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Abstract

Topological semimetals are intriguing targets for exploring unconventional physical properties of

massless fermions. Among them, nodal line or nodal ring semimetals have attracted attention for

their unique one-dimensional band contact in momentum space and resulting nontrivial quantum

phenomena. By field angular resolved magnetotransport measurements and theoretical calcula-

tions, we show that pressurized black phosphorus (BP) is an ideal nodal ring semimetal with weak

spin-orbit coupling, which has a sole and carrier density-tunable nodal ring isolated from other

trivial bands. We also revealed that the large magnetoresistance effect and its field-angular de-

pendence in semimetallic BP are due to highly anisotropic relaxation time. Our results establish

pressurized BP as an elemental model material for exploring nontrivial quantum properties unique

to the topological nodal ring.
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Three-dimensional topological semimetals (TSMs) are a major research topic at the fore-

front of condensed matter physics [1]. A notable feature of TSMs is massless fermions in the

bulk, which derive from the linearly dispersing band structure. Their unconventional phys-

ical properties due to the presence of massless fermions have been intensively explored and

elucidated. Dirac and Weyl semimetals [2–8] are widely known materials that are character-

ized by degenerate or non-degenerate band contact points in the momentum space. Another

type of TSM is a nodal line or nodal ring semimetal [9], in which the contact of the valence

and conduction band occurs on a continuous line or closed ring in the momentum space.

Numerous unique physical properties characterizing the nodal line or nodal ring semimetal

are expected, including a drumhead-like flat surface state [10], unconventional distribution

of Landau levels [11], nontrivial π-Berry phase associated with the band contact line [12]

etc.

However, an ideal TSM is rarely seen in reality; other trivial carriers generally co-exist

other than the massless fermions, which hinder the extraction of the true physical response

derived from the topological electronic structure. In addition, the topological character is

inherent in the crystal structure, constituent element, etc. which are difficult to desirably

control from the outside.

In this context, we focus on black phosphorus (BP), which is known as a monoatomic

semiconductor with a band gap of 0.3 eV at the Z point in the first Brillouin zone at

ambient pressure [13–15]. The crystal structure has puckered honeycomb layers, which are

alternately stacked along the b axis, as shown in the inset of Fig. 1(b) [16, 17]. BP shows

a pressure-induced semiconductor-to-semimetal transition at ∼ 1.4 GPa [18–22]. In the

semimetallic state, the carrier density of electrons and holes can be continuously tuned by

applying pressure, maintaining its compensated nature and high carrier mobility [23]. There

have been several suggestions for the electronic structure in the semimetallic state [20, 24–

27], including the possible realization of topological nodal line semimetal [28]. Intriguingly,

several materials such as the nonmagnetic CaP3 family [29, 30] and magnetic EuP3 [31],

which share a similar puckered-layer structure with BP, have been focused on as candidates

of nodal ring semimetal. Experimentally, however, the Fermi surface (FS) in the semimetallic

BP has been veiled so far primarily because of the lack of detailed geometry under high

pressure.

In this study, we unveil the FS of semimetallic BP by angular resolved magneto transport
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and show that pressurized BP is an ideal topological nodal ring semimetal. Single crystals of

BP were synthesized under high pressure [32, 33], which show a high residual resistivity ratio

of more than 400 at 3.4 GPa, as shown in Supplemental Material [34]. The orthorhombic

crystal structure (Cmca, space group #64) and the crystal orientation were determined

by X-ray Laue backscattering image and simulations using QLaue [35]. Laue pattern (see

Supplemental Material [34]) was reasonably explained by the lattice parameters determined

by a recent neutron diffraction measurement [33]. Resistivity measurements under high

pressures up to 3.5 GPa were performed using an indenter-type pressure cell [36] and Daphne

oil 7474 pressure medium [37]. The pressure in the sample space was determined from the

superconducting transition temperature of Pb set near the sample [38]. The band structure

calculations based on the density-functional theory (DFT) and subsequent analyses were

performed using the Quantum ESPRESSO [39–41], Wannier90 [42], WannierTools [43, 44],

FermiSurfer [45], and the SKEAF code [46]. In the following, we discuss the results based

on scalar-relativistic calculations since the effect of the spin-orbit coupling is negligibly

small. A more detailed description of the experimental and theoretical methods are shown

in Supplemental Material [34].

