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Prethermalization in aperiodically driven classical spin systems
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Periodically driven classical many-body systems can host a rich zoo of prethermal dynamical
phases. In this work, we extend the paradigm of classical prethermalization to aperiodically driven
systems. We establish the existence of a long-lived prethermal regime in spin systems subjected
to random multipolar drives (RMDs). We demonstrate that the thermalization time scales as
(1/T)?"*2, where n is the multipolar order and T is the intrinsic time-scale associated with the
drive. In the n — oo limit, the drive becomes quasi-periodic and the thermalization time be-
comes exponentially long (~ exp(8/T)). We further establish the robustness of prethermalization
by demonstrating that these thermalization time scaling laws hold for a wide range of initial state
energy densities. Intriguingly, the thermalization process in these classical systems is parametri-
cally slower than their quantum counterparts, thereby highlighting important differences between
classical and quantum prethermalization. Finally, we propose a protocol to harness this classical
prethermalization to realize time rondeau crystals.

Introduction: The non-equilibrium dynamics of driven
many-body systems have been intensely investigated in
recent years [1-8]. These systems provide a fertile arena
for the realization of intrinsically non-equilibrium phases
of matter that do not have any equilibrium analog [9-
17]. Unfortunately, due to the absence of any conserva-
tion laws, driving inevitably leads to unbounded heat-
ing, thereby posing a major challenge to these experi-
ments [18-23].

While it is very difficult for driven systems to evade an
ultimate heat death, it is possible to delay this thermal-
ization process significantly. For periodically driven (Flo-
quet) systems, this can be achieved by tuning the drive
frequency to a value that is much larger than the local
energy scales in the system [24-31]. In this case, after an
initial transient period, the system enters a ‘prethermal’
state, where it doesn’t absorb energy for exponentially
long times. Interestingly, this phenomenon of Floquet
prethermalization persists both in the classical and quan-
tum regimes.

Recently, the notion of prethermalization has been ex-
tended beyond the Floquet paradigm. The most well-
studied example of this is the case of quasi-periodic
driving, where a long-lived prethermal regime has been
theoretically predicted [32-38] and experimentally real-
ized [39-41] for a large class of quantum many-body
systems. While this is a promising direction, just like
the Floquet case, even quasi-periodic driving is com-
pletely deterministic. Intriguingly, some recent studies
have shown that prethermal phases of matter can also
emerge in noisily driven quantum systems as long as the
noise is temporally correlated. In particular, prethermal-
ization has been demonstrated for a special class of struc-
tured random drives dubbed ‘random multipolar drives’
(RMD) [42—-45]. As the name suggests, a RMD is char-
acterized by n—multipolar correlations, where the n = 0
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FIG. 1. Model: (a) Left: Schematic illustration of a system
of classical spins on a square lattice with nearest-neighbor
Ising interactions. Right: The time evolution of the system is
governed by a n—random multipolar driving (RMD) sequence
of two Hamiltonians, H, and H,. The explicit form for H,
and H, is given in Egs. 1 and 2. Each n-RMD is composed
of a random sequence of two blocks of size 2n. These blocks
are created by concatenating the fundamental blocks of the
(n —1)—RMD sequence in the two possible ways. The quasi-
periodic self-similar Thue-Morse sequence emerges in the n —
oo limit. (b) The evolution of the energy density, Have =
(H. + H.)/2 and the decorrelator, d(t) (see eq. 6) for various
n—RMDs, clearly establishes the existence of a prethermal
regime.

and n — oo limits correspond to a completely random



and a quasiperiodic Thue-Morse drive respectively. For
any finite integer n > 1, the prethermalization lifetime
scales as (1/T)?"*1, where T is a natural time-scale of
the drive as explained below. Moreover, in the Thue-
Morse limit, the thermalization lifetime scales faster than
any power law as exp|(log(1/7))?] [43]. This multipolar
driving protocol has been recently employed to realize a
non-equilibrium phase of matter called the ‘time rondeau
crystal’ in a '*C-nuclear-spin diamond quantum simula-
tor [46]. A natural question immediately arises in this
context: what is the fate of this prethermalization in the
classical regime?

