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Abstract

Electromagnetic quantities at a spacetime point have tensor Lorentz transformations between

relatively-moving inertial frames. However, since the Lorentz transformation of time between

inertial frames depends upon both the time and space coordinates, averages of electrodynamic

quantities at a single time will in general depend upon the inertial frame, and will differ between

inertial frames. Here we illustrate how the use of continuous charge and current distributions rather

than point-charge distributions can lead to physically mystifying and even inaccurate results for

electromagnetic quantities and physical phenomena. The discrepancy noted between the average

electric field values in different inertial frames is particularly striking because it is first order in the

relatative velocity between the frames.
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I. INTRODUCTION

A. Apparent Relativity Paradox

There is an apparent relativity paradox involving magnets which has puzzled some teach-

ers of electromagnetism. A toroid is claimed to have negligible electric and magnetic fields

outside the surface currents. Thus, using tensor transformations for the fields, we should ex-

pect that there should be negligible electromagnetic fields outside the magnet in an inertial

frame in which the magnet is moving. However, there is a problem in Griffiths’ junior-level

electromagnetism text[1] and in the first edition of Jackson’s graduate text[2] (and only the

first edition) suggesting that in an inertial frame in which the magnet is moving perpendicu-

lar to the magnetic field inside its winding, the magnet develops a non-zero scalar potential

outside the magnet. The existence of a scalar potential suggests the possibility of electric

fields outside the magnet in the inertial frame in which the magnet is moving. Indeed, the

electric fields outside a magnet in the inertial frame in which it is moving have been used

in a classical electromagnetic analysis[3] of the interaction of a charge and a magnet, an

interaction made famous by the claims of Aharonov and Bohm.[4] The following question

arises. In an inertial frame in which a electrically-neutral magnet is moving, are there or

are there not electric fields outside the magnet in the direction parallel to the velocity?

This puzzling situation for teachers of electromagnetism is related to the use of continuous

charge and current distributions rather than point charges. Much of classical electrodynam-

ics is taught in the historical sequence involving continuous charge and current distributions.

Indeed, it has been suggested[5] that classical electrodynamics should deal only with con-

tinuous sources. However, if one deals with electrodynamics from a relativistic perspective,

then suddenly point spacetime events and point charges become important. Now most

physicists seem convinced that any limit may be taken and interchanged without error with

any other limit. Indeed, most of the time, such nonchalant interchange of limits does not

lead to errors. In this article, we point out an error in connection with the interchange of

Lorentz transformation and the limit of a continuous current in a current loop. By exten-

sion, the same error occurs in the classical electromagnetic analysis of the interaction of a

continuous-current magnet and a passing charge in different inertial frames.
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B. Tensor Transformations for Fields, Not for Averages

The explanation of the apparent relativity paradox mentioned in the first paragraph above

involves the following crucial understanding. The electromagnetic field tensor assigned to

a spacetime point is a mathematical representation of a physical object at that point, and

so undergoes tensor transformations[6][7] between inertial frames. On the other hand,

averages at a single time of electromagnetic quantities do not represent physical objects,

and need not undergo tensor transformations between inertial frames. Indeed, averages at

a single time over physical quantities may vary between relativistic inertial frames. This

variation in averages at a single time between relativistic inertial frames arises because

Lorentz transformations applied to the mathematical representations of physical quantities

at different spacetime points involve the spatial coordinates in the time transformation.

It should be emphasized that this variation in averages at a single time over physical

quantities between relativistic inertial frame is something which does not occur in nonrela-

tivistic physics, and so seems surprising to many physicists. In nonrelativistic physics, time

does not vary between inertial frames. Therefore a sum over the values of some quantity

at a single time in one inertial frame will correspond to the sum over the values at a single

time of the transformed quantity in a new inertial frame. Like so many other relativity

paradoxes, the relativistic mixing of space and time coordinates on Lorentz transformation

produces unfamiliar and sometimes surprising results.

Furthermore, an understanding of this apparent relativity paradox suggests again the

importance of using point charges when discussing relativity and electrodynamics. The

limit of an electrically neutral continuous current loop of zero-spatial extent (an “ideal”

magnetic moment) produces a magnetic field only perpendicular to the plane of the current

loop and so precludes an electric field parallel to the direction of relative velocity between

inertial frames. In contrast, a current loop based upon point charges leads to a time-varying

electric field component parallel to the relative velocity between inertial frames. The average

values of the time-varying electric fields are different in different inertial frames. Toroids

(or long solenoids) can be regarded as stacks of current loops. A stack of “ideal” magnetic

moments leads to different electric fields from the time-varying electric fields outside a stack

of current loops based on point charges. The contrast in the results of these two different

models leads to different understandings of natural phenomena. Indeed, the point-charge
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model allows a classical electromagnetic understanding[3] of the Aharonov-Bohm situation

whereas the “ideal”-magnetic-moment model does not.

