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The longitudinal nonreciprocal charge transport (NCT) in crystalline materials is a highly non-
trivial phenomenon, motivating the design of next generation two-terminal rectification devices (e.g.,
semiconductor diodes beyond PN junctions). The practical application of such devices is built upon
crystalline materials whose longitudinal NCT occurs at room temperature and under low magnetic
field. However, materials of this type are rather rare and elusive, and theory guiding the discovery
of these materials is lacking. Here, we develop such a theory within the framework of semiclassical
Boltzmann transport theory. By symmetry analysis, we classify the complete 122 magnetic point
groups with respect to the longitudinal NCT phenomenon. The symmetry-adapted Hamiltonian
analysis further uncovers a previously overlooked mechanism for this phenomenon. Our theory
guides the first-principles prediction of longitudinal NCT in multiferroic ε-Fe2O3 semiconductor
that possibly occurs at room temperature, without the application of external magnetic field. These
findings advance our fundamental understandings of longitudinal NCT in crystalline materials, and
aid the corresponding materials discoveries.

Introduction. – The nonreciprocal charge transport
(NCT) is a phenomenon for which a material with op-
positely flowed electric currents exhibits unequal resis-
tances [1–3]. This phenomenon naturally occurs in semi-
conductor PN junctions, and yields the two-terminal
junction diodes as the building blocks in modern electron-
ics [2–5]. Recent work indicates that crystalline materi-
als with broken inversion and time-reversal symmetries
(e.g., noncentrosymmetric semiconductors [5–9], metal-
lic magnets [10, 11], and topological materials [12–14])
may host NCT as well [3, 15]. The NCT in crystalline
materials is comprised of a transversal part and a longitu-
dinal part, where the latter opens an entirely new route
to design novel two-terminal rectification devices (see,
e.g., Refs. [5, 6, 14, 16]). For instance, the longitudinal
NCT in crystalline semiconductors motivates the design
of next-generation semiconductor diodes, resembling the
diodes based on PN junctions but without involving any
junction [5, 6, 14, 16]. Designing such devices and en-
abling their practical applications rely on crystalline ma-
terials with longitudinal NCT at room temperature and
under low magnetic field, while this type of materials are
rare and elusive. To guide materials discovery, a theory
capturing the essential physics of longitudinal NCT in
crystalline materials is of high necessity. But, unlike the
case of PN junctions, the longitudinal NCT phenomenon
in crystals is rather complicated [3, 5] — the aforemen-
tioned theory remaining lacking.

Here, we develop a general theory for longitudinal
NCT in ferromagnetic, antiferromagnetic, and non-
magnetic crystalline materials, within the framework
of Boltzmann transport theory. We perform symmetry
analysis and provide a classification of the complete

122 magnetic point groups (MPGs) regarding longi-
tudinal NCT. Specifically, we identify 42 MPGs that
host intrinsic longitudinal NCT (without involving
magnetic field), where the longitudinal NCT stems
from the magnetic order parameter. This resembles the
magnetochiral anisotropy effect demonstrated in, for
instance, Refs. [3, 12, 17, 18]. We also find 20 MPGs that
accommodate the extrinsic longitudinal NCT induced
by external magnetic field, namely, the magnetochiral
anisotropy effect. The longitudinal NCT in crystalline
materials is further illustrated by constructing effective
Hamiltonians. The effective Hamiltonian analysis
helps identify a previously overlooked mechanism re-
sponsible for the longitudinal NCT. Motivated by the
design of intrinsic semiconductor diodes and guided by
our theory, we predict by first-principles simulations
that multiferroic ε-Fe2O3 semiconductor showcases in-
trinsic longitudinal NCT occurring at room temperature.

The longitudinal NCT from second-order nonlinear
charge current. – To begin with, we briefly overview
the magnetochiral anisotropy effect in crystalline ma-
terials (see, e.g., Refs. [3, 12, 17, 18]). Under exter-
nal magnetic field B, a crystalline material with elec-
tric current I gains an unidirectional magnetoresistance
R(B, I) = ξBI [3, 5, 17–20]. The sign of R(B, I) is re-
versed by flipping I or B, and this corresponds to the
NCT phenomenon. In the following, we shall demon-
strate that the longitudinal NCT phenomenon generally
occurs in materials with a spontaneous or induced mag-
netic order parameter L (e.g., magnetization or Néel vec-
tor), where L plays the role as B in R(B, I) = ξBI.

