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We re-examine the internal structure of skyrmioniums stabilized in quasi-two-dimensional chiral
magnets with easy-axis uniaxial anisotropy. Skyrmioniums are particle-like states of two nested
skyrmions with opposite polarities contributing to zero topological charge. The physical principles
of skyrmionium stability are drawn from both the analytical analysis with a trial function and from
numerical simulations within the framework of micromagnetism. We deduce that the radii of the
internal skyrmion with the positive polarity and the ring-shaped external skyrmion with the negative
polarity are mutually dependent, which constitutes the paradigm of communicating skyrmions. For
large central skyrmions, the skyrmionium transforms into a narrow circular domain wall, whereas
for small internal radii, the ring expands, which occurs at the verge of collapsing into an ordinary
isolated skyrmion. We show that skyrmioniums may form lattices of two varieties depending on the
polarity of the internal skyrmion. At the phase diagram (magnetic field)-(uniaxial anisotropy), both
skyrmionium lattices share the same area with one-dimensional spiral states and remain metastable
solutions for the whole range of control parameters. By expanding at the critical line, skyrmionium
lattices do not release isolated skyrmioniums. Isolated skyrmioniums of just one type exist apart
from the corresponding lattice in a narrow field region restricted by the critical line of expansion
from below and by the line of collapse above.

PACS numbers: 75.30.Kz, 12.39.Dc, 75.70.-i.

I. INTRODUCTION

Chiral magnetic skyrmions [1, 2] are topological
solitons surrounded by the homogeneously magnetized
states and stabilized by Dzyaloshinskii-Moriya interac-
tion (DMI) [3, 4]. Their characteristic length scale [5–7]
results from the competition between exchange interac-
tion and DMI and ranges from few atomic spacings up
to microns [8]. Skyrmions were first experimentally ob-
served in bulk cubic helimagnets (MnSi [9] and FeGe [10],
and the Mott insulator, Cu2OSeO3 [11]) where they rep-
resent three-dimensional (3D) tubes along the field direc-
tion [12, 13]. Subsequently, 3D isolated skyrmions (IS)
[14, 15] have been microscopically studied in thin layers
of cubic helimagnets (Fe,Co)Si [16] and FeGe [17] where
they gain stability in a broad range of temperatures and
magnetic fields [18].

Essentially two-dimensional (2D) skyrmions are sta-
bilized, e.g., in bulk polar magnets with Cnv symme-
try, such as GaV4S8 and GaV4Se8 [19, 20], in which
skyrmions propagate into the third direction without
modifying their 2D pattern. In these Néel skyrmions,
the magnetization rotates along the radius-vector from
the skyrmion center to the outskirt. On the other hand,
thin film multilayer structures open up prospects of ma-
nipulating skyrmions on a 2D arena. The inversion sym-
metry breaking and the induced DMI originate from the

∗ Corresponding author: leonov@hiroshima-u.ac.jp

interfaces between a heavy metal layer and the skyrmion-
hosting magnetic layer as occurs, e.g., in PdFe/Ir (111)
bilayers [21]. Such systems are extremely versatile as for
the choice of the magnetic, non-magnetic and capping
layers in addition to the possibility to be stacked.

Nowadays, skyrmions attract enormous interest due to
the perspectives of their applications in information stor-
age and processing devices [22–24]. Indeed, skyrmions
are topologically stable [25], they have the nanometer size
[8] and can be manipulated by electric currents [26, 27]
of small densities. In particular, in the skyrmion race-
track [28, 29], information flow is encoded in isolated
skyrmions driven along a narrow strip. At the same
time, there is an obvious obstacle towards the practical
use of skyrmion-based devices – the skyrmion Hall effect
(SHE), which leads to the curved trajectory of moving
skyrmions [30, 31]. The main strategy to overcome this
obstacle is to consider skyrmion-based solitons with zero
topological charge, which would be able to cancel the
Magnus force. Among such skyrmion varieties are anti-
ferromagnetic skyrmions [32], states of coupled merons
with the opposite topological charges [33] and/or target-
skyrmions [34].