C. Outline of the Article

Our analysis deals almost exclusively with the electromagnetic quantities associated with

a neutral current loop formed by a charge q moving with constant angular velocity ω in

a circle of radius R with an opposite charge −q at rest at the center of the loop. Our

aim is to point out that a loop with a continuous current leads to a different and restricted

electric field outside the current loop compared to the point-charge model of the current loop.

First we treat the charge densities, potential functions, and electromagnetic fields and their

averages for this point-charge magnetic moment model in the inertial frame S in which the

circular loop is at rest. Secondly, we consider these same quantities and their averages when

seen in a second S ′ inertial frame in which the circular loop is moving with uniform velocity

V = −x̂V in the x-direction parallel to the plane of the loop. For simplicity in the analysis,

we use the Darwin Lagrangian approximation[8][9] and the associated potentials and fields.

Also, we assume that the orbital circle has a small radius compared to the distance to the

field point. The analysis suggests the behavior of a current loop with many charges, and

also the behavior of the electromagnetic potentials and fields outside magnetic toroids and

long solenoids. In addition, we show that a relativity problem in Griffiths’ text involving an

“ideal magnetic dipole” gives a different result from the analysis using point charges. We

trace the discrepancy to the use of tensor transformations for averages of electromagnetic

quantities rather than using tensor transformations for the actual time-varying fields at

spacetime points. Thus sometimes the use of continuous charge and current densities leads

to results different from those obtained using point charges. Finally, we note that the

relativistic effect is unusual in involving first order in V/c, (where c is the speed of light

in vacuum) like both the Fizeau experiment,[12] and the interaction of a magnet and a

passing charge. We point out that the classical electromagnetic analysis suggests a classical

lag basis[3] for the Aharonov-Bohm situation when a charged particle passes through a

magnetic toroid. Gaussian units are used throughout the calculations.
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II. CIRCULAR ORBIT FOR A POINT CHARGE MOVING WITH CONSTANT

SPEED

A. Exact Expressions for the Trajectory of a Point Charge

We consider a point-charge model for a magnetic moment consisting of a point charge

+q moving with constant angular velocity ω in a circle of radius R in the xy-plane, centered

on the origin. A negative charge −q is at rest at the origin, the center of the circle. Then

we have for the displacement of the moving charge q

rq (t) = x̂R cos (ωt+ φq) + ŷR sin (ωt+ φq) . (1)

The velocity of the charge q follows as

uq (t) = −x̂Rω sin (ωt+ φq) + ŷRω cos (ωt+ φq) , (2)

and the acceleration as

aq(t) = −ω2rq (t) = −x̂ω2R cos (ωt+ φq)− ŷω2R sin (ωt+ φq) . (3)

The Liénard-Wiechert expressions for the retarded potentials and fields are given in standard

textbooks of classical electrodynamics[10][11] All of the field quantities must be evaluated

at the retarded time tq−ret depending on the time, the source point, and the field point. If

the charge is moving and the field point is not one of high symmetry, the calculation of the

retarded time, and hence the evaluation of the electromagnetic field, may require numerical

calculation.

B. Darwin-Lagrangian Approximations for a Point Charge

In this article, our interest is simply understanding the ideas associated with the ap-

parent paradox noted in the opening paragraph and the validity of going to a continuous

charge or current density. Thus we will restrict our discussion to small particle velocities

uq = ωR << c for the moving point charge +q in the S inertial frame, and to small relative

velocities V << c between two inertial frames S and the S ′. The relative velocity between

the inertial frames is taken in the x-direction V = x̂V . We will retain terms only through
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order V uq/c
2 in any expression for electromagnetic quantities. In this low-speed approxi-

mation and for field points which are not too distant from the source point, we may use the

Darwin Lagrangian[8] and the associated electromagnetic potentials and fields. The Darwin

approximation is vastly easier to work with because there are no retarded times involved.