First, we focus on the magnetotransport properties and their field angular dependence

in the semimetallic state. Figure 1(a) shows the magnetic field (B) dependence of ρa at

1.4 K and 3.0 GPa, which is normalized by the zero-field value ρa0. Here, we rotated B

within the bc plane. The current (I) direction is perpendicular to B. We observed a large

magnetoresistance (MR) effect, which was maximized by the application of B along the b

axis. To extract the SdH oscillations on such a large MR, we show dρa/dB as a function of

B−1 in Fig. 1(b). We can see clear SdH oscillations and their variations according to the

field direction. In Figs. 1(c, d), we show the resistivity along the c axis normalized by the

zero-field value (ρc/ρc0) at 1.4 K and 3.1 GPa, in which B was rotated within the ab plane.

In this configuration, we also observed a large MR effect maximized by the application of

B ‖ b, and prominent SdH oscillations.

By collecting the field angular resolved SdH oscillations at various pressures, we can

obtain the detailed geometry and pressure-induced evolution of the FS. Figures 2(a–f) show

the field angular dependence of the SdH frequency (F ) obtained by fast Fourier transform

(FFT) analysis at three representative pressures. The FFT spectra used to construct Figs.

2(a–f) are shown in Supplemental Material [34]. Although the datasets shown in (a, c, e)
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FIG. 1. (a) Magnetic field dependence of resistivity ρa normalized by zero-field value ρa0 and (b)

dρa/dB at 1.4 K and 3.0 GPa. B is rotated within the bc plane, and I is along the a axis. (c)

Magnetic field dependence of resistivity ρc normalized by zero-field value ρc0 and (d) dρc/dB at

1.4 K and 3.1 GPa. B is rotated within the ab plane, and I is along the c axis. Data in (b) and

(d) are vertically shifted for clarity. The crystal structure of BP and its crystal axes are shown in

the insets of (b) and (d).

and (b, d, f) are obtained using different setups and samples, we can observe reasonable

reproducibility of F at approximately the same pressure. At all pressures, we identified two

independent branches labeled α and β with eye guides. Here, we can see another frequency

around B ‖ a, which lies just below the β. We confirmed at all pressures that these are

second harmonics of α. The observation of 2α is consistent with our previous study [20].

We can see that F of α and β monotonically increases with the application of pressure with

little change in their angular dependencies. The monotonic increase of F corresponds to the

increase in the carrier density indicated by the two-carrier model analyses [23]. Here, we

can recognize a pressure-induced change in the angular dependence of α between B ‖ b and

B ‖ c, which will be discussed later. From the above results, we can conclude there exist

two independent Fermi pockets and no other FSs appear at least up to 3.0–3.1 GPa.

To determine the FS of the semimetallic BP, we performed first-principles calculations.

The black curve in Fig. 3(a) shows the band structure of BP at ambient pressure using a
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FIG. 2. Field angular dependence of the SdH frequency F at (a, b) 1.9 GPa, (c, d) 2.3-2.4 GPa,

and (e, f) 3.0-3.1 GPa. Identified branches (α, β) and second harmonics (2α) are shown with

solid and broken eye guides, respectively. (g) Field angular dependence of F obtained from DFT

calculation. The inset in (g) represents possible deformation of the electron pocket from the perfect

ellipsoid, which can cause local maxima between a and b, as indicated by arrows.

fully optimized structure, which reproduces the direct band gap structure at the Z point.

Here, V0 = 171.0 Å3 in Fig. 3(a) represents the volume of the unit cell obtained by structural

optimization, and the Fermi level is taken at the top of the valence band. The band structure

at ambient pressure is consistent with a previous report [47]. The red curve in Fig. 3(a)

shows the band structure of compressed BP with a volume of 0.9V0. The result was obtained

using a crystal structure optimized under hydrostatic compression, and the Fermi level was

adjusted to satisfy the carrier compensation. For details of structural optimization, see

Supplemental Material [34]. As seen at the Z point, the valence and conduction band touch

at a point near the Fermi level. Although the conduction band significantly falls toward

the Fermi level on the Γ–A path, the present result indicates that the emergence of the FS

initially occurs at the Z point. This picture is qualitatively different from those suggested

in several previous reports [20, 25], in which four additional electron pockets exist on the

Γ–A path. A possible reason for this difference might account for the computational details

and whether the structure was optimized or not.

