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Abstract

The chiral phase boundary of nuclear matter is expected to have a critical point
where the rapid crossover of lattice methods at zero chemical potential becomes a
first-order phase transition. Phenomenological models based on the AdS/CFT corre-
spondence, known as AdS/ QCD, have succeeded in capturing many features of nuclear
matter, with recent progress in producing the expected critical point. We study a model
that produces a critical point in the chiral phase diagram by introducing a coupling be-
tween the scalar chiral field and the dilaton. We examine the effect of the scalar-dilaton
coupling on the critical point. We also study the zero-temperature chiral dynamics,
which must allow for spontaneous chiral symmetry breaking in the limit of zero quark
mass. We find that when the scalar-dilaton coupling is large enough to ensure correct
zero-temperature chiral dynamics, a critical point is present only if the quark mass is
greater than 12.8 MeV.

1 Introduction

The exploration of the phase structure of quantum chromodynamics (QCD) at extreme
temperature and density is an important project for both theory and experiment [1, 2, 3].
Lattice QCD finds a crossover phase transition at zero quark chemical potential [4, 5], while
other models find a first-order phase transition at high chemical potential [6]. In combination,
these models suggest the existence of a critical point, but its exact location in the phase
diagram remains an open question [7, 8].

Experimentally, the search for the critical point requires a reduction in center of mass
energy [9], motivating the recently-completed Beam Energy Scan at the Relativistic Heavy
Ion Collider [10], as well as current and future fixed-target experiments [11, 12, 13]. From
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the theoretical perspective, lattice methods suffer from a well-known sign problem at fi-
nite chemical potential [14]. Extrapolation techniques allow lattice analysis up to a baryon
chemical potential ≈ 300 MeV, with no evidence of a critical point [15].

The AdS/CFT correspondence [16, 17, 18] has emerged as a powerful tool to study various
aspects of QCD, including the phase diagram [19, 20]. The soft-wall AdS/QCD model, which
uses a background dilaton field to encode confinement, has been extensively used to analyze
hadron spectra [21, 22, 23] and the QCD phase diagram [24]. While there has been success
in finding a critical point in the deconfinement phase transition using holographic techniques
[25, 26, 27, 28, 29, 30, 31, 32], producing a critical point in the chiral phase transition has
been more elusive.

In this work, we consider a modified soft-wall AdS/QCD model with a coupling between
the scalar and dilaton fields. Prior work has shown that the introduction of such a coupling
can improve the resulting meson spectra and introduce a critical point in the chiral phase
diagram [33]. We focus on the effect of scalar-dilaton coupling on the critical point in the
QCD phase diagram and the zero-temperature chiral dynamics.

2 Soft-wall model with scalar-dilaton coupling

We use an anti-de Sitter black hole metric

ds2 =
L2

z2

(
−f(z)dt2 + dx2

i +
dz2

f(z)

)
, (1)

with the AdS curvature L = 1 throughout the rest of this work. Following established
procedure [34, 35, 36], we model finite temperature and chemical potential with a charged
black hole described by the 5D AdS–Reissner-Nordström blackness function

f(z) = 1− (1 +Q2)

(
z

zh

)4

+Q2

(
z

zh

)6

, (2)

where zh is the black hole horizon, and Q is related to the black hole charge q by Q = qz3h.
The quark chemical potential and temperature are determined by the charge and horizon
position

µ = κ
Q

zh
, (3)

T =
1

πzh

(
1− Q2

2

)
, (4)

where 0 < Q2 < 2 and κ = 1 [37]. Note that µ is the quark chemical potential, with a value
one third of the baryon chemical potential. These relationships are invertible for zh and q.

In the soft-wall model of AdS/QCD, confinement is introduced via a dilaton field, which
is quadratic in the IR limit. In this work, we use a quadratic dilaton

Φ(z) = µ2
gz

2 (5)
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Figure 1: A sketch of the Columbia plot, which shows the expected order of the chiral phase
transition as a function of light and strange quark masses [41, 42].

where µg = 440 MeV sets the confinement scale. The relevant matter fields are described by
the action

S =
1

2k

∫
d5x

√
−ge−Φ(z)

{
Tr
[
|DX|2 + Vm(X,Φ)

]
+ γRe [det(X)]

}
, (6)

where X contains the scalar and pseudoscalar meson fields. The t’Hooft determinant term
provides mixing between light and heavy flavors, and with γ < 0 it produces a first-order
phase transition in the chiral limit [38]. We omit the vector and axial-vector meson fields to
focus on the chiral dynamics.