Originally, 2D target-skyrmions were introduced in
Ref. [6] under the name kπ-skyrmions. They consist
of a central skyrmion with either polarity and a number
of concentric helicoidal undulations: the magnetization
rotates by an angle kπ between the center and the sur-
rounding ferromagnetic state (with k integer > 0). The
topological charge alternates between 1 or 0 depending
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whether k is odd or even. Skyrmionium (2π-skyrmion)
represents a second member of the kπ-skyrmion fam-
ily [35], which has a topological charge Q = 0 and is
thus bound to avert SHE. Among other advantages of
skyrmioniums over ordinary π-skyrmions is higher mo-
bility [36], which makes them a good alternative for
spintronic devices [37]. So far, the crucial question of
skyrmionium stability was addressed by computing the
energy barrier with respect to the ordinary skyrmion
through the geodesic nudged elastic band method [38].
Thermal annihilation of skyrmioniums and their trans-
formation into a skyrmion was studied in Ref. [39] by
analytical and numerical methods of micromagnetism.

High-symmetry nanostructured objects (like magnetic
nanowires [40], nanodisks [53], or nanorings [42]) are
commonly used systems to host target-skyrmions since
they provide the stabilization effect of surfaces and sup-
plement the target-skyrmions with additional negative
energy from the edge states, which may even favor
them over other solitons [34]. Recently, target-skyrmions
were generated by weakly coupling 30nm thin Permal-
loy (Ni80Fe20) disks with a 1 µm diameter to asymmet-
ric (Ir 1 nm/Co 1.5 nm/Pt 1 nm) × 7 multilayers that
exhibit Dzyaloshinskii-Moriya interaction [43]. Off-axis
electron holography was used to record images of target-
skyrmions in a 160-nm-diameter nanodisk of the chiral
magnet FeGe [44]. Skyrmioniums have also been experi-
mentally spotted in thin-film geometries lacking the sta-
bilization support from the side boundaries. The obser-
vation of skyrmioniums in thin ferromagnetic films cou-
pled to a magnetic topological insulator was reported in
Ref. [45]. Skyrmioniums have also been investigated in
a frustrated Kagome magnet Fe3Sn2 [46] and in flakes of
the van der Waals magnet Fe3−xGeTe2 [47].

In the present paper, to address the problem of
skyrmionium stability with the simultaneous effect of an
applied magnetic field and an easy-axis anisotropy, we
re-examine the internal structure of skyrmioniums by us-
ing the linear Ansatz and numerically rigorous solutions.
We show that skyrmionium represents a pair of commu-
nicating skyrmions: whereas the central skyrmion aspires
to adapt the magnetization rotation based on the same
energy arguments as for an ordinary skyrmion, the ring-
shaped external skyrmion contracts in an attempt to re-
duce its own surface area. The ratio of radii of com-
municating skyrmions is balanced to reach a local en-
ergy minimum: for large radii of the central skyrmion,
the skyrmionium transforms into a circular domain wall
with the comparable radius of the surrounding ring; for
small radii of the central skyrmion, the skyrmionium in-
creases the radius of the external skyrmion but still in-
evitably transforms into a skyrmion as was discussed in
Refs. [38, 39].

We also address the field- and anisotropy-driven trans-
formations of skyrmionium lattices (SkmL) of two vari-
eties depending on the polarity of the central skyrmion.
At the phase diagram of states in coordinates (mag-
netic field)-(uniaxial anisotropy), the skyrmionium lat-

tices were found to occupy the same region as spiral states
but with higher energy what makes them only metastable
solutions. On the contrary to skyrmion lattices, no iso-
lated skyrmioniums were released during the transition
of skyrmionium lattices into the homogeneous state. Iso-
lated skyrmioniums exist as a separate branch of solu-
tions within the narrow area on the phase diagram re-
stricted by the lines of their collapse or expansion.