Figure 3(b) shows the FS drawn in the first Brillouin zone. We obtained an elongated
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FIG. 3. (a) Energy band structure under ambient (black) and compressed (red) conditions. V0

represents the volume of the optimized structure at ambient pressure (see text for details). The

inset shows a magnified view of the band dispersion at the Z point. (b) FS under compressed

conditions. The red and blue surfaces represent the hole and electron pockets, respectively. (c)

Cross-section of the FS cut by ka–kb plane. The red broken line indicates the projection of the

nodal ring on the ka–kb plane. (d) Dispersion of the valence (red surface) and conduction (blue

surface) bands on the ka–kb plane. Red broken lines represent the nodal ring enclosing the Z point.

banana-shaped hole (h) pocket and a relatively isotropic electron (e) pocket. As shown in

Fig. 3(c), these pockets touch at four nodes and enclose the Z point in the ka–kb plane.

To deepen our understanding of the obtained FS, we show in Fig. 3(d) the dispersion of

the valence and conduction bands on the ka–kb plane. As indicated by the red broken line,

the band-touching point mentioned in Fig. 3(a) forms a closed ring structure in the ka–kb

plane. This nodal ring does not lie exactly on the Fermi level but shows a slight dispersion

of ± ∼ 100 meV around the Fermi level. This results in a squeezed ring-shaped FS formed

by h and e pockets. The above results predict the realization of a nodal ring semimetal,

in which there only exists a set of FSs deriving from the nodal ring structure. The above

discussion can hardly be affected by whether spin-orbit coupling is included or not, as shown

in Supplemental Material [34]. This indicates that BP under pressure is a unique platform

possessing an ideal nodal ring located within ± ∼ 100 meV around the Fermi level.
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Then, we confirm the realization of the predicted FS. Figure 2 (g) shows the field angular

dependence of F calculated based on the obtained FS. As expected from the banana-shaped

geometry, h pocket shows a steep angular dependence between a and b. The e pocket

shows rather flat dependence with local maximum and minimum at c and a, respectively.

A comparison with Figs. 2(e) and (f) shows that the experimental features in the angu-

lar dependence and absolute value of F are satisfactorily reproduced by our calculation,

demonstrating the realization of the nodal ring semimetal.

In both the experimental and theoretical results, we can recognize a local maxima between

a and b indicated by the arrows in Fig. 2. Qualitatively, these can be understood assuming

that the poles of an ellipsoidal FS deviate from kb, as illustrated in the inset of Fig. 2(g).

This structure corresponds to the pointy contacts directed along the nodal ring suggested

by the DFT results shown in Figs. 3(b) and (c). From the position of the local maxima, we

determined that the tangent line of the nodal ring at the contact point of h and e pockets

directs 45◦–55◦ from kb.

Here, we also note in Figs. 2(a–f) that the field angular dependence of α between B ‖ b

and B ‖ c apparently changes by application of pressure. At 1.9 GPa, h pocket is assumed

to be slightly flat on the ka–kb, which results in a larger cross-section when B ‖ c. At

3.0-3.1 GPa, on the other hand, the FS becomes flat on the kc–ka plane as can be seen

in the larger F when B ‖ b. We show the schematic images of the expected geometry

in Supplemental Material [34] to help understand the situation. The above change of flat

direction is assumed to continuously take place by the application of pressure. This delicate

change resolved in our experiment could not be reproduced by the simulation presumably

due to the potential difficulty to evaluate a tiny Fermi surface with high accuracy in the

first-principles calculations.

Next, we attempt to understand the large MR effect characterizing the semimetallic state.

First, we focus on the transport properties arising from the FS curvature. We theoretically

evaluated the MR effect based on the semiclassical Boltzmann equation, whose result is

shown by the red broken line in Fig. 4 (for details, see Supplemental Material [34]). Here, we

assume that the relaxation time τ = 5 ps is independent of the band indices and directions.