A quartic term in the scalar potential is required for spontaneous chiral symmetry break-
ing [39]. Including the coupling between the dilaton and scalar field, the potential is

Vm(X,Φ) = m2
5|X|2 + λ1Φ|X|2 + 4λ4|X|4, (7)

The AdS/CFT dictionary sets the mass of the chiral field m2
5 = −3 [18]. Following [40], we

take λ4 = 4.2 and γ = −22.6.
The scalar-dilaton coupling term gives the chiral field an effective mass that runs with

energy scale
m2

5 → −3 + λ1µ
2
gz

2. (8)

This running mass has been used to obtain the correct mass splitting between excited states
of meson chiral partners [43], to reproduce the Columbia plot (Figure 1) at zero chemical
potential [40], to obtain the correct chiral transition behavior [44], and to produce a critical
point in the chiral phase diagram [33]. It is worth noting that models with a modified dilaton
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profile but without the running mass (8) achieve the first three of these goals [38, 45] but do
not produce the critical point [46].

The scalar field has a z-dependent vacuum expectation value (VEV) that describes the
chiral symmetry breaking of the model. In a three flavor model, the VEV becomes

⟨X⟩ = 1√
2

χu(z) 0 0
0 χd(z) 0
0 0 χs(z)

 . (9)

In this work, we will focus on the flavor-symmetric case χu = χd = χs. Varying 6 with
respect to χ yields the following equation of motion,

χ′′ −
(
3

z
+ Φ′ − f ′

f

)
χ′ − 1

z2f

[
(−3− λ1Φ)χ+ 4λ4χ

3 + 3λ3χ
2
]
= 0, (10)

where γ → 6
√
2λ3 is defined for convenient notation. As the chiral field is the source of the

q̄q operator, the AdS/CFT dictionary identifies its coefficients at the UV boundary with the
sources of chiral symmetry breaking,

χ(z → 0) ∼ mqζz +
σ

ζ
z3, (11)

where ζ =
√
Nc/(2π) [47], the quark mass mq is the source of explicit chiral symmetry

breaking, and the chiral condensate σ is the source of spontaneous chiral symmetry breaking.

3 Numerical procedure

Finding the chiral condensate requires solving (10) numerically and using the AdS/CFT
dictionary to relate the solution for χ(z) to the parameters mq, σ. The presence of a singular
point at z = zh presents a challenge to this procedure. A commonly-used numerical method
begins with a UV approximation for the chiral field and integrates toward the horizon [48, 45,
43]. While this method works well near the chiral transition temperature, it is less reliable at
low temperatures. Instead, we use a method that starts with the asymptotic solution at the
black hole horizon zh and integrates toward the UV boundary [49]. A comparison between
these two methods is discussed in Appendix 3.

The near-horizon solution is approximated by the Taylor series

χ(u → 1) = d0 + d1(1− u) + d2(1− u)2 + . . . (12)

where u = z/zh and the higher-order coefficients are solved by substitution into (10). The
result is

d1 =
d0

2 (Q2 − 2)

(
3 + λ1z

2
hµ

2
g − 3d0λ3 − 4d20λ4

)
(13)

d2 =
1

16 (Q2 − 2)2

{
6d1(−6 +Q2 +Q4) + 4d30(14− 13Q2)λ4

+ d20
[
(42− 39Q2)λ3 − 24d1

(
Q2 − 2

)
λ4

]
− 2d1

(
Q2 − 2

)
(4Q2 − 8− λ1)z

2
hµ

2
g

+ 3d0
[
−14 + 13Q2 + 8d1λ3 − 4d1Q

2λ3 + λ1(3Q
2 − 2)z2hµ

2
g

] }
(14)
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For each value of T, µ, we vary d0 and compare the numerical solution to the UV expansion
of the chiral field

χ(u → 0) ≈ mqζzhu− 3m2
qζ

2λ3z
2
hu

2 +
σ

ζ
z3hu

3

+
1

4

[
m3

qζ
3(λ4 − 36λ2

3) + 2mqζµ
2
g(λ1 − 2)

]
z3hu

3 log (zhu) + . . . (15)

The terms of order u and u3 have their coefficients defined by the AdS/CFT dictionary and
the other coefficients are found by solving (10) order-by-order.

We evaluate the numerical solution and its derivative at a small value ui ≈ 10−3 and
calculate the coefficients by comparing to the UV expansion (15). Keeping terms up to
order u3, the relationships are analytically solvable,

mq =
1−

√
1− 3λ3(3χUV − uiχ′

UV )

3λ3ζuizh
, (16)

σ = ζ

(
1− 3λ3(2χUV + uiχ

′
UV )−

√
1− 3λ3(3χUV − uiχ′

UV )

3u3
i z

3
hλ3

)
, (17)

where χUV = χ(ui) and χ′
UV = χ′(ui). The quadratic relationship has another set of solu-

tions, which produce unphysical values of mq, σ < 0. In the two-flavor case, λ3 = 0 and the
above relationships cannot be used. Instead we find

mq =
3χUV − uiχ

′
UV

2ζzhui

, (18)

σ = ζ
uiχ

′
UV − χUV

2z3hu
3
i

. (19)

4 Results

In this section, we find the dependence of the chiral condensate σ on quark mass mq for
various values of the scalar-dilaton coupling λ1. We show that there is a minimum value of
λ1 that allows for spontaneous chiral symmetry breaking in the chiral limitmq → 0. We show
how the (pseudo-) critical temperature is found and how crossover and first-order transitions
are distinguished. Finally, we show how the location of the critical point is affected by the
value of λ1.