We recall that the longitudinal NCT requires the asym-
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metric band dispersion with respect to wave vector k ≡
kαα+kββ+kγγ (α, β, and γ being three orthogonal unit
vectors) [3, 10, 21]. To understand this, a starting point
is to examine the longitudinal second-order charge cur-

rent density J
(2)
α [see e.g., Refs. [5, 6, 10, 11] and Section

I of the Supplementary Material (SM)]. For simplicity,
our discussion is limited in the regime of direct current.
Within Boltzmann transport theory (constant relaxation

time approximation), J
(2)
α is expressed as [10]

J (2)
α =

e3τ2E2
α

8π3ℏ3
∑
n

∫∫∫
∂2ϵn
∂k2α

df0(ϵn)

dϵn

∂ϵn
∂kα

d3k, (1)

where ϵn(k) ≡ ϵn is the band dispersion, n the band
index, τ the electronic relaxation time, ℏ the reduced
Planck constant, e the elementary charge, f0(ϵn) the
Fermi-Dirac distribution at ϵn, and Eα the electric field
along α direction.

To show that J
(2)
α arises from the asymmetric band

dispersion, we consider a symmetry operation that trans-
forms k = kαα+ kββ+ kγγ to k′ = −kαα+ κ̃ββ+ κ̃γγ,
such that ϵn(kαα+kββ+kγγ) = ϵn(−kαα+ κ̃ββ+ κ̃γγ)
— the band dispersion ϵn(k) being symmetric with re-
spect to kα. This implies that ∂ϵn(k)/∂kα at k and k′

are opposite numbers, while the other two quantities [i.e.,
∂2ϵn(k)/∂k

2
α and df0(ϵn)/dϵn] are identical. Associated

with each ϵn, the integral function in Eq. (1) cancels out

over the integration region, and this yields null J
(2)
α . To

achieve non-zero J
(2)
α , the linkage between kα and −kα

must be broken, namely, ϵn(kαα + kββ + kγγ) is never
symmetrically related to ϵn(−kαα+κ̃ββ+κ̃γγ) no matter

what κ̃β and κ̃γ are selected. In view of this, J
(2)
α only

occurs in materials with specific symmetry constraints.
For example, materials with time-reversal symmetry 1′

do not host J
(2)
α , because 1′ link kαα+ kββ + kγγ with

−kαα − kββ − kγγ. On the contrary, materials with
magnetic order parameter L (i.e., broken time-reversal

symmetry) might be compatible with J
(2)
α [22]. As ana-

lyzed in Section I of the SM, J
(2)
α is a function of L, and

the nonlinear longitudinal conductivity σ
(2)
ααα is given by

σ(2)
ααα =

ζ(L)e3τ2

8π3ℏ3
∑
n

∫∫∫
∂2ϵn
∂k2α

df0(ϵn)

dϵn

∂ϵn
∂kα

d3k, (2)

where ζ(L) = ±1 and ζ(−L) = −ζ(L) indicate the

dependence of σ
(2)
ααα on L [23]. We now show that

σ
(2)
ααα contributes to longitudinal NCT. To this end, we

consider the total longitudinal charge current density

Jα = σ
(1)
ααEα + σ

(2)
αααE2

α [11, 20], with σ
(1)
αα being the

linear conductivity; In first approximation, the electric

field is expressed as Eα ≈ Jα/σ
(1)
αα. This suggests

an effective conductivity σeff
αα = σ

(1)
αα + 2σ

(2)
αααEα ≈

σ
(1)
αα + 2σ

(2)
αααJα/σ

(1)
αα ≡ σ

(1)
αα + ξαJαζ(L) (ξα being a

coefficient). The term ξαJαζ(L) resembles R(B) = ξBI

as follows: reversing L or Jα changes the sign of σ
(2)
ααα,

where L and Jα play the roles as B and I, respectively.

In other words, the nonlinear conductivity σ
(2)
ααα charac-

terizes the longitudinal NCT along α direction.

TABLE I. The 42 MPGs that allow the longitudinal NCT.
For each MPG, the ✓ and ✗ indicate that longitudinal NCT
along α direction is symmetrically allowed and forbidden, re-
spectively. Here, α = x, y, z marks the direction in Cartesian
frame. The conventions regarding the coordinate system for
these MPGs are shown in Table S1 of the SM.