Apparently, the calculation fails to reproduce the magnitude and field angular dependence

of the MR observed in the experiments.

This mismatch is assumed to be derived from the constant-τ approximation. To consider
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FIG. 4. (a) Field angular dependence of the MR effect at 8 T with I ⊥ B. The markers represent

the experimental results. The red broken and blue solid lines represent the calculation results

assuming a constant relaxation time τ = 5 ps and anisotropic τ , respectively (see main text).

the possible band-index dependence and anisotropy of τ , we adopt a model in which the

mobility tensor of h and e pockets µ̂h,e and the magnetic tensor B̂ are given by [48]

µ̂h,e = e











τh,exx /m
h,e
xx 0 0

0 τh,eyy /mh,e
yy 0

0 0 τh,ezz /mh,e
zz











, (1)

B̂ =











0 −Bz By

Bz 0 −Bx

By Bx 0











. (2)

Here, x, y, and z correspond to a, c, and b directions, respectively. In this framework, the

geometry of the FS is approximated to an ellipsoid characterized by the effective mass tensor

m̂h,e. On the other hand, we can treat τ as a pocket- and direction-dependent tensor τ̂h,e.

The conductivity tensor σ̂ and resistivity tensor ρ̂ can be given by σ̂ = 2[nhe(µ̂
h + B̂)−1 +

nee(µ̂
e − B̂)−1] and ρ̂ = σ̂−1. To reproduce the experimental data at 3.0-3.1 GPa shown by

the markers in Fig. 4, we calculated the resistivity normalized by the zero-field value by

adjusting the six parameters in µ̂h,e. A reasonable reproduction was achieved as indicated

by the solid lines in Fig. 4, in which µh
xx = 1.5 T−1, µh

yy = 10 T−1, µh
zz = 12 T−1 for h and

µe
xx = 8 T−1, µe

yy = 8 T−1, µe
zz = 1 T−1 for e. Here, we assumed a slight carrier imbalance,

nh = 3.05 × 1018 cm−3 and ne = 3.00 × 1018 cm−3 for each pocket, to reflect the positive

Hall resistivity in the high-field region [23]. In fact, this model reasonably reproduces the

experimental features of Hall resistivity, including the sign inversion in the low-field region
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(see Supplemental Material [34]). Thus, the above parameters depict a minimal model for

expressing the transport properties of semimetallic BP.

Since the geometry of the FS has been established by first-principles calculations, we can

calculate the cyclotron effective mass mc of each pocket when B is applied along the three

principal axes. The results are m
B‖a
c /m0 = 0.0476, m

B‖b
c /m0 = 0.302, m

B‖c
c /m0 = 0.318 for

h, and m
B‖a
c /m0 = 0.106, m

B‖b
c /m0 = 0.151, m

B‖c
c /m0 = 0.171 for e, where m0 represents

the bare mass of electron. These show reasonable agreement with the experimental value,

mc/m0 = 0.02–0.14 [20, 21]. Thus, we can evaluate m̂h,e as: mh
xx/m0 = 2.02, mh

yy/m0 =

0.0453, mh
zz/m0 = 0.0500 for h, and mh

xx/m0 = 0.244, mh
yy/m0 = 0.0936, mh

zz/m0 = 0.121

for e. Here, we assumed relationships m
B‖x
c =

√
myymzz etc. Combining the above m̂h,e

with the experimentally deduced µ̂h,e, we can extract the relaxation time in ps as

τ̂h =











17.2 0 0

0 2.58 0

0 0 3.41











, τ̂ e =











11.1 0 0

0 4.26 0

0 0 0.685











. (3)

The above result reveals that τ strongly depends on the direction and type of pocket, which is

the reason for the failure of the constant-τ approximation. Notably, anisotropic µ̂e is crucial

to explain the large MR effect and its field angular dependence. Because the relatively

isotropic geometry of the e pocket is validated by both experiments and calculations, the

significant anisotropy of µ̂e is primarily responsible for τ̂ e.