4.1 Spontaneous chiral symmetry breaking

Separate sources of spontaneous and explicit chiral symmetry breaking are required in the
theory. The original soft-wall model did not achieve this, finding σ ∼ mq instead [21].
Including a quartic term in the scalar potential allows these quantities to be independent,
crucially maintaining spontaneous chiral symmetry breaking in the chiral limit mq = 0 [39].

The relationship between mq and σ in this model depends on the strength of the scalar-
dilaton coupling λ1. We check this relationship in both the 2-flavor (λ3 = 0) and 3-flavor
(λ3 ̸= 0) cases. In the two-flavor case, the relationship between σ and mq is one-to-one for
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Figure 2: The relationship between σ and mq for a variety of values of the scalar-dilaton
coupling λ1 with two flavors at zero temperature and chemical potential. For λ1 ≥ 6.0, the
chiral condensate is present even in the chiral limit mq = 0.

quark mass mq ≥ 0. For small values of the scalar-dilaton coupling, the spontaneous chiral
symmetry breaking vanishes as mq → 0, but at higher values of λ1 ≥ 6.0, σ is non-zero in
the chiral limit, as seen in Figure 2.

In the three-flavor case, we find the same requirement λ1 ≥ 6.0 for σ to remain finite
as the quark mass goes to zero. In Figure 3, it is evident that σ becomes multi-valued for
intermediate values of λ1. In these cases, the smaller value of σ is thermodynamically favored.
This means that in the case of e.g. λ1 = 5.7 it appears that there are finite solutions of σ
at zero quark mass, but these solutions are unphysical, and the lower branch of the graph
shows σ ∼ mq at small quark mass for these values of λ1.

4.2 Chiral phase transition

For a given value of the chemical potential µ and quark mass mq, we find the values of σ for
a range of temperatures. The order of the chiral phase transition is determined by the way in
which σ transitions to a smaller value. Smooth transitions are considered crossover, while a
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Figure 3: The relationship between σ and mq for a variety of values of the scalar-dilaton
coupling λ1 with three flavors. When σ is multi-valued, the lowest value is thermodynami-
cally favored. For λ1 ≥ 6.0, the chiral condensate is present even in the chiral limit mq = 0.

first-order phase transition is characterized by the chiral condensate becoming multi-valued,
as illustrated in Figure 4.

In crossover transitions, the pseudo-critical temperature is the temperature where the chi-
ral susceptibility |dσ/dT | is maximized. For first-order transitions, the critical temperature
occurs at the lowest temperature where σ is multi-valued.

The values of λ1 that produce unphysical chiral dynamics at zero temperature also show
unphysical behavior in the chiral phase transition. The chiral condensate is plotted as a
function of temperature at µ = 0 in the chiral limit for 2 flavors (Figure 5) and 3 flavors
(Figure 6). Note that the two-flavor case allows negative values of σ ↔ −σ as solutions.
This symmetry is broken in the three-flavor case, and also when mq > 0, although negative
solutions are still present [38]. These non-physical solutions are ignored in the rest of the
analysis.

The chiral phase transition has the expected low T behavior in the chiral limit. As this pa-
rameter is decreased, the “bump” below the critical temperature becomes more pronounced.
When λ1 is below a certain value, the chiral condensate disappears at low temperature. This
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Figure 4: These plots illustrate the difference between a crossover phase transition and
a first-order phase transition. At zero chemical potential (left), the transition is smooth,
but at higher µ (right), the value of σ becomes multi-valued, indicating a first-order phase
transition. Both plots use mq = 15 MeV and λ1 = 6.

unphysical result is further evidence for a minimum value for the scalar-dilaton coupling in
this model.

4.3 Phase diagram and critical point

The chiral phase diagram is produced by plotting the (pseudo-) critical temperature as a
function of the chemical potential. A critical end point is found for combinations of mq and
λ1 that produce a crossover phase transition at zero chemical potential. At sufficiently large
µ, the phase transition becomes first order.

To examine the effect of scalar-dilaton coupling on the location of the critical point, we
show in Figure 7 phase boundaries for a sample quark mass mq = 15 for varying λ1 with
three symmetric quark flavors. The critical point occurs at smaller chemical potential as λ1

is increased. At the same time, the (pseudo-) critical temperature is increased at all values
of µ.