MPGs x y z MPGs x y z MPGs x y z
1.1 ✓ ✓ ✓ 1̄′ ✓ ✓ ✓ 2.1 ✗ ✗ ✓
2′ ✓ ✓ ✗ m.1 ✓ ✓ ✗ m′ ✗ ✗ ✓
2′/m ✓ ✓ ✗ 2/m′ ✗ ✗ ✓ 2′2′2 ✗ ✗ ✓
mm2.1 ✗ ✗ ✓ m′m2′ ✓ ✗ ✗ m′mm ✓ ✗ ✗
4.1 ✗ ✗ ✓ 4̄′ ✗ ✗ ✓ 4/m′ ✗ ✗ ✓
42′2′ ✗ ✗ ✓ 4mm.1 ✗ ✗ ✓ 4̄′2′m ✗ ✗ ✓
4/m′mm ✗ ✗ ✓ 3.1 ✓ ✓ ✓ 3̄′ ✓ ✓ ✓
32.1 ✓ ✗ ✗ 32′ ✗ ✓ ✓ 3m.1 ✗ ✓ ✓
3m′ ✓ ✗ ✗ 3̄′m ✗ ✓ ✓ 3̄′m′ ✓ ✗ ✗
6.1 ✗ ✗ ✓ 6′ ✓ ✓ ✗ 6̄.1 ✓ ✓ ✗
6̄′ ✗ ✗ ✓ 6′/m ✓ ✓ ✗ 6/m′ ✗ ✗ ✓
6′22′ ✓ ✗ ✗ 62′2′ ✗ ✗ ✓ 6mm.1 ✗ ✗ ✓
6′mm′ ✗ ✓ ✗ 6̄m2.1 ✗ ✓ ✗ 6̄′m2′ ✗ ✗ ✓
6̄m′2′ ✓ ✗ ✗ 6/m′mm ✗ ✗ ✓ 6′/mmm′ ✗ ✓ ✗

Symmetry analysis. – We move on to carry out sym-
metry analysis regarding the longitudinal NCT. We use
the m′m2′ magnetic point group (MPG) to demonstrate
our basic ideas. This MPG contains four symmetry
operations, namely, 1, my, m′

x, and 2′z. The 1 sym-
metry operation is the identity, and has no effect on
(kx, ky, kz) ≡ kxx+ kyy+ kzz (x,y, z being unit vectors
along the Cartesian x, y, z directions). The my operation
is a mirror plane perpendicular to y, and it transforms
(kx, ky, kz) to (kx,−ky, kz). The m′

x operation, the mir-
ror plane perpendicular to x followed by a time-reversal
operation, transforms (kx, ky, kz) to (kx,−ky,−kz). Fi-
nally, (kx, ky, kz) is transformed to (kx, ky,−kz) by 2′z,
the twofold rotation along z followed by a time-reversal.
On balance, the symmetry operations of the m′m2′ MPG
(i) link ky with −ky by my or m′

x, (ii) link kz with −kz
by m′

x or 2′z, and (iii) provide no linkage between kx and
−kx. This means that the longitudinal NCT in m′m2′

MPG is symmetrically allowed along x direction.
In this way, we conduct symmetry analysis on the

complete 122 MPGs. These groups are composed of 32
type-1 MPGs, 32 type-2 MPGs, and 58 type-3 MPGs,
where type-2 MPGs contain time-reversal symmetry 1′,
but type-1 and type-3 MPGs do not have 1′ [24, 25].
The difference between type-1 and type-3 MPGs is
that the former contain only the spatial symmetry
operations, while the latter also involve some symmetry
operations being a spatial operation followed by 1′

(see e.g., Ref. [24] for details). Among the type-1 and
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type-3 MPGs, 42 cases host the symmetrically allowed
longitudinal NCT (see Table I). Next, we consider 32
type-2 MPGs containing time-reversal symmetry. These
type-2 MPGs forbid the longitudinal NCT; Nonetheless,
magnetic field breaks time-reversal and other symmetries
in type-2 MPGs, possibly yielding longitudinal NCT.
Regarding this, we analyze the magnetic field induced
symmetry breakings in type-2 MPGs, and identify 20
cases in which magnetic field enables longitudinal NCT
(see Table II). The detailed analysis is shown in Section
II of the SM.