Phonon is almost inactive at 1.4 K; thus, carrier-defect or carrier-carrier scattering may

be responsible for the anisotropic τ̂h,e. Although the specific mechanism is unclear at this

stage, we would like to comment on possible causes.

One is the anisotropic crystal structure of BP. The a direction having the longest τ for

both h and e corresponds to the direction along the grooves of the puckered layer. Thus, it

might be preferable for ballistic transport compared to the buckled and layered directions.

We also note that the compressibility of BP is strongly direction-dependent. As shown in a

previous report [33], the lattice constant along the a axis is hardly affected by the application

of pressure, implying fewer defects accompanied by lattice compression.

Another one is unconventional scattering process, which is theoretically predicted in nodal

ring semimetal. In particular, FS accompanied by a nodal ring can bring a two-dimensional

weak antilocalization (2D WAL) effect assuming a long-range impurity potential [49, 50]. In
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this case, the backscattering process, which dictates the electrical resistivity, is dominated

by an interference loop confined in a specific plane perpendicular to the nodal line. The

longer τ̂h,exx may involve protection from backscattering under the presence of the 2D WAL

effect. It has been suggested that a high aspect ratio between the radius of the nodal ring

(K0) and the poloidal radius of the FS (κ) in momentum space is favorable for the emergence

of the 2D WAL effect [30, 50]. Based on K0 ∼ 0.15 Å−1 and κ ∼ 0.036 Å−1 obtained from

the computational result shown in Fig. 3, K0/κ ∼ 4.2 can be estimated for BP at around

3 GPa. Here, K0 is estimated as an averaged value of the long and short axes of the oval

nodal ring, and κ is calculated using an average of extremal cross-sections of h and e pockets.

We would like to point out that this is comparable to the case of SrAs3 (K0/κ ∼ 3.3–4.5)

[30], which has a torus-shaped FS with a high K0/κ ratio and shows a 2D WAL effect.

To reinforce the above nontrivial mechanism, further detailed and systematic inspection of

electrical conductivity in the semimetallic state would be necessary, which remains a future

challenge.

In summary, we have unveiled the Fermi surface (FS) in semimetallic black phospho-

rus (BP) by magnetotransport measurements. We identified two independent FSs in the

semimetallic state above 1.4 GPa, and no other FSs were detected up to 3.0–3.1 GPa. Our

theoretical calculation suggested the emergence of the FS at the Z point in the first Bril-

louin zone and the realization of the nodal ring structure enclosing the Z point. The nodal

ring has an energy dispersion of ± ∼ 100 meV around the Fermi level, which results in a

squeezed ring-shaped FS consisting of small hole and electron pockets. Because of the weak

spin-orbit coupling of phosphorus, the gap at the band contact node is quite small. The

simulated angular dependence of the Shubnikov-de Haas oscillations satisfactorily repro-

duced the experimental features, which clarified the realization of the nodal ring semimetal.

We also demonstrated that anisotropic relaxation time is crucial for reproducing the large

magnetoresistance effect and its field angular dependence in semimetallic BP. Importantly,

the semimetallic BP has the sole nodal ring isolated from other trivial bands, and the figure

of the nodal ring and carrier density can be flexibly tuned by pressure. Our results have

established the realization of an ideal nodal ring semimetal in pressurized BP, which can be

a promising platform to systematically explore novel phenomena derived from the nontrivial

electronic structure.
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De-La-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. Seitsonen,

A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, and S. Baroni, J. Phys.:

Condens. Matter 29, 465901 (2017).
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FIG. S1. Temperature dependence of resistivity ρa at various pressures up to 3.4 GPa. The inset

shows the Laue backscattering pattern of a sample. The red dots represent the simulation based

on Ref. [1]. The simulation was performed by QLaue [2].