When the scalar-dilaton coupling is sufficiently large, the phase transition is first order
at µ = 0, and the critical point vanishes. This is seen in Figure 8, where the location of the
critical point is plotted for several values of the quark mass. When the quark mass is large,
a critical point can still be found when λ1 ≥ 6.0, as required for the proper chiral dynamics
detailed in Section 4.1. At low values of the quark mass, obtaining a critical point requires
λ1 < 6.0. We find that the minimum quark mass with a critical point in the phase diagram
when λ1 = 6.0 is mq = 12.8 MeV. In the chiral limit, we find that the chiral phase transition
is always first-order, regardless of the value of λ1, and no critical point is present.

5 Discussion

In this work, we used a soft-wall holographic QCD model with a scalar-dilaton coupling
to study the chiral phase transition at finite temperature and density. Our analysis shows
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Figure 5: The two-flavor results in the chiral limit for chiral condensate σ as a function of
temperature at zero chemical potential. For scalar-dilaton coupling λ1 ≤ 6, σ vanishes at
low temperatures.

that a coupling λ1 ≥ 6.0 is necessary for achieving the correct chiral dynamics with either
two or three symmetric quark flavors, in line with the requirement that holographic models
mirror the chiral symmetry breaking mechanism of QCD [22, 23]. Furthermore, the presence
of a critical point in this model’s chiral phase diagram contributes to the ongoing effort to
comprehend the phase structure of QCD, a topic of considerable theoretical and experimental
interest [50, 51].

Previous soft-wall AdS/QCD models that achieved correct chiral dynamics at zero chem-
ical potential by using a UV-modified dilaton [38, 46] could be extended to include a scalar-
dilaton coupling term. It may be interesting to examine whether this will circumvent the
problems shown in the current work at small values of the scalar-dilaton coupling.

Looking ahead, we will allow the strange quark mass to differ from the light quark masses
and explore the 2+1 flavor results at a range of scalar-dilaton coupling. These results will be
compared to the Columbia plot shown in Figure 1. Another goal is to combine the analysis
of the chiral transition with the deconfinement phase transition. Previous work combining
a scalar chiral field with the dynamical Einstein-Maxwell-Dilaton model have shown some
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Figure 6: The three-flavor results in the chiral limit for chiral condensate σ as a function of
temperature at zero chemical potential. For scalar-dilaton coupling λ1 ≤ 5.5, σ vanishes at
low temperatures.

promise in the case of two quark flavors [52]. Including the scalar-dilaton mixing term
produces the crossover chiral transition that is expected for two quark flavors with mq > 0
[53]. Considering these extensions will allow a more thorough exploration of all aspects of
the holographic QCD phase diagram.
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C. Ratti, and K. K. Szabó, “QCD Crossover at Finite Chemical Potential from Lattice
Simulations,” Phys. Rev. Lett. 125 (Jul, 2020) 052001.
https://link.aps.org/doi/10.1103/PhysRevLett.125.052001.

[16] J. Maldacena, “The large N limit of superconformal field theories and supergravity,”
Advances in Theoretical and Mathematical Physics 2 no. 2, (1998) 231–252,
arXiv:hep-th/9711200.

[17] E. Witten, “Anti-de Sitter space, thermal phase transition, and confinement in gauge
theories,” Advances in Theoretical and Mathematical Physics 2 no. 3, (1998) 505–532,
arXiv:hep-th/9803131.

13

http://dx.doi.org/10.1016/j.nuclphysa.2016.02.010
http://dx.doi.org/10.1016/j.nuclphysa.2016.02.010
http://arxiv.org/abs/1601.00466
http://www.sciencedirect.com/science/article/pii/S037594741600097X?via{%}3Dihub http://arxiv.org/abs/1601.00466 http://dx.doi.org/10.1016/j.nuclphysa.2016.02.010 http://linkinghub.elsevier.com/retrieve/pii/S037594741600097X
http://www.sciencedirect.com/science/article/pii/S037594741600097X?via{%}3Dihub http://arxiv.org/abs/1601.00466 http://dx.doi.org/10.1016/j.nuclphysa.2016.02.010 http://linkinghub.elsevier.com/retrieve/pii/S037594741600097X
http://www.sciencedirect.com/science/article/pii/S037594741600097X?via{%}3Dihub http://arxiv.org/abs/1601.00466 http://dx.doi.org/10.1016/j.nuclphysa.2016.02.010 http://linkinghub.elsevier.com/retrieve/pii/S037594741600097X
http://www.sciencedirect.com/science/article/pii/S037594741600097X?via{%}3Dihub http://arxiv.org/abs/1601.00466 http://dx.doi.org/10.1016/j.nuclphysa.2016.02.010 http://linkinghub.elsevier.com/retrieve/pii/S037594741600097X
http://dx.doi.org/10.1103/PhysRevD.104.054022
https://link.aps.org/doi/10.1103/PhysRevD.104.054022
http://dx.doi.org/10.1103/physrevlett.112.032302
http://dx.doi.org/10.1103/PhysRevLett.112.032302
https://arxiv.org/abs/1007.2613
http://dx.doi.org/10.1016/j.nuclphysa.2017.06.007
http://dx.doi.org/10.1016/j.nuclphysa.2017.06.007
http://dx.doi.org/10.1140/epja/i2017-12248-y
http://dx.doi.org/10.1140/epja/i2017-12248-y
http://dx.doi.org/10.1140/epja/i2017-12248-y
https://arxiv.org/abs/2209.05009
http://dx.doi.org/10.1016/j.ppnp.2012.09.003
http://dx.doi.org/10.1016/j.ppnp.2012.09.003
http://dx.doi.org/10.1016/j.ppnp.2012.09.003
http://dx.doi.org/10.1103/PhysRevLett.125.052001
https://link.aps.org/doi/10.1103/PhysRevLett.125.052001
http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://dx.doi.org/10.4310/ATMP.1998.v2.n3.a3
http://arxiv.org/abs/hep-th/9803131


