibility is the most important concept in constrained OCPs. The
domain separation perspective can help us understand the infeasibility phe-
nomenon more straightforwardly. Formally, “infeasibility” describes the phe-
nomenon that the constraint of a virtual-time OCP cannot be satisfied by
any policy or by a given policy at some state. Note that infeasibility concerns
virtual-time OCP instead of real-time OCP because the policy is obtained
from solving the former instead of the latter. We say a state is infeasible
when no solution to the virtual-time OCP starting from it can be found.
We say a policy is infeasible when it is not a valid solution to a virtual-time
OCP. There are two reasons that lead to the infeasibility phenomenon: 1)
insufficient training of policy in RL, and 2) improper design of virtual-time
constraints.

To better explain how the infeasibility phenomenon occurs, let us con-
sider the following example. Figure 1 shows an infeasible emergency braking
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control of an RL policy under a 1-step Hamilton-Jacobian (HJ) reachability
constraint. This constraint requires the state not to enter the orange-shaded
region in virtual-time domain. Here, the environment model is assumed to be
perfect, i.e., the action and state trajectories are the same in the virtual-time
and real-time domains. In the first two rows, at time t = 0, the action given
by the policy π1 ensures that the virtual-time constraint is satisfied, i.e.,
x1|0 ∈ Xcstr. Since the model is perfect, this action transfers the current state
to a new state x1 in the real-time domain, which equals x1|0. At time t = 1,
the action given by π1 cannot satisfy the virtual-time constraint, x1|1 /∈ Xcstr.
This is how the infeasibility phenomenon occurs, and in this situation, we
say π1 is infeasible in state x1. Note that constraint violation in virtual-
time domain does not mean that there is no admissible action in real-time
domain, where “admissible” means leading to a constraint-satisfying state.
Actually, at time t = 1, the action is still admissible in real-time domain be-
cause the resulting next state x2 is still inside the real-time constrained set.
However, since the virtual-time constraint is already violated, the violation
of the real-time constraint is inevitable sometime in the future as long as the
virtual-time constraint is properly designed. As shown in the figure, at time
t = N , the next state xN+1 finally goes out of the real-time constrained set.

The above infeasibility phenomenon is mainly caused by insufficient train-
ing. Actually, extending the training step from 50 to 10000 basically solves
the infeasibility problem. As shown in the third row in Figure 1, the state
trajectory is fully contained in the virtual-time constrained set for all times,
achieving a desired property called endless feasibility. The other reason that
leads to the infeasibility phenomenon, i.e., improper design of virtual-time
constraints, is illustrated in Figure 2. Here, the virtual-time constraint func-
tion is the same as the real-time one, i.e., g = h, but with a finite horizon
n. This constraint is called a pointwise constraint. The policy is an MPC
controller, which is the optimal policy of the virtual-time OCP. It shows that
when n is too small, infeasibility phenomenon occurs easily, and when n is
large enough, the state is always feasible. Usually, weaker and fewer steps of
constraints have a worse ability to guarantee feasibility in the long run be-
cause they cannot provide sufficient confinement to future state trajectories.
This problem cannot be mitigated by increasing training steps because even
the optimal policy is infeasible. Regarding virtual-time constraint design, we
provide a collection of constraint design rules along with a practical design
tool called feasibility function that can avoid the infeasibility phenomenon
and help to achieve the maximum feasible region.
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(a) n = 2 (b) n = 10

Figure 2: State trajectories and state feasibility of MPC under pointwise constraints.

4. Feasibility and Feasible Regions

We have seen that the improper selection of virtual-time constraints would
result in the notorious infeasibility phenomenon. Now let us move to the for-
mal definition of feasibility, which allows us to analyze what kind of virtual-
time constraint can guarantee safety. The aforementioned example of point-
wise constraint enlightens us that depending on the choice of constraint,
virtual-time OCPs may suddenly lose feasibility at some time points or keep
feasibility forever. These two results bring about the need to distinguish be-
tween (1) initial feasibility and (2) endless feasibility. As suggested by their
names, initial feasibility may be only temporary, while endless feasibility
always comes with all virtual-time OCPs in the everlasting future.

4.1. Initial feasibility

The existence of infeasibility phenomenon indicates that a state with
feasible virtual-time OCP may inevitably evolve into a state with infeasible
virtual-time OCP. As a result, the property of a state’s yielding feasible OCP
at the current step is termed as initial feasibility. This property is just a
shortsighted feature and may not give any guarantee in the future (even just
one step later!). To have an intuitive understanding of initial feasibility, recall
the evolution of infeasibility phenomenon in Figure 1, where xt is a feasible
state but still evolves into a state xt+2 that is infeasible. The definition of
initial feasibility is as follows.

Definition 4.1 (Initial feasibility of a state).

1. A state x is initially feasible if there exists a policy that satisfies the
virtual-time constraint starting from x, i.e., ∃π, s.t. g(xi|t) ≤ 0, i =
0, 1, 2, . . . , n, where x0|t = x.
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2. The initially feasible region (shortened as IFR), denoted as Xg
init, is the

set of all states that are initially feasible.

The subscript “init” of initial feasible region Xg
init stands for “initial”,

and the superscript “g” emphasizes that it is related to the virtual-time
constraint. For a state to be initially feasible, the only requirement is that
the virtual-time OCP starting from it has a solution. Outside the IFR, there
is no policy satisfying the virtual-time constraint, and hence the virtual-time
OCP has no solution. In other words, IFR is a region restricted by the
chosen virtual-time constraint, identifying those states that are meaningful
under the virtual-time constraint. In this definition, the policy π can be
arbitrarily chosen to meet the existence statement. Supposing that we have
already been given a policy, it is also a natural need to check whether its
output satisfies the virtual-time constraint, which leads to the definition of
initial feasibility of a policy.

Definition 4.2 (Initial feasibility of a policy).

1. A policy π is initially feasible in a state x if π satisfies the virtual-time
constraint starting from x, i.e., g(xi|t) ≤ 0, i = 0, 1, 2, . . . , n, where
x0|t = x.

2. The set of all policies that are initially feasible in x is denoted as
Πg

init(x).

3. The initially feasible region of a policy π, denoted as Xg
init(π), is the set

of all states in which π is initially feasible.

The notation Xg
init(π) means that the IFR is not only dependent on the

constraint g but also a function of policy π. The initial feasibility of a policy
is closely related to the initial feasibility of a state. If a state is initially
feasible, then there must exist a policy that is initially feasible in this state.
On the other hand, if a policy is initially feasible in a state, then there exists
at least one solution to virtual-time OCP starting from this state, which
indicates that this state is initially feasible. The IFR of a policy Xg

init(π)
is the region where one is approved to take policy π under the virtual-time
constraint. Similar to the initial feasibility of a state, the initial feasibility
of a policy only describes the property of a single virtual-time OCP starting
from the current real-time step. It does not provide any guarantee on the
virtual-time OCPs in future real-time steps. A policy that is initially feasible
at the current time step may become infeasible after it takes a step forward in
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the real-time domain. Examples of IFR of a policy are the union of blue and
red regions in Figure 1 and Figure 2. Within these regions, the virtual-time
constraints are satisfied by the policy, but there is no guarantee that they
will still be satisfied in successive states.

4.2. Endless feasibility

Having the definition of initial feasibility at hand, we are able to describe
what we actually care about, i.e., a long-term property taking infinite hori-
zon constraints into account. This property is termed as endless feasibility.
Intuitively, endless feasibility gives a guarantee of not only the feasibility of
the current virtual-time OCP but also that of all future virtual-time OCPs.
Here is an example to give a sense of why there is a distinction between initial
and endless feasibility. In a car-following scenario, the ego vehicle is required
to follow a leading vehicle while keeping a safe distance from it. Suppose
that the virtual-time constraint requires a positive distance between vehicles
only at the next time step. Then, a state with an overly high speed may
be initially feasible since the vehicles will not collide immediately. However,
due to the limited braking capability, the car will inevitably reach a state
where collision is doomed at the next time step no matter what action is
taken. In other words, the virtual-time OCP becomes infeasible after certain
steps. Unlike initial feasibility, endless feasibility guarantees the feasibility
of all future virtual-time OCPs by its definition. Just like the case for initial
feasibility, it can also be defined for a state or a policy.

Definition 4.3 (Endless feasibility of a state).

1. A state x is endlessly feasible if it is initially feasible and its succes-
sive states under any initially feasible policy in each time step are ini-
tially feasible, i.e., xt ∈ Xg

init and ∀πt+i ∈ Πg
init(xt+i), xt+i+1 ∈ Xg

init, i =
0, 1, 2, . . . ,∞, where xt = x.

2. The endlessly feasible region (shortened as EFR), denoted as Xg
edls, is

the set of all states that are endlessly feasible.

The subscript “edls” in the above symbols is an abbreviation of “endless”,
and the superscript “g” emphasizes that it is related to the virtual-time
constraint. The endless feasibility of a state is related to not only the current
step in the real-time domain but also all future time steps. The states in
future time steps can be obtained by arbitrary initially feasible policies in
each time step. The arbitrariness of policy selection is critical to the definition
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of endless feasibility. This is because, for any initially feasible state, there
may exist more than one initially feasible policy in that state. Which one
is the solution of the virtual-time OCP depends on the objective function.
The arbitrariness of policy selection ensures that the solution can always
ensure the successive states to be initially feasible, regardless of the objective
function. As a result, the EFR identifies those states that can be definitely
rendered safe by the virtual-time constraint. Similar to the initial feasibility
of a policy, we can also define the endless feasibility of a policy.

Definition 4.4 (Endless feasibility of a policy).

1. A policy π is endlessly feasible in a state x if π is initially feasible in
both x and the successive states of x under π, i.e., π ∈ Πg

init(xt+i), i =
0, 1, 2, . . . ,∞, where xt = x.

2. The endlessly feasible region of a policy π, denoted as Xg
edls(π), is the

set of all states in which π is endlessly feasible.