I. METHODS

A. Experiments

The resistivity measurements were performed using a standard four-probe method. We

used a Model 370 AC resistance bridge (Lake Shore Cryotronics, Inc.) or a combined system

of 2400 sourcemeter and 2182A nanovoltmeter (Keithley Instruments). Measurements un-

der zero-field conditions were performed using a He-gas-flow-type optical cryostat (Oxford

Instruments) down to 2 K. Measurements under magnetic fields of up to 8 T were performed

using a superconducting magnet and variable-temperature insert (Oxford Instruments) down

to 1.4 K. The pressure in the sample space was determined from the superconducting tran-

sition temperature of Pb set near the sample [3]. The field-angular dependence of the

resistivity under high pressure was measured using a homemade mechanical rotator that

can uniaxially rotate the indenter-type pressure cell in the variable-temperature insert of

a superconducting magnet. Typical rotation steps adopted in the SdH measurements were

10°. Fast Fourier transform (FFT) analyses were performed on dρa/dB and dρc/dB at each

3



 !!!

"!!!

#!!!

!

 
$
% 

$
!

&'("!
!)*+,

!)--)"

!)--)#

#.()/
#.0)12$

 !!!

"!!!

#!!!

!

 
3
% 

3
!

&'("!
!)*+,

!)--)"

!)--)$

#.()/
#.0)12$

4
 
3
%4
!
)*
$
56
.)
7
8
9:
,

#.!!.&!.'!.(!."!.!

!
;#
)*+

;#
,

!)--)$

!)--)"

#.0
12$

4
 
$
%4
!
)*
$
56
.)
7
8
9:
,

!.(!."!.!

!
;#
)*+

;#
,

!)--)#

!)--)"

#.0
12$

*$,

*6,

*3,

*4,

$

#

"
!

$

#

"

!

FIG. S2. (a) Magnetic field dependence of resistivity ρa normalized by zero-field value ρa0 and (b)

dρa/dB at 1.4 K and 1.9 GPa. Magnetic fields were rotated within the bc plane and currents along

the a axis. (c) Magnetic field dependence of resistivity ρc normalized by zero-field value ρc0 and

(d) dρc/dB at 1.4 K and 1.9 GPa. Magnetic fields were rotated within the ab plane and currents

along the c axis. Data in (b) and (d) are vertically shifted for clarity.

pressure. We differentiated ρa and ρc with respect to B and interpolated them at even

intervals as a function of B−1. We obtained the FFT spectra from the dρa/dB and dρc/dB

data with the application of the Hanning window function. In Figs. S1, S2, S3, and S4,

we show the temperature dependence of resistivity ρa at various pressures, raw data of the

Shubnikov de Haas oscillations at 1.9 GPa and 2.3-2.4 GPa, and all the FFT spectra used

to construct the field angular dependence of F .
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FIG. S3. (a) Magnetic field dependence of resistivity ρa normalized by zero-field value ρa0 and (b)

dρa/dB at 1.4 K and 2.4 GPa. Magnetic fields were rotated within the bc plane and currents along

the a axis. (c) Magnetic field dependence of resistivity ρc normalized by zero-field value ρc0 and

(d) dρc/dB at 1.4 K and 2.3 GPa. Magnetic fields were rotated within the ab plane and currents

along the c axis. Data in (b) and (d) are vertically shifted for clarity.

B. Calculations

Structural optimization and band structure calculation based on density-functional theory

(DFT) were performed using the Quantum ESPRESSO (QE) package [4–6]. We employed

scalar-relativistic projector-augmented wave (PAW) pseudopotentials with the Perdew–

Burke–Ernzerhof (PBE) exchange correlation functional [7]. We used cutoffs of 70 Ry and

560 Ry for the plane-wave expansions of wave functions and charge density, respectively,
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FIG. S4. FFT spectra (a, b, c) under magnetic fields rotated within the bc plane and (d, e,

f) rotated within the ab plane. FFT analyses were performed on dρa/dB and dρc/dB at each

pressure.

and a Γ-shifted Monkhorst–Pack 12×12×12 k-point grid for the self-consistent calculation.

Self-consistent calculations were performed with a threshold of 1.0 × 10−8 Ry. Structural

optimization was performed using convergence thresholds of 1.0 × 10−5 Ry for the total

energy change and 1.0 × 10−4 Ry/Bohr for the forces. We constructed a tight-binding

Hamiltonian using Wannier90 [8]. We assumed 16 Wannier orbitals (P–sp3 orbitals) as

initial projections to reproduce the DFT band structure at the Fermi level. Visualization

6



of the Wannier-interpolated band structure and FS were performed using WannierTools [9]

and FermiSurfer [10]. Simulations of the quantum oscillation frequency F and cyclotron

effective mass were performed using the SKEAF code [11]. To express the small Fermi

pockets with sufficient accuracy, the drawings of the pockets and calculations of F were

performed using a Wannier-interpolated Fermi surface with a dense 181×181×181 k-point

mesh.

