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Abstract

A longstanding goal in colloidal active matter is to understand how gradients in

fuel concentration influence the motion of phoretic Janus particles. Here, we present

a theoretical description of the motion of a spherical phoretic Janus particle in the

presence of a radial gradient of the chemical solute driving self-propulsion. Radial

gradients are a geometry relevant to many scenarios in active matter systems and

naturally arise due to the presence of a point source or sink of fuel. We derive an

analytical solution for the Janus particle’s velocity and quantify the influence of the

radial concentration gradient on the particle’s trajectory. Compared to a phoretic

Janus particle in a linear gradient in fuel concentration, we uncover a much richer set

of dynamical behaviors, including circular orbits and trapped stationary states. We

identify the ratio of the phoretic mobilities between the two domains of the Janus

particle as a central quantity in tuning their dynamics. Our results provide a path
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for developing novel protocols for tuning the dynamics of phoretic Janus particles and

mixing fluid at the microscale. In addition, this work suggests a method for quantifying

the surface properties of phoretic Janus particles, which have proven challenging to

probe experimentally.

Introduction

Phoretic Janus particles are a novel class of colloids that show promise for applications

related to mixing, sorting, and chemical delivery.1–4 These typically micron-sized particles

self-propel due to their unique ability to generate and sustain chemical gradients across their

surface.5,6 The particles’ Janus nature, where their surface is composed of two chemically

distinct regions, is a common design feature for introducing self-propulsion. Experimentally,

it is possible to tune both the size and composition of these regions, and there now exists a

sizeable catalog of phoretic Janus particles, including bimetallic and platinum-coated colloids,

biodegradable Janus micromotors, and colloidal particles coated in two different enzymes.7–17

An appropriate fuel source is a second design element nearly universal to these systems.

Hydrogen peroxide is a popular choice as one of the particle regions is usually metallic and

catalytic. However, the fuel choice is flexible depending on the particle’s composition. For

example, enzyme-coated particles use the corresponding substrate as the fuel source.18 With

their diverse compositions and fuel sources, phoretic Janus particles offer a robust design

platform for engineering behavior at the microscale.

Notably, the ability of these particles to autonomously navigate complex microfluidic en-

vironments makes them an ideal candidate for a range of chemical delivery and sensing appli-

cations, including targeted drug delivery and environmental remediation .19–30 For example,

recent in situ work shows CaCO3 Janus particles exhibit a pH sensitivity that can induce

a chemotactic response toward HeLa cancer cells.31 Regarding environmental remediation,

Wang et al.28 recently proposed a strategy for removing microplastics using photocatalytic

TiO2 Janus particles. Additionally, phoretic Janus can serve as a tool for fluid mixing and
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directing self-assembly at the microscale.32,33 Examples include restructuring colloidal gels

by incorporating a small fraction of phoretic Janus particles into the gel network,34–37 power-

ing primitive micromachines,38–40 and generating bulk fluid flow by fabricating self-pumping

walls patterned with Janus micropillar arrays41 or by trapping phoretic Janus particles near

boundaries or surfaces.42,43

Any application utilizing phoretic Janus particles requires a deep understanding of how

they explore and respond to their environment. A ubiquitous feature of these systems is

the role of gradients in chemical fuel concentration, which can dramatically affect their

single particle and collective behavior.44–60 Several studies have focused on the behavior of

a single phoretic Janus particle in a linear fuel concentration gradient and shown phoretic

Janus particles will undergo a chemotactic response where the particle will reorient to move

parallel or anti-parallel to the gradient.61–64 However, the characterization of the motion of

phoretic Janus particles in chemical gradients of other geometries is limited. A critical case

that has received lesser attention and the focus of this study is radially symmetric gradients

generated from the presence of a point sink or source of the chemical fuel self-propelling the

particle.

Using a combination of analytical theory and numerical simulation, we quantify the

influence of the radial concentration field on the Janus particle’s trajectory. The particle

can exhibit a rich array of behaviors that strongly depend on its surface properties, initial

configuration, and the strength of the sink or source. The particle can migrate toward or

away from the sink or source, similar to a passive particle in an external chemical gradient. In

addition, we identify conditions that trap the particle in a stationary state at a fixed distance

from the sink or source. Furthermore, the particle’s motion is no longer rectilinear as in the

case of a particle in a linear fuel concentration gradient but can undergo a spiraling motion.

We identify conditions that stabilize the spiraling trajectories leading to a circular orbit

about the sink or source. As stationary and orbiting states offer an innovative way to blend

and pump fluid continually, our findings suggest potential applications in fluid mixing and
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Figure 1: Schematic of a spherical Janus particle with Janus balance χ = − cosΦ immersed in
solution near a source or sink of the same chemical solute driving self-propulsion. The distance
of the particle from the source R and its orientation Θ = cos−1(R̂ · d̂) fully specify the particle
configuration.

microscale transport. In addition, the characteristic dynamics of a phoretic Janus particle

in the presence of a point sink or source can serve as a diagnostic tool to identify its surface

properties, which has been an experimental challenge.

Model System – We consider a phoretic Janus particle of diameter a with bilateral sym-

metry along a predefined orientation unit vector d̂ as shown in Fig. 1. We implement a

standard generic model for the phoretic self-propulsion mechanism where one region of the

particle (gray) emits a particular chemical solute and the other region absorbs the solute

(blue).65,66 The chemical solute represents the fuel driving self-propulsion. The relative ra-

tio of the absorbing to the emitting region is defined via the Janus balance χ such that a

half-covered particle has χ = 0, a particle emitting solute over its entire surface has χ = 1,

and for a fully absorbing particle χ = −1. To preserve mass balance, the rate of emission Qe

and absorption Qa of the solute are constant, and there is no net change of solute such that

SeQe − SaQa = 0, where Se and Sa are the surface areas of the emitting and absorbing re-

gions of the particle, respectively. Under these steady-state conditions, a simple relationship

exists between the emission and absorption rates of the two regions and the Janus balance

χ given by Qa/Qe = (1 + χ)/(1− χ).