The “π” in brackets serves the same purpose as in Xg
init(π). Note that the

definition of endless feasibility is built upon initial feasibility, requiring all
successive states in a trajectory to be initially feasible. For endless feasibility
of a policy, this trajectory is naturally induced by the given policy. For
endless feasibility of a state, this trajectory can be induced by any initial
feasible policy, i.e., it is required that at every step, taking any initially
feasible policy (not just one of them), the next state is also initially feasible.
With such a definition, it naturally holds that for an endlessly feasible state,
there must also be an endlessly feasible policy in that state, i.e., EFR is
a subset of the policy’s EFR. This conclusion will be formally stated and
proved in Theorem 5.1. Examples of EFR of a policy are the red regions in
Figure 1 and Figure 2. Within these regions, the policy is initially feasible
in both the current and all successive states.

The above-mentioned four definitions are all specific to virtual-time con-
straints. Even for the same real-time OCP, a different choice of virtual-time
constraint will lead to different feasible regions. A natural question is how
to design a virtual-time constraint that induces an EFR as large as possible.
To discuss this, we first need to define the maximum EFR.

Definition 4.5. The maximum endlessly feasible region (shortened as max-
imum EFR), denoted as X∗

edls, is the union of all endlessly feasible regions.

13



The above definition of maximum EFR is closely related to the notion of
maximum control invariant set in MPC. The latter refers to the maximum set
in which for any state, there exists a control sequence that keeps its successive
states still in this set. The maximum EFR has one more requirement than
the maximum control invariant set, i.e., all states in it must satisfy the real-
time constraint. In other words, a constraint-satisfying maximum control
invariant set is a maximum EFR. Either too strong or too weak a virtual-
time constraint will induce an EFR Xg

edls smaller than X∗
edls. For the former

case, less state is considered initially feasible and hence outside of Xg
edls.

For the latter case, one may take too aggressive actions at the beginning
of a trajectory due to the inadequate restriction of virtual-time constraint,
leading to the occurrence of an infeasibility phenomenon. Examples of these
two cases can be found in the experiment results in Section 8, where the
pointwise constraint with n = 2 is too weak, and the control barrier function
constraint with k = 0.5 is too strong. The maximum EFR is the largest area
in which we can expect any policy to work safely. The following theorem
gives an identical description of the maximum EFR, which explicitly relates
endless feasibility with constraint satisfaction in real-time domain.

Theorem 4.1. For an arbitrary state x, the following two statements 1) and
2) are equivalent:

1. x ∈ X∗
edls.

2. ∃π, s.t. h(xt+i) ≤ 0, i = 0, 1, 2, . . . ,∞, xt = x.

Proof. First, we prove 1) ⇒ 2). According to Definition 4.5,

∀x ∈ X∗
edls,∃π and g, s.t. xt+i ∈ Xg

init, i = 0, 1, 2, . . . ,∞.

Since Xg
init ⊆ Xcstr, we have xt+i ∈ Xcstr, i.e., h(xt+i) ≤ 0.

Next, we prove 2) ⇒ 1). For an arbitrary state x that satisfies 2), we can
choose

g(xi|t) = h(xi|t), i = 0, 1, 2, . . . ,∞

as the virtual-time constraint. In this case, we have x ∈ Xg
edls. Since Xg

edls ⊆
X∗

edls, we conclude that x ∈ X∗
edls.

The above theorem justifies the importance of defining maximum EFR
in that states in X∗

edls are exactly what we are eager to identify, which are
the only states that can be rendered safe in the real-time domain. That is to
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say, for any state x ∈ X∗
edls, there exists a policy π, such that all future states

are in the constrained set Xcstr. Since 2) in Theorem 4.1 goes to infinity, the
successive states are always in the maximum EFR.

Intuitively, if a state x is in the EFR of a policy π, it can be rendered
safe by this policy. This result is stated formally in the following theorem,
which theoretically justifies applying π in x and all successive states.

Theorem 4.2. For any state x, statement 1) is a sufficient condition for
statement 2):

1. ∃g, s.t. x ∈ Xg
edls(π).

2. h(xt+i) ≤ 0, i = 0, 1, 2, . . . ,∞, xt = x, ut = π(xt).

Proof. According to Definition 4.4,

∀x ∈ Xg
edls(π), xt+i ∈ Xg

init, i = 0, 1, 2, . . . ,∞,

where xt+i are obtained by π. Since Xg
init ⊆ Xcstr, we have xt+i ∈ Xcstr, i.e.,

h(xt+i) ≤ 0.

Theorem 4.2 tells us that the EFR of a policy is where we can safely
apply the policy in real-time domain. This is the reason why we need to
find not only the policy itself but also its EFR when solving constrained
OCPs. In literature, this EFR is found by identifying a control certificate
related to virtual-time constraint, e.g., control barrier function (Ames et al.,
2014), safety index (Liu and Tomizuka, 2014), and Hamilton-Jacobi reacha-
bility function (Mitchell et al., 2005). In fact, initial feasibility is not what
we ultimately care about because it only describes whether constraints of
the current virtual-time OCP are satisfied. The role of initial feasibility is
to help us define endless feasibility, which describes whether constraints of
all successive virtual-time OCPs are satisfied. Our main concern is end-
less feasibility because it is related to long-term safety in real-time domain.
Therefore, we care about how to calculate the EFR of a policy, especially
the policy obtained from solving a virtual-time OCP. We hope that the EFR
of this policy equals the maximum EFR. Furthermore, the size of EFR of
a policy is related to its performance. If we want a policy to be optimal,
then its EFR must contain all optimal state trajectories. A larger EFR has a
greater chance of containing optimal trajectories and therefore increases the
probability of finding the optimal policy.
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5. Some Properties of Feasible Regions

In this section, we formally explore the properties of feasible regions, as
well as their relationships and how they are informative for virtual-time con-
straint design. Specifically, we will pay attention to containment relationships
and equivalence relationships of different feasible regions.

5.1. Containment relationships of feasible regions

The definitions of feasible regions can be categorized by two dimensions:
(a) initial ones or endless ones and (b) with a given policy or without a given
policy. The four combinations correspond to (1) initially feasible region (IFR)
Xg

init, (2) IFR of a policy Xg
init(π), (3) endlessly feasible region (EFR) Xg

edls,
and (4) EFR of a policy Xg

edls(π). Besides these, there are two more regions
we need to pay attention to, i.e., constrained set Xcstr and the maximum
EFR X∗

edls. The constrained set comes from real-world constraints, and the
maximum EFR is the feasible region that we always aim to identify because
it gives the largest allowable working area of the policy. Among all of these
six regions, Xcstr, X

g
init, and Xg

init(π) are related only to the current step, while
Xg

edls, X
g
edls(π), and X∗

edls are our true ultimate goals. Since the latter is related
to long-term feasibility, their identification is much more difficult than that
of the former. The following theorem gives some containment relationships
between these six regions so that we can let those easy-to-identify regions
cast some light on the goal regions.

Theorem 5.1 (Feasible region containment).

1. Xg
edls ⊆ Xg

init ⊆ Xcstr.

2. ∀π,Xg
edls(π) ⊆ Xg

init(π) ⊆ Xg
init.

3. ∀π,Xg
edls(π) ⊆ X∗

edls.

4. ∀π, if Xg
init(π) = Xg

init, then Xg
edls ⊆ Xg

edls(π).

Proof.

1. The first containment relationship Xg
edls ⊆ Xg

init can be directly con-
cluded from Definition 4.3. For the second one, according to Definition
4.1,

∀x ∈ Xg
init, g(x) = g(x0|t) ≤ 0.

Since g(x0|t) is not weaker than h(xt), we have h(x) ≤ 0, i.e., ∀x ∈ Xcstr.
Therefore, Xg

init ⊆ Xcstr.
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2. This holds by Definition 4.4 and Definition 4.2.

3. As stated in Definition 4.4,

∀x ∈ Xg
edls(π), π ∈ Πg

init(xt+i), i = 0, 1, 2, . . . ,∞,

where xt = x. Thus, xt+i ∈ Xg
init(π). Since Xg

init(π) ⊆ Xg
init, it follows

that xt+i ∈ Xg
init. Thus, xt+i ∈ Xcstr, i.e., h(xt+i) ≤ 0. Recall Theorem

4.1 and we reach Xg
edls(π) ⊆ X∗

edls.

4. Since Xg
init = Xg

init(π), it holds that π is initially feasible in all states
in Xg

init. That is to say, π ∈ Πg
init(x),∀x ∈ Xg

init. Starting from any
x ∈ Xg

edls and choosing

πt+i = π ∈ Πg
init(xt+i), i = 0, 1, 2, . . . ,∞.

By definition of endlessly feasibility, we have

xt+i ∈ Xg
init = Xg

init(π) i.e., π ∈ Πg
init(xt+i).

This means π is endlessly feasible in x, i.e., ∀x ∈ Xg
edls(π). Thus,

Xg
edls ⊆ Xg

edls(π).

Figure 3 illustrates the containment relationships in Theorem 5.1. Figure
3(a) is an illustration of Xg

edls ⊆ Xg
init ⊆ Xcstr. The light-colored circles

correspond to virtual-time states, and the dark-colored ones stand for real-
time states. The first containment relationship holds by definition since a
state must first be initially feasible, then it could be endlessly feasible. This
is also the case for the second one.

Figure 3(b) is an illustration of Xg
init(π) ⊆ Xg

init. For a state in Xg
init, there

exists a policy satisfying the virtual-time constraint, but it is not necessarily
the given policy π. Intuitively, given a policy π poses a greater restriction on
the IFR, making the IFR of a policy become a subset of IFR.

Figure 3(c) is an illustration of Xg
edls(π) ⊆ X∗

edls. On the left are the
zero-sublevel set of h(x) and g(x), they correspond to the maximum EFR
X∗

edls and the EFR of a policy Xg
edls(π) on the right, respectively. To see

how {x|h(x) ≤ 0} is related to X∗
edls, recall Theorem 4.1 which states that

x ∈ X∗
edls is equivalent to the existence of a policy rendering x safe in real-time

domain. Likewise, x ∈ Xg
edls(π) means that the specific policy π renders x safe

in virtual-time domain, without violating virtual-time constraint g(x) ≤ 0.
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Naturally, a larger valid state set ({x|h(x) ≤ 0} versus {x|g(x) ≤ 0}) and no
restriction on the policy yields a larger EFR.