The simulation of the magnetoresistance effect was conducted based on the Boltzmann

equation within the relaxation-time approximation using WannierTools [9, 12]. In this frame-

work, the conductivity tensor is represented by

σ
(n)
ij (Bτn)

τn
=

e2

4π3

∫

dkv
(n)
i (k)v̄

(n)
j (k, Bτn)

(

−∂fFD

∂ǫ

)

ǫ=ǫn(k)

. (S1)

Here, e, fFD, and n represent the elemental charge, Fermi–Dirac distribution function, and

band index, respectively. τn represents the relaxation time of the nth band, which is assumed

to be independent of k. Because of the energy derivative of the Fermi–Dirac distribution

function, σ
(n)
ij is determined by the states within the thermal energy width of ∼ kBT near

the Fermi level. We set T = 15 K to define the thermal energy width. v
(n)(k) represents

the velocity defined by the gradient of energy in reciprocal space as follows:

v
(n)(k) =

1

~

∂ǫn(k)

∂k
. (S2)

v̄
(n)(k, Bτn) represents the weighted average of the velocity over the orbit, which is defined

as

v̄
(n)(k, Bτn) =

∫ 0

−∞

d(Bt)

Bτn
eBt/Bτnv

(n)[k(t)]. (S3)

The historical motion of k(t) under a magnetic field B was obtained using the equation of

motion
dk(t)

dt
= − e

~
v
(n)[k(t)]×B, (S4)

where k(t = 0) = k. We adopted a 1813 k mesh for integration over the first Brillouin zone.

The total conductivity is obtained from σij/τ =
∑

n σ
(n)
ij /τn, assuming τn = τ is independent

of the band index. The resistivity ρijτ is obtained as the inverse matrix of σij/τ .

7
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FIG. S5. Energy band structures at ambient pressure based on (a) the experimental crystal

structure reported in Ref. [1] and (b) the optimized crystal structure.

TABLE S1. Experimentally reported (expt., taken from Ref. [1]) and fully optimized (opt.) crystal

structures. a, b, and c represent the lattice constants, and (0, y, z) is the atomic coordinate of 8f-P

site. V = abc is the volume of the unit cell.

a (Å) b (Å) c (Å) y z V (Å3)

expt. (0 GPa) 3.31400 10.4774 4.37536 0.10161 0.08074 151.921

opt. (0 GPa) 3.310 11.33 4.560 0.09379 0.08640 171.0

expt. (3.18 GPa) 3.31429 10.0742 4.17685 0.10701 0.07337 139.460

opt. (1.5 GPa) 3.313 10.58 4.373 0.1015 0.07964 153.3

II. STRUCTURAL OPTIMIZATION AND THE EFFECT OF THE SPIN-ORBIT

COUPLING

First, we evaluated the computational conditions required to reproduce the semiconduct-

ing band structure at ambient pressure. We performed a calculation using an experimental

crystal structure reported in Ref. [1], which is in the first row of Tab. S1. Contrary to the

experimental fact, this results in a semimetallic band structure even at ambient pressure, as

shown in Fig. S5(a). The mismatch has been resolved using the fully optimized structure

shown in the second row of Tab. S1, whose band structure is shown in Fig. S5(b). Here,

the Fermi level is taken at the top of the valence band. Although the band gap (0.121 eV)

8



at the Z point is underestimated compared with the experimental value (0.3 eV), this is

due to the potential difficulty associated with calculating the band structure of narrow gap

semiconductors [13]. The band gap and optimized crystal structure obtained in this study

agree with a previous calculation using the same type of pseudopotential and exchange-

correlation functional [13]. Thus, we infer that the pressure-induced Lifshitz transition can

be reasonably depicted using a fully optimized structure under hydrostatic compression.