This letter provides unequivocal numerical evidence
for a long-lived prethermal state for RMD systems in
the classical regime. Strikingly however, the lifetime of
this prethermal regime scales as (1/7)*"*2, when the
system is initially prepared in a state with ferromag-
netic (or anti-ferromagnetic) order. This situation is
even more dramatic in the Thue-Morse regime, where
the prethermalization lifetime scales exponentially as
(exp(8/T)). 1In this context, it is worth noting that
classical systems are generically expected to be more
chaotic than the corresponding quantum systems due to
the absence of any Lieb-Robinson bounds [47]. This is
evident in the growth of the decorrelator at short times
(see Fig. 1). Intriguingly, however, the decorrelator
plateaus after the initial growth and the thermalization
time is parametrically longer than the corresponding
quantum system. Our results highlight fundamental
differences between aperiodically driven classical and
quantum systems.

Model: We consider a system of nearest-neighbor in-
teracting classical spins gij = (S”,SZ,SZZ]) €S?ona
square lattice of linear size N. The time evolution of this
system from time, t = (k — 1)T to t = kT (k € Z*) is
governed by a Hamiltonian Hy, where Hy, € {H,, H,} is
the k-th element of a sequence of Hamiltonians. The two

distinct elements of the sequence, H, and H,, are:

N
D (8737 + 57Sij41) +hS5, (1)
i =1
N

> 955, (2)

i, =1

H, =

H, =

where h and g denote the longitudinal and transverse
magnetic field strengths respectively. The procedure to
generate the sequence that determines Hy, is illustrated
in fig. 1(a) and discussed in detail in the next section.

We compute the spin dynamics by integrating the stan-
dard equations of motion 0,5;; = {S;;, H}, where {...}
indicate Poisson brackets, and the spins S;; satisfy the
relation {S, Sﬁj,} = 8105?75, Following Howell
et al. [48], we analytically integrate these equations to
obtain the following stroboscopic time evolution:

RYS,;(eT), if H((t) = H,

ST +T) =14 ""=" .3
i ) {R;ﬂsﬁ(w), if H((t) = H, )
Here, R, and R, correspond to the following rotation
operators about the x and z axis:

- 1 0 0
RY = |0 cos(¢gT) —sin(gT) |, (4)
0 sin(¢gT) cos(gT)
B cos (ki;T) —sin (k;;T) 0
RY = |sin(ki;T) cos(kiT) 0], (5)
0 0 1
where ri; = (Sfq; + Siq; + S50 +55-1) +his

the effective magnetic field along the z-direction. It is
already known that this system exhibits prethermal-
ization for a periodic driving protocol composed of an
alternating sequence of H, and H,. This prethermaliza-
tion is a consequence of drive-induced synchronization
and it can be leveraged to realize classical prethermal
phases of matter like discrete time crystals [49-51]. In
the remainder of this work, we systematically analyze
the dynamics of this system under different sequences
generated by H, and H,.

Random Multipolar Drives: We now proceed to go be-
yond the periodic driving regime by exploring the time
evolution of this system under n-RMDs. For n = 0, the
drive sequence is generated by randomly selecting H, or
H,, and it is thus completely devoid of any structure. For
n > 1, the n-th RMD is generated by a random array of
two m-polar blocks, where each such block is obtained
by concatenating the two (n — 1)-polar blocks. To un-
pack this definition, we first examine the case for n = 1,
where the drive is characterized by dipolar correlations.
In this case, the drive is generated by a random sequence
of one of two possible blocks: (H,, H,) or (H,, H.).
Similarly, for n = 2, the drive is generated by a ran-
dom array of two quadrupolar blocks: (H,, H,, H,, H,)
or (H,, H,, H,, H;). In the n — oo limit, this pro-
cedure yields the self-similar quasiperiodic Thue-Morse
sequence.