Figure 3(d) is an illustration of the statement “If Xg
init(π) = Xg

init, then
Xg

edls ⊆ Xg
edls(π).” The left picture corresponds to the condition Xg

init(π) =
Xg

init, with the red region representing both Xg
init and Xg

init(π). This condition
implies that π ∈ Πg

init(x),∀x ∈ Xg
init, where Πg

init(x) is the set of policies
that are initially feasible under x. The right picture illustrates how Xg

edls is
a subset of Xg

edls(π). For a state in the purple region Xg
edls, every initially

feasible policy at every time step must lead to an initially feasible state at
the next time step. That is to say, the policy π′ (in purple) and π′′ (in red)
are chosen arbitrarily from the initially feasible policy sets Πg

init(xt+1) and
Πg

init(xt+2), respectively. So π is also a possible choice for π′ and π′′ (and all
future policies). This guarantees that π renders any state in Xg

edls endlessly
feasible under itself.

Talking about Xg
init(π) and Xg

edls(π), the previous theorem only discusses
the containment relationships for an arbitrary policy π. This policy π may
not come from the optimization of virtual-time OCP. In safe RL, besides
trying to identify the maximum EFR, one also seeks to find the best policy,
i.e., π∗. The optimal policy π∗, including its corresponding IFR and EFR,
have special importance in building effective RL algorithms. As a special
case, let us first talk about an interesting property of IFR at π∗, i.e., Xg

init(π
∗).

For any state ∀x ∈ Xg
init, its corresponding virtual-time OCP must has a

feasible solution, and one can construct an optimal policy π∗ in this region
by the mapping from this state to its feasible action. Therefore, x must be
initially feasible under the policy π∗, i.e., x ∈ Xg

init(π
∗). This leads to an

important condition that Xg
init(π

∗) = Xg
init, and therefore a series of useful

properties.

Corollary 5.1.1.

1. Xg
edls ⊆ Xg

edls(π
∗) ⊆ Xg

init(π
∗) = Xg

init.

2. Xg
edls ⊆ Xg

edls(π
∗) ⊆ X∗

edls.

3. If Xg
edls = Xg

init, then Xg
edls = Xg

edls(π
∗) = Xg

init(π
∗) = Xg

init ⊆ X∗
edls.

4. If Xg
edls = X∗

edls, then Xg
edls = Xg

edls(π
∗) = X∗

edls ⊆ Xg
init(π

∗) = Xg
init.

Proof.

1. According to Theorem 5.1(2), it holds that Xg
edls(π

∗) ⊆ Xg
init(π

∗) ⊆
Xg

init. What left is to show that Xg
init ⊆ Xg

init(π
∗) and Xg

edls ⊆ Xg
edls(π

∗).
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Since
∀x ∈ Xg

init, π
∗ ∈ Πg

init(x), i.e., x ∈ Xg
init(π

∗),

we have Xg
init ⊆ Xg

init(π
∗), which yields Xg

init(π
∗) = Xg

init. Now we can
choose π = π∗ in Theorem 5.1(4) and conclude that Xg

edls ⊆ Xg
edls(π

∗).
Thus, we have

Xg
edls ⊆ Xg

edls(π
∗) ⊆ Xg

init(π
∗) = Xg

init.

2. This follows directly from Corollary 5.1.1(1) and Theorem 5.1(3).

3. This follows directly from Corollary 5.1.1(1) and (2).

4. This follows directly from Corollary 5.1.1(1) and (2).

Corollary 5.1.1(1) reveals the relationship between IFR, EFR, and those
of the optimal policy. This relationship tells us a range of the optimal policy’s
EFR, i.e., it is lower bounded by EFR and upper bounded by the optimal
policy’s own IFR. Corollary 5.1.1(2) further clarifies the range of the optimal
policy’s EFR by revealing its relationship with the maximum EFR, i.e., it is
a subset of the latter. Corollary 5.1.1(3) gives a method for obtaining the
EFR of the optimal policy under a certain condition that IFR equals EFR.
In this case, the EFR of the optimal policy can be easily obtained since it
directly equals the IFR. Therefore, this condition also provides a rule for
designing virtual-time constraints. Corollary 5.1.1(4) gives a condition when
the EFR of the optimal policy equals the maximum EFR. The condition is
that the EFR equals the maximum EFR. Combining with Corollary 5.1.1(3),
we arrive at an important rule for designing virtual-time constraints: Xg

edls =
Xg

init = X∗
edls, i.e., EFR, IFR, and the maximum EFR are equal. Following

this rule, we can guarantee that the EFR of the optimal policy equals the
maximum EFR.

5.2. Equivalence conditions of two feasible regions

The EFR is only determined by the dynamics model and its virtual-time
constraint. The perfect design for a virtual-time constraint should result in
an EFR that equals the maximum EFR, i.e., Xg

edls = X∗
edls. However, X

g
edls is

very difficult to compute because it requires checking every initially feasible
policy in every time step. To avoid this problem, we hope that Xg

edls = Xg
init

so that we only need to compute Xg
init, which is much easier than computing

Xg
edls. In this case, if Xg

init = X∗
edls, then Xg

edls(π
∗) = X∗

edls. The following
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theorem helps us to have a sense of what kind of condition Xg
edls = Xg

init

needs.

Theorem 5.2 (Conditions for Xg
edls = Xg

init).
Necessary conditions:

1. Xg
init ⊆ X∗

edls.

2. ∀xt ∈ Xg
init, ∃ut ∈ U , s.t. xt+1 ∈ Xg

init.

Sufficient conditions (examples of virtual-time constraints):

1. h(xi|t) ≤ 0, i = 0, 1, 2, . . . ,∞.

2. h(x0|t) ≤ 0, x1|t ∈ X∗
edls.

Proof. Necessary conditions:

1. This is obvious by noting Definition 4.5.

2. Since xt ∈ Xg
init, it follows that Π

g
init(xt) ̸= ∅. Considering that we also

have xt ∈ Xg
edls, any π ∈ Πg

init(xt) and ut = π(xt) will induce an initially
feasible successive state.

Sufficient conditions:

1. ∀xt ∈ Xg
init and π ∈ Πg

init(xt), we have

h(xt+i) = h(xi|t) ≤ 0, i = 0, 1, . . . ,∞.

Since this goes to infinity, π must also be a feasible policy in xt+1, i.e.,
xt+1 ∈ Xg

init. By the arbitrariness of xt and π , we can conclude that
xt ∈ Xg

edls and hence Xg
edls = Xg

init.

2. ∀xt ∈ Xg
init and π ∈ Πg

init(xt), we have xt+1 = x1|t ∈ X∗
edls, and thus

xt+1 ∈ Xg
init. By the arbitrariness of xt and π, it holds that ∀x ∈ Xg

edls.
We can conclude that Xg

edls = Xg
init.

Theorem 5.2 has important guiding significance for designing virtual-time
constraints. The necessary conditions should always be satisfied in constraint
design. These conditions require that IFR is a subset of the maximum EFR
and a control invariant set at the same time. Checking these conditions only
involves computing IFR, which is much easier than computing EFR. One may
argue that the maximum EFR is unknown so the first necessary condition
cannot be checked. In fact, we do not need to exactly know the maximum
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EFR. Instead, we just need to check if all states in IFR are endlessly fea-
sible for a given policy. If this is true, then the first necessary condition
is satisfied. The sufficient conditions in Theorem 5.2 can be viewed as two
examples of virtual-time constraints that can satisfy Xg

edls = Xg
init. When

designing virtual-time constraints, one should try to satisfy a sufficient con-
dition under the premise that the necessary conditions are already satisfied.
Note that there still exist other forms of sufficient conditions that can ensure
the equivalence of EFR and IFR. We can choose different ones according to
the specific constrained OCP we aim to solve.

6. Feasibility Function and Constraint Types

The goal of safe RL is to find not only the optimal policy but also its
EFR. Whether this EFR equals the maximum EFR depends on the choice of
virtual-time constraints. Therefore, constructing a proper virtual-time con-
straint becomes an indispensable task in constrained optimal control. In this
section, we first introduce a tool for representing EFR called feasibility func-
tion, which helps us construct proper constraints that satisfy the equivalence
conditions and enable us to find the maximum EFR. Next, we review several
commonly used virtual-time constraint formulations from the perspective of
feasibility function. We point out that these virtual-time constraints are
all constructed from some feasibility function and therefore satisfy some de-
sirable properties. Moreover, we use the tools introduced in the previous
section to analyze the containment relationships of feasible regions under
these virtual-time constraints.

6.1. Feasibility function

Feasibility functions are used for constructing virtual-time constraints
and representing EFRs. A feasibility function is defined as a mapping from
the state space to a real number, i.e., F : X → R. Through proper design,
its zero-sublevel set can represent an EFR:

XF = {x|F (x) ≤ 0}.

The core of designing feasibility functions is to offer some kind of recursion
properties so that by properly constructing the virtual-time constraint, XF

can become an EFR. There are two basic methods that lead to the design of
feasibility functions. The first is defined through a control invariant set (CIS)
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and the second is defined through constraint aggregation (CA). A control
invariant set is a region in which there exists a policy that keeps all successive
states still in this region. A constraint aggregation is a function that can
replace the infinite-step real-time constraint with a single-step virtual-time
constraint. These two kinds of feasibility functions result in two families
of virtual-time constraints. The former type restricts the state in a control
invariant set while the latter type constrains an aggregation of infinite-step
real-time constraints.

For the first type, the zero-sublevel set of feasibility function is chosen as a
control invariant set, i.e., the state is maintained within this set under certain
control given that the previous state is in the set. This type of feasibility
function is defined as follows.

Definition 6.1 (Control invariant set). A function F : X → R is a feasibility
function if XF ⊆ Xcstr is a control invariant set, i.e.,

∀x ∈ XF ,∃u, s.t. x′ ∈ XF .

In general, certain inequality conditions are constructed with F to serve
as virtual-time constraints when using this type of feasibility function. These
constraints require the policy to yield a next state that is still in XF , starting
from whatever state in XF . That is to say, through the virtual-time constraint
built upon it, the feasibility function F equips the resulting policy with the
recursive property we are looking for. But does this always work? In other
words, how can we be sure that such a policy that satisfies the constraint
and thus has the recursive property always exists? The answer is through the
special property of the zero-sublevel set of F , i.e., control invariance. Figure
4 gives an illustration of a feasibility function and its control invariant set.
Any state x inside the control invariant set can be still kept in this set under
some action u, while a state x̃ outside the control invariant set may not be
able to enter this set.