The correspondence of the pressure between experiments and calculations is not straight-

forward because the starting structural parameters and the band gap in the calculations are

different from the experimental values. Since the band gap is underestimated at ambient

pressure, we can assume that the DFT calculation tends to show the band structure at a

pressure higher than the input value. To make a reasonable comparison, we employed a

calculation that has a volume ratio V/V0 close to the experimental value. Here, V0 repre-

sents the volume at ambient pressure. In the main text, we adopted an SdH result obtained

at 3.0-3.1 GPa to determine the geometry of the Fermi surface. Referring to the crystal

structure at 3.18 GPa reported in a previous study (the third raw in Tab. S1), V/V0 is

assumed ∼ 0.92. Correspondingly, we adopted a computational result obtained using an

optimized structure under hydrostatic compression corresponding to 1.5 GPa. The fourth

raw in Tab. S1 represents the optimized structure. The V/V0 in this case is ∼ 0.90, which

is slightly smaller than the above value but is assumed to be reasonable. The agreement of

F between the experiment and calculation indicates the validity of the above comparison.

We confirmed that the conduction band on the Γ–A path touches the Fermi level above 2.0

GPa (V/V0 ∼ 0.88). This situation requires another branch in the angular dependence of

F , which can be excluded in the present case.

Here, we comment on the effect of spin-orbit coupling (SOC). To test the effect of SOC, we

calculated the band structure using the full-relativistic PAW pseudopotential with the PBE

exchange-correlation functional [14], whose results are shown in Fig. S6(a). Compared with

the scalar-relativistic case, a small energy gap (∼ 30 meV) is discernible at the band-contact

point on the Z–A path, whereas the overall dispersion remains unchanged. Additionally,

the SOC causes only a slight change in the absolute value of the SdH oscillation frequency,

as shown in Fig. S6(b). Thus, we show the scalar-relativistic calculation in the main text.

9
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FIG. S6. (a) Band structure along the Γ–Z–A path and (b) field angular dependence of the SdH

frequency without (black) and with (red) spin-orbit coupling.
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FIG. S7. Magnetic field dependence of the in-plane (a-c plane) Hall resistivity ρyx with B ‖ b

calculated based on the ellipsoidal Fermi surface model. The inset shows the magnified view in the

low-field region below 2 T.

III. HALL RESISTIVITY CALCULATED BASED ON THE ELLIPSOIDAL

FERMI SURFACE MODEL

We calculated the in-plane Hall response based on the ellipsoidal Fermi surface model

to check the quantitative validity. Figure S7 shows the magnetic field dependence of the

in-plane (a-c plane) Hall resistivity ρyx with B ‖ b. The inset in Fig. S7 shows the magnified

view in the low-field region below 2 T. The sign of ρyx is initially negative when B is increased

from 0 T, whereas the sign becomes positive between 1.5 and 2 T. Similar sign inversion

was observed in our previous experiment [15]. Referring to our previous measurements at

2.2 GPa and 2 K, ρyx = 6.7 mΩ cm at 8 T and |ρyx| = 100 µΩ cm at the local minimum.

Considering the tendency that these become smaller as the pressure increases, the agreement

between the experiment (2.2 GPa) and model calculation (based on the Fermi surface at

around 3 GPa) is reasonable. The above comparison further supports that the obtained

mobility and carrier density well explain the transport properties of pressurized BP.
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FIG. S8. Schematic image of the hole pocket (a) at 1.9 GPa and (b) at 3.0-3.1 GPa. Each pocket

is approximated by a simple ellipsoid, and the anisotropy is exaggerated for clarity. Each pocket

has the largest cross-section when the magnetic field is perpendicular to the blue plane.

IV. PRESSURE-INDUCED DEFORMATION OF THE HOLE POCKET OB-

SERVED IN THE EXPERIMENT

We show in Fig. S8 the schematic image of the hole (h) pocket expected from the

experimental SdH oscillation. In Fig. S8, the h pocket is approximated by a simple ellipsoid,

and the anisotropy is exaggerated for clarity compared to the real situation. Continuous

deformation from Fig. S8(a) to Fig. S8(b) by application of pressure would explain the SdH

results shown in the main text.
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