The electromagnetic potentials following from the Darwin Lagrangian are[8][9]

Φ(r, t) =
∑

q

q

|r− rq(t)|
(4)

and

A (r,t) =
∑

q

q

2c

[
uq (t)

|r− rq(t)|
+

[uq (t) · (r− rq(t))] (r− rq(t))

|r− rq(t)|3

]
, (5)

and the electromagnetic fields are

E (r, t) =
∑

q
q
(r− rq(t))

|r− rq(t)|3

[
1 +

1

2

(
uq (t)

c

)2

− 3

2

(
(r− rq(t)) · uq (t)

|r− rq(t)| c

)2
]

− q

2c2 |r− rq(t)|

[
aq (t) +

[aq (t) · (r− rq(t))] (r− rq(t))

|r− rq(t)|2

]
(6)

and

B (r, t) =
∑

q
q
uq (t)× (r− rq(t))

c |r− rq(t)|3
. (7)

If for our two-charge neutral current loop we choose the field point (r,t) along the z-axis

perpendicular to the plane of the loop, then the retarded-time correction is a fixed quantity

depending on R and z, tret = t−
√
R2 + z2/c, and it is easy to show that the result given by

the Darwin approximation agrees with the exact result through order β2

q = u2

q/c
2, as indeed

it should.

1. First-Order in uq/c and V/c

We are interested in an effect which is first order in the particle speed ux/c and first order

in the relative velocity V/c. In this first-order approximation, we may drop the terms in

the expression for the electric field in Eq. (6) which are already of order uq/c
2 or ω2R/c2

without involving any term in V/c. Thus we may take the electric field as simply

E (r, t) =
∑

q
q
(r− rq(t))

|r− rq(t)|3
. (8)
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2. First-Order in R/r

Finally, we assume that the radius R of the current loop is small compared to the

distance to a field point r = x̂X + ŷY in the xy-plane, R <<
√
X2 + Y 2, so that we can use

the familiar approximations involving the electric dipole moment p =qrq and the magnetic

dipole moment m =qrq × uq/ (2c). Then we find the potentials

Φ (r, t) = q
rq (t) · (r− rp)

|r− rp|3
(9)

and

A (r, t) = q

[
rq (t)× uq (t)

2c

] × (r− rp)

|r− rp|3
(10)

where rp is the location of the center of the current loop. In this approximation, the fields

are given by dipole approximations as

E (r,t) = q

(
3 [rq (t) · (r− rp)] (r− rp)

|r− rp|5
− rq (t)

|r− rp|3

)
(11)

and

B (r, t) = q

{
3

[
(rq × uq)

2c

]
· (r− rp)

|r− rp|5
−
[
(rq × uq)

2c

]
1

|r− rp|3

}
. (12)

C. Time-Varying Electric Quantities in the S Inertial Frame

The position rq (t) and the velocity uq (t) of the moving point charge are varying in time

and lead to time-variations for the electric potential in Eq. (9) and the electric field in

Eq. (11) with the center of the current loop at the origin, rp = 0. On the other hand

the velocity uq (t) of the charge q is always perpendicular to the displacement rq (t) so that

rq (t)×uq (t) = ẑRuq = ẑωR2 is constant in time. Accordingly the vector potential and the

magnetic field are both constant in time as

A (r, t) = A (r) =
m× r

r3
(13)

and

B (r, t) = B (r) =

{
3 (m · rq) rq

r5
− m

r3

}
(14)

where the magnetic moment m is constant in time

m (t) = q

[
(rq × uq)

2c

]
= ẑq

Ruq

2c
= ẑq

ωR2

2c
= ẑm. (15)
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D. Averages and the “Ideal” Magnetic Dipole Moment

1. Averages at time t for the Point-Charge Model

Although the electric potential and electric field of our point-charge magnetic moment

model are varying in time, these electric quantities vanish when averaged over the phase φq

at a single time t in the S inertial frame

〈rq (t)〉φq

= 0, 〈Φ (r, t)〉φq
= 0, and 〈E (r, t)〉φq

= 0. (16)

2. The “Ideal” Magnetic Dipole Moment

This vanishing of the averages of the time-varying electric quantities arising in the point-

charge model for a magnetic moment has suggested the idea of an “ideal” magnetic dipole

moment. The average over the phase angle φq has the same effect as considering many

non-interacting point charges in a current loop and then taking the continuous current limit

of many point charges subdivided repeatedly while maintaining the same magnetic moment.

Indeed, the time-independent magnetic dipole moment m is the only non-vanishing quantity

for our small-radius magnetic moment. If we imagine the radius R of the current loop as

negligible in size, then we have an “ideal” point magnetic dipole of magnetic moment m and

magnetization M(r) = mδ3 (r). The associated current density is Jm (r) = c∇×M (r) =

cm×∇δ3 (r) , while the charge density vanishes ρm (r) = 0, which is consistent with the

charge continuity equation ∂ρm/∂t = −∇ · Jm. In the xy-plane containing the “ideal”

magnetic moment, the only magnetic field will be in the ẑ-direction.