For the second type, the feasibility function is chosen as an aggregation
function whose one-step virtual-time constraint can represent the infinite-
step real-time constraint. This type of feasibility function is defined as fol-
lows.

Definition 6.2 (Constraint aggregation). A function F : X → R is a feasi-
bility function if ∀x ∈ X ,

F (x) ≤ 0 ⇐⇒ h(xt+i) ≤ 0, xt = x, i = 0, 1, . . . ,∞.
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Figure 4: Feasibility function defined through control invariant set.

Figure 5 gives an illustration of a feasibility function defined through con-
straint aggregation. For states x1 and x3, although they do not violate the
state constraint at the current step, some states on their future trajectories
leave the constrained set. Therefore, the feasibility function F is positive
on these two states. For state x2, all of its successive states are inside the
constrained set, making the feasibility function less than or equal to zero.
Definition 6.2 means that F must be a function of a policy π. We can also
denote it as F π to show its connection with π. This equivalence compresses
the infinitely many constraints into F and hence equips it with a natural
recursive property, i.e., once F (xt) ≤ 0, it follows that F (xt+1) ≤ 0. How-
ever, this recursive property is not a free lunch. We have to make sure
that the value of F is practically available before it can be used to construct
virtual-time constraints. One may recall that the state-value function and the
action-value function in RL also contain infinite future rewards, and we can
calculate them iteratively by bootstrapping. Similarly, feasibility functions
of constraint aggregation type are usually formulated in such ways that they
satisfy a self-consistency condition and hence can be calculated iteratively.

6.2. Type I: control invariant set

This type of constraint restricts the state in a control invariant set, which
is represented by the zero-sublevel set of feasibility function. There are
mainly two kinds of feasibility functions of the control invariant set type:
(a) control barrier function and (b) safety index. They differ in the inequal-
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Figure 5: Feasibility function defined through constraint aggregation.

ity conditions that guarantee the invariant property of their zero-sublevel
sets.

6.2.1. Control barrier function

Control barrier function (CBF) is a widely used feasibility function for
synthesizing safe controllers in constrained OCPs (Ames et al., 2019, 2016;
Cheng et al., 2019; Robey et al., 2020). The control invariance of the zero-
sublevel set of CBF is guaranteed by the fact that the time derivative of
CBF is always non-positive on the boundary of this set. As a state in the
zero-sublevel set approaches the boundary, its CBF value may increase at
first but will finally stop at some value not greater than zero. Therefore, the
CBF will never take a value above zero as long as the initial state is in its
zero-sublevel set. The formal definition of CBF in a discrete-time system is
as follows.

Definition 6.3 (Control barrier function). A function B : X → R is a
control barrier function if it satisfies:

1. ∀x ∈ X , if h(x) > 0, then B(x) > 0,

2. ∀x ∈ X ,∃u ∈ U , s.t. B(x′)−B(x) ≤ −α(B(x)),

where x′ = f(x, u) and α : R → R is a strictly increasing function and
|α(z)| ≤ |z| for all z ∈ R.

If a function satisfies the above two properties, it can be proved that its
zero-sublevel set is a control invariant set (Ames et al., 2019). Therefore,
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according to Definition 6.1, a CBF is a feasibility function itself, i.e.,

F (x) = B(x).

Property 2) in Definition 6.3 is the most critical element for ensuring control
invariance of the zero-sublevel set. This property tells us that there exists
an action such that the increment of CBF from the current step to the next
step is upper bounded. When solving a constrained OCP, we must take it as
a virtual-time constraint to ensure that the obtained action actually satisfies
this property. This leads to a one-step constraint imposed on the second state
in virtual-time domain, i.e., x1|t. In addition, B(·) ≤ 0 is imposed on the
first state in virtual-time domain, i.e., x0|t. This is because we must ensure
that the first state is in the control invariant set so that the successive states
can be kept in this set. This first-step virtual-time constraint is not weaker
than the real-time state constraint because property 1) in Definition 6.3 tells
us that h(·) > 0 implies B(·) > 0, which is equivalent to the statement that
B(·) ≤ 0 implies h(·) ≤ 0. Combining these two constraints, we have

g(x0|t) = B(x0|t) ≤ 0,

g(x1|t) = B(x1|t)−B(x0|t) + α(B(x0|t)) ≤ 0.
(5)

The above constraint guarantees that the next state of x0|t, which is x1|t,
is still in the zero-sublevel set of CBF. If all states in the zero-sublevel set
satisfy this constraint, the set is forward invariant, i.e., the state is always
kept in this set. Therefore, the state constraint in real-time domain is always
satisfied.

In literature, there is a notion of high order control barrier function
(HOCBF) (Xiao and Belta, 2019) that is used for high relative degree con-
straints. Here, the relative degree of a function refers to its lowest order of
time derivative where the action explicitly appears. When the constraint
function h has a high relative degree, directly choosing h as a CBF can-
not effectively constrain the action because constraint (5) is irrelevant to
the action. This necessitates HOCBF, which considers time derivatives of h
where the action explicitly appears. When the time derivatives satisfy cer-
tain properties that ensure control invariance, h is an HOCBF (Xiao and
Belta, 2019). Although not explicitly stated, Definition 6.3 is actually com-
patible with HOCBF because B does not have to be chosen as h and can
be constructed as some function that makes the action explicitly appear in
constraint (5).
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Let us analyze the size of IFR and EFR under constraint (5). For IFR,
we look for the state that if we take it as the starting point of virtual-time
OCP with constraint (5), this OCP has a solution. In the first step, all states
in the zero-sublevel set of B satisfy the virtual-time constraint. For notation
simplicity, we denote this set as XB = {x ∈ X |B(x) ≤ 0}. In the second
step, according to property 2) in Definition 6.3, all states in the entire state
space satisfy the virtual-time constraint. The IFR is the intersection of these
two sets, which is XB, i.e.,

Xg
init = XB.

For EFR, we look for the state from which the OCP with constraint (5)
has a solution in all successive states as long as an initially feasible policy is
applied in every step. According to Theorem 5.1, EFR must be a subset of
IFR. Since the IFR under constraint (5) is XB, the EFR must be a subset of
XB. For any state in XB, its successive state is still in XB if we take an action
such that the second constraint in (5) is satisfied. This requirement for the
action is satisfied by any initially feasible policy. Thus, the state can always
be kept in XB as long as an initially feasible policy is applied at every time
step. Moreover, since XB is the IFR, the OCP with constraint (5) always has
a solution in it. Therefore, we can conclude that the EFR equals XB, i.e.,

Xg
edls = XB.

We can see that EFR equals IFR under constraint (5). This shows the
benefit of feasibility function for designing virtual-time constraints, i.e., it
ensures the equivalence of EFR and IFR. This equivalence enables us to know
the size of EFR by examining that of IFR. In a constrained OCP, we always
aim to construct an EFR that equals the maximum EFR so that the policy
obtained by solving the OCP has the largest working area. However, the
size of EFR is difficult to obtain because it involves checking the constraint
satisfaction in an infinite horizon. With the equivalence of EFR and IFR, we
can avoid this difficulty by obtaining the size of IFR instead. If we construct
an IFR that equals the maximum EFR, then the equivalence of EFR and
the maximum EFR is also ensured. For a virtual-time constraint designed
by CBF, its IFR is the zero-sublevel set of the CBF, i.e., XB. The size of
this set depends on the design of CBF. A better design results in a larger
XB, which is closer to the maximum EFR. In the best case, XB equals the
maximum EFR. For a general CBF, we can only say that XB is a subset of
the maximum EFR, i.e.,

XB ⊆ X∗
edls.
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Therefore, the relationship among the feasible regions is as follows:

Xg
init = Xg

edls ⊆ X∗
edls.

In conclusion, a CBF is a feasibility function that represents EFR using a
control invariant set, which is its zero-sublevel set. A CBF must satisfy two
properties, of which the first requires that the states in the control invariant
set are constraint-satisfying, and the second requires that the increase rate of
CBF is upper bounded under some action so that it will never exceed zero in
the control invariant set. With a CBF, we can construct a two-step virtual-
time constraint that restricts the state in the control invariant set in the first
step and requires the action to satisfy the increase rate bound in the second
step. Both IFR and EFR of this virtual-time constraint equal the control
invariant set of CBF. However, this set may not equal the maximum EFR,
i.e., it may be smaller than the maximum EFR. The size of control invariant
set depends on the design of CBF. In systems with high-dimensional state
and action spaces or systems without analytical models, it is usually difficult
to handcraft a CBF whose control invariant set is equal to or close to the
maximum EFR. Designing a CBF with the maximum control invariant set,
i.e., the maximum EFR, in these systems remains a challenge.

6.2.2. Safety index

Safety index, originally proposed by Liu et al. (Liu and Tomizuka, 2014),
is another feasibility function that represents a control invariant set by its
zero-sublevel set, which is called safe set. Safety index ensures control in-
variance in a similar way to CBF. In particular, it is required that once the
system deviates from the safe set, the control policy will pull it back. This is
achieved by setting the time derivative of safety index to be negative outside
the safe set. Safety index differs from CBF in that it explicitly considers the
relative degree of system in construction. For systems with a high relative
degree, the first-order time derivative is not enough to ensure control invari-
ance because it does not constrain the action. To deal with this issue, safety
index adopts a specific function form, which contains the constraint function
or its nonlinear substitution, and a linear combination of its time derivatives.
The formal definition of safety index is as follows.

Definition 6.4 (safety index). A function ϕ : X → R is a safety index if it
satisfies the following three properties:

1. ϕ = h+ k1ḣ+ · · ·+ knh
(n), where k1, . . . , kn ∈ R,
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2. All roots of 1+k1s+k2s
2+ · · ·+kns

n = 0 are on the negative real line,

3. The relative degree from h(n) to u is one,

wher n + 1 is the system order. Moreover, suppose h∗ defines the same set
as h does, i.e., {x ∈ X |h∗(x) ≤ 0} = Xcstr, then

ϕ∗ = ϕ− h+ h∗

is also a safety index.