Here, we focus on the athermal low Reynolds number limit, where Brownian motion is
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negligible, and particle motion is dominated solely by the phoretic self-propulsion mechanism.

In this regime, the particle’s motion is deterministic and, as we demonstrate, confined to

a two-dimensional plane. The position of the particle relative to the source is given by a

vector R = R cosφ x̂+R sinφ ŷ where R is the radial distance from the source and φ is the

angle between R and the positive x-axis as shown in Fig. 1. We obtain the trajectory of the

particle by integrating the equations of motion:

dR

dt
= UR (1a)

dφ

dt
=

Uφ

R
(1b)

dγ

dt
= Ωz (1c)

where UR = U · R̂ and Uφ = U · φ̂ are the radial and tangential components of the

translation velocity U , respectively. The corresponding radial and tangential unit vectors

are given by R̂ = cosφ x̂ + sinφ ŷ and φ̂ = ẑ × R̂ = − sinφ x̂ + cosφ ŷ, respectively. The

orientational dynamics of the particle are given by Eq. (1c) where γ is the angle between the

orientation vector d̂ and the positive x-axis and Ωz is the only nonzero component of the

angular velocity of the particle. It is useful to define an auxiliary angle Θ = γ − φ which

is the angle between R̂ and the orientation vector d̂, and from Eq. (1b,c) it follows that

dΘ/dt = dγ/dt− dφ/dt = Ωz − Uφ/R. A particle’s configuration relative to the singularity

is fully specified by Θ and R.

The Stokes equations prescribe the dynamics of the fluid and are given by

η∇2u−∇p = 0 (2a)

∇ · u = 0 (2b)

where η, u and p are the dynamic viscosity, fluid velocity, and pressure, respectively. In the
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laboratory frame, the boundary conditions are u = 0 at infinity and on the surface of the

particle u = U +Ω× (r− r0) +us where us is the slip velocity of the fluid at the particle’s

surface. Using the force and torque-free condition on the particle and the Lorentz reciprocal

theorem,67 the translation and angular velocity of a particle in an unbounded domain are68

U = − 1

4πa2

∫

s

us dS (3a)

Ω = − 3

8πa3

∫

s

n̂× us dS (3b)

where dS is a differential element of the surface, and the domain of integration is over the

entire surface of the particle S.

Equation (3) relates the slip velocity on the particle surface to the net motion of the

particle. The slip velocity arises from the interaction between the solute molecule and the

particle’s surface. It is well-known that a solute gradient along the particle’s surface induces

an osmotic pressure gradient, generating a fluid flow within the Debye layer of the particle’s

surface. In the thin Debye layer limit,5 this slip velocity is assumed to be located on the

Janus particle surface and given by

us = −b(n̂)∇sC
∣∣
s

(4)

where C is the fuel concentration field, ∇s = (I − n̂n̂) · ∇ the tangential projection of the

surface gradient operator, and n̂ the normal unit vector on the Janus particle surface directed

into the bulk solution. The phoretic mobility b(n̂) can be either positive or negative and is

determined by the details of the molecular interaction between the Janus particle and the

solute particles.5,69 We assume the particle’s phoretic mobility is constant in a given surface

region and denote the particle’s absorbing and emitting sides as ba and be, respectively. A

central quantity in this study is the ratio of the phoretic mobilities of the two regions, which

we call the phoretic mobility ratio and denote by β = ba/be.
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We treat the solute flux as being purely diffusive such that the fuel concentration field

evolves according to the continuity equation ∂tC = D∇2C+α δ(r) where D is the diffusivity

of the solute and α is the strength of the singularity, which can be positive or negative.

Furthermore, it is reasonable to assume the fuel concentration field relaxes rapidly with

respect to the particle’s motion such that we can neglect its time dependence and assume

∂C/∂t = 0. Under these conditions, the fuel concentration C is given by Laplace’s equation

with a point singularity at the origin

D∇2(C − C∞) + α δ(r) = 0 . (5)

The boundary condition on the surface of the Janus particle is given by

−Dn̂ · ∇C(r) = QeH(n̂ · d̂+ χ)−Qa

[
1−H(n̂ · d̂+ χ)

]
(6)

where H(x) is the Heaviside function. The boundary condition for the fuel concentration

is assumed to be constant at infinity and denoted by C∞.

To summarize our workflow for obtaining the particle’s trajectory, we first solve Eq. (5)

with the appropriate boundary conditions to determine the concentration gradient along the

surface of the Janus particle. Once the gradient of the concentration field is known, we can

compute the slip velocity along the surface of the particle via Eq. (4), which in turn furnishes

the translation and angular velocities via Eq. (3). The final step is to obtain the particle’s

trajectory by integrating Eq. (1) with the known translational and angular velocities.

Results

A central outcome of this work is an analytical solution for the translational and rotational

velocity of the Janus particle as a function of the ratio of the phoretic mobilities β = ba/be, the

intrinsic velocity of the particle U0 = Qebe/(2D), and the effective strength of the singularity
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Figure 2: Classification of the different types of fixed points that can arise as a function of the ratio
of the phoretic mobilities β and singularity strength α̃ for a phoretic Janus particle with χ = 0 and
U0 = 1. For clarity, the fixed point state diagrams are organized based on the particle’s orientation:
(a) Θ = 0, (b) Θ = π, and (c) 0 < Θ < π. The purple points correspond to representative values
in the α̃β-phase space where the RΘ-phase portrait and real-space trajectories are given in Fig. 3
and Fig. 4. The dashed line at β = −1 corresponds to where the velocity vanishes for an isolated
Janus particle, demarcating whether a particle will propel along or opposite its orientation vector.