3. “Ideal” Magnetic Toroids and Solenoids

We can imagine forming magnetic toroids and magnetic solenoids as stacks of “ideal”

magnetic dipoles. From this perspective, there are no electric or magnetic field outside a

toroid formed from such “ideal” magnetic moments. Indeed, one can consider a field point

along the axis of a magnetic toroid formed from such “ideal” magnetic and can conclude by

symmetry alone, that the magnetic field must vanish. What we wish to point out is that

this “ideal” magnetic dipole moment involves different results compared to the point-charge

model for the electric field in an inertial frame S ′ in which the magnetic moment is moving.
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III. ANALYSIS OF THE POINT-CHARGE MAGNETIC MOMENT IN THE S′

INERTIAL FRAME

A. Trajectory Equations for the Moving Charge q in the Inertial Frame S′

We will be considering relativistic transformations of the electromagnetic quantities be-

tween the inertial frames labeled by S and S ′. We will take the S ′ inertial frame as moving

with constant velocity V =x̂V relative to the S inertial frame. The displacement of the

charge q in the S ′ inertial frame is obtained by Lorentz transformations x′ = Γ (x− V t) and

y′ = y, z′ = z, and t′ = Γ(t− V x/c2) where Γ =
[
1− (V/c)2

]−1/2
giving

r′q (t
′) = x̂ {ΓR cos [ωt+ φq]− V t}+ ŷR sin [ωt+ φq] . (17)

We note that xq = Γ
(
x′

q + V t′
)
and use the Lorentz transformation for the time t = Γ(t′ +

V x′/c2) to eliminate the unprimed time t in favor of primed quantities,

x′

q = −V t′ +
1

Γ
R cos

[
ωΓ(t′ + V x′

q/c
2) + φq

]
(18)

and

y′q = R sin
[
ωΓ(t′ + V x′

q/c
2) + φq

]
. (19)

These equations give the exact trajectory for the charge in the S ′ inertial frame. Thus, in

the S ′ inertial frame, we have implicit functions for the coordinates x′

q and y′q in terms of

the time t′. However, there seems to be no closed-form explicit solution for these equations.

Thus, the situation here is quite different from that for a charged particle moving with

constant velocity where the trajectory in a different relativistic inertial frame can be given

in closed form.[11]

B. Trajectory of the Moving Charge in the Darwin-Lagrangian Approximation

Although there is no exact closed-form expression for the trajectory of the charge q in

the S ′ inertial frame, we can find an approximate expression within the approximations we

have introduced. Thus if we keep only terms through first order in V/c and first order in

uq/c, and through first order in rq/r, then we find for the trajectory of the moving charge,

x′

q (t
′) = Γ (xq − V t) ≈ xq (t)− V t = xq (t)− V t′, y′q (t

′) = yq (t) , z′q = zq = 0 (20)
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and

t′q = Γ
(
t− V xq (t) /c

2
)
≈ t− (V/c)xq (t) /c = t− (V/c)xq (t

′) /c, (21)

and where the displacement xq (t) in the unprimed S inertial frame is given in Eq. (1).

We notice that the approximate transformation involving first-order terms for the relative

speed V gives a transformation for the displacement x′

q in Eq. (20) which is the same as

is involved for nonrelativistic physics. It is the time transformation which is completely

different. The time transformation is first-order in the relative velocity V between the S

and S ′ inertial frames but is of order 1/c2. Since we are interested in averages over the

phase φq (or equivalently averaging over many charged particles) at a single time t in the

S inertial frame or at a single time t′ in the S ′ inertial frame, the time transformation may

lead to quite different results for averages in different inertial frames.

C. Electric Dipole Moment for the Charges in S′

In the S ′ inertial frame the charge q has the location x′

q (t
′) = xq (t) − V t = xq (t) −

V t′, y′q (t
′) = yq (t) at time t′ = t− (V/c)xq (t) /c = t− (V/c)xq (t

′) /c. Then x′

q(t
′) + V t′ =

xq(t) or keeping only first-order terms in V/c, we have

x′

q(t
′) + V t′ = xq

[
t′ +

(V )

c

xq(t)

c

]

≈ R cos

{
ωq

[
t′ +

(V )

c

xq(t)

c

]
+ φq

}

= R cos (ωqt
′ + φq) cos

[
ωq

(V )

c

xq(t)

c

]

−R sin (ωqt
′ + φq) sin

[
ωq

(V )

c

xq(t)

c

]