Property 3) above ensures that the relative degree of safety index is one
so that the action can be constrained by its first-order time derivative. With
the above three properties, it can be proved that when the action u is un-
constrained, there always exists u that satisfies ϕ̇ ≤ 0 when ϕ = 0 (Liu and
Tomizuka, 2014). When u is constrained in some space U , a 4-th condition
needs to be added: the parameters ki, i = 1, 2, . . . , n are chosen such that
there exist u ∈ U for ϕ̇ ≤ 0 when ϕ = 0. This is a necessary and sufficient
condition for control invariance of zero-sublevel set of ϕ, i.e., the safe set. In
Definition 6.4, the use of h∗ is to introduce nonlinearity to the safety index.
Since it defines the same set as h, it only shapes the boundary of the fea-
sible region. With a safety index, we can construct the following feasibility
function:

F (x) = max{ϕ(x), h(x)}.

Here, including h in the maximum operator is to ensure that the feasible
region is a subset of the constrained set. When h∗ = h (i.e. the safety index
is linearly defined), the feasible region of safety index can be represented by
a set of inequalities similar to that of HOCBF (Xiao and Belta, 2019). When
h∗ ̸= h (i.e., the safety index is nonlinearly defined) and n = 1 (i.e., the
dynamic system is second order), the feasible region of safety index equals
the zero-sublevel set of F . For h∗ ̸= h and n > 1, there is no conclusion
regarding the exact representation of the feasible region with F .

The control invariance of safe set is guaranteed by the inequality ϕ̇ ≤ 0
when ϕ = 0. This is a differential inequality and only applies to continuous-
time systems. To make it applicable to discrete-time systems, we must con-
vert it to a difference inequality. An intuitive conversion is to replace the
derivative of ϕ with its discretization obtained by, for example, the forward
Euler method, which results in the following inequality, ϕ(x1|t)− ϕ(x0|t) ≤ 0
when ϕ(x0|t) = 0. However, this inequality only constrains the value of
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ϕ when ϕ(x0|t) is exactly zero, which is not enough to guarantee the con-
trol invariance of safe set in discrete-time systems. This is because even if
ϕ(x0|t) < 0, it is possible that ϕ becomes positive after only one step at x1|t.
Therefore, we must also constrain the value of ϕ when ϕ(x0|t) < 0. Specif-
ically, we require that ϕ(x1|t) < 0 so that x1|t is still in the safe set. When
ϕ(x0|t) > 0, x0|t is already out of the safe set. In this case, ϕ should decrease
fast enough so that the state can return to the safe set quickly. Specifically,
we require that ϕ(x1|t) ≤ ϕ(x0|t) − η, where η is a positive real number.
This inequality can be further relaxed to ϕ(x1|t) ≤ max

{
ϕ(x0|t)− η, 0

}
be-

cause once ϕ(x1|t) ≤ 0, the state already enters the safe set. The above two
inequalities can be written as the following inequality,

ϕ(x1|t)−max
{
ϕ(x0|t)− η, 0

}
≤ 0,

which acts as a virtual-time constraint of safety index. Similar to the virtual-
time constraint of CBF, the safety index also needs a first-step constraint that
restricts the state in the safe set. Combining these two constraints, we arrive
at the virtual-time constraint of safety index,

g(x0|t) = max{ϕ(x0|t), h(x0|t)} ≤ 0,

g(x1|t) = ϕ(x1|t)−max
{
ϕ(x0|t)− η, 0

}
≤ 0.

(6)

The above constraint satisfies the requirement that the virtual-time con-
straint in the first time step must not be weaker than the real-time constraint.
The second constraint in (6) requires that the safety index decreases every
time step by at least a value of η when it is above zero. When the safety index
is below zero, it is required not to become positive. With a policy satisfying
constraint (6), the zero-sublevel set of safety index is forward invariant.

The relationship between feasible regions under safety index constraint is
similar to that of CBF, so we omit the analysis here. One may discover that
safety index is closely related to CBF in both feasibility function formulation
and virtual-time constraint design. This relationship is not a coincidence
but rather originates from the challenge of constructing a CBF. While CBF
guarantees control invariance of its zero-sublevel set by definition, it does
not provide any guidance for its construction. HOCBF provides one design
rule for obtaining a valid CBF. Safety index can be considered as another
approach to achieving this objective. However, we have seen that these meth-
ods, which define feasibility functions through control invariant sets, may not
be able to obtain the maximum EFR. In contrast, the following feasibility
function defined by constraint aggregation can lead to the maximum EFR.
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6.3. Type II: constraint aggregation

This type of constraint replaces the infinite-step real-time constraints
with a single-step virtual-time constraint by an aggregation function. Under
this perspective, there are mainly two kinds of feasibility functions of this
type: cost value function and Hamilton-Jacobi reachability function. The
former uses a discounted summation function as the aggregation function
while the latter uses a maximum function as the aggregation function. There
are two types of virtual-time constraints constructed by this kind of feasibility
function. One type uses the feasibility function of the current policy, which
is to be optimized, to construct constraints. The other uses the feasibility
function of a fixed policy, e.g., the policy from the last iteration, to construct
constraints.

6.3.1. Cost value function

Cost value function (CVF) originates from a common formulation for safe
RL, constrained Markov decision process (CMDP) (Altman, 1999), which
augments a standard MDP with a cost function in parallel with the reward
function. Being the expected cumulative costs, CVF shares the same math-
ematical form, and therefore the same properties, with state-value function
V π(x), which greatly facilitates its usage. With a slight effort to define a cost
function c(x) with the constraint function h(x), CVF can be well adapted to
constrained OCPs. The definition of CVF is as follows.

Definition 6.5 (cost value function). For a constrained OCP with h(x) as a
constraint function, xt, t = 0, 1, 2, . . . ,∞ donating the state trajectory start-
ing from state x under policy π, the cost value function F π : X → R is:

F π(x) =
∞∑
t=0

γtc(xt),

where c(x) = 1[h(x) > 0] is the cost signal.

To see that CVF is a valid feasibility function, note that c(x) is non-
negative for all x, so that F π(x) ≤ 0 is sufficient and necessary for c(xt) =
0,∀t = 0, 1, . . . ,∞. The close relationship between CVF and state-value
function implies some common properties. Actually, it is indeed the fact
that self-consistency condition and Bellman equation, which play important
roles in solving state-value functions, have their respective counterparts when
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it comes to CVFs. For the sake of distinction, they are termed risky self-
consistency condition:

F π(x) = c(x) + γF π(x′),

and risky Bellman equation:

F ∗(x) = c(x) + γmin
u

F ∗(x′).

Similar to the case for state-value function, the right-hand sides of the above
two equations can also be viewed as contraction operators on a complete
metric space. Hence, by fixed-point iteration, a CVF can be solved just like
a state-value function.

Until now, we have defined a valid feasibility function with CVF and
showed that it is practically available, the next thing is to further construct
a virtual-time constraint with it. The first way of constructing a virtual-time
constraint is

g(x0|t) = F π(x0|t) ≤ 0, (7)

and xi|t, i = 1, . . . , n/∞ are unconstrained. Here, the superscript π of F is the
policy to be optimized. Although x0|t is not affected by π, constraint (7) is
related to π because F π is a function of π. Technically speaking, for a given
x0|t, F

π(x0|t) is a functional of π. In practice, F π is difficult to compute
directly and is usually approximated by importance sampling of trajecto-
ries collected by another policy, similar to the way of approximating value
function in on-policy RL algorithms. This form of virtual-time constraint is
compatible with direct RL/ADP methods for constrained OCPs so that it
can serve as an equivalent substitute for the real-time constraint. Through
the aggregation of constraints introduced by the summation function, the
horizon of virtual-time constraint reduces to only one step, the current step.
The IFR under constraint (7) is by definition simply

Xg
init = {x|∃π, s.t. F π(x) ≤ 0}.

And no matter which initially feasible policy we apply at the current step,
we will always reach a state in the IFR. This is because this policy must still
be initially feasible in the next state, which is guaranteed by the fact that
the CVF’s being less than or equal to 0 at a single state renders all future
states safe. As a result, the EFR is still

Xg
edls = {x|∃π, s.t. F π(x) ≤ 0}.
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What’s more, an excellent property of constraint (7) is that

Xg
edls = Xg

init = X∗
edls.

The first equation is obvious from the above analysis. To see why the sec-
ond equation holds, recall Theorem 4.1 and that F π(x) ≤ 0 is equivalent to
h(xt) ≤ 0, t = 0, 1, . . . ,∞. The equivalence of these three regions is satis-
fying, for we can easily check the endless feasibility of a state by its initial
feasibility, and the EFR is the maximum one that can ever be obtained.

The second way of constructing a virtual-time constraint is a little bit
complex, involving both the current step and the next step:

g(xi|t) = F k(xi|t) ≤ 0, i = 0, 1, (8)

and xi|t, i = 2, . . . , n/∞ are unconstrained. Unlike the former type, here the
constraint function, which is the CVF of a fixed policy πk, is irrelevant to
the policy π to be optimized. Although F k(x0|t) is actually unrelated with
π, x1|t is induced by π, which makes constraint (8) effective. Under this
constraint, for a state x to be initially feasible, the first requirement is that
g(x0|t) = F k(x0|t) ≤ 0, where x0|t = x. This implies that if we take π = πk,
we will have F k(x1|t) ≤ 0. Consequently, any x satisfying F k(x) ≤ 0 is an
initially feasible state, with πk being an initially feasible policy in it. That
is,

Xg
init = {x|F k(x) ≤ 0}.

Because of the same reason analyzed above, we still have

Xg
edls = {x|F k(x) ≤ 0}.

Unfortunately, under this situation, we don’t have as good equivalence to the
maximum EFR as above. The IFR and EFR are related to a fixed policy
which can be highly unsatisfying, rendering only a few states safe. So, we
can only conclude that

Xg
edls = Xg

init ⊆ X∗
edls.