II. PHENOMENOLOGICAL THEORY OF
SKYRMIONIUMS IN TWO-DIMENSIONAL

HELIMAGNETS

A. Micromagnetic energy functional

The magnetic energy density of a chiral magnet with
Cnv symmetry can be written as the sum of the exchange,
the DMI, Zeeman, and the anisotropy energy densities,
correspondingly:

w(m) =
∑
i,j

(∂imj)
2 + wDMI −m · h− kum

2
z. (1)

Spatial coordinates x are measured in units of the char-
acteristic length of modulated states LD = Aex/DDMI .
Aex > 0 is the exchange stiffness, DDMI is the
Dzyaloshinskii constant. ku = KuM

2Aex/D
2
DMI is the

non-dimensional anisotropy constant. We restrict our-
selves by the easy-axis case, i.e., ku > 0.
In the following, we consider a thin film of a ferromag-

netic material on the xy-plane using periodic boundary
conditions. h = H/H0 is the magnetic field applied along
z axis, H0 = D2

DMI/Aex|M|. The magnetization vector
m(x, y) = M/|M| has a fixed length normalized to unity.
The DMI energy density has the following form specific
for magnets with the Cnv symmetry:

wDMI = mx∂xmz−mz∂xmx+my∂ymz−mz∂ymy, (2)

where ∂x = ∂/∂x, ∂y = ∂/∂y.
The phase diagram of states for model (1) on the plane

of control parameters h and ku was plotted, e.g., in
Ref. [33] and features only modulated one-dimensional
1D (spirals) and two-dimensional 2D (skyrmions) phases
with the propagation directions perpendicular to the po-
lar axis. A vast area of the phase diagram is occu-
pied by the field-polarized homogeneous state, which may
host isolated solitons such as kinks, skyrmions and/or
skyrmioniums. 1D kinks and 2D skyrmions in this area
can be an outcome of a gradual expansion of the spi-
ral state and/or the skyrmion lattice. And vice versa,
isolated entities may condense into extended modulated
states when the eigen-energy of an isolated soliton be-
comes negative with respect to the surrounding homoge-
neous state and the solitons tend to fill the whole space
with some equilibrium intersoliton distance. The mech-
anism of modulated phase formation through nucleation
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FIG. 1. (color online) (a), (b) Schematics of isolated Néel skyrmions and skyrmioniums in polar magnets with Cnv symmetry
(or in multilayers with the induced DMI). As trial functions for angular skyrmion/skyrmionium profiles, linear Ansatzes are
used (blue lines in the lower panels). (c) The simplified diagram on the plane (ku, h) constructed for the trial functions. In the
red- and blue-shaded regions, skyrmioniums and skyrmions acquire the negative eigen-energy with respect to the homogeneous
state, which signifies their condensation into a lattice. The inset shows an example of an arrow-like angular profile for a
skyrmion with h = 0.7, ku = 0, which justifies the used linear Ansatzes.

and condensation of isolated solitons follows a classifica-
tion introduced by de Gennes [48] for (continuous) transi-
tions into incommensurate modulated phases. The trans-
formation of skyrmions during the formation of the lat-
tice was first investigated in Ref. [5]. In the present
paper, however, it will be shown that this scenario is not
the case for skyrmioniums.

As a primary numerical tool to minimize the func-
tional (1), we use MuMax3 software package (version
3.10) which calculates magnetization dynamics by solv-
ing the Landau-Lifshitz equation using finite difference
discretization technique [49]. To double-check the valid-
ity of obtained solutions, we also use our own numerical
routines, which are explicitly described in, e.g., Ref. 50
and hence will be omitted here.