= R cos (ωqt
′ + φq)−

(V )

c

ωqR

c
R cos (ωqt

′) sin (ωqt
′ + φq) (22)
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and

y′q(t
′) = yq(t) = y

[
t′ +

(V )

c

xq(t)

c

]

= R sin

{
ωq

[
t′ +

(V )

c

xq(t)

c

]
+ φq

}

= R sin (ωqt
′ + φq) cos

[
ωq

(V )

c

xq(t)

c

]

+R cos (ωqt
′ + φq) sin

[
ωq

(V )

c

xq(t)

c

]

= R sin (ωqt
′ + φq) +

(V )

c

ωqR

c
R cos2 (ωqt

′ + φq) , (23)

where we have noted that sin (a + bx/c2) ≈ sin a+(bx/c2) cos a and cos (a + bx/c2) ≈ cos a−
(bx/c2) sin a through order 1/c2. Our results are first order in V/c and first order in uq/c =

ωR/c.

If we calculate the φq-average electric dipole moment at time t′, we find p′ (t′) = qr′q (t
′) =

x̂qx′

q (t
′) + ŷqy′q (t

′) gives an average at time t′

〈p′ (t′)〉 =
〈
qr′q (t

′)
〉
= x̂q

〈
x′

q (t
′)
〉
+ ŷq

〈
y′q (t

′)
〉
= ŷ

V ωqR
2

2c2
, (24)

which does not vanish in S ′. The electric dipole moment of the ±q current loop has

vanishing average value in S but non-zero average in S ′. Thus, indeed averages over

extended electromagnetic systems at a fixed time t or t′ can vary with the choice of inertial

frame.

D. Scalar Potential and Electric Field Ex in the S′ Inertial Frame

All the approximations which held in the S inertial frame are also valid in the S ′ inertial

frame. Thus, in the S ′ inertial frame, the scalar potential due to the charge ±q is given by

Φ′ (r′, t′) =
p′ (t′) ·

(
r′ − r′

p

)
∣∣r′ − r′

p

∣∣3 =
qr′ (t′) ·

(
r′ − r′

p

)
∣∣r′ − r′

p

∣∣3 (25)

with the center of the dipole located at r′
p
= −VT ′. If we take the field point in the

xy-plane at X ′, Y ′, 0, T ′, this becomes

Φ′ (X ′, Y ′, 0, T ′) = q
(X ′ + V T ′) x′

a (T
′) + Y ′y′q (T

′)

[(X ′ + V T ′) + Y ′2 ]
3/2

, (26)
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where x′

q and y′q are given in Eqs. (22) and (23). The φq-average value at time T ′ is

〈Φ′ (X ′, Y ′, 0, T ′)〉φq
= q

(X ′ + V T ′) 〈x′

a (T
′)〉+ Y ′

〈
y′q (T

′)
〉

[
(X ′ + V T ′)2 + Y ′2

]3/2

= q
V ωqR

2

2c2
Y ′

[
(X ′ + V T ′)2 + Y ′2

]3/2 (27)

from Eq. (24).

The electric field in S ′ is given by

E′ (r′,t′) = q

(
3
[
r′q (t

′) ·
(
r′ − r′

p

)] (
r′ − r′

p

)
∣∣r′ − r′

p

∣∣5 −
r′q (t

′)
∣∣r′ − r′

p

∣∣3

)
(28)

or

E′ (X ′, Y ′, 0, T ′) = q

(
3
[
x′

q (t
′) (X ′ + V T ′) + y′q (t

′)Y ′
]
[x̂ (X ′ + V T ′) + ŷY ′]

[
(X ′ + V T ′)2 + Y ′2

]5/2

−
x̂x′

q (t
′) + ŷy′q (t

′)
[
(X ′ − V T ′)2 + Y ′2

]3/2

)
(29)

where the moving dipole has its center at r′
p
(t′) = −Vt′. The φq-average at time T ′ is

〈E′ (X ′, Y ′, 0, T ′)〉φq
= q

(
3
[〈
x′

q (t
′)
〉
(X ′ + V T ′) +

〈
y′q (t

′)
〉
Y ′
]
[x̂ (X ′ + V T ′) + ŷY ′]

[
(X ′ + V T ′)2 + Y ′2

]5/2

−
x̂
〈
x′

q (t
′)
〉
+ ŷ

〈
y′q (t

′)
〉

[
(X ′ + V T ′)2 + Y ′2

]3/2

)

=

[
V ωqR

2

2c2

](
3
Y ′
[
x̂ (X ′ + V T ′)′ + ŷY ′

]
[
(X ′ + V T ′)2 + Y ′2

]5/2 − ŷ
[
(X ′ + V T ′)2 + Y ′2

]3/2

)

=

[
V ωqR

2

2c2

](
3
Y ′ [x̂X ′ + ŷY ′]
[
(X ′)2 + Y ′2

]5/2 − ŷ
[
(X ′)2 + Y ′2

]3/2

)
(30)

again from Eq. (24).