TABLE II. The magnetic field induced longitudinal NCT in
20 type-2 MPGs. The Bx, By, and Bz marks the x, y, and z
components of the magnetic field, respectively. The directions
for longitudinal NCT are labelled by x, y, and z (Cartesian
frame). The conventions regard the coordinate system for
these MPGs are shown in Table S1 of the SM.

MPGs Bx By Bz MPGs Bx By Bz

1.1′ x, y, z x, y, z x, y, z 2.1′ x, y x, y z
m.1′ z z x, y 222.1′ x y z
mm2.1′ y x — 4.1′ x, y x, y z
4̄.1′ x, y x, y — 422.1′ x y z
4mm.1′ y x — 4̄2m.1′ x y —
3.1′ x, y, z x, y, z x, y, z 32.1′ x y, z y, z
3m.1′ y, z x x 6.1′ x, y x, y z
6̄.1′ z z x, y 622.1′ x y z
6mm.1′ y x — 6̄m2.1′ z — x
23.1′ x y z 432.1′ x y z

Effective Hamiltonians for longitudinal NCT. – In this
section, we explore the role of magnetic order param-
eter L in band asymmetry and longitudinal NCT. For
this purpose, we derive the minimal two-band effective
Hamiltonians for the 42 MPGs listed in Table I, involving
the magnetic order parameter L, the wave vector k, and
the electronic spin σ ≡ (σx, σy, σz) — σ being Pauli ma-
trix vector. The results are summarized in Table S3 and
Table S4 of the SM. The effective Hamiltonians (around
the center of the Brillouin zone) for these 42 MPGs are
generally written as

H(k, L) =
∑

α,β=x,y,z

µαβkαkβσ0 + ζ(L)Λ(k)σ0

+λ(k) · σ + ζ(L)∆ · σ, (3)

where µαβ , Λ(k), λ(k), and ∆ characterize the effec-
tive mass, band asymmetry, spin-orbit field, and Zee-
man field, respectively (σ0 being 2 × 2 identity matrix).
The effective mass terms and band asymmetry terms ap-
pear in the effective Hamiltonians of all these 42 MPGs.
Furthermore, MPGs lacking the parity-time symmetry
(i.e., inversion followed by time-reversal) may also have
spin-orbit field terms, while MPGs compatible with fer-
romagnetism extra gain Zeeman field terms. Of partic-
ular interest is the ζ(L)Λ(k)σ0 band asymmetry term,

FIG. 1. The band structures and longitudinal NCT ob-
tained from different effective Hamiltonians. (a) and (b):
H2(k, L) = µxx(k

2
x + k2

y)σ0 + µzzk
2
zσ0 + ζ(L)Λzkzσ0 with

Λz = 0.3 eV Å. (c) and (d): H3(k, L) = µxx(k
2
x + k2

y)σ0 +
µzzk

2
zσ0 + ζ(L)Λyyyky(3k

2
x − k2

y)σ0 with Λyyy = 5.0 eV

Å3. (e) and (f): H4(k, L) = (µxxk
2
x + µyyk

2
y + µzzk

2
z)σ0 +

ζ(L)Λxkxσ0+ ζ(L)∆yσy +λxykxσy +λyxkyσx, with Λx = 0.0
eV Å, λyx = 0.3 eV Å, p = 0.2 eV Å, q = 0.01 eV, and
ζ(L) = 1. Here, ζ(L) = 1 and ζ(−L) = −1 corresponds to
L and −L magnetic order parameters, respectively. As for
H2(k, L), H3(k, L), and H4(k, L), the coefficients µxx, µyy,
and µzz are set as µxx = µyy = µzz = ℏ2/2m = 7.62 eV Å2,
where m = 0.5m0 and m0 is electron rest mass. The unit of
σ
(2)
zzz/τ

2, σ
(2)
yyy/τ

2, and σ
(2)
xxx/τ

2 is 1023 Ω−1V−1s−2. The ther-
mal smearing with a temperature of 300 K is adopted during
the conductivity calculations. The legends for (a), (c), and
(d) are shown in (b), (d), and (f), respectively.

with Λ(k) being an odd function of kχ. Such a term de-
scribes the band asymmetry with respect to kχ as well
as the longitudinal NCT along χ direction. As for the
spin-orbit field and Zeeman field terms, the situation be-
comes quite complicated. This will be discussed in the
following paragraphs.