α̃ = α/(4πa2Qe). We present the final result here for brevity, but a detailed derivation is

available in the Supporting Information.70 The radial, tangential, and angular velocities of

the particle are given by

UR

U0

= Γ[χ, β] cosΘ− α̃

(
2
a2

R2
− (1− β)M [χ,R,Θ]

)
(7a)

Uφ

U0

= sinΘ

(
Γ[χ, β]− α̃(1− β)N [χ,R,Θ]

)
(7b)

Ωz

U0/a
= −3

2
α̃(1− β) sinΘ ω[χ,R,Θ] (7c)

where Γ[χ, β] = 1 + χ − (1 − β)B[χ] is a positive dimensionless parameter that modulates

the particle’s intrinsic velocity. The functional form of B[χ] is given in the Supporting Infor-

mation70 along with a plot illustrating its dependence on the Janus balance χ, which shows

B[χ] = 0 for χ = −1 and χ = 1, and obtains its maximum value of B[χ] = 0.5 for χ = 0.
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The dimensionless parameters M [χ,R,Θ], N [χ,R,Θ], and ω[χ,R,Θ] are given as infinite se-

ries whose explicit form are in the Supporting Information.70 Each dimensionless parameter

is a positive monotonically decreasing function of R where the leading order term decays

as 1/R2. For the equal Janus balance case χ = 0, we show the radial dependence of these

dimensionless parameters for different values of the orientation Θ in the Supporting Informa-

tion.70 The analytical solution for the velocities and the resulting trajectories are in excellent

agreement with Boundary Element Method simulations (see Supporting Information70).

The particle’s motion is confined to the plane containing its orientation vector d̂ and

radial vector R̂ and the only nonzero component of the angular velocity is normal to this

plane. The first terms of Eqs. (7a) and (7b) correspond to the translational velocity of

an isolated phoretic Janus particle. The second terms in each expression correspond to the

velocity induced by the radial gradient generated by the singularity. Far from the singularity

(i.e., R → ∞), these terms vanish, and Eq. (7) reduces to that of a phoretic Janus particle in

free space. The angular velocity of the particle Ωz [Eq. (7c)] is due exclusively to the presence

of the singularity and is strictly zero when β = 1. For other values of β, the presence of the

singularity can induce particle rotation.

As the motion of the Janus particle is deterministic and completely specified by its

initial position and orientation, we find that unless there exists an orbiting trajectory or a

stationary point where the velocities vanish, the particle will either eventually collide with

the singularity or move off to infinity. Thus, a natural scheme for classifying the dynamical

behavior is identifying when fixed points occur as a function of the singularity strength α̃

and the particle’s surface properties.

The analytical solution for the particle’s velocity facilitates determining the location of

fixed points and the particle’s trajectory for any α̃, β, χ, or U0. However, for simplicity,

we restrict our discussion to a particle with equal Janus balance χ = 0 and U0 = 1. The

equal Janus balance case is representative of many experimental systems and qualitatively

illustrates the main features of the dynamics, including the emergence of fixed points. The
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Figure 3: Dynamics near a chemical source: Phase portrait (top) and real-space trajectories
(bottom) for phoretic Janus particles with different ratios of the phoretic mobilities β in the presence
of a point source α̃ = 10. For each plot, particles have an equal Janus balance χ = 0, and the
intrinsic velocity of the particle is U0 = 1. The fixed points are shown as purple circles, and the
RΘ-phase space trajectories and real space trajectories are color-coded accordingly. Videos of real-
space trajectories are provided in the Supporting Information.70

most critical parameters impacting a particle’s dynamics are the phoretic mobility ratio β

and the singularity strength α̃. The singularity strength α̃ is the only direct and easily

controllable parameter of the problem, whereas the material properties of the Janus particle

will determine the phoretic mobility ratio β. Hence, we investigate the occurrence of fixed

points as a function of α̃ and β, which we refer to as the α̃β-phase space.

For each point in the α̃β-phase space, we conducted an exhaustive search as a function

of R and Θ to identify where the different components of the velocities vanish. In our fixed

point classification scheme, we recognize a trapped or stationary state when UR, Uφ and

dΘ/dt vanish and an orbiting state when only UR and dΘ/dt vanish with Uφ remaining

finite. As shown in Fig. 2, by analyzing the eigenvalues of the Jacobian about a fixed

point,71 we identify three types of stationary states: stable, unstable, and saddle, as well as

an orbiting state. Stable fixed points are stationary states where any small perturbation in

R or Θ will result in the particle returning to the initial fixed point. Unstable fixed points
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Figure 4: Dynamics near a chemical sink: Phase portrait (top) and real-space trajectories (bottom)
for phoretic Janus particles with different ratios of the phoretic mobilities β in the presence of a
point sink α = −10. The other parameters are the same as Fig. 3, i.e., χ = 0 and U0 = 1. Videos
of real-space trajectories are provided in the Supporting Information.70

exhibit opposite behavior where any small perturbation in R or Θ will lead to the particle

moving away from the fixed point. Saddle points are of a mixed character where it is stable

for small perturbations in R and unstable for perturbations in Θ, or vice versa. The defining

feature of an orbiting state is that the particle’s trajectory executes a closed circular path

about the singularity. We use a similar classification for the stability of orbiting states.

For clarity, the fixed point state diagram is divided based on the particle’s orientation

where Fig. 2(a,b,c) corresponds to Θ = 0, Θ = π and 0 < Θ < π, respectively. For the

values of α̃ and β located in the white regions of Fig. 2, no fixed point exists for any position

and orientation. An important landmark in the α̃β-phase space is the value of β, where the

particle’s intrinsic velocity vanishes. From Eq. (7), the intrinsic velocity vanishes for values

of β that satisfy 1 + χ− (1− β)B[χ] = 0. In the equal Janus balance case, B[χ = 0] = 0.5,

and thus the intrinsic velocity is zero for β = −1 (dashed line in Fig. 2), For this value of β,

any particle motion is due solely to the presence of the radial gradient. For values of β < −1,

an isolated particle with U0 > 0 moves with the absorbing side of the particle in front (i.e.,

along the −d̂ direction in Fig. 1), and for β > −1, the particle moves with the emitting side

of the particle in front.
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Figure 2(a) highlights the region in the α̃β-phase space where fixed points exist for Θ = 0.