E. The Vector Potential and Magnetic Field in S′

Since the vector potential is already first order in 1/c, we may use nonrelativistic trans-

formations between S and S ′ when dealing with the vector potential. The vector potential

is simply
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A′ (X ′, Y ′, 0, T ′) = m
−x̂Y ′ + ŷ (X ′ + V T ′)
[
(X ′ + V T ′)2 + Y ′2

]3/2 , (31)

where the magnetic moment is unchanged,

m′ (t) = q

[(
r′q × u′

q

)

2c

]
= ẑq

ωR2

2c
= ẑm. (32)

since the expression for m is already first order in 1/c and we are dropping terms in 1/c3.

The vector potential leads to a magnetic field which for field points r,t in S or r′, t′ in S ′ is

purely in the z-direction and

B (X ′, Y ′, 0, T ′) = −ẑ
m

[
(X ′ + V T ′)2 + Y ′2

]3/2 . (33)

F. Lorentz Transformation of the Average Values

We saw above that in the S inertial frame, the φq-average values at a fixed time t for

the point-charge model for a magnetic dipole agreed with the values given for the “ideal”

magnetic dipole moment. If we carry out Lorentz transformations for the “ideal” magnetic

moment from the S to the S ′ inertial frame, we find

Φ′

m
(r′, t′) ≈ 0− V

c
Ax (r,t) (34)

giving

Φ′

m
(X ′, Y ′, 0, T ′) ≈ 0− V

c
m

−Y

(X2 + Y 2)3/2

= −V

c
m

−Y ′

[
(X ′ + V T ′)2 + Y ′2

]3/2

≈ V

c
m

Y ′

[X ′2 + Y ′2]3/2
(35)

through first order in V/c. We notice that this result for the scalar potential agrees with

the average value for the time-varying scalar potential given in Eq. (27). However, the

average value does not include the additional time-varying term involving x′

q (t
′) in Eq.

(26). It is this additional time-varying term which, when combined with the relativistic

time dependence, gives an average value for the electric field parallel to the velocity of the

moving current loop in the S ′ inertial frame.
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Since the φq-average scalar potential vanishes in S, the φq-average vector potential (within

our approximations) is given byA′ (r′, t′) ≈ A (r,t) , since the expression is already first order

in uq/c = ωR/c and we are dropping any terms in 1/c3. Since the only corrections to the

non-relativistic expressions are already of order 1/c2 in Eq. (21), we have

A′

m
(X ′, Y ′, 0, T ′) ≈ m

−x̂Y ′ + ŷ (X ′ + V T ′)
[
(X ′ + V T ′)2 + Y ′2

]3/2 . (36)

Working from the “ideal” magnetic dipole potentials in Eqs. (35) and (36), we find the

magnetic field from B = ∇×A giving

B′

m
(X ′, Y ′, 0, T ′) = −ẑ

m
[
(X ′ + V T ′)2 + Y ′2

]3/2 , (37)

and the electric field from E = −∇Φ− (1/c)∂A/∂t giving

E′

m
(X ′, Y ′, 0, T ′) = −V

c
m





−ŷ
[(
(X ′ + V T ′)2

)2
+ Y ′2

]
3/2

− 3
x̂ (X ′ + V T ′) Y ′ + ŷ (Y ′)2

[(
(X ′ + V T ′)2

)2
+ Y ′2

]
5/2





− 1

c

∂

∂T ′

(
m

−x̂Y ′ + ŷ (X ′ + V T ′)
[
(X ′ + V T ′)2 + Y ′2

]3/2

)

=
V

c
m

ŷ
[(
(X ′ + V T ′)2

)2
+ Y ′2

]
3/2

+ 3
x̂ (X ′ + V T ′)Y ′ + ŷ (Y ′)2

[(
(X ′ + V T ′)2

)2
+ Y ′2

]
5/2

− Vm

c





ŷ
[
(X ′ + V T ′)2 + Y ′2

]3/2 − 3
[−x̂Y ′ + ŷ (X ′ + V T ′)] (X ′ + V T ′)