We now take a few representative MPGs to perform
our Hamiltonian analysis. Our first example is the
6mm.1 MPG with its effective Hamiltonian given by
H1(k, L) = µxx(k

2
x + k2y)σ0 + µzzk

2
zσ0 + ζ(L)Λzkzσ0 +

λxy(kxσy − kyσx). This Hamiltonian contains the ef-
fective mass terms, the band asymmetry term, and the
spin-orbit field terms (no Zeeman field terms). Some
other MPGs may have effective Hamiltonians with only
effective mass terms and band asymmetry terms. For
instance, the effective Hamiltonians for 4/m′mm and
6′/mmm′ MPGs are H2(k, L) = µxx(k

2
x + k2y)σ0 +
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µzzk
2
zσ0 + ζ(L)Λzkzσ0 and H3(k, L) = µxx(k

2
x + k2y)σ0 +

µzzk
2
zσ0 + ζ(L)Λyyyky(3k

2
x − k2y)σ0, respectively. The

role of L on the band asymmetry and longitudinal NCT
can be illustrated by numerically solving H2(k, L) and
H3(k, L), with various groups of selected model parame-
ters. As shown in Fig. 1(a), the non-zero ζ(L)Λz results
in band asymmetry along kz direction, where the −L and
+Lmagnetic order parameters yield two version of bands
(red and blue lines) being mirror copies of each other with
respect to kz = 0. This is responsible for the longitudinal

nonreciprocal σ
(2)
zzz electric conductivity, whose sign is re-

versed by switching magnetic order parameters between
L and−L [Fig. 1(b)]. When removing the magnetic order
parameter L [i.e., ζ(L) = 0], both the band asymmetry

and longitudinal σ
(2)
zzz conductivity vanish [see Figs. 1(a)

and 1(b)]. As for H3(k, L), the ζ(L)Λyyyky(3k
2
x − k2y)σ0

term is cubic in ky, which yields the band asymmetry
and longitudinal NCT along y [see Figs. 1(c) and 1(d)].
Various MPGs (e.g., 1̄′, m′mm, and 3̄′) have effective
Hamiltonians similar to H1(k, L), H2(k, L), or H3(k, L),
that is, with band asymmetry terms and without Zeeman
field terms. In such Hamiltonians, the longitudinal NCT
is solely governed by the band asymmetry terms, which
is spin independent.

The m′m2′ is another exemplified MPG with an effec-
tive HamiltonianH4(k, L) = (µxxk

2
x+µyyk

2
y+µzzk

2
z)σ0+

ζ(L)Λxkxσ0 + ζ(L)∆yσy + λxykxσy + λyxkyσx. Such
a Hamiltonian contains the effective mass terms, the
spin-orbit field terms, a band asymmetry term, and a
Zeeman field term. Regarding H4(k, L), there are two
mechanisms responsible for the longitudinal NCT. First
of all, the ζ(L)Λxkxσ0 term suggests a longitudinal NCT
along x direction. This mechanism has already been
discussed in the last paragraph. The second mechanism
comes from the combination of spin-orbit field term
λxykxσy and Zeeman field term ζ(L)∆yσy, which gives

rise to band asymmetry along kx and longitudinal σ
(2)
xxx

conductivity [see Figs. 1(e) and 1(f)]. This situation
likely occurs when spin-orbit field and Zeeman field
cooperatively breaks the symmetric linkage between
kx and −kx. Without λxykxσy or ζ(L)Λxkxσ0, the
ζ(L)∆yσy term can not solely generate band asymmetry
or longitudinal NCT [see Figs. 1(e) and 1(f)]. Previous
studies usually consider the spin-orbit field terms and
the Zeeman field terms, but neglecting the ζ(L)Λ(k)σ0

term (see e.g., Refs. [5, 9, 13, 20, 26]). Even though the
combination of ζ(L)∆ασα and λα(k)σα might capture
the longitudinal NCT, there are no reasons to ignore the
ζ(L)Λ(k)σ0 term. As a matter of fact, materials with
negligible ∆α and/or λα(k) may still have sizable Λ(k),
and in that case, neglecting ζ(L)Λ(k)σ0 will erroneously
describe the longitudinal NCT.