[18] E. Witten, “Anti de Sitter space and holography,” Advances in Theoretical and
Mathematical Physics 2 no. 2, (1998) 253–291, arXiv:hep-th/9802150.

[19] S. S. Gubser and A. Nellore, “Mimicking the qcd equation of state with a dual black
hole,” Physical Review D 78 no. 8, (Oct., 2008) 086007.
http://dx.doi.org/10.1103/PhysRevD.78.086007.

[20] S. S. Gubser, A. Nellore, S. S. Pufu, and F. D. Rocha, “Thermodynamics and bulk
viscosity of approximate black hole duals to finite temperature quantum
chromodynamics,” Physical Review Letters 101 no. 13, (Sept., 2008) 131601.
http://dx.doi.org/10.1103/PhysRevLett.101.131601.

[21] A. Karch, E. Katz, D. Son, and M. Stephanov, “Linear confinement and AdS/QCD,”
Physical Review D 74 no. 1, (7, 2006) 015005, hep-ph/0602229.

[22] A. Karch, E. Katz, D. T. Son, and M. A. Stephanov, “Linear confinement and
AdS/QCD,” Physical Review D 74 no. 1, (7, 2006) 015005, arXiv:hep-ph/0602229.

[23] J. Erlich, E. Katz, D. T. Son, and M. A. Stephanov, “QCD and a Holographic Model
of Hadrons,” Physical Review Letters 95 no. 26, (12, 2005) 261602,
arXiv:hep-ph/0501128.

[24] R. Rougemont, J. Grefa, M. Hippert, J. Noronha, J. Noronha-Hostler, I. Portillo, and
C. Ratti, “Hot QCD phase diagram from holographic Einstein–Maxwell–Dilaton
models,” Progress in Particle and Nuclear Physics 135 (Feb., 2024) 104093.
http://dx.doi.org/10.1016/j.ppnp.2023.104093.

[25] O. DeWolfe, S. S. Gubser, and C. Rosen, “A holographic critical point,” Physical
Review D 83 no. 8, (Apr., 2011) 086005.
http://dx.doi.org/10.1103/PhysRevD.83.086005.

[26] O. DeWolfe, S. S. Gubser, and C. Rosen, “Dynamic critical phenomena at a
holographic critical point,” Physical Review D 84 no. 12, (Dec., 2011) 126014.
http://dx.doi.org/10.1103/PhysRevD.84.126014.

[27] Z. Li, Y. Chen, D. Li, and M. Huang, “Locating the QCD critical end point through
peaked baryon number susceptibilities along the freeze-out line,” Chinese Physics C 42
no. 1, (Jan., 2018) 013103. http://dx.doi.org/10.1088/1674-1137/42/1/013103.

[28] R. Critelli, J. Noronha, J. Noronha-Hostler, I. Portillo, C. Ratti, and R. Rougemont,
“Critical point in the phase diagram of primordial quark-gluon matter from black hole
physics,” Physical Review D 96 no. 9, (Nov., 2017) 096026, arXiv:1706.00455.
http://dx.doi.org/10.1103/PhysRevD.96.096026.

[29] R. Rougemont, R. Critelli, and J. Noronha, “Nonhydrodynamic quasinormal modes
and equilibration of a baryon dense holographic QGP with a critical point,” Physical
Review D 98 no. 3, (Aug., 2018) 034028.
http://dx.doi.org/10.1103/PhysRevD.98.034028.