[(
(X ′ + V T ′)2

)2
+ Y ′2

]5/2





=
V

c
m





ŷ
[(
(X ′)2

)2
+ Y ′2

]3/2 + 3
x̂ (X ′)Y ′ + ŷ (Y ′)2

[(
(X ′)2

)2
+ Y ′2

]5/2





− Vm

c

{
ŷ

[
(X ′)2 + Y ′2

]3/2 − 3
[−x̂Y ′ + ŷ (X ′)] (X ′)
[
(X ′)2 + Y ′2

]5/2

}

= ŷ
V

c
m

{
3 (X ′2 + Y ′2)
[
(X ′)2 + Y ′2

]5/2

}
= ŷ

V

c
m

{
3

[
(X ′)2 + Y ′2

]3/2

}
. (38)

G. The “Ideal” Magnetic Moment Model Leaves Out Terms in the Electric Po-

tential and Electric Field

We notice that if we use the φq-average value of the point-charge model or the “ideal”

magnetic moment model in the S inertial frame, there is no component of the electric field
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in the direction of the relative velocity in the S ′ inertial frame. The tensor transformation

Ex = E ′

x for the electromagnetic fields[6] [7] shows this same discrepancy depending upon

whether or not one takes the average values in the S inertial frame. If one takes the average

before making the Lorentz transformation to the S ′ inertial frame, one loses the time-varying

electric dipole which gives a time-varying scalar potential and a time-varying electric field

Ex in the x-direction. The time-varying expressions in the new S ′ inertial frame then

lead to new average values in this frame at a single time t′ because of the space-coordinate

dependence of the time transformation given in Eq. (21). Average values at a fixed time

lead to different averages in different inertial frames. This inertial-frame dependence of

the averages is strikingly illustrated by the absence of any electric dipole moment for our

point-charge system in the S inertial frame and the existence of a non-zero average dipole

moment for our system in the S ′ inertial frame. The electromagnetic field tensor at a

spacetime point is a mathematical representation of a physical object and the reprentation

has tensor transformations between inertial frames. Averages at a single time have no

physical existence but depend upon the choice of inertial frame in which the average is

evaluated.

IV. COMMENTS ON THE ANALYSIS

A. Straight Line Current and Point-Charge Models

When dealing with relativity and electrodynamics, all textbooks discuss a straight line

current. In this case, Lorentz transformations do not betray the importance of using point-

charge models for the currents. The order of Lorentz transformations and the limit to

continuous currents makes no difference. Of course, when trying to give a physical picture

of what is involved in the sudden appearance of a non-zero charge density in a moving

inertial frame S ′ from a neutral wire in the electrically neutral wire, the textbook discussion

retreats from the continuous-current limit over to the point-charge picture. The textbook

makes the Lorentz transformation in the point-charge picture, and then goes back to the

continuous-current limit.
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B. Failures of the Continuous-Current Model for a Magnet Moment

The straight-line continuous current which appears in all the textbooks betrays no error

in interchanging the continuous-current limit and Lorentz transformation. However, in the

case of a current loop, the interchange of the order of continuous-current limits and Lorentz

transformation is not successful. Use of the continuous limit before making the Lorentz

transformation leaves out an important part of the time-varying electric potential and time-

varying electric field. The use of the average potential or average electric field in the S

inertial frame leads to the “ideal” magnetic moment which has no electric field. Then use of

Lorentz transformation omits the electric field parallel to the relative velocity between the

relativistic inertial frames. Thus, the interchange of averages and Lorentz transformations

fails for this reason.

The use of the “ideal” magnetic moment model also fails for another reason. The

“ideal” magnetic moment may start with a continuous current I and finite radius R, giving

a magnetic moment of magnitude m = IπR2/c, but it takes the limit to a very small (zero)

radius limit. If a point-charge mode of the current loop is used, then one becomes aware

that the magnetic moment magnitude is m = quqR/ (2c) = qωR2/ (2c), and the limit of

a very small radius means that the current I = qωR/ (2πR) = qω/ (2π) must diverge. If

speed of the charges is less than c, then the charge density must diverge.

Use of the “ideal” magnetic moment model also tends to ignore the possibility of Faraday

induction because the area πR2 of the loop is taken as negligible. Thus, the Faraday

induction due to the changing magnetic field of a passing charge e tends to be ignored since

the area of the “ideal” magnetic moment is so small. At the same time, the magnetic force

on the “ideal” magnetic moment due to a passing charge e moving in the same plane as

the magnetic dipole is given by Fon m = −∇ (−m ·Be (r,t)) = m∇Bz (r,t) and, in general,

will have a force component parallel to the relative velocity between the passing charge

and the magnetic moment. However, this force on the“ideal” magnetic moment seems

unconnected with a force on the passing charge or with ideas of changing electromagnetic

energies. The use of “ideal” magnetic moments and “ideal” magnets has obscured the

classical electromagnetic interaction between a magnet and a passing charge.
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C. Effect First Order in the Relative Velocity Between the Inertial Frames

1. Relativistic Effects of Order V 2/c2

Most relativistic experimental effects involve order (V/c)2 where V is the relative velocity

between the inertial frames. Thus, the Michelson-Morley experiment involves length con-

traction between inertial frames which is second order in the relative velocity between the

frames. Similarly, the slowing down of decays for moving unstable particles involves time

dilation which is again second order. In contrast, the discrepancy between the results from

the point-charge model and the “ideal” magnetic moment model corresponds to a first-order

effect in the relative velocity V between the frames.