We begin by examining the time-evolution of the sys-
tem when it is initially prepared in an Néel ordered state
with spins polarized along the positive z-axis in one sub-
lattice and the negative z-axis in the other. Thus, each
spin can be parametrized by two angles 0 and ¢ in the
form Si; = (sin(0i;) cos(¢i;),sin(0i;) sin(¢i; ), cos(0i;))-
We incorporate the many-body character of the system,
by adding a small Gaussian noise to 6 (with mean 0
and standard deviation 27, where W is set to 0.01);
the polar angle, ¢ is chosen from a uniform distribu-
tion between 0 and 27 respectively. To connect to pre-
vious results on Floquet prethermalization [48], we take
(g, h) = (0.9045, 0.809).
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FIG. 2. Top Panel: RMD prethermalization: (a) The time-evolution of the decorrelator, d(t) (eq. 6) for different driving
frequencies for random quadrupolar driving (top), and random sextapolar driving (bottom). A long-lived prethermal regime
is seen in both cases. (b) The thermalization time, 7, (see text) is fit to a power law (left) and an exponential (right). The
power law fit (rin ~ (1/7)?"*?) is better than the exponential fit. The error bars are obtained by averaging over (20, 10,5, 1)
different cycles for n = (0,1,2,4). (c) The robustness of prethermalization is established by examining the dependence of
the 7yn scaling exponent, o on the energy density of the initial state. We observe that a ~ 2n + 2 for both highly positive
and negative energy states; for other initial states, the system thermalizes rapidly with the same value of a for all RMDs.
Bottom Panel: Thue-Morse prethrmalization: (d) A prethermal plateau is clearly observed in the time evolution of the
decorrelator for different driving frequencies (e): The fit of the thermalization times to the scaling function, 7y, to the function
exp (C(In(T~"/g))?) (left) and Aexp(B/T). The numerical evidence clearly indicates that 7 scales exponentially with the
driving frequency, much like the case of perfectly periodic driving. (f) The dependence of 7, on the initial state energy density,
(H(0))/N?. Much like the RMD case, 7y, is long for both highly positive and negative energy states.

We characterize the thermalization time-scale of this
system by examining the growth of a classical out-of-
time-ordered correlator, (a decorrelator) [52-54]:

N

LS -n))

i, j=0

dt) = (6)

where, SZJ is obtained by adding a slight perturbation

to the original spin §1] The decorrelator thus quanti-
tatively captures one of the most crucial characteristics
of chaotic dynamics - the sensitive dependence of ini-
tial conditions. For our calculations, 5"{] has been ob-
tained by adding 27A¢§ to both the azimuthal and po-
lar angles of 5;-]-; here, A = 0.01 and § is a standard
normal random number. The complete thermalization
of the system to an infinite temperature state is sig-
nalled by the saturation of the decorrelator to do, =
V2 [49]. For our calculations, we have obtained the

thermalization time, 7y, by averaging the times at which
d(t)/ds = 0.90, 0.89, and 0.88. Our results are shown in
fig. 2. It is clear from these calculations that a long-lived
prethermal phase indeed appears for n—RMDs, with a
thermalization time that scales algebraically with n as
Ten ~ (1/T)*"+2; this conclusion does not depend on
the exact threshold value of d(t)/d [55]. We empha-
size that this classical thermalization time is paramet-
rically longer than the corresponding quantum model
(rarentum  (1/T)27+1), despite the absence of any Lieb-
Robinson bounds on the propagation of information.
We now proceed to analyze this prethermalization
further by determining the dependence of 7y, the ini-
tial state energy density, (Haye(0))/N?, where Huye =
(H, + H,)/2. The procedure to tune (H(0))/N? is
detailed in the supplementary material [55]. As shown
in fig. 2(c), we find that the system exhibits a strong de-
pendence of the thermalization time on the initial state
energy density; this is a salient feature of prethermal-
ization. Notably, we find that an algebraically long
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FIG. 3. Classical Time Rondeau Crystals: Time evo-
lution of the average magnetization, (S*), for various n-
RMDs and the Thue-Morse drive, when the transverse field
g = 0.255w, where w = 27w /T. Long-lived oscillations of (S*)
are observed signalling the existence of a classical prethermal
time rondeau crystal phase (see text).

prethermalization exists, when (H,.(0))/N? < ¢, and
(Have(0))/N? > €., where €. ~ —0.5 and €/, ~ 0.5. These
results demonstrate the robustness of this classical RMD
prethermalization.