14

http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a2
http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a2
http://arxiv.org/abs/hep-th/9802150
http://dx.doi.org/10.1103/physrevd.78.086007
http://dx.doi.org/10.1103/PhysRevD.78.086007
http://dx.doi.org/10.1103/physrevlett.101.131601
http://dx.doi.org/10.1103/PhysRevLett.101.131601
http://dx.doi.org/10.1103/PhysRevD.74.015005
http://arxiv.org/abs/hep-ph/0602229
http://dx.doi.org/10.1103/PhysRevD.74.015005
http://arxiv.org/abs/hep-ph/0602229
http://dx.doi.org/10.1103/PhysRevLett.95.261602
http://arxiv.org/abs/hep-ph/0501128
http://dx.doi.org/10.1016/j.ppnp.2023.104093
http://dx.doi.org/10.1016/j.ppnp.2023.104093
http://dx.doi.org/10.1103/physrevd.83.086005
http://dx.doi.org/10.1103/physrevd.83.086005
http://dx.doi.org/10.1103/PhysRevD.83.086005
http://dx.doi.org/10.1103/physrevd.84.126014
http://dx.doi.org/10.1103/PhysRevD.84.126014
http://dx.doi.org/10.1088/1674-1137/42/1/013103
http://dx.doi.org/10.1088/1674-1137/42/1/013103
http://dx.doi.org/10.1088/1674-1137/42/1/013103
http://dx.doi.org/10.1103/physrevd.96.096026
http://arxiv.org/abs/1706.00455
http://dx.doi.org/10.1103/PhysRevD.96.096026
http://dx.doi.org/10.1103/physrevd.98.034028
http://dx.doi.org/10.1103/physrevd.98.034028
http://dx.doi.org/10.1103/PhysRevD.98.034028


[30] J. Grefa, J. Noronha, J. Noronha-Hostler, I. Portillo, C. Ratti, and R. Rougemont,
“Hot and dense quark-gluon plasma thermodynamics from holographic black holes,”
Physical Review D 104 no. 3, (Aug., 2021) 034002.
http://dx.doi.org/10.1103/PhysRevD.104.034002.

[31] R.-G. Cai, S. He, L. Li, and Y.-X. Wang, “Probing QCD critical point and induced
gravitational wave by black hole physics,” Physical Review D 106 no. 12, (Dec., 2022)
L121902. http://dx.doi.org/10.1103/PhysRevD.106.L121902.

[32] M. Hippert, J. Grefa, T. A. Manning, J. Noronha, J. Noronha-Hostler, I. P. Vazquez,
C. Ratti, R. Rougemont, and M. Trujillo, “Bayesian location of the QCD critical point
from a holographic perspective,” arXiv:2309.00579 [nucl-th].

[33] Z. Fang, Y.-L. Wu, and L. Zhang, “Chiral phase transition and QCD phase diagram
from AdS/QCD,” Phys. Rev. D 99 (Feb, 2019) 034028.
https://link.aps.org/doi/10.1103/PhysRevD.99.034028.

[34] A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Myers, “Charged AdS black
holes and catastrophic holography,” Physical Review D 60 no. 6, (8, 1999) 064018,
arXiv:hep-th/9902170.

[35] C. Park, “Dissociation of a heavy meson in the quark medium,” Physical Review D 81
no. 4, (2, 2010) 045009, arXiv:0907.0064 [hep-ph].

[36] P. Colangelo, F. Giannuzzi, and S. Nicotri, “Holography, heavy-quark free energy, and
the QCD phase diagram,” Physical Review D 83 no. 3, (2, 2011) 035015,
arXiv:1008.3116 [hep-ph].

[37] P. Colangelo, F. Giannuzzi, S. Nicotri, and V. Tangorra, “Temperature and quark
density effects on the chiral condensate: an AdS/QCD study,” The European Physical
Journal C, Volume 72, Issue 8, 2096 (2012) 72 no. 8, (2012) 2096, arXiv:1112.4402
[hep-ph].
https://link.springer.com/article/10.1140/epjc/s10052-012-2096-9.

[38] K. Chelabi, Z. Fang, M. Huang, D. Li, and Y.-L. Wu, “Chiral phase transition in the
soft-wall model of AdS/QCD,” Journal of High Energy Physics 2016 no. 4, (4, 2016)
36, arXiv:1512.06493 [hep-ph].

[39] T. Gherghetta, J. Kapusta, and T. Kelley, “Chiral symmetry breaking in the soft-wall
AdS/QCD model,” Physical Review D 79 no. 7, (4, 2009) 076003,
arXiv:hep-ph/0902.1998.

[40] Z. Fang, Y.-L. Wu, and L. Zhang, “Chiral phase transition with 2 + 1 quark flavors in
an improved soft-wall AdS/QCD model,” Phys. Rev. D 98 (Dec, 2018) 114003.
https://link.aps.org/doi/10.1103/PhysRevD.98.114003.