The longitudinal NCT in ε-Fe2O3. – Our Tables I
and II guide the discovery of materials with longitu-

(a)

-0.30 0.0 0.30
kx (Å 1)

0.30

0.15

0.00

En
er

gy
(e

V)

(b)

0.30 0.15 0.00
(eV)

2

1

0

1

2

(2
) /

2

(c)

xxx
yyy
zzz

y

z

x

FIG. 2. The magnetic order parameter (a), band dispersion
(b), and longitudinal NCT conductivity (c) of ε-Fe2O3. In
(a), the brown, yellow, red, and green spheres denote Fe1,
Fe2, Fe3 and Fe4 sublattices (O ions not shown), respec-
tively. The arrows represent Fe’s magnetic moments in Fe1
(3.6 µB), Fe2 (−3.6 µB), Fe3 (−2.5 µB), and Fe4 (2.7 µB)
sublattices [28]; Only the predominant components of these
magnetic moments are shown. In (b), the band dispersion
is along kx direction, where ky and kz are set to zero. The
valence band maximum is set as the zero energy. In (c), µ
denote the chemical potential. The red solid, blue dash, and

black dot lines represent σ
(2)
xxx/τ

2, σ
(2)
yyy/τ

2 and σ
(2)
zzz/τ

2, re-

spectively. The unit of σ(2)/τ2 is 1023 Ω−1V−1s−2.

dinal NCT. We are motivated by the design of intrinsic
semiconductor diodes, and decide to seek semiconduc-
tors with longitudinal NCT. Searching from the MAG-
NDATA database [27], we identify ε-Fe2O3 as a promis-
ing candidate material. ε-Fe2O3 is a multiferroic semi-
conductor, being the metastable phase of Fe2O3 [28–31].
Recently, single crystals of ε-Fe2O3 were experimentally
synthesized [30]. At room temperature, ε-Fe2O3 has the
polar m′m2′ MPG, with the magnetic order parameter
schematized in Fig. 2(a) [27–29]. As shown in Table I, the
longitudinal NCT along the x direction is symmetrically
allowed in m′m2′ MPG.
To validate the longitudinal NCT in ε-Fe2O3, we con-

duct first-principles simulations and electric conductivity
calculations. We recall that temperature complicatedly
affects the conductivity of magnetic materials [32] via,
for instance, (i) modifying the magnetic order parame-
ter and the resultant band dispersions, and (ii) changing
the Fermi-Dirac distribution and the resultant band oc-
cupancy. Therefore, the accurate calculations of conduc-
tivity at finite temperatures are rather challenging. As
for ε-Fe2O3, we are inclined to qualitatively examine the
possibility towards the longitudinal NCT at room tem-
perature, as opposed to quantitatively determining its
electric conductivity values.
The Fe’s magnetic moments in Fe1, Fe2, Fe3, and Fe4

sublattices of ε-Fe2O3 are 3.9, −3.9, −4.0, and 3.9 µB ,
respectively, as obtained by first-principles simulations.
This basically coincides with the experimental results in
Fig. 2(a), where the difference comes from the fact that
first-principles calculations neglect temperature effects
on the magnetic order parameter. Subsequently, we
calculate the band dispersion and nonlinear conductivity
of multiferroic ε-Fe2O3 [33]. Figure 2(b) shows the band
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structure of ε-Fe2O3 as a function of kx. The band
dispersion along kx is significantly asymmetric in the
energy range of ∼ −0.3 eV to ∼ −0.2 eV. As shown in

Fig. 2(c), the nonlinear conductivity values σ
(2)
yyy and

σ
(2)
zzz are negligible, while σ

(2)
xxx is finite. This verifies

our aforementioned symmetry arguments on ε-Fe2O3.
Our calculations, although based on the ground state of
ε-Fe2O3, correctly reflect the MPG of such a material
at room temperature. This suggests that ε-Fe2O3 may
host room-temperature longitudinal NCT that is driven
by its intrinsic magnetic order parameter (i.e., without
the application of external magnetic field).

Summary and perspective. – In summary, we have devel-
oped a general theory guiding the discovery of crystalline
materials with longitudinal NCT. Within the framework
of Boltzmann transport theory, the longitudinal NCT in
crystalline materials resides in the band asymmetry, and
is reflected by the second-order nonlinear longitudinal
conductivity. Based on this, we provide a comprehen-
sive symmetry classification of the 122 MPGs with re-
spect to longitudinal NCT (see Tables I and II). By con-
structing and analyzing effective Hamiltonians, we iden-
tify two mechanisms for longitudinal NCT, that is, the
band asymmetry Λ(k), and the combination of spin-orbit
field λ(k) and Zeeman field ∆ [see Eq. (3)]. Our theory
together with first-principles simulations help to identify
multiferroic ε-Fe2O3 as a candidate that possibly show-
cases intrinsic longitudinal NCT at room temperature.