However, by properly choosing πk+1 under the guide of F πk(x), the fact is
that we can ensure the monotonic expansion of EFR and it will converge to
the maximum EFR (Yang et al., 2023b).
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6.3.2. Hamilton-Jacobi reachability function

The Hamilton-Jacobi (HJ) reachability analysis, a technique from robust
optimal control theory, is used to guarantee constraint satisfaction in a rig-
orous way. HJ reachability computes a backward reachable set of a system,
i.e., the set of states from which trajectories can reach some given target
set (Mitchell et al., 2005; Bansal et al., 2017). For feasibility analysis, the
target set is the unconstrained set, and the backward reachable set becomes
the infeasible region. HJ reachability function aggregates infinite-step con-
straints by taking the maximum of them. Therefore, it considers the worst-
case constraint violation in the entire trajectory, or the “closest distance” to
the constraint boundary if no violation is going to happen. The definition of
HJ reachability function is as follows.

Definition 6.6 (HJ reachability function). For a constrained OCP with h(x)
as a constraint function, xt, t = 0, 1, 2, . . . ,∞ donating the state trajectory
starting from state x under policy π, the HJ reachability function F π : X → R
is:

F π(x) = max
t

h(xt).

The constraint function h(x) indicates the safety of the current state. As
its extension to the whole temporal domain, F π(x) does not describe the
risk level of the current state, but the worst case in the future. It is the
maximizer that attempts to find the most dangerous constraint point along
the whole state trajectory. Therefore, F π(x) ≤ 0 is equivalent to h(xt) ≤ 0
for t = 0, 1, . . . ,∞.

Similar to CVF, HJ reachability function naturally satisfies a risky self-
consistency condition and the optimal HJ reachability function satisfies a
risky Bellman equation. The risky self-consistency condition is

F π(x) = max{h(x), F π(x′)}.

The risky Bellman equation is

F ∗(x) = max{h(x),min
u

F ∗(x′)}.

In practical HJ reachability computation, a discount factor is needed on the
right hand side of the above two equations so that they become contraction
mappings, which enable the convergence of fixed point iteration (Fisac et al.,
2019).
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There are two ways to construct a virtual-time constraint with HJ reach-
ability function. One way is to use a first-step constraint:

g(x0|t) = F π(x0|t) ≤ 0, (9)

and xi|t, i = 1, . . . , n/∞ are unconstrained. By aggregating constraints using
the maximum function, the virtual-time constraint is replaced by the first-
step constraint of HJ reachability function. The other way is to use a two-step
constraint:

g(xi|t) = F k(xi|t) ≤ 0, i = 0, 1, (10)

and xi|t, i = 2, . . . , n/∞ are unconstrained. We omit the analysis of their cor-
responding feasible regions and containment relationships since it is similar
to the case of CVF.

6.3.3. Constraint decay function

Constraint decay function (CDF) uses the remaining steps from the cur-
rent state to constraint violation to aggregate the infinite-step constraints.
Its basic idea is that if a state is infeasible, it will lead to a constraint vi-
olation in a finite number of steps. Otherwise, no constraint violation will
happen in finite steps, i.e., the number of steps to constraint violation is in-
finite. The CDF is constructed as an exponential function with the number
of steps to constraint violation as the exponent and a real number between
zero and one as the base, which is formally defined as follows.

Definition 6.7 (constraint decay function). For a constrained OCP, the
constrained decay function F π : X → R is

F π(x) = γN(x),

where 0 < γ < 1 is the discount factor and N is the number of steps to
constraint violation starting from x under π.

According to the property of exponential functions, as N increases from
zero to infinity, F π(x) decreases from one to zero. A larger value of CDF
indicates that the current state is more dangerous in the sense that it is closer
to constraint violation. A value of one means that the current state already
violates the constraint. A value of zero means that the constraint will never
be violated in the infinite horizon. In other words, F π(x) ≤ 0 is a necessary
and sufficient condition for infinite-horizon constraint satisfaction. Therefore,

35



CDF is a valid feasibility function of constraint aggregation type. The CDF
given by Definition 6.7 is similar in form to the safety critic used in some
safe RL literature, e.g., Thananjeyan et al. (Thananjeyan et al., 2021). Their
difference is that they are used in different kinds of systems and for different
purposes. The safety critic is used in stochastic systems for estimating the
discounted probability of future constraint violation. The CDF is used in
deterministic systems as a feasibility function for constructing virtual-time
constraints and representing feasible regions.

Similar to other feasibility functions of constraint aggregation type, CDF
naturally satisfies a risky self-consistency condition and the optimal CDF
satisfies a risky Bellman equation. The risky self-consistency condition is

F π(x) = c(x) + (1− c(x))γF π(x′).

The risky Bellman equation is

F ∗(x) = c(x) + (1− c(x))γmin
u

F ∗(x′).

There are two ways to construct a virtual-time constraint with CDF. The
first way is to constrain the CDF of policy to optimize in the first time step,

g(x0|t) = F π(x0|t) ≤ 0, (11)

and xi|t, i = 1, . . . ,∞ is unconstrained. The second way is to constraint the
CDF of a fixed policy in the first two time steps,

g(xi|t) = F k(xi|t) ≤ 0, i = 0, 1, (12)

and xi|t, i = 2, . . . ,∞ is unconstrained. We omit the analysis of their corre-
sponding feasible regions and containment relationships since they are similar
to the case of other feasibility functions of constraint aggregation type.

7. Review of Constraint Formulations

In this section, we review several kinds of commonly used virtual-time
constraint formulations. In essence, these formulations are applications of
different types of feasibility functions. Therefore, we categorize them accord-
ing to the feasibility functions they use, i.e., control invariant set or constraint
aggregation.
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7.1. Control invariant set

7.1.1. Control barrier function

The concept of CBF originated from the field of control theory and was
first proposed by Ames et al. (Ames et al., 2014) for continuous-time systems.
It was later extended to discrete-time systems by Agrawal et al. (Agrawal
and Sreenath, 2017). A large category of works solves OCPs with CBF con-
straints through online optimization, i.e., a single optimal action is computed
each time the system arrives at a state. Ames et al. (Ames et al., 2016) unify
CBF with control Lyapunov function (CLF) in the context of quadratic pro-
gram (QP), in which performance objective is expressed by CLF and safety
constraint is expressed CBF. The optimal control is obtained by solving the
QP online and is ensured to keep the state in the invariant set of CBF.
Nguyen et al. (Nguyen and Sreenath, 2016) propose exponential CBFs that
enforce strict satisfaction of high relative degree safety constraints for non-
linear systems. They also develop a method for designing exponential CBFs
based on techniques from linear control theory. Taylor et al. (Taylor et al.,
2020) use a learning-based method to reduce model uncertainty in order to
enhance the safety of a CBF-cerified controller. Their approach iteratively
collects data and updates the controller, ultimately achieving safe behavior.

Other works solve CBF-constrained OCPs in an offline manner using RL,
i.e., they learn a policy that maps states to their corresponding optimal
actions. Cheng et al. (Cheng et al., 2019) ensure safety of a model-free RL
controller by combining it with a model-based CBF controller and online
learning of unknown system dynamics. The CBF controller both guarantees
safety and guides the learning process by constraining the set of explorable
policies. Ohnishi et al. (Ohnishi et al., 2019) propose a barrier-certified
adaptive RL algorithm, which constrains policy in the invariant set of CBF
and optimizes the action-value function in this set. Their solutions to barrier-
certified policy optimization are guaranteed to be globally optimal under mild
conditions. Ma et al. (Ma et al., 2021) use a generalized CBF for systems
with high relative degrees and mitigate the infeasibility of constrained policy
optimization by an adaptive coefficient mechanism.

Most of the above works handcraft CBFs as functions with known forms,
while some other works synthesize CBFs using neural networks. Robey et
al. (Robey et al., 2020) leverage safe trajectories generated by an expert to
optimize a CBF in control affine systems. The learned CBF enjoys prov-
able safety guarantees under Lipschitz smoothness assumptions on system
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dynamics. Qin et al. (Qin et al., 2020) jointly learn multi-agent control poli-
cies and CBFs in a decentralized framework. They propose a spontaneous
policy refinement method to further enforce CBF conditions during testing.
Yang et al. (Yang et al., 2023a) propose a safe RL algorithm that learns both
policy and CBF in a model-free manner. They extend the CBF invariant
loss to a multi-step version, which balances bias and variance and enhances
both safety and performance of the policy.

7.1.2. Safety index

Safety index is commonly used as a safeguard for another (possibly un-
safe) controller, e.g., an RL controller that solely maximizes reward perfor-
mance. Zhao et al. (Zhao et al., 2021) propose a model-free RL algorithm
that leverages a safety index to ensure zero constraint violation during train-
ing. This is achieved by an implicit safe set algorithm, which searches for
safe control only by querying a black-box dynamic function. Ma et al. (Ma
et al., 2022) simultaneously synthesize a safety index and learn a safe control
policy with constrained RL. They learn the safety index by minimizing the
occurrence of energy increases, which does not rely on knowledge about a
prior controller.

In systems with control limits, there may be situations where it is impos-
sible to find an action that satisfies the constraint of a safety index. Some
works focus on how to synthesize a valid safety index under control lim-
its. Wei et al. (Wei et al., 2022) propose a control-limits-aware safety index
synthesis method for systems with bounded state-dependent uncertainties.
They use convex semi-infinite programming to solve for a robust safe con-
troller so that it is guaranteed to be realizable under control limits. Zhao
et al. (Zhao et al., 2023c) propose a method for synthesizing safety index in
general systems with control limits. They prove that ensuring the existence
of safe control on a safe set boundary is equivalent to sum-of-squares pro-
gramming. Zhao et al. (Zhao et al., 2023b) present an integrated dynamic
model learning and safe control framework to safeguard any RL agent. They
provide a design rule to construct a safety index under control limits and a
probabilistic safety guarantee under stochastic dynamic models.

7.2. Constraint aggregation

7.2.1. Cost value function

Plenty of existing works, mostly concentrating on the setting of CMDP,
have applied CVF to handle constraints. Generally, most works follow the
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standard notion of CMDPs, where the constraints are imposed directly on
CVF itself. Chow et al. (Chow et al., 2017) build a constraint based on the
conditional value-at-risk of CVF and propose Lagrange multiplier methods
for the constrained optimization problem. Ding et al. (Ding et al., 2020) also
employ the primal-dual approach but update the primal variable via natural
policy gradient and the dual variable via projected sub-gradient. This work is
extended to an entropy-regularized case in (Ying et al., 2022). An equivalent
linear formulation of the objective and the CVF-based constraint (Altman,
1999) is considered in (Bai et al., 2022) and solved by a stochastic primal-
dual algorithm. To dampen the significant oscillation of state and cost value
function during training when using Lagrange multiplier methods, Stooke et
al. (Stooke et al., 2020) and Peng et al. (Peng et al., 2022) use PID control
to update the Lagrange multiplier for a stabler intermediate performance.
As et al. (As et al., 2022) use Bayesian world models to estimate an op-
timistic upper bound on task objective and pessimistic upper bounds on
safety constraints. They use the augmented Lagrangian method to solve the
constrained optimization problem based on these two bounds.