[41] F. R. Brown, F. P. Butler, H. Chen, N. H. Christ, Z. Dong, W. Schaffer, L. I. Unger,
and A. Vaccarino, “On the existence of a phase transition for qcd with three light

15

http://dx.doi.org/10.1103/physrevd.104.034002
http://dx.doi.org/10.1103/PhysRevD.104.034002
http://dx.doi.org/10.1103/physrevd.106.l121902
http://dx.doi.org/10.1103/physrevd.106.l121902
http://dx.doi.org/10.1103/PhysRevD.106.L121902
http://arxiv.org/abs/2309.00579
http://dx.doi.org/10.1103/PhysRevD.99.034028
https://link.aps.org/doi/10.1103/PhysRevD.99.034028
http://dx.doi.org/10.1103/PhysRevD.60.064018
http://arxiv.org/abs/hep-th/9902170
http://dx.doi.org/10.1103/PhysRevD.81.045009
http://dx.doi.org/10.1103/PhysRevD.81.045009
http://arxiv.org/abs/0907.0064
http://dx.doi.org/10.1103/PhysRevD.83.035015
http://arxiv.org/abs/1008.3116
http://dx.doi.org/10.1140/epjc/s10052-012-2096-9
http://dx.doi.org/10.1140/epjc/s10052-012-2096-9
http://arxiv.org/abs/1112.4402
http://arxiv.org/abs/1112.4402
https://link.springer.com/article/10.1140/epjc/s10052-012-2096-9
http://dx.doi.org/10.1007/JHEP04(2016)036
http://dx.doi.org/10.1007/JHEP04(2016)036
http://arxiv.org/abs/1512.06493
http://dx.doi.org/10.1103/PhysRevD.79.076003
http://arxiv.org/abs/hep-ph/0902.1998
http://dx.doi.org/10.1103/PhysRevD.98.114003
https://link.aps.org/doi/10.1103/PhysRevD.98.114003


quarks,” Phys. Rev. Lett. 65 (Nov, 1990) 2491–2494.
https://link.aps.org/doi/10.1103/PhysRevLett.65.2491.

[42] P. de Forcrand and O. Philipsen, “The Chiral critical line of N(f) = 2+1 QCD at zero
and non-zero baryon density,” JHEP 01 (2007) 077, arXiv:hep-lat/0607017
[hep-lat].

[43] Z. Fang, Y.-L. Wu, and L. Zhang, “Chiral phase transition and meson spectrum in
improved soft-wall AdS/QCD,” Physics Letters B 762 (Nov., 2016) 86–95,
arXiv:1604.02571 [hep-ph].
http://dx.doi.org/10.1016/j.physletb.2016.09.009.

[44] Z. Fang and Y.-L. Wu, “Equation of state and chiral transition in soft-wall AdS/QCD
with a more realistic gravitational background,” Chinese Physics C 44 no. 10, (Oct,
2020) 103101. https://dx.doi.org/10.1088/1674-1137/abab90.

[45] S. P. Bartz and T. Jacobson, “Chiral Phase Transition and Meson Melting from
AdS/QCD,” Phys. Rev. D94 (2016) 075022, arXiv:1607.05751 [hep-ph].

[46] S. P. Bartz and T. Jacobson, “Chiral phase transition at finite chemical potential in
2 + 1-flavor soft-wall anti–de Sitter space QCD,” Phys. Rev. C 97 (Apr, 2018) 044908.
https://link.aps.org/doi/10.1103/PhysRevC.97.044908.

[47] A. Cherman, T. D. Cohen, and E. S. Werbos, “The Chiral condensate in holographic
models of QCD,” Phys. Rev. C79 (2009) 045203, arXiv:0804.1096 [hep-ph].

[48] D. Li, M. Huang, and Q.-S. Yan, “A dynamical soft-wall holographic QCD model for
chiral symmetry breaking and linear confinement,” The European Physical Journal C
73 no. 10, (10, 2013) 2615, arXiv:1206.2824 [hep-th].

[49] A. Ballon-Bayona, L. A. H. Mamani, and D. M. Rodrigues, “Spontaneous chiral
symmetry breaking in holographic soft wall models,” Phys. Rev. D 104 (Dec, 2021)
126029. https://link.aps.org/doi/10.1103/PhysRevD.104.126029.

[50] K. Rajagopal, “Mapping the qcd phase diagram,” Nuclear Physics A 661 no. 1, (1999)
150 – 161.
http://www.sciencedirect.com/science/article/pii/S0375947499850179.

[51] E. Laermann and O. Philipsen, “The Status of lattice QCD at finite temperature,”
Ann. Rev. Nucl. Part. Sci. 53 (2003) 163–198, arXiv:hep-ph/0303042 [hep-ph].

[52] Y. Yang and P.-H. Yuan, “QCD phase diagram by holography,” Physics Letters B 832
(2022) 137212.
https://www.sciencedirect.com/science/article/pii/S037026932200346X.