Since isolated skyrmions and skyrmioniums are axi-
symmetric particle-like states, we will use the spherical
coordinates for the magnetization:

m = (sin θ(ρ) cosψ(φ), sin θ(ρ) sinψ(φ), cos θ(ρ)), (3)

and cylindrical coordinates for the spatial variables [5, 6]

r = (ρ cosφ, ρ sinφ, z) (4)

where ψ(φ) = φ is adapted for the Néel-like magnetiza-
tion rotation.

The total energy of an isolated skyrmionium with re-
spect to the homogeneous state can be written as

E =

∞∫
0

ε(θ, ρ)2πρdρ,

ε(θ, ρ) =[

(
dθ

dρ

)2

+
sin2 θ

ρ2
+ h (1− cos θ) +

dθ

dρ
+

+
sin 2θ

2ρ
+ ku(1− cos2 θ)] (5)

where ε(θ, ρ) is an energy density.

III. ANALYTICAL RESULTS FOR THE LINEAR
ANSATZ

A. Isolated skyrmions

In a wide range of control parameters ku and h,
skyrmion profiles θ(ρ) are known to bear strongly local-
ized character (see, e.g., an inset in Fig. 1 (c) plotted for
h = 0.7, ku = 0). According to the conventions of Refs.
[5, 6, 51] such arrow-like solutions can be decomposed
into skyrmionic cores with linear dependence

θ(ρ) = π(1− ρ

R0
), ρ ≤ LD (6)

and exponential ”tails” with

θ ∝ exp [−αρ], ρ≫ LD. (7)

Therefore, a ”nucleus” with a diameter 2R0 can be
considered as a two-dimensional particle-like state as it
accumulates almost all energy of the isolated skyrmion.
At the same time the asymptotic exponential tails are
viewed as the ”field” generated by the particle [52].

In the following, we focus on the physical principles
drawn from the linear Ansatz (6) with ρ ≤ R0 and the
condition θ(ρ) = 0, ρ > R0 (Fig. 1 (a)). Equilibrium
radius R0 of the skyrmion core can be found from substi-
tuting the linear Ansatz into (5), integrating, and then
minimizing with respect to R0. Thus, the skyrmion en-
ergy (5) is reduced to a quadratic potential

E(R0) = D0 − 2A0R0 + (B0h+ C0ku)R
2
0, (8)
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FIG. 2. (color online) (a) The total energy of an isolated skyrmionium plotted in dependence on the radii of the internal Rin

and the external Rex skyrmions (green curve). For the fixed radius Rin, the radius Rex is defined by the ratio η, which changes
along the energy curve from the high value at the right to unity at the left. The total energies of the internal and the external
skyrmions are shown by blue and red curves, correspondingly. The energy minimum is reached at Rin = 3.17 and η = 2.53 for
h = 0, ku = 0.7. (b) The corresponding energy curve viewed from above. (c) The separate energy contributions depending on
the ratio η: black curve – the exchange energy; red curve – the DMI energy; blue curve – the anisotropy energy. The energy
minimum at the green curve is highlighted by the circle. The inset shows the total energy of a skyrmionium for different values
of the uniaxial anisotropy, which may become negative or may loose its minimum. (d) The lines on the plane (ku, h), along
which the energy minimum is reached for an internal skyrmion only.

with parameters

A0 =

∫ R0

0

[
dθ

dρ
+

sin 2θ

2ρ
]2πρdρ = 4.9348,

B0 =

∫ R0

0

[(1− cos θ)]2πρdρ = 1.86835,

C0 =

∫ R0

0

[(1− cos2 θ)]2πρdρ = π/2,

D0 =

∫ R0

0

[

(
dθ

dρ

)2

+
sin2 θ

ρ2
]2πρdρ = 38.6644. (9)

The equilibrium value of the skyrmion radius

Rmin
0 =

A0

(B0h+ C0ku)
. (10)

arises as a result of the competition between chiral and
Zeeman/anisotropy energies.