In this case, the orientation vector d̂ is parallel to the radial vector R (i.e., the emitting side

of the particle is furthest from the source) and from Eq. (7), Uφ = Ωz = 0. Most fixed points

are saddle points and occur for a point source α̃ > 0. However, there is a narrow region

between −1 < β < 0 where we find saddle points for a point sink. Additionally, there is

a narrow region 0 ≤ β ≤ 1 where it is possible to have an unstable fixed point. A wider

variety of fixed points occur for Θ = π, where the emitting side of the particle is closest to

the source [see Fig. 2(b)]. As the phoretic mobility ratio increases, there are regions in the

α̃β-phase space with an unstable stationary point, both an unstable point and saddle point,

a saddle point, and a stable point. When a particle is in the presence of a point source, only

saddle points are observed for Θ = π, and the unstable and stable fixed points arise in the

presence of a point sink. For intermediate orientations 0 < Θ < π, we find all fixed points

are orbiting states and are more prevalent when the particle is in the presence of a point

source [see Fig. 2(c)].

As a function of the source strength α̃, the occurrence and disappearance of a particular

combination of fixed points can be used to deduce the approximate range of a particle’s

phoretic mobility ratio β. The physical explanation for the emergence of a fixed point is a

particle adopts an orientation and distance from the source such that the relevant components

of its intrinsic velocity are equal and opposite to the velocities induced by the presence of the

singularity, resulting in those components of the velocity vanishing. In general, fixed points

are a robust feature of a phoretic Janus particle in a radially symmetric gradient. Similar

behavior was observed for particles with different Janus balances χ.

We now survey in more detail the different dynamical behaviors that arise in the α̃β-phase

space by examining the RΘ-phase portrait and the corresponding real space trajectories

for selected values of α̃ and β. For a known source strength α̃, the location and type

of the fixed point and, more generally, the RΘ-phase portrait serve as a fingerprint for

the particle’s surface properties. In Fig. 3, we consider the case of a point source and
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choose a representative source strength of α̃ = 10 and explore various values of β, which

span the different regions outlined in Fig. 2. In the Supporting Information,70 we include

figures that illustrate how the location of the fixed points and orbits change as a function

of the strength of the singularity α̃. The general trend is that the location of the fixed

point moves further away from the singularity as its strength increases. Similarly, the orbit

radius increases for orbiting states as the singularity strength increases, and the particle’s

orientation asymptotically approaches Θ → π/2. These trends agree with our previously

mentioned physical interpretation, whereas the strength of the singularity increases, so does

the contribution to the particles’ velocity from the presence of the singularity. Thus, for

a given intrinsic velocity of the particle U0, a fixed point or orbiting state will occur at a

further distance from the singularity or its orientation closer to π/2 to cancel the increased

contribution to the velocity from increasing the strength of the singularity.

In Fig. 3(a), we start with the most negative value of the phoretic mobility ratio, β = −10,

where there is a single saddle point at Θ/π = 0 and R/a ≈ 5.1. The saddle point is stable

in R, as shown by the red and blue trajectories, where any displacement will lead to the

particle moving back toward the fixed point and unstable for Θ, where any slight variation

from Θ/π = 0 will lead the particle to move toward infinity in a clockwise spiraling trajectory

(green trajectory). As the phoretic mobility increases, we enter a region where two saddle

points emerge in the RΘ-phase portrait. For example, for β = −2, there are saddle points

for Θ/π = 0 and Θ/π = π at a distance of R/a ≈ 5.7 and R/a ≈ 2.5, respectively [see

Fig. 3(b)]. The further saddle point is similar to that identified for β = −10 and is stable

in R. However, the saddle point that emerges closer to the source exhibits the opposite

behavior, where it is stable for changes in Θ.

As β transitions from negative to positive values, in addition to the saddle point for

Θ = 0, a saddle orbiting state emerges at Θ/π ≈ 0.5 and R/a ≈ 22 [see Fig 3(c) for the RΘ-

phase portrait and real space trajectories for β = 0]. Particles with this initial orientation

and position will execute a clockwise orbit about the source (green trajectory). For β ≳ 1,
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we enter a region with only a single saddle point. The phase portrait resembles the case for

large negative values of the ratio of the phoretic mobilities (i.e., β < −10). However, the

direction of the trajectories is reversed in the RΘ-phase portrait as shown in Fig. 3(d) for

β = 5. The saddle point occurs for Θ/π = 0 and R/a ≈ 4.8 and is unstable in R and stable

for Θ. The green trajectory in Fig 3(d) is associated with the saddle point, and the particle

undergoes a counterclockwise spiraling motion until it reaches the saddle point.

Figure 4 illustrates the different dynamical behaviors that can arise for a point sink. We

select a representative sink strength of α̃ = −10 to demonstrate the variation in the RΘ-

phase portrait as a function of the phoretic mobility ratio β. In Fig. 4(a), we begin with

the most negative value of the phoretic mobility ratio β = −15 where there are two fixed

points: an unstable point for Θ/π = 1.0 at R/a ≈ 3.5, and an orbiting state for Θ/π ≈ 0.51

and R/a ≈ 25.6. This point is within one of the few regions in the α̃β-phase space where

we observe an unstable fixed point. The other is a narrow region for β ≈ 0.2 and α̃ > 0.

Interestingly, unstable fixed points will become stable under the reversal of the intrinsic

velocity U0. It is important to note the sign of U0 does not alter the location of the fixed

points in the α̃β-phase space. From Eq. 7, reversing the sign of U0 will only lead to a reversal

of the velocities. Thus, the RΘ-phase portraits given in Fig. 3 and Fig. 4 for U0 = 1 will

have the same topology as U0 = −1. However, the arrows indicating the direction of motion

are reversed. Thus, a stable point for U0 > 0 will become an unstable point for U0 < 0.

Similarly, a saddle point stable in R for U0 > 0 will be unstable in R for U0 < 0.