2. Relativistic Effects of Order V/c

In the present point-charge model for a magnetic moment, there is a physical effect which

is first order in the relative velocity V between the inertial frames. If we consider an external

charge e passing our current loop, the existence of a force on the charge e in the direction

of the velocity depends upon describing the system in terms of a point-charge model for the

current loop. Using the point-charge model, there will be forces upon both the charge e and

upon the current loop leading to a relative lag or lead depending upon which side of the loop

the charge passes. In the S inertial frame in which the current loop has no average velocity,

the forces are associated with magnetic fields of the charge e creating a magnetic force on the

current loop and a Faraday induction effect of order V ux/c
2 leading to a force back on the

charge e. In the frame S ′ in which the current loop is moving and the charge e is initially

at rest, all the forces are electric attractions or repulsions of order V ux/c
2. This situation is

analyzed in detail in the literature.[3] However, if one goes to the “ideal” magnetic moment

model for the magnetic moment, then any classical electromagnetic analysis is obscure at

best. Thus the Faraday induction becomes problematic in the S inertial frame because the

size of the current loop is neglected; also, in the S ′ inertial frame, there is no electric field

in the direction of the relative velocity of the “ideal” magnetic moment.
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3. The Fizeau Experiment

The Fizeau experiment[12] involving light traveling in moving water is one of the few

natural phenomena involving an effect first order in the relative velocity between the inertial

frames. The effect is described in terms of relativistic addition of velocities where at a single

spacetime point the transformation of the velocity between S and S ′ inertial frames is

u′

x =
ux − V

1− (V ux/c2)
≈ ux

(
1 +

V ux

c2

)
− V. (39)

The nonrelativistic addition of velocities gives simply u′

x = ux − V , but the additional

relativistic correction in order V ux/c
2 is needed to bring high speeds down to values less

than c in any inertial frame. In the Fizeau experiment, the water provides the relative

motion between the inertial frames of water and lab, and the speed of light c/n relative to

the water (where n is the index of refraction of the water) provides the second velocity.

4. The Interaction of a Magnet and a Passing Charge

A second example of a first-order effect (made famous by the claims of Aharonov and

Bohm)[4] involves the interaction of a passing charge e and a magnet. In the case of a magnet

and passing charge, the relative velocity V between the charge and the magnet provides the

relative velocity between the inertial frames S and S ′, and the speed ux of the point charges

in the magnet provides the second velocity. This situation, of course, is directly related

to the calculations in the present article where the speed of the point charge +q in the S ′

inertial frame involves exactly the relativistic correction term V ux/c
2. In the S ′ inertial

frame, the motion of the charge +q has a larger relativistic slowing-down factor when it is

moving at high speed (nonrelativistically ωR + V ) than when it is moving with the slower

speed (nonrelativistically ωR − V ). Thus the positive point-charge model for the current

loop develops a relativistic electric dipole moving where the relativistic 1/c2 correction to

high-speed motion is on the positive side of the dipole and the slower-speed relativistic

correction is on the negative side of the dipole. This situation involving relativistic speed

corrections is just the reverse of the V 2/c2 change in the density of a of a line charge λ of

finite length which is Lorentz contracted in the direction of motion, but the total charge

is Lorentz invariant. Thus, for the line charge, the faster the line charge moves relative to

18



some inertial frame, the larger the charge density of the finite line charge.

D. Conclusion

Once again, we emphasize that tensor transformations of mathematical representations

for electromagnetic quantities hold only at a single spacetime point. Here we have given an

example showing that averages over an extended point-charge model of a current loop do

not give reliable answers under Lorentz transformations between inertial frames. We also

emphasize that continuous current distributions can disguise the point-charge nature of the

Lorentz transformations for the currents at a spacetime point as seen in different inertial

frames. Finally, we point out that the use of an “ideal” magnetic dipole or an “ideal” mag-

net, which appear in the literature, disguises appropriate Lorentz transformations between

inertial frames.
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