Besides Lagrangian-based methods, other approaches have also been pro-
posed for solving OPCs with CVF constraints. Liu et al. (Liu et al., 2022)
deal with instability issues of primal-dual style methods by introducing the
Expectation-Maximization approach. By adopting a non-parametric varia-
tional distribution, the constrained optimization problem in the expectation
step becomes convex and can be solved analytically. In (Liu et al., 2020), the
authors introduce the interior-point method to augment the objective with
logarithmic barrier functions composed with CVF. Chow et al. (Chow et al.,
2018) propose a Lyapunov-based approach for transient MDPs which con-
structs Lyapunov functions w.r.t an undiscounted version of CVF. Achiam
et al. (Achiam et al., 2017) construct constrained optimization problems on
the basis of a novel bound on the difference in cumulative rewards or costs
between two policies and solve them with trust region methods. However,
these optimization problems may be infeasible, which undermines the the-
oretical monotonicity. Yang et al. (Yang et al., 2020) address this by first
applying an unconstrained trust region method and then projecting the pol-
icy back onto the constrained set. Likewise, Zhang et al. (Zhang et al., 2020)
also propose a two-stage algorithm that first searches for a solution of a con-
strained optimization problem in the non-parameterized policy space and
then projects it back into the parametric one. Yu et al. (Yu et al., 2022b)
propose a two-policy method where a safety editor, serving as an extension of
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a safety shield, is trained to reconcile possible constraint violation with min-
imal influence on the objective. Zhao et al. (Zhao et al., 2023a) introduces
the framework of maximum MDP, which is an extension of CMDP that con-
strains the expected maximum state-wise cost along a trajectory. Under this
framework, they propose state-wise constrained policy optimization (SCPO)
algorithm, which provides guarantees for state-wise constraint satisfaction in
expectation.

7.2.2. Hamilton-Jacobi reachability function

HJ reachability analysis computes the backward reachable set of a con-
strained system, which is its infeasible region, and safeguards controllers from
entering this set. Seo et al. (Seo et al., 2019) use the reachable set obtained
by HJ reachability analysis to safeguard receding horizon planning against
unknown bounded disturbances. They approximate the reachable set using
ellipsoidal parameterization and plan a robust trajectory that avoids risky
regions under disturbance. The exact computation of HJ reachability func-
tion requires solving an HJ partial differential equation (PDE) on a grid
discretization of state space, resulting in an exponential computational com-
plexity with respect to system dimension (Bansal et al., 2017). Many efforts
have been made to reduce the computational burden of HJ reachability. Ru-
bies et al. (Rubies-Royo et al., 2019) approximates the optimal controller
of HJ reachability problem in control-affine systems as a sequence of simple
binary classifiers, thus avoiding storing a representation of HJ reachability
function. Herbert et al. (Herbert et al., 2021) propose several techniques,
including decomposition, warm-starting, and adaptive grids, to speed up the
computation of HJ reachability function. Their methods can update safe sets
by one or more orders of magnitude faster than prior work.

Other works further accelerate computation by approximating HJ reacha-
bility function with neural networks. Fisac et al. (Fisac et al., 2019) introduce
a time-discounted modification of HJ reachability function, which induces a
contraction mapping and enables solving it by a fixed point iteration method.
Their obtained reachability function approximates the maximum safe set and
the safest policy. Based on this work, Yu et al. (Yu et al., 2022a) further con-
sider policy performance optimization in safe RL. They use HJ reachability
function to construct virtual-time constraints and solve for the optimal safe
policy with the Lagrange method. Bansal et al. (Bansal and Tomlin, 2021)
develop a neural PDE solver for high-dimensional reachability problems. The
computational requirements of their method do not scale directly with the
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Figure 6: Emergency braking control scenario.

state dimension but rather with the complexity of the underlying reachable
tube.

8. Example of Emergency Braking Control

In this section, we illustrate the proposed concepts, including feasible
regions, containment relationships between them, and feasibility function
with an emergency braking control problem, where a vehicle is supposed to
avoid crash with minimum effort. Fig. 6 gives a schematic of this task.

The vehicle has a two-dimensional state xt = [dt, vt]
⊤ and a one-dimensional

action ut = at, where d is the distance to the static obstacle, v is the longi-
tudinal velocity and a is the longitudinal acceleration. It follows a simplified
longitudinal dynamics:[

dt+1

vt+1

]
=

[
1 −∆t
0 1

] [
dt
vt

]
+

[
0
∆t

]
at, (13)

where ∆t is the time step size, assigned with 0.1s. We assume a maxi-
mum braking deceleration abrk = −10m/s2 so that the action is bounded
in [abrk, 0]. The reward function (or oppositely in control terminology, the
utility function) is

r(xt, ut) = −u2
t = −a2t .

The overall objective to be maximized is

J =
∞∑
i=0

γir(xt+i, ut+i) = −
∞∑
i=0

γia2t+i. (14)

The safety constraint requires that the vehicle-to-obstacle distance is above
zero at all times, requiring collision-free control:

h(xt+i) = −dt+i ≤ 0, i = 0, 1, 2, . . . ,∞. (15)
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The objective (14) follows a general RL setting. To show the applicability of
our proposed theoretical framework to both MPC and RL, we also involve
an MPC controller in the experiments. The objective of the MPC controller
is limited to a finite horizon with length N = 10 and has no discounting, i.e.,
γ = 1.

In the following analysis, we build four types of virtual-time constraints:
(1) pointwise constraint, (2) CBF constraint, (3) safety index constraint, and
(4) HJ reachability constraint. Constraint (1) is a non-feasibility-function-
based virtual-time constraint, constraints (2) and (3) are CIS-based, and
constraint (4) is CA-based.
Pointwise constraint is composed of a finite number of real-time constraints,
i.e.,

h(xi|t) = −di|t ≤ 0, i = 0, 1, 2, . . . , n, (16)

where n < ∞. Since this constraint is not constructed by a feasibility func-
tion, its feasible regions are not readily accessible, and its IFR and EFR may
not be equivalent.
CBF is handcrafted in the following form:

B(xi|t) = −di|t + kv2i|t, (17)

where k is a tunable parameter. This form is obtained by considering laws
of kinematics. Specifically, when braking with a constant acceleration, the
distance-to-go is a quadratic function of the current velocity. This form can
also be understood from the perspective of HOCBF. If directly choosing the
constraint function h as the CBF, its relative degree is two and we should
use an HOCBF that considers the first order time derivative of h, which is
exactly what (17) does. The corresponding CBF constraint applies to the
first two steps in virtual-time domain:

B(x0|t) ≤ 0,

B(x1|t)− (1− α)B(x0|t) ≤ 0,
(18)

where α is a constant assigned with 0.1. Strictly speaking, the choice of α is
not arbitrary when the action is constrained. It should be chosen such that
property 2) in Definition 6.3 is satisfied. Otherwise, B may not be a valid
CBF and its zero-sublevel set may not be control invariant. Here, we choose
the value of α empirically without verifying property 2).
Safety index follows the form used by Zhao et al. (Zhao et al., 2021):

ϕ(xi|t) = σ + dnmin − dni|t + kvi|t, (19)
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where dmin is the minimum allowable distance to obstacle and σ, n, k are
tunable parameters. In our experiments, we fix dmin = 0, σ = 0.12 and
adjust the values of n, k to see their effects. σ is set slightly larger than zero
to avoid small amounts of constraint violation caused by numerical issues in
optimization. The safety index constraint applies to the first two steps in
virtual-time domain:

ϕ(x0|t) ≤ 0,

ϕ(x1|t)−max{ϕ(x)− η, 0} ≤ 0,
(20)

where η is assigned with 0. Zhao et al. (Zhao et al., 2021) point out that for
collision-avoidance tasks with action limits, the following design rule ensures
forward invariance of the safe set:

n(σ + dnmin + kvmax)
n−1
n

k
≤ − abrk

vmax

, (21)

where vmax is the maximum velocity.
HJ reachability function must be defined with a policy. Here, we consider
a safety-oriented policy that takes the maximum braking deceleration at
every time step. Its corresponding HJ reachability function is the negative
minimum future vehicle-to-obstacle distance starting from the current state:

F (xi|t) = −di|t −
v2i|t
2abrk

. (22)

Its corresponding constraint also applies to the first two steps in virtual-time
domain:

F (xi|t) ≤ 0, i = 0, 1. (23)

Note that the CBF (17) is very similar in form to the HJ reachability function
(22). In fact, they are equivalent when taking k = −1/2 · abrk in (17).
However, the equivalence of the two feasibility functions does not imply the
equivalence of their virtual-time constraints. Specifically, the CBF constraint
is more restrictive than HJ reachability because of its second constraint for
set invariance. This will be clearly shown in the following experiment results.

We solve MPC and RL controllers under these four virtual-time con-
straints, resulting in eight combinations. For MPC, we use IPOPT to solve
the constrained OCPs and compute the optimal actions online. For RL,
we adopt the approximate dynamics programming (Li, 2023) framework and
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use a recently proposed region-wise policy update method called feasible pol-
icy improvement (Yang et al., 2023b) to deal with safety constraints. This
method solely minimizes constraint violations outside the current feasible re-
gion and maximizes rewards under constraints with the interior point method
inside the feasible region. It is proved that (Yang et al., 2023b) this method
ensures monotonic expansion and convergence of the feasible region.

To demonstrate the feasibility and control performance of different poli-
cies under different constraints, we visualize state trajectories and feasible
regions of MPC and RL policies under the four virtual-time constraints. For
MPC, we adjust the parameters of each virtual-time constraint to study their
impact on the feasibility of the optimal policy. For RL, we fix the parameters
and visualize trajectories and regions of intermediate policies at different it-
erations to study how they change. This demonstrates the capability of our
theory to describe the feasibility of not only the optimal policy but also
intermediate non-optimal policies during RL training.