[53] X.-Y. Liu, X.-C. Peng, Y.-L. Wu, and Z. Fang, “A holographic study on QCD phase
transition and phase diagram with two flavors,”.
https://arxiv.org/abs/2312.01346.

16

http://dx.doi.org/10.1103/PhysRevLett.65.2491
https://link.aps.org/doi/10.1103/PhysRevLett.65.2491
http://dx.doi.org/10.1088/1126-6708/2007/01/077
http://arxiv.org/abs/hep-lat/0607017
http://arxiv.org/abs/hep-lat/0607017
http://dx.doi.org/10.1016/j.physletb.2016.09.009
http://arxiv.org/abs/1604.02571
http://dx.doi.org/10.1016/j.physletb.2016.09.009
http://dx.doi.org/10.1088/1674-1137/abab90
http://dx.doi.org/10.1088/1674-1137/abab90
https://dx.doi.org/10.1088/1674-1137/abab90
http://dx.doi.org/10.1103/PhysRevD.94.075022
http://arxiv.org/abs/1607.05751
http://dx.doi.org/10.1103/PhysRevC.97.044908
https://link.aps.org/doi/10.1103/PhysRevC.97.044908
http://dx.doi.org/10.1103/PhysRevC.79.045203
http://arxiv.org/abs/0804.1096
http://dx.doi.org/10.1140/epjc/s10052-013-2615-3
http://dx.doi.org/10.1140/epjc/s10052-013-2615-3
http://arxiv.org/abs/1206.2824
http://dx.doi.org/10.1103/PhysRevD.104.126029
http://dx.doi.org/10.1103/PhysRevD.104.126029
https://link.aps.org/doi/10.1103/PhysRevD.104.126029
http://dx.doi.org/http://dx.doi.org/10.1016/S0375-9474(99)85017-9
http://dx.doi.org/http://dx.doi.org/10.1016/S0375-9474(99)85017-9
http://www.sciencedirect.com/science/article/pii/S0375947499850179
http://dx.doi.org/10.1146/annurev.nucl.53.041002.110609
http://arxiv.org/abs/hep-ph/0303042
http://dx.doi.org/https://doi.org/10.1016/j.physletb.2022.137212
http://dx.doi.org/https://doi.org/10.1016/j.physletb.2022.137212
https://www.sciencedirect.com/science/article/pii/S037026932200346X
https://arxiv.org/abs/2312.01346


[54] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes
3rd Edition: The Art of Scientific Computing. Cambridge University Press, 3 ed.,
2007. http://www.amazon.com/Numerical-Recipes-3rd-Scientific-Computing/
dp/0521880688/ref=sr_1_1?ie=UTF8&s=books&qid=1280322496&sr=8-1.

A Comparison of numerical methods
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Figure 9: This comparison of the numerical methods shows agreement between them, but
more spurious points when integrating from the UV. The data shown is for two representative
values of the scalar-dilaton coupling λ1 with mq = 1 MeV and µ = 0.

Another commonly-used numerical method for solving the chiral equation of motion (10)
uses the UV expansion of (15) as one boundary condition and the regularity of the chiral
field at the horizon z = zh is used as the other. Regularity is difficult to check numerically,
so a “test” function is defined that includes all the potentially singular parts of the equation
of motion,

−z2
f ′(z)

f(z)
χ′(z) +

1

f(z)

[
(−3− λ1Φ)χ+ 4λ4χ

3 + 3λ3χ
2
]
. (20)

This collection of terms must be zero at the horizon, otherwise there will be a divergence as
f → 0. Ensuring the test function is zero becomes the second boundary condition.

The shooting method [54] is implemented with the required quark mass given as an input
parameter and σ varied until the boundary condition is met near the black hole horizon. This
method is used to find the allowed values of σ for a given T, µ and, mq.

The limitations of this method are revealed at low temperature T ≪ Tc. At low temper-
ature, zh ∼ T−1 becomes large, and numerical instabilities in the numerical solution to (10)
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make it difficult to determine the correct value of σ. This has not been a problem in previous
publications that focus on the chiral phase transition. Typically, the value of σ approaches a
constant value as temperature is decreased below the transition temperature. However, this
is not always the case in this model, where σ = 0 at low temperatures for some values of λ1,
as seen in Figure 9.

The method of integrating from the UV boundary is trustworthy near the transition
temperature. However, in this work we are also interested in the low temperature chiral dy-
namics, particularly in ensuring separate sources of explicit and spontaneous chiral symmetry
breaking, as discussed in Section 4.1. By starting near the singular point and integrating
away from it, the method of Section 3 is more numerically stable at lower temperatures.

18


	Introduction
	Soft-wall model with scalar-dilaton coupling
	Numerical procedure
	Results
	Spontaneous chiral symmetry breaking
	Chiral phase transition
	Phase diagram and critical point

	Discussion
	Comparison of numerical methods