The exchange energy D0 does not depend on the
skyrmion size and presents an amount of positive en-
ergy ”trapped” within the skyrmion. Moreover, the size
of IS diverges by approaching the critical point (0, 0) at
the phase diagram. In centrosymmetric systems with-
out DMI, localized solutions are radially unstable and
collapse spontaneously under the influence of applied
magnetic field and anisotropy [5]. Thus, already such
a simplified model offers an important insight into phys-
ical mechanisms underlying the formation of the chiral
skyrmions.

At the phase diagram (Fig. 1 (c)), the energy of an iso-
lated skyrmion (8) acquires the negative values with re-

spect to the homogeneous state within the triangular re-
gion a−b−0. Remarkably, a small fraction of this region
(a−d− c) oversteps the line c−d−e, at which the spiral
state turns into a system of isolated kinks. Based on this
observation, in Ref. [1], it was concluded that a skyrmion
lattice would represent a thermodynamically stable state
within some region of this phase diagram. Subsequent
numerically rigorous calculations found a vast area of the
SkL stability with the simultaneous effect of the applied
magnetic field and the uniaxial anisotropy [5, 33].

B. Isolated skyrmioniums

In accordance with the paradigm developed for ISs, we
use the following trial function for skyrmioniums:

θ(ρ) = π
ρ

Rin
, ρ ≤ Rin,

θ(ρ) = π − π(
ρ−Rin

Rex −Rin
), Rin < ρ ≤ Rex,

θ = 0, ρ > Rex (11)

where Rin and Rex are the radii of the nested internal
and the external ring-shaped skyrmions with the opposite
polarities (Fig. 1 (b)).
By substituting this Ansatz into (5), the equilibrium

radii can be determined as:

Rin =
A(η)

B(η)h+ C(η)ku
, Rex = ηRin. (12)
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where the parameter η denotes the ratio between two
radii. The total energy

E(η) = D(η)− 2A(η)Rin(η) + (B(η)h+ C(η)ku)R
2
in(η)

becomes an involved function of η. Each of the pa-
rameters A(η), B(η), C(η), D(η) can be represented as a
sum of the contributions from the internal (ρ ≤ Rin)
and the external (Rin < ρ ≤ Rex) skyrmions, e.g.,
A(η) = Ain +Aex(η):

Ain = A0, Aex(η) = A0(1 + η),

Bin = 4.4148, Bex(η) = (B0η
2 + 2.547η − 4.4148),

Cin = π/2, Cex(η) = πη2/2− π/2,

Din = D0, Dex(η) =
36.74η + 21.28

η − 1
. (13)

The parameteres for the internal skyrmion are con-
stants and equal the corresponding values for the isolated

skyrmion (9), except the Zeeman energy Bin. The inte-
gration occurs from 0 to Rin for the internal skyrmion,
and from Rin to ηRin for the external one.
As an instructive example, we consider the skyrmion-

ium solutions for fixed control parameters, h = 0, ku =
0.7. Fig. 2 (a) shows the energies of the internal (blue
line) and the external (red line) skyrmions as well as the
total energy of a skyrmionium (green line) in this case.
First of all, we notice that all energies represent para-

metric curves of the ratio η, i.e., for a given radius Rin

of an internal skyrmion, the radius Rex of the external
skyrmion is uniquely specified. Fig. 2 (b) shows the cor-
responding projection onto the plane (Rin, Rex) to ad-
ditionally highlight the two-dimensional character of the
energy dependence.
In other words, both skyrmions ”communicate” to

reach the energy minimum for a fixed Rin: for small
values of Rin (close to the collapse of skyrmionium), the
parameter η acquires larger values (at the left side of
the depicted energy curves in Fig. 2 (a), (b) η = 4.9);
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for large values of Rin, the parameter η tends to unity,
which transforms a skyrmionium into a narrow circular
domain wall (at the right side of the depicted energy
curves η = 1.3).