As the phoretic mobility ratio increases, the next region has three fixed points: an un-

stable stationary state, a saddle point, and an orbiting state. A representative example is

shown in Fig. 4(b) for β = −8. The emergent saddle point occurs for Θ/π = 1.0, is close to

the singularity at R/a ≈ 1.4, and is stable for variations in R but not Θ. The unstable point

occurs at R/a ≈ 3.8 also for Θ/π = 1.0. The next region represented by β = −2 [Fig. 4(c)]

contains no fixed points, and the particle eventually collides with the singularity unless the

initial orientation is Θ/π = 1 where it moves off to infinity. Interestingly, particles starting
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Figure 5: Infinite number of orbiting states: (a) RΘ-phase portrait and (b) real-space trajectory
in the region of the α̃β-phase space where a continuous and infinite number of orbiting fixed points
exists about the source. These plots correspond to the parameter values α̃ = 10, β = 0.644, χ = 0
and U0 = −1. Videos of the real-space trajectories of these orbiting states are provided in the
Supporting Information.70

with their orientation closer to Θ/π = 1 can undergo a trajectory that will wind several times

about the singularity before being drawn toward the center (blue trajectory). In Fig. 4(d),

we show the case of β = −0.5, where there exist two saddle points one located at Θ/π = 0

and Θ/π = 1.0 The phase portrait is similar to β = −2 and α̃ = 10 [see Fig. 3(b)], except

for it being reflected about the line Θ/π = 0.5.

In Fig. 4(e), we show the case of β = 10, which is representative of the only region of the

α̃β-phase space with a stable fixed point, which occurs for Θ/π = 1.0 and has a distance of

R/a ≈ 3.9 from the singularity. A unique feature of this region of the α̃β-phase space is the

RΘ-phase portrait shows an exclusion region between the location of the singularity and the

fixed point. Any particle initially in the region will either migrate toward the fixed point or

off to infinity. This behavior mirrors the movement pattern observed in a recent study of P.

aeruginosa bacteria in response to a CO2 point source, where the cells form an accumulation

front at a distance from the source.72 Stable fixed points of this character have potential

applications in surface cleaning from bio-contaminants or preventing the accumulation of

active particles near surfaces.

We conclude by highlighting a peculiar region of the α̃β-phase space not categorized in

Fig. 2, where we observed a continuum of orbiting states. A representative example of this

behavior occurs for U0 = −1, α̃ = 10 and β ≈ 0.64, and the corresponding phase portrait
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and real space trajectories are given in Fig. 5. The magenta line in the RΘ-phase portrait

represents an infinite number of orbiting states that are stable with variations in R and

neutrally stable for Θ. Thus, any small changes in Θ or R will lead to the particle finding a

new orbit with a different radius. This behavior, where there was observed to be a continuum

of orbiting states, only occurs in a very small region of the α̃β-phase space and will be further

characterized in future work.

Conclusion

In this study, we quantified the dynamics of a phoretic Janus particle in a radially symmetric

gradient generated by a point source or sink of the fuel driving self-propulsion. We derived

an analytical expression for the phoretic Janus particle’s velocity and found that its motion

is highly sensitive to its surface properties and can exhibit various dynamical behaviors. In

addition to positive and negative chemotaxis, we identify system parameters that give rise to

circular orbits and trapped stationary states. We show that both types of fixed points are a

robust feature of the α̃β-phase space. The sensitivity of the location of the fixed points and,

more generally, the topology of the RΘ-phase portrait that characterizes their trajectories

suggests a method for quantifying the surface properties of phoretic Janus particles.

In addition, circular orbits and trapped stationary states offer a mechanism for pumping

fluid and mixing at the microscale, particularly the stable stationary states, which are resis-

tant to small fluctuations usually present in an experimental setting. Even when a particle

is trapped in a stationary or orbiting state, its surface is still chemically active and will

pump fluid across its surface. Our results demonstrate how to tune the location of a trapped

or orbiting state via the strength of the source and the particle’s phoretic mobility ratio.

This ability to localize particles at a particular distance from the singularity suggests the

possibility of achieving controlled fluid mixing at a desired rate, which is challenging at the

microscale.
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Future research related to this work includes investigating the role of chemical solute

convection and the effect of Brownian motion on the dynamics in a radial chemical gradient.

In addition, to better align the model to many experimental systems, we are currently

investigating the role of a confining boundary, as many phoretic Janus particles are confined

to move at a two-dimensional surface.

Supporting Information Available

See Supporting Information at [URL] for complete derivation of the velocity of phoretic Janus

particle, plot illustrating the radial dependence of dimensionless parameters in solution of

Janus particles velocity, plot characterizing the location of fixed points as a function of the

strength of the singularity, and movies illustrating the real space trajectories for different

system parameters.
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Analytical solution for phoretic Janus particle velocity

Due to the linearity of our governing equations [Eqs. (2) and (5) of the main text], we can

apply the principle of superposition and decompose the solution for the total fuel solute

concentration field into a sum of three elementary solutions, which we write as

C(r)− C∞ = Csin(r) + Ca(r) + Cd(r) , (S1)

where C∞ is the constant bulk fuel concentration far from the particle and singularity. The

concentration field Csin corresponds to the problem of a point singularity of strength α
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centered at the origin r = 0, whose behavior is governed by

D∇2Csin + α δ(r) = 0 , (S2)

with far-field boundary condition Csin|r→∞ = 0. The concentration field Ca corresponds to

the problem of an isolated phoretic Janus particle with governing equation

∇2Ca = 0 , (S3)

with the boundary condition on the surface of the particle given by Eq. (6) of the main

text and far-field boundary condition Ca|r→∞ = 0. The concentration field Cd also satisfies

Laplace’s equation, and is introduced to ensure the intrinsic activity of the Janus particle

is not altered by the presence of the source. The requisite boundary condition along the

surface of the particle is

n̂ · ∇Cd|s = −n̂ · ∇Csin|s (S4)

and the far-field boundary condition is Cd|r→∞ = 0.