Figure 7 shows state trajectories of MPC under pointwise constraints with
different horizons. Each state trajectory is represented with a solid point fol-
lowed by a series of hollow points, indicating the initial and successive states,
respectively. The hollow point at the end of a trajectory is substituted with
a cross if that state violates the real-time constraint indicated by the grey
region. The red dashed line is the boundary of the maximum EFR computed
analytically by considering the most cautious policy which always brakes with
the maximum deceleration. When the constraint horizon n is short, although
starting from a state inside the maximum EFR, some trajectories still end up
crashing due to the short-sighted control policy under pointwise constraints.
This means that the EFR of the optimal policy under pointwise constraints
is only a subset of the maximum EFR. As the horizon becomes longer, more
states become endlessly feasible under the optimal policy, which coincides
with the fact that the maximum EFR actually corresponds to a pointwise
constraint with n = ∞, as stated in Theorem 4.1.

Figure 8 shows feasible regions of MPC under pointwise constraints with
different horizons. Since MPC can be viewed as an optimal policy, its EFR
equals that of the optimal policy, and its IFR equals that of the constrained
OCP (unrelated to any policy), i.e., Xg

init(π
∗) = Xg

init. The feasible regions
are obtained by running an episode from every state to test its feasibility.
Results suggest that short-sighted pointwise constraints fail to recognize the
inevitable collision at a distance and, hence, over-optimistically treat some
states outside the maximum EFR as initially feasible. At the same time,
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Figure 7: State trajectories of MPC under pointwise constraints with different horizons.
“PW” stands for “pointwise”.
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Figure 8: Feasible regions of MPC under pointwise constraints with different horizons.

pointwise constraints are weaker than real-time constraints, so the policy
may take too aggressive actions early in the episode, making the EFR of the
optimal policy smaller than the maximum EFR. The results also show that as
the constraint horizon becomes longer, the EFR of the optimal policy enlarges
while the IFR shrinks. When the horizon is long enough, e.g., n = 10, both
regions are almost the same as the maximum EFR. This again supports that
with infinite-horizon pointwise constraints, which essentially equal real-time
constraints, IFR becomes EFR, and they both equal the maximum EFR.

Figure 9 and 10 show state trajectories and feasible regions of RL under
the same pointwise constraint at different iterations. At iteration 10, the fea-
sible regions of the policy are small, and states with high velocities break out
of the maximum EFR, resulting in constraint violations. Note that the EFR
is smaller than the IFR because, in some states, constraint violation does not
happen in the finite virtual horizon (10 steps) but is inevitable in the long
run. Here, this infeasibility phenomenon is mainly due to inadequate policy
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Figure 9: State trajectories of RL under the same pointwise constraint (n = 10) at different
iterations.
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Figure 10: Feasible regions of RL under the same pointwise constraint (n = 10) at different
iterations.

training. As training proceeds, the feasible regions monotonically expand,
and more state trajectories are included in the maximum EFR. At iteration
10000, the feasible regions are close to those of the optimal policy of MPC.
These results indicate the effectiveness of feasible policy improvement (Yang
et al., 2023b), whose theoretical foundation is the feasibility analysis tools
for intermediate non-optimal policies proposed in this paper.

Figure 11 and 12 show state trajectories and feasible regions of MPC
under CBF constraints with different parameters. We observe that the EFR
of the optimal policy is always identical to the IFR, which is a common feature
of CIS-based virtual-time constraints and is consistent with the analysis in
Section 6.2.1 and Corollary 5.1.1(3). A smaller value of k results in a larger
feasible region, rendering more states safe in the long run. When k = 0.05,
the CBF actually equals the HJ reachability function (22), and its zero-
sublevel set equals the maximum EFR. Another phenomenon is that as the
feasible regions expand, restrictions on trajectories inside the feasible regions
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Figure 11: State trajectories of MPC under CBF constraints with different parameters.
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Figure 12: Feasible regions of MPC under CBF constraints with different parameters.

reduce. This can be seen by comparing the purple or orange trajectory when
k = 0.5 and k = 0.05, in which the former decelerates immediately while the
latter keeps its velocity for some time before decelerating. In other words,
trajectories inside the feasible region become less conservative as k decreases.

Figure 13 and 14 show state trajectories and feasible regions of RL un-
der the same CBF constraint at different iterations. The feasible regions
monotonically expand during training and are close to the maximum EFR at
iteration 10000. The state trajectories are either very conservative or infea-
sible at the beginning and gradually converge to the optimal behavior, i.e.,
drive the state to the lower left corner. It’s worth noting that the EFR and
IFR are nearly always the same during training (we believe their mismatch
at iteration 10 is due to inadequate training), which is very different from
the case of the safety index and HJ reachability introduced below. This phe-
nomenon is due to the second constraint in (18), which not only requires the
state to stay in the feasible region but also restricts the increasing rate of
CBF.

47



0 2 4 6 8 10

d [m]

0

2

4

6

8

10

12

14

v 
[m

/s
]

CBF (iter 10)

0 2 4 6 8 10

d [m]

0

2

4

6

8

10

12

14

v 
[m

/s
]

CBF (iter 50)

0 2 4 6 8 10

d [m]

0

2

4

6

8

10

12

14

v 
[m

/s
]

CBF (iter 100)

0 2 4 6 8 10

d [m]

0

2

4

6

8

10

12

14

v 
[m

/s
]

CBF (iter 10000)

Figure 13: State trajectories of RL under the same CBF constraint (k = 0.05) at different
iterations.
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Figure 14: Feasible regions of RL under the same CBF constraint (k = 0.05) at different
iterations.
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Figure 15: State trajectories of MPC under SI constraints with different parameters. “SI”
stands for “safety index”.
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Figure 16: Feasible regions of MPC under SI constraints with different parameters.

Figure 15 and 16 show state trajectories and feasible regions of MPC un-
der safety index constraints with different parameters. The feasible regions’
boundary shape accurately reflects the safety index’s function form. When
n = 2, the boundary is a quadratic function with respect to d. It becomes a
linear function when n = 1 and a square root function when n = 0.5. When
n = 0.5, k = 0.23, the zero-sublevel set of the safety index equals the maxi-
mum EFR. Note that when n = 2, k = 5, the EFR is smaller than the IFR
because with these parameters, the design rule (21) is violated, and thus,
forward invariance of the safe set is not guaranteed. Comparing Figure 15
with Figure 11, we observe a difference between safety index and CBF: under
the safety index constraint, the policy does not decelerate until it reaches the
boundary of EFR while under the CBF constraint, the policy starts to decel-
erate before coming close the boundary. This is because of the difference in
their constraint design: the safety index only requires the next state to stay
in the EFR, while CBF further restricts its value-increasing rate.
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Figure 17: State trajectories of RL under the same SI constraint (n = 0.5, k = 0.23) at
different iterations.
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Figure 18: Feasible regions of RL under the same SI constraint (n = 0.5, k = 0.23) at
different iterations.

Figure 17 and 18 show state trajectories and feasible regions of RL under
the same safety index constraint at different iterations. The EFR monoton-
ically expands and becomes close to the maximum EFR at iteration 10000,
while the state trajectories also gradually converge to those of the optimal
policy. We observe that at an early stage of training, the IFR under safety
index constraint is already quite large, much larger than the EFR. This is
different from the case of CBF constraint shown in Figure 14, where EFRs
are close to IFRs. The reason is that the safety index constraint only requires
the next state to be in the safe set without restricting its value-increasing
rate as CBF does. At iteration 10 in Figure 17, the states with high velocities
are initially feasible as long as they do not leave the safe set in one step. Ac-
cordingly, states close to the safe set boundary are initially infeasible because
their next states will leave the safe set.

Figure 19 shows state trajectories and feasible regions of MPC under HJ
reachability constraint. Being a CA-based virtual-time constraint, the HJ
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Figure 19: State trajectories and feasible regions of MPC under HJ reachability constraint.
“HJR” stands for “HJ reachability”.

reachability constraint yields identical IFR and EFR of the optimal policy.
In addition, since this constraint is built upon the reachability function of
a safety-oriented policy, both its IFR and EFR equal the maximum EFR,
which coincides with the analysis in Section 6.3.2. This indicates that CA-
based virtual-time constraints result in the maximum EFR as long as the
optimal feasibility function is found. Comparing the right figure in Figure
19 and the last figure in Figure 11, we observe that the policy under HJ
reachability constraint is less conservative than that under CBF constraint,
even though the feasible regions of the two constraints are identical. The
reason also lies in the fact that CBF constraint restricts the value-increasing
rate while HJ reachability constraint does not.

Figure 20 and 21 show state trajectories and feasible regions of RL under
HJ reachability constraint at different iterations. As is the case in other
constraints, the EFR monotonically expands to the maximum one, and the
state trajectories converge to the optimal ones. Like safety index, the IFR
under HJ reachability constraint is much larger than the EFR at an early
stage of training, which is also because of the minimum restrictiveness on the
next state.

9. Conclusion

This paper proposes a feasibility theory that applies to both MPC and
RL. Compared with existing theories built for MPC, our theory fills in the
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Figure 20: State trajectories of RL under HJR constraint at different iterations.
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Figure 21: Feasible regions of RL under HJR constraint at different iterations.
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missing part of feasibility analysis for an arbitrary policy. Based on a de-
coupling view of virtual-time domain and real-time domain, we separately
define initial and endless, state and policy feasibility, and their correspond-
ing feasible regions. We further analyze the containment relationships be-
tween different feasible regions, which enables us to analyze the feasibility
of an arbitrary policy. After that, we provide virtual-time constraint design
rules along with a practical design tool called feasibility function that helps
achieve the maximum feasible region. The feasibility function is categorized
into control invariant set and constraint aggregation, which lead to different
kinds of virtual-time constraints. We review most of existing constraint for-
mulations and point out that they are essentially applications of feasibility
functions in different forms. Finally, we demonstrate our feasibility theory
in an emergency braking control task by visualizing initially and endlessly
feasible regions of MPC and RL policies under different kinds of virtual-time
constraints.
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