Second, only the energy of the internal skyrmion ex-
hibits a minimum for some ratio η∗, which represent
straight lines on the plane (ku, h) (Fig. 2 (d)). We notice
that η∗ > 2, i.e., the internal skyrmion prefers ”longer”
rotation within the external skyrmion. For zero magnetic
field, η∗ = 2, and the radius of the internal skyrmion
equals the radius of the skyrmion, Rin = R0 = 4.488,
i.e., the internal skyrmion exhibits the magnetization ro-
tation according to the principles drawn in the previous
subsection. For an applied magnetic field, however, the
situation is different since the ordinary skyrmion has the
negative polarity, whereas the internal skyrmion within
the skyrmionium – the positive one.

The positive energy of the external ring-like skyrmion
does not have any energy minimum (red curve in Fig. 1
(a)). However, it can be reduced by decreasing Rin and
by increasing η, i.e., the external skyrmion squeezes the
internal one in an attempt to reduce its own surface area.

The resulting skyrmionium is thus shaped as a com-
promise between these tendencies of communicating
skyrmions: the equilibrium internal radius in this case
Rin = 3.1762 is slightly smaller as compared with the
skyrmion radius R0; η = 2.53.

Third, the metastability of skyrmionium can also be
considered from the energetic point of view. Fig. 2 (c)
shows each energy contribution depending on the param-
eter η. The exchange energy diverges for η → 1 and tends
to 75.4 for η → ∞. The exchange energy outweighs the
DMI for small and large η. For moderate values of η, the
DMI energy dominates and leads to some equilibrium
characteristic size. Inset of Fig. 2 (c) shows that for
small ku the energy of a skyrmionium may become neg-
ative, which facilitates condensation into a skyrmionium
lattice. According to the phase diagram (Fig. 1 (c)), the
hexagonal SkmL is formed below the line f − g, which
is located deep inside the region of the spiral stability.
One can provisionally conclude that a skyrmionium lat-
tice will remain a metastable state for the whole range of
the control parameters. For larger anisotropy values (in-
set of Fig. 2 (c)), the energy minimum shallows and with
the condition η → ∞ disappears, which is equivalent to
the skyrmionium collapse.

Fig. 3 shows the equilibrium parameters Rin (a), Rex

(c) and η (e) on the plane (ku, h). These parameters are
constant along almost straight lines. Both the increas-
ing magnetic field and the uniaxial anisotropy lead to
the skyrmionium collapse, which is accompanied by the
shrinking radii Rin and Rex, but the drastically increas-
ing ratio η. Panels (b), (d), and (f) show two-dimensional
cross-cuts either for zero anisotropy (blue curves) or zero
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energy minimum (c). h = 0, ku = 0.7. Additional panels in (c) show color plots for different energy contributions.

magnetic field (red curves). The linear Ansatz (11) en-
ables skyrmioniums with infinitely small internal radii
(12), which precludes from plotting the exact line of
skyrmionium collapse. Indeed, only for η → ∞, Rin → 0.

IV. NUMERICAL SOLUTIONS FOR ISOLATED
SKYRMIONIUMS

In the present section, we validate the principles
of skyrmionium internal stability drawn for the linear
Ansatz. We obtain numerically rigorous solutions for
isolated skyrmioniums by minimizing the functional (1)
with non-dimensional units in MuMax3 [49], i.e., the ex-
change and DMI constants are Aex = 1, DDMI = 1. The
size of the numerical grid is 1024×1024; the cell sizes are
0.1 along all spatial directions. We construct the initial
states for skyrmioniums by pinning the magnetization,
mz = −1, along the circle with the radius Rin (we re-

fer to this radius as Rpinned
in ) and let MuMax3 relax the

spin configuration. Otherwise, the magnetization vectors
point along z axis, mz = 1. As it was argued in the previ-
ous section, no pinning is needed for the external radius
Rex.