Beyond this, our theory also suggests another research
avenue. As shown in Fig. 1, the longitudinal NCT
severely depends on the magnetic order parameters. For
a specific material with MPG listed in Tables I and II,
the measurement of nonlinear longitudinal conductivity
reflects its intrinsic magnetic ordering or the external
magnetic field applied to it. In this regard, the longitu-
dinal NCT together with second-order transverse Drude
transport and second-order anomalous Hall effect (i.e.,
second-order nonlinear transport) open a door for the
electrical detection of magnetic states [10, 34, 35], being
important for designing spintronic devices [36–39]. In-
terested readers are referred to Refs. [34, 35, 40] for some
detailed discussion on second-order nonlinear transport.
To finish, we hope that our theory can not only provide
in-depth insights into the NCT phenomena in condensed
matter, but also guide the materials discovery and device
design related to such a phenomenon.
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[17] G. L. J. A. Rikken, J. Fölling, and P. Wyder, Phys. Rev.
Lett. 87, 236602 (2001).

[18] G. L. J. A. Rikken and P. Wyder, Phys. Rev. Lett. 94,
016601 (2005).

[19] R. Wakatsuki and N. Nagaosa, Phys. Rev. Lett. 121,

http://dx.doi.org/10.1126/sciadv.1602390
http://dx.doi.org/10.1126/sciadv.1602390
http://dx.doi.org/10.1038/s42254-023-00632-w
http://dx.doi.org/10.1038/s42254-023-00632-w
http://dx.doi.org/10.1038/s41467-018-05759-4
http://dx.doi.org/10.1038/s41467-018-05759-4
http://dx.doi.org/10.1007/978-3-319-21173-2_16
http://dx.doi.org/10.1007/978-3-319-21173-2_16
http://dx.doi.org/10.1038/nphys4056
http://dx.doi.org/10.1038/s41467-020-20840-7
http://dx.doi.org/10.1103/PhysRevLett.132.046303
http://dx.doi.org/10.1103/PhysRevResearch.3.033253
http://dx.doi.org/10.1103/PhysRevB.106.115202
http://dx.doi.org/10.1103/PhysRevB.106.115202
http://dx.doi.org/10.1103/PhysRevLett.129.276601
http://dx.doi.org/10.1103/PhysRevLett.129.276601
http://dx.doi.org/10.1103/PhysRevB.104.054429
http://dx.doi.org/10.1103/PhysRevB.104.054429
http://dx.doi.org/10.1103/PhysRevLett.128.176602
http://dx.doi.org/10.1038/s41467-022-33705-y
http://dx.doi.org/ 10.1038/s41586-023-06363-3
http://dx.doi.org/10.1103/PhysRevB.87.014421
http://dx.doi.org/10.1103/PhysRevB.87.014421
http://dx.doi.org/10.1103/PhysRevLett.124.027201
http://dx.doi.org/10.1103/PhysRevLett.124.027201
http://dx.doi.org/10.1103/PhysRevLett.87.236602
http://dx.doi.org/10.1103/PhysRevLett.87.236602
http://dx.doi.org/10.1103/PhysRevLett.94.016601
http://dx.doi.org/10.1103/PhysRevLett.94.016601
http://dx.doi.org/10.1103/PhysRevLett.121.026601


6

026601 (2018).
[20] S. Hoshino, R. Wakatsuki, K. Hamamoto, and N. Na-

gaosa, Phys. Rev. B 98, 054510 (2018).
[21] H. Isobe, S.-Y. Xu, and L. Fu, Sci. Adv. 6, eaay2497

(2020).
[22] The work “might” means that the broken time-reversal

symmetry is not the sufficient condition for the nonre-
ciprocal charge transport. As a matter of fact, the other
symmetry operations (e.g., spatial inversion) also con-
strain the behaviors of nonreciprocal charge transport.
This will be demonstrated in the following section.

[23] In materials with magnetic order parameter L, the first-
order linear charge current remains invariant when re-
versing L (e.g., from L to −L). The detailed analysis can
be found in Section I of the SM.

[24] B. J. Campbell, H. T. Stokes, J. M. Perez-Mato, and
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