Finally, we analyze the fate of this prethermaliza-
tion in n — oo limit, where the driving protocol is
described by the completely deterministic Thue-Morse
sequence. By examining the decorrelator, we find that
the thermalization time grows exponentially with the
frequency, i, ~ exp(8/T) (see fig. 2(e)); this behavior
is strikingly different from the thermalization time in
spin-1/2 systems, where 7, ~ exp (C(In(T71/g))?).
Thus, akin to the RMD, Thue-Morse driving also leads
to a parametrically longer-lived prethermal regime
in classical spin models, compared to their quantum
counterparts. We also examine the dependence of 7, on
the initial state energy density and find that a long-lived
prethermal regime exists, when (H(0))/N? < €. and
(Have(0))/N? > €., where just like the RMD case,
€. ~ —0.5 and €, ~ 0.5.

Time Rondeau Crystals: Having established the exis-
tence of classical prethermalization for both RMDs and
the Thue-Morse drive, we now proceed to investigate
routes to realize non-equilibrium phases of matter in
these systems. To this end, we study a protocol to re-
alize a time rondeau crystal (TRC) - a novel phase of

matter characterized by long-time periodic temporal or-
der accompanied by short-time temporal disorder [46]. A
TRC generalizes the notion of time-translation symmetry
breaking (TTSB) to aperiodically driven systems [44]. In
the spin—1/2 version of our model, a TRC can be realized
by tuning the transverse magnetic field, when g ~ 0.25w,
where w = %’T for the RMD protocol discussed here. In
this case, the Floquet counterpart of this model would
exhibit period-doubling oscillations of the magnetization
for exponentially long times, thereby signifying TTSB
and a resultant prethermal time-crystal order.

We examine the time-evolution of the stroboscopic
magnetization of this system at ¢ 4mT (where
m € Z7%) for various n—RMDs and find that a clear
prethermal TRC phase emerges in this system, when
g ~ 0.25w and n > 3 (see fig. 3); the lifetime of these
TRCs can be controlled very effectively by tuning
the driving frequency. Notably, the TRC lifetime for
the random sextapolar drive protocol (n = 4) is very
close to the Thue-Morse protocol, despite the inherent
randomness in the former. Furthermore, these time
crystals are reasonably robust and they can be observed
in the gy € [0.244, 0.56] regime [55]. Our results indicate
that structured aperiodic driving can be effectively
harnessed to realize prethermal phases of matter in
classical many-body systems.

Conclusion and Outlook: In this letter, we have ex-
plored the dynamics of a classical spin model subjected
to multipolar driving. We have found that this system ex-
hibits a robust prethermal regime for a wide range of ini-
tial states. By studying the decorrelator, we have demon-
strated that the thermalization time scales algebraically
(~ (1/T)*"*2 for n—RMDs. Furthermore, in the n — oo
limit, the thermalization time scales exponentially with
the driving frequency. These results demonstrate that
thermalization in classical many-body systems can be
much slower than their quantum counterparts, despite
the absence of any Lieb-Robinson bounds. Our study
raises some intriguing questions about the dynamics of
driven systems in the classical (S — oo) limit. We note
that similar issues have been pointed out in the context of
scrambling in classical many-body systems [53]. Finally,
we demonstrate that these aperiodically driven systems
can host classical prethermal phases of matter like time
rondeau crystals.

There are several avenues for future work in these
systems. For instance, it would be interesting to explore
the scaling of the thermalization time for long-range
interacting classical spin models. It would also be
interesting to extend our analysis to other aperiodic
driving protocols and investigate the emergence of
other non-equilibrium phases of matter, such as time
quasicrystals in classical many-body systems.
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FIG. 1. The scaling exponent « obtained by setting different values of the threshold. The threshold is denoted at the top right of
each subplot. When the threshold is d/ds ~ x, we extract 7, by averaging over £’s for which d(¢T") /deo ~ z, x —0.01,  —0.02.
It is clearly seen that for (a)-(e) o ~ 2n + 2. The usual scaling of o with n is not observed in (f), since the threshold value
reaches closer to the value of the prethermal plateau.