The energies of the internal skyrmion (the area within
the circle with the radius Rin), external skyrmion (the
area with ρ > Rin) and the skyrmionium are plotted in

dependence on Rpinned
in in Fig. 4 (a) with the same color

coding as in Fig. 2 (a) and for the same control param-

eters, h = 0, ku = 0.7. The behavior is qualitatively the
same as for the linear Ansatz, but with some nuances,
which call for some additional explanation. First of all,

we notice that for some critical radius Rpinned
in , a skyrmio-

nium collapses into an ordinary skyrmion (the transition
is highlighted by the dotted red line and the red arrow),
i.e., the internal skyrmion becomes small within the given
discretization scheme, and thus cell sizes must be reduced
to address this type of skyrmionium solutions. The color
plot for the mz-component of the magnetization is shown
in Fig. 5 (a). The problem of skyrmionium collapse into
a skyrmion was recently addressed in Refs. [38, 39] and
thus will be omitted here.

For relatively large radii Rpinned
in , on the contrary, a

skyrmionium transforms into a circular domain wall with
comparable radii Rin and Rex, i.e., η → 1 as was pre-
dicted by the linear Ansatz. The corresponding color
plot is shown in Fig. 5 (b).

The energy of the external ring-shaped skyrmion (red
curve in Fig. 4 (a)) gradually increases in dependence

on Rpinned
in , and the total energy (green curve in Fig.

4 (a)) possesses a minimum for Rin = 5.4. The in-
ternal skyrmion, however, exhibits an interesting evolu-

tion with the increasing Rpinned
in : once the energy of the

internal skyrmion reaches the minimum, it’s size stops
growing, which is an artifact imposed by pinning. To
address this behavior, we introduce other characteristic

radii RLilley
in and RLilley

ex , which are defined according to
the Lilley rule (Fig. 4 (b)): we plot the second derivative
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FIG. 6. (color online) (a) The abridged phase diagram for model (1) on the plane of control parameters (ku, h). Red-shaded
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d2mz/dρ
2 (black curve), find its zero values and construct

the tangent lines (green lines) to the profiles mz(ρ) (blue
lines). Then, the intersection points with the magneti-
zation levels mz = ±1 constitute the required radii. All
the scaffolding shown by the green lines in Fig. 4 (b)
was done for the magnetization profile corresponding to
the energy minimum. Dependences of both Lilley-radii
are plotted in Fig. 4 (c). After the plateau with the

constant RLilley
in , both radii continue to grow simultane-

ously, which is marked by discontinuities at all graphs.
The color plots for the mz-component of the magnetiza-
tion, DMI and exchange energy densities as well as the
total energy density are plotted in Fig. 5 (c) for the
skyrmionium with the minimal total energy. All graphs
exhibit characteristic target-like patterns and, e.g., allow
to allocate three rings with the negative energy density
and two rings with the positive one.

The ratio between two radii η can be defined using

both RLilley
in,ex and Rpinned

in (Fig. 4 (d)). Although the

ratio RLilley
ex /RLilley

in (blue curve) exhibits discontinuity,
both curve are consistent with the behavior of the linear
Ansatz: for small radii Rin, the ratio η increases; for
large Rin, η → 1.

V. SKYRMIONIUM LATTICES

Skyrmionium ”particles” may be also driven together
to form skyrmionium lattices. The process of condensa-
tion is ruled by two competing mechanisms: low-energy
skyrmionium cores trying to fill the whole space once
they acquire the negative eigen-energy, and high-energy
edge area responsible for the space frustration. On
the contrary to SkLs, however, two varieties of SkmLs
can be formed depending on the polarity of the central
skyrmion. In the forthcoming simulations, we will con-
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sider just one type of SkmL, but will change the direction
of the field.

As foreseen by the linear Ansatz, both SkmLs represent
metastable solutions, but with the metastability regions,
which extend up to the critical line e − c of the spiral
state (red-shaded region in Fig. 6 (a)), i.e., SkmLs exist
for the same control parameters as the spiral states, but
bear higher energy.