The solutions for Csin and Ca (see Ref.1 for details) can be written in terms of Legendre

polynomials Pn[x] as

Csin(rp) = C0α̃
a

|rp +R| = C0α̃
∑

n≥0

(−1)n
a rn<
rn+1
>

Pn[R̂ · n̂] (S5)

and

Ca(rp) = C0

∑

n≥1

Kn[χ]

(n+ 1)

(
a

rp

)n+1

Pn[d̂ · n̂] , (S6)

where r< and r> are chosen between rp and R, Kn[χ] = (Pn−1[−χ] − Pn+1[−χ])/(1 − χ),

C0 = aQe/D, and α̃ = α/(4πa2Qe). We define rp as the position vector with respect to the

coordinate frame centered on the particle such that r = rp + R and rp|s = an̂. As R is

2



constant for a given configuration, the gradient operator with respect to rp and r are equal

(i.e., ∇ = ∇r = ∇rp). To obtain a solution for Cd, we first rewrite the boundary condition

in Eq. (S4) in terms of Legendre polynomials as

n̂ · ∇Cd|s =
C0 α̃

a

∑

n≥0

n

(−a

R

)n+1

Pn[R̂ · n̂] . (S7)

Equation (S7) and the boundary condition at infinity suggests a solution for Cd can be

written in terms of rp and Legendre polynomials of the form

Cd(rp) = C0α̃
∑

n≥0

n(−1)n

n+ 1

(
a2

R rp

)n+1

Pn[R̂ · n̂]. (S8)

The solution for the total concentration is the sum of Ca, Csin, and Cd giving:

C(r) = C0

∑

n≥1

Kn[χ]

(n+ 1)

(
a

rp

)n+1

Pn[d̂ · n̂] + C0α̃
∑

n≥0

(−1)n
(
a rn<
rn+1
>

+
n

n+ 1

(
a2

R rp

)n+1)
Pn[R̂ · n̂].

(S9)

Prior to calculating the slip velocity via Eq. (4) of the main text, we note that the phoretic

mobility b[n̂] for a spherical particle with bilateral symmetry can be expressed as

b[n̂]/be =





1, n̂ · d̂ > −χ

β, n̂ · d̂ < −χ

1
2
(1 + β), n̂ · d̂ = −χ

= 1− (1− β)H[−n̂ · d̂− χ] (S10)

where H(x) is the Heaviside function. The Heaviside function in Eq. (S10) can be expanded

in terms of Legendre polynomials as

H[−n̂ · d̂− χ] =
1

2
(1− χ)− 1

2
(1− χ)

∑

n≥1

Kn[χ]Pn[n̂ · d̂], (S11)

3



Then, noting that rp = r −R and ∇ = ∇r = ∇rp , we have

∇(n̂ · d̂) = (d̂ · ∇)n̂ = (d̂ · ∇rp)n̂ = d̂ ·
(
I− n̂n̂

)
(S12)

and a similar relation can be derived for∇(n̂·R̂). Using these relations and the concentration

field given by Eq. (S9), the slip velocity can be expressed as

us = −2U0
b[n̂]

be

∑

n≥1

1

n+ 1

(
Kn[χ]P

′
n[n̂ · d̂] d̂+ α̃(−1)n(2n+1)

(
a

R

)n+1

P ′
n[n̂ ·R̂] R̂

)
·
(
I−n̂n̂

)

(S13)

The total slip velocity is composed of two terms:

ua = −2U0
b[n̂]

be

∑

n≥1

1

n+ 1

(
Kn[χ]P

′
n[n̂ · d̂] d̂

)
·
(
I− n̂n̂

)
(S14)

which is solely due to the intrinsic activity of the Janus particle and,

usin = −2U0
b[n̂]

be

∑

n≥1

1

n+ 1

(
α̃(−1)n(2n+ 1)

(
a

R

)n+1

P ′
n[n̂ · R̂] R̂

)
·
(
I− n̂n̂

)
(S15)

which arises due to the presence of the singularity.

The translational velocity for a spherical Janus particle in an unbounded fluid is given

by

U = − 1

4π

∫

s

usdS = − 1

4π

∫

s

[ua + usin]dS = Ua +Usin. (S16)

Assuming, without loss of generality, that d̂ = ẑ such that n̂ = sin θ cosϕx̂+ sin θ cosϕŷ +

cos θẑ, the component of the translational velocity due to the intrinsic activity of the particle

4



is given by

Ua =
1

2π
U0

∑

n≥1

Kn[χ]

(n+ 1)

∫ 2π

0

∫ 1

−1

b[n̂]

be

(
d̂− cos θn̂

)
P ′
n[cos θ]d(cos θ)dϕ = U0d̂

(
1 + χ− (1− β)B[χ]

)
,

(S17)

where

B[χ] =
∑

n≥1

Kn[χ]

(n+ 1)

((
1− χ2

)
Pn[−χ] +

∫ −χ

−1

2uPn[u]du

)
. (S18)

Again without loss of generality, we assume that R̂ = ẑ, the component of the translational

velocity due to the presence of the source can be written as

Usin =
1

2π
α̃U0

∑

n≥1

(−1)n
2n+ 1

n+ 1

(
a

R

)n+1 ∫ 2π

0

∫ 1

−1

b[n̂]

be

(
R̂− n̂ cos θ

)
P ′
n[cos θ]d(cos θ)dϕ

(S19)

Simplifying the integration in Eq. (S19) to

∫ 2π

0

∫ 1

−1

b[n̂]

be

(
R̂− n̂ cos θ

)
P ′
n[cos θ]d(cos θ)dϕ

=

∫ 2π

0

∫ 1

−1

(
R̂− n̂ cos θ

)
P ′
n[cos θ]d(cos θ)dϕ

− (1− β)

∫ 2π

0

∫ 1

−1

H[−n̂ · d̂− χ]
(
R̂− n̂ cos θ

)
P ′
n[cos θ]d(cos θ)dϕ

=
(
1− 1

2
(1− β)(1− χ)

)8π
3
δn,1R̂

+
1

2
(1− β)(1− χ)

∑

l≥1

Kl[χ]