II. THE PHASE DIAGRAMS FOR THE RMD SCALING EXPONENTS AND THE THUE-MORSE
THERMALIZATION TIMES

In fig. 2, we show the dependence of the initial state that we prepare for our simulations on the parameter W. We
initialized the system in different initial states for computing the phase diagrams by varying this parameter. In figs. 3
and 4, we show some representative decorrelator evolution plots from different regimes of the phase diagrams.
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FIG. 2. The dependence of the energy density of the system on the parameter W, (a) when the spins are anti-aligned and
(b) when the spins are polarised along z-direction. To obtain each point on the plot, we average over fifty realizations of the
50 X 50 system.
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FIG. 3. Some representative decorrelator evolution plots at different frequencies and for different RMD protocols from various
regimes of the scaling exponent and initial energy-density phase diagram. (a) When the initial state energy density is low, we
can clearly see the separation between the thermalization times of the different n-RMDs. In this regime the a ~ 2n + 2 scaling
holds. (b) & (c) Here, the scaling exponent becomes a constant for different n-RMDs (d) The initial state energy density is
high, and the separation of the thermalization times for different n-RMDs is evident. The usual scaling o ~ 2n + 2 holds.
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FIG. 4. Some representative decorrelator evolution plots from various regimes of the thermalization time and initial energy
density phase diagram for TM driving protocol. (a) & (b) Show the decorrelator evolution for systems initialised in very low
and high energy density states, respectively. The thermalization time scales exponentially in this regime. (c¢) & (d) Show the

decorrelator evolution for systems initialised in states with energy density close to zero.

Our analysis so far has focused on the situation, where the longitudinal field h is non-zero. In fig. 5, we show that the
thermalization time scaling also holds when h = 0. In this context, it is worth noting that for spin—1/2 systems, the
thermalization time scaling exponent, a depends sensitively on the presence or absence of h; in particular, o = 2n+1
when h # 0 and o = 2n — 3, when h = 0 [1]. This result constitutes yet another difference between the dynamics of

III. ZERO LONGITUDINAL FIELD

our classical spin model and its quantum counterpart.
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FIG. 5.

(a)

initial state energy density. The results are similar to the h # 0 case.

(a) The scaling of the thermalization time with frequency for the RMD protocols.
Ten ~ (1/T)2"* where n is the order of the RMD. (b) The thermalization time scaling exponent « as a function of the

(b)

We find power law scaling



IV. FINITE SIZE EFFECTS

We check for finite-size effects by looking at the decorrelator for various system sizes at a few frequencies n = 0,1, 2

RMD protocols. As shown in fig. 6, we find that for higher-order RMD protocols the thermalization time remains
roughly system-size independent.
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FIG. 6. The evolution of the decorrelator for five different system sizes (N X N) at frequencies 1/T = 11,15, and 20. We

observe that at higher frequencies for higher-order drives, the thermalization times remain roughly independent of the system
size.

V. STABILITY OF THE TIME RONDEAU CRYSTAL
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FIC. 7. Phase diagram of the Time Rondeau Crystal: (a) The long-time value of the magnetization: (S*) computed at t = 10T,

and (b) The lifetime, 74, of the time rondeau crystal as a function of g:.. We find that time crystalline order is present for a
long time when g;. € [0.244, 0.256].

In the main text, we have demonstrated that our model exhibits long-time periodic temporal order in the presence
of random multipolar driving when g;. = 0.255; this kind of novel non-equilibrium order is dubbed a ‘time rondeau



crystal’ [2]. In this section, we check the stability of this phase around g;. = 0.25 for the Thue-Morse drive. We
do this analysis in two complementary ways. First, we examine the value of the order parameter (in this case, the
magnetization, (S?)) at long times (¢ = 10*T) and find that (S*) remains large as long as g;. € [0.244,0.256] (see
fig. 7 (a)). Next, we compute the lifetime of the time crystal by determining the time, 7. at which the stroboscopic
magnetization, S#(4IT) falls below a critical value, S%. As shown in fig. 7(b), a long-lived time-crystalline response
can be seen when g;. € [0.244,0.256]; we have set SZ. = 0.25 for this calculation. Our analysis establishes the stability
of time rondeau crystal phase in classical many-body systems.
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