The lattice periods p of both SkmLs (defined as the
distances between the centers of two adjacent skyrmion-
iums) tend to infinity with approaching the critical line
e − c. Fig. 6 (b) shows the period of the SkmL for the
positive magnetic field and different values of the uni-
axial anisotropy. The critical value of the field is essen-
tially the same as for the spiral state. Indeed, such a
SkmL transforms into a system of circular domain walls
with the inflating radius (Fig. 6 (f), upper panel), i.e.,
on the contrary to the ordinary SkLs, the SkmL is not
able to set free isolated skyrmioniums. For the negative
magnetic field, the SkmL turns into a system of isolated
skyrmions separated by the hexagonal web of narrow do-
main walls (Fig. 6 (f), bottom panel). The saturation
field is slightly lower due to the small positive energy of
the central skyrmions. Two-dimensional cross-cuts for
both SkmLs are shown in Fig. 6 (d), (e) for different
values of the applied magnetic field.

In addition, we plot the characteristic sizes at some
particular levels of the magnetization (Fig. 6 (c)): θ =
3π/2 (dark-blue curve), θ = π (green curve), and θ = π/2
(light-blue curve), which also expand at the critical field
values. The green curve signifies the width of the domain
wall region, which is defined as W = Rθ=3π/2 −Rθ=π/2.
Interestingly, the characteristic sizes of isolated

skyrmioniums also diverge while approaching the critical
field from the side of higher fields (Fig. 6 (c)). The width
W , however, preserves its continuity through the whole
field range. The same behavior was observed for the ordi-
nary SkL: also the period of the lattice diverges, the size
of isolated skyrmions is finite for the critical field value.
Within the used discretization scheme, isolated skyrmio-
niums were found to exist in the green-shaded region of
the phase diagram (Fig. 6 (a)), and collapse above the
line k − l. As was mentioned in Sect. III B, smaller cell
size of the numerical grids may lead to slightly higher
values of the critical control parameters, which, however,
are restricted by the physical arguments that the internal
skyrmion cannot be infinitely small.

For small anisotropy values, some part of the area with

isolated skyrmioniums is covered by the stable SkL [53],
which stabilizes below the line m− e (dotted blue line in
Fig. 6 (a)). For large anisotropy values, isolated skyrmio-
niums may exist alongside with the isolated skyrmions
(to the right from the point n). To the right from the
point o, the SkmL is energetically more favorable than
SkL as was found for the spiral states.

VI. CONCLUSIONS

In the present paper, we scrutinized the internal struc-
ture of skyrmioniums from the perspective of two com-
municating skyrmions (magnetic analogue of communi-
cating water vessels). Within the central skyrmion, the
magnetization performs its rotation according to the en-
ergy balance of the DMI and Zeeman/anisotropy contri-
butions, which stipulates the energy minimum and re-
sembles the behavior of an ordinary isolated skyrmion.
The central skyrmion would dictate the same rotational
algorithm within the surrounding ring-shaped skyrmion
with the opposite polarity. This external skyrmion, how-
ever, does not exhibit any energy minimum, and would
rather prefer to squeeze the central skyrmion to reduce
its own positive energy. Thus, two constituent skyrmions
within a skyrmionium communicate to establish an op-
timal ratio of their radii rather than each of the radii
separately.

For large values of the applied magnetic field and/or
uniaxial anisotropy, skyrmioniums were shown to col-
lapse. This process is accompanied by simultaneous
shrinkage of both radii, but with the growth of their ra-
tio, the process, which tries to prevent the skyrmionium
destruction. Along another critical line at the phase dia-
gram, both isolated skyrmioniums and skyrmionium lat-
tices expand and transform into circular domain walls.
Both skyrmionium realizations, however, exists as sepa-
rate branches of solutions on the opposite sides from the
critical line. Besides, skyrmionium lattices are overpow-
ered by the 1D cycloids, which are energetically more
preferable states and thus impede experimental realiza-
tion of SkmLs in the whole parameters region.
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