∫ 2π

0

∫ 1

−1

Pl[n̂ · d̂]
(
R̂− n̂ cos θ

)
P ′
n[cos θ]d(cos θ)dϕ. (S20)

The last line follows from applying the Heaviside function expansion given in Eq. (S11). We

are able to further simplify Eq. (S20) and find its projection along R̂ and φ̂ by expanding

Pl[n̂ · d̂] in terms of associated Legendre polynomials Pm
n [x]. If we consider the general case

where R and d̂ are not in the same plane such that d̂ and n̂ have polar and azimuthal

angles Θ and ϕ′, and θ and ϕ, respectively, i.e., d̂ = cosΘẑ + sinΘ cosϕ′x̂ + sinΘ sinϕ′ŷ,
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and n̂ = cos θẑ + sin θ cosϕx̂+ sin θ sinϕŷ, then

Pl[n̂ · d̂] =
l∑

m=−l

(l −m)!

(l +m)!
Pm
l [cosΘ]Pm

l [cos θ]e−imϕ′
eimϕ . (S21)

Upon substitution of Eq. (S21) into Eq. (S20), we obtain

∫ 2π

0

∫ 1

−1

Pl[n̂ · d̂]
(
R̂− n̂ cos θ

)
P ′
n[cos θ]d(cos θ)dϕ

=
l∑

m=−l

(l −m)!

(l +m)!
Pm
l [cosΘ]e−imϕ′

∫ 2π

0

∫ 1

−1

Pm
l [cos θ]

(
R̂− n̂ cos θ

)
P ′
n[cos θ]e

imϕd(cos θ)dϕ

= 2πPl[cosΘ]

∫ 1

−1

(
1− cos2 θ

)
Pl[cos θ]P

′
n[cos θ]d(cos θ)R̂

− (l −m)!

(l +m)!
Pm
l [cosΘ]e−imϕ′

π

∫ 1

−1

cos θ sin θPm
l [cos θ]P ′

n[cos θ]d(cos θ)(δm,1 + δm,−1)
(
x̂+ imŷ

)

= 2πPl[cosΘ]
n(n+ 1)

2n+ 1

2

2l + 1
(δl,n−1 − δl,n+1)R̂+ 2πP 1

l [cosΘ]
1

2n+ 1

2

2l + 1

(
nδl,n+1 + (n+ 1)δl,n−1

)
φ̂.

(S22)

We can now write Usin in terms of R and φ by substituting Eq. (S22) into Eq. (S20) and

substituting the resulting expression into Eq. (S19) to obtain

Usin = U0α̃
(
− 2

a2

R2
+ (1− β)M [χ,R, d̂]

)
R̂− U0α̃(1− β) sinΘN [χ,R,Θ]φ̂, (S23)

where, M [χ,R,Θ] and N [χ,R,Θ] are given by

M [χ,R,Θ] =
a2

R2
(1− χ)

(
1− 1

4
χ(1 + χ)(3 cos2Θ− 1)

)
+ (1− χ)

∑

n≥2

(
a

R

)n+1(
nAn+1 − nAn−1

)
,

(S24a)

N [χ,R,Θ] = −3

4

a2

R2
χ(1− χ2) cosΘ− (1− χ)

∑

n≥2

1

n+ 1

(
a

R

)n+1
d

d(cosΘ)

(
nAn+1 + (n+ 1)An−1

)
,

(S24b)
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and

An =
1

2n+ 1
(−1)nPn[cosΘ]Kn[χ].

The total translation velocity [Eq. (7a,b) of the main text] is given by U = Ua +Usin.

Prior to calculating the angular velocity of a particle in the presence of a point singularity,

we recapitulate a useful result derived in Ref.2 With the aid of the vector calculus identity
∫
s
n̂×∇(b[n̂]C) dS =

∫
∇×∇(b[n̂]C)dV = 0, we can write the angular velocity as

Ω = − 3

8πa

∫

s

n̂× usdS

= − 3

8πa

∫

s

−n̂× b[n̂]∇C dS

= − 3

8πa

∫

s

C n̂×∇b[n̂] +
3

8πa

∫

s

n̂×∇(b[n̂]C) dS

= − 3

8πa2
be(1− β)

∫

s

(Cδ[n̂ · d̂+ χ] n̂× d̂) dS

=
3

8πa2
be(1− β)

∫

n̂·d̂=−χ

C d̂× n̂ dl. (S25)

Interestingly, the angular velocity of a spherical particle with bilateral Janus symmetry is

proportional to 1 − β and is simply the vector cross product C d̂ × n̂ along the contour

separating the emitting and absorbing region of the particle (i.e., n̂ · d̂ = −χ). It is straight-

forward to show for spherical particle with bilateral symmetry the contribution to the angular

velocity from the intrinsic activity of the particle is zero:

Ωa = − 3

8πa2
be(1− β)

∫

s

Ca δ[n̂ · d̂+ χ] n̂× d̂ dΩ

= − 3

4πa
U0(1− β)

∑

n≥1

(1− χ)Kn[χ]

n+ 1
Pn(−χ)

∫

s

δ[n̂ · d̂+ χ] n̂ dΩ× d̂ = 0. (S26)

This results of Ωa = 0 is valid for all phoretic mobility ratios β and Janus balances χ. The
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contribution to the angular velocity due to the presence of the singularity is given by

Ωsin = − 3

8πa2
be(1− β)

∫

s

(Csin + Cd) δ[n̂ · d̂+ χ] n̂× d̂ dΩ

= − 3

4πa
U0(1− β)α̃

∑

n≥0

(−1)n
2n+ 1

n+ 1

(
a

R

)n+1 ∫

s

Pn[R̂ · n̂]δ[n̂ · d̂+ χ] n̂ dΩ× d̂.

(S27)

The integration in Eq. (S27) can be simplified using a similar procedure as done for the

translation velocity, where we first assume, without loss of generality, that d̂ = ẑ, and thus

n̂ = cos θẑ + sin θ cosϕx̂+ sin θ sinϕŷ and R̂ = cosΘ ẑ + sinΘ cosϕ′ x̂+ sinΘ sinϕ′ ŷ. We

then write Pn[R̂·n̂] in terms of associated Legendre polynomials Pm
n [x] where the integration

in Eq. (S27) simplifies to

∫

s

Pn[R̂ · n̂]δ[n̂ · d̂+ χ] n̂ dΩ× d̂

=
n∑

m=−n

(n−m)!

(n+m)!
Pm
n [cosΘ]e−imϕ′

∫ 2π

0

∫ π

0

eimϕPm
n [cos θ]n̂δ[cos θ + χ] sin θdθdϕ× d̂

=
n∑

m=−n,n ̸=0

π (1− χ2)
(n−m)!

(n+m)!
Pm
n [cosΘ]Pm

n [−χ]e−imϕ′
(
(δm,1 + δm,−1)(x̂+ imŷ)

)
× d̂

= 2π(1− χ2)
(n− 1)!

(n+ 1)!
P 1
n [cosΘ]P 1

n [−χ]
(
cosϕ′x̂+ sinϕ′ŷ

)
× d̂

=
2π(1− χ)

√
1− χ2

2n+ 1
sinΘ

dPn[cosΘ]

d(cosΘ)
Kn[χ]

R̂× d̂

|R̂× d̂|
. (S28)

The integration result from Eq. (S28) can be substituted into Eq. (S27) to obtain the ex-

pression in the main text [Eq. (7c)] for the total angular velocity:

Ω = −3U0α̃

2a
(1− β) sinΘ ω[χ,R, d̂]

R̂× d̂

|R̂× d̂|
, (S29)
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where

ω[χ,R,Θ] =
√
1− χ2(1− χ)

∑

n≥1

(−1)n
1

n+ 1

(
a

R

)n+1
dPn[cosΘ]

d(cosΘ)
Kn[χ]. (S30)

Lastly, we note the angular velocity is only non-zero in the direction perpendicular to d̂ and

R, restricting the motion of the particle to the two dimensional plane containing the particle

orientation d̂ and radial vector R̂.

Radial dependence of dimensionless parameters B[χ], M [χ,R,Θ], N [χ,R,Θ], and

ω[χ,R,Θ] for χ = 0

Figure S1: (a) Parameter B[χ] as a function of Janus-balance χ. (b–d) Parameters M [χ,R,Θ],
N [χ,R,Θ], and ω[χ,R,Θ] for χ = 0 for different orientations Θ as a function of the radial distance
from the singularity. Note that N [χ,R,Θ] vanishes for Θ = 0 and π.

Simulation Details

We employ an explicit Euler scheme to integrate the particle’s equations of motion (Eq. (1)

of the main text). For a given initial position R0 and orientation Θ0 of the particle, the

trajectory is computed via

Ri+1 = Ri + UR(Ri,Θi)dt, (S31a)

φi+1 = φi +
Uφ(Ri,Θi)

Ri

dt, (S31b)

γi+1 = γi + Ωz(Ri,Θi)dt, (S31c)
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Θi = γi − φi. (S31d)

The velocities are calculated at each timestep via the analytical expression derived above

with the various infinite summations truncated at 400 terms. The Legendre polynomials were

evaluated using the ‘scipy.special. eval legendre’ function from the ‘scipy’ Python library.

The accuracy of the analytical solution and its truncation were validated using Boundary

Element Method (BEM) simulations to determine the particle velocity. This process involves

solving the Laplace and Stokes equations in three dimensions, utilizing BEMLIB codes im-

plemented in FORTRAN3 and specifically adapted for an active Janus particle.4,5 All BEM

results agreed with the analytical solution [Eq. (8)] and its truncated form.

Location of fixed points as a function of the strength of the singularity

Figure S2: The radial Rorb/a and orientation Θorb dependence of orbiting states as a function
of the strength of the singularity α̃ for different phoretic mobility ratios β. As the strength of
the singularity increases, orbiting states occur further from the singularity, and the orientation
asymptotically approaches an angle of Θorb = π/2.
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Figure S3: The radial dependence of stationary states Rst/a with orientations Θst = 0 (blue) and
π (red) as a function of the strength of the singularity α̃ for various phoretic mobility ratios β.
The general trend is that as the singularity’s strength increases, the fixed points occur further away
from the singularity. For Θ = 0, stationary states occur exclusively in the presence of a point source
(α̃ > 0) for all phoretic mobility ratios β, except in interval −1 < β < 0 where the stationary state
arise in the presence of a point source. For β = −10.1 and β = −5.1, there are two stationary
states for Θ = π for a broad range of α̃. As the strength of the sink decreases, these two branches
of stationary states converge to a single stationary stare before disappearing entirely.
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Details of Simulation Videos

Each movie shows the real-space trajectory for the different values of the phoretic mobility

ratio in Figures 3, 4, and 5 of the main text. The trajectory colors are consistent with those

shown in the figures, and the vector corresponds to the orientation Θ. The singularity is

represented as a grey circle, and the time is given in units of a/U0 = 2aD/(Qebe).

1. video 1(fig3a).mp4 – U0 = 1, α̃ = 10 and β = −10

2. video 2(fig3b).mp4 – U0 = 1, α̃ = 10 and β = −2

3. video 3(fig3c).mp4 – U0 = 1, α̃ = 10 and β = 0

4. video 4(fig3d).mp4 – U0 = 1, α̃ = 10 and β = 5

5. video 5(fig4a).mp4 – U0 = 1, α̃ = −10 and β = −15

6. video 6(fig4b).mp4 – U0 = 1, α̃ = −10 and β = −8

7. video 7(fig4c).mp4 – U0 = 1, α̃ = −10 and β = −2

8. video 8(fig4d).mp4 – U0 = 1, α̃ = −10 and β = −0.5

9. video 9(fig4e).mp4 – U0 = 1, α̃ = −10 and β = 10

10. video 10(fig5).mp4 – U0 = −1, α̃ = 10 and β = 0.644
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