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Abstract— Model uncertainty presents significant challenges
in vibration suppression of multi-inertia systems, as these
systems often rely on inaccurate nominal mathematical models
due to system identification errors or unmodeled dynamics.
An observer, such as an extended state observer (ESO), can
estimate the discrepancy between the inaccurate nominal model
and the true model, thus improving control performance via
disturbance rejection. The conventional observer design is
memoryless in the sense that once its estimated disturbance
is obtained and sent to the controller, the datum is discarded.
In this research, we propose a seamless integration of ESO and
machine learning. On one hand, the machine learning model
attempts to model the disturbance. With the assistance of prior
information about the disturbance, the observer is expected
to achieve faster convergence in disturbance estimation. On
the other hand, machine learning benefits from an additional
assurance layer provided by the ESO, as any imperfections in
the machine learning model can be compensated for by the
ESO. We validated the effectiveness of this novel learning-for-
control paradigm through simulation and physical tests on two-
inertial motion control systems used for vibration studies.

Index Terms— Machine Learning, Disturbance Rejection,
Extended State Observer, Model Uncertainty

I. INTRODUCTION

Vibration suppression of multi-inertia systems is critical
in many engineering applications, including automotive sus-
pensions, series elastic actuators (SEA), and various other
motion control systems [1]. These systems often involve mul-
tiple inertia components with a two-inertia subsystem serving
as a fundamental block, connected by flexible couplings,
which leads to inherent resonance issues. This resonance
can cause dynamic stresses, energy wastes, and performance
degradation, therefore posing significant challenges to the
systems’ efficiency and stability [2], [3]. Given the funda-
mental challenge of system identification and the necessity
for real-time performance, it is common practice to employ
a simplified or inaccurate nominal dynamic model. Conse-
quently, the disturbances become inevitable, necessitating
their rejection to achieve robust control. The disturbance
includes internal (i.e., unknown or unmodelled parts of the
plant dynamics) and external (i.e., perturbations from the
outside affecting the dynamics) [4], [5].

The observer-based method has emerged as a promising
approach to estimating the disturbance for the subsequent
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design of a disturbance rejection controller. Among the array
of existing disturbance observers, the extended state observer
(ESO) [6] is gaining popularity due to its simplicity in
implementation. For the formulation of an ESO, the system
is modeled as a simple chained integrator with a total
disturbance term (also called lumped disturbance, f ) that
includes both internal and external disturbances. The total
disturbance is treated as an extended state to be estimated
together with other states. The estimated disturbance can be
mitigated through various means, including a simple state
feedback controller or more advanced control strategies such
as sliding mode control [7] and model predictive control [8].

It is worth noting that the traditional ESO operates in a
memoryless fashion, i.e., once it estimates a disturbance and
transmits it to the controller, the datum used for estimation
is then discarded. However, as a control system operates, we
can improve our understanding of the disturbance through
collected operational data. Prior works [9], [10] show that
a model-based ESO (MB-ESO), which utilizes prior model
information about the disturbance (such as a detailed dy-
namic model obtained through system identification), tends
to exhibit reduced sensitivity to noise when compared to a
model-free ESO (MF-ESO) that assumes a simple chained
integrator as a nominal model. In order to circumvent the
need for extensive system identification and maximize the
utilization of disturbance information, we propose to leverage
machine learning (ML), which has powerful capacities for
nonlinear optimization, to memorize and generalize the past
estimations from the ESO as a feedforward estimation of
the disturbance. The learning component is expected to
capture the internal dynamics as well as patterns of external
disturbances.

[11], [12], [13] combine ESO with iterative learning con-
trol (ILC) for repetitive control tasks. Our approach focuses
on general control tasks rather than just the repetitive ones.
In addition, we assume that system dynamics, as well as
disturbances, are unknown and not necessarily repetitive. In
[14], a neural network is utilized to tune the parameters of
ESO rather than explicitly learning the disturbance. Other
learning-for-control approaches such as [15] employ neural
networks to capture discrepancies between a nominal model
F̂ (xk, uk) and the true model F (xk, uk). Since the state
of the true model is unknown, the measured next state
xk+1 is used to update the error model represented by the
neural network. However, these methods always assume full-
state information is available. In addition, when the learning
performance falls short of expectations, it may result in sub-
optimal performance for subsequent model-based controllers.
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In contrast, our approach represents a novel paradigm that
aims at learning the total disturbance with the help of output
measurements instead of true values for states. Furthermore,
our paradigm includes a correction mechanism for cases
where the learning component fails to accurately capture
the disturbances. The residual total disturbance, i.e., the
remainder excluding the disturbance already estimated by
the learning component, will be estimated by a conventional
ESO in a feedback correction manner. Through this seam-
less integration, even when the learning-based estimation
struggles to converge effectively, we can leverage the ESO
for feedback correction, thereby adding an extra layer of
robustness and assurance to the system.

In our new framework, as visualized in Fig. 1, we refer
to the learning-enabled extended state observer as L-ESO.
The estimation f̂ of the true total disturbance f consists of
f̂L and ∆f̂ , which are from the learning component and
the ESO, respectively. First, ESO uses the information of
control u and observation y to estimate the system’s states x̂
and the residual disturbance ∆f̂ . Second, ESO’s estimation,
including x̂ and u are fed as input to the learning component
for learning a regression model. The learning component car-
ries out the feedforward estimation f̂L, after which an online
optimization iteratively minimizes the difference between f̂L
and f̂ , allowing the learning component to approximate the
total disturbance accurately. In situations where imperfect
learning introduces errors, the ESO serves as an additional
layer to rectify.

Fig. 1: The proposed framework in this paper, where the red
and the blue blocks represent the L-ESO and the disturbance
rejection tracking controller, respectively. Once the total
disturbance is estimated, the tracking controller will be able
to reject disturbance.

The contributions of our work are summarized as follows:
• We propose a novel framework that combines ML and

ESO for feedforward estimation and feedback correc-
tion for a general disturbance rejection tracking con-
trol task. Compared with existing learning-for-control
frameworks, we estimate states and disturbances in a
unique way. We also have an extra error correction
mechanism for the learning component.

• The learning component serves as an add-on to existing
ESO-based control architecture. As shown in Fig. 1,
only a learning component and a few connections (in
green) are introduced. The advantage of our modular

design is two-fold: 1) no need to change the existing
framework; 2) users can customize the learning com-
ponents by choosing any appropriate machine learning
model.

• Our learning and estimation are real-time and online.
We showcase the efficacy of our framework through
simulations and a real-world two-inertia testbed as a
fundamental block for a multi-inertia system.

The remainder of this paper is structured as follows.
We first go through the preliminaries in Sec. II. Then, we
construct our framework in Sec. III. Simulation results of the
two-mass-spring benchmark system are presented in Sec. IV,
followed by the hardware experiments of a torsional plant in
Sec. V. Finally, we conclude our work and discuss possible
future research directions in Sec. VI.

II. PRELIMINARY

The multi-inertia system can be represented as the sum of
a nominal part and a nonlinear time-varying part:{

˙̄x(t) = A0x̄(t) +B0u(t) + E0f(x(t), d(t), t)

y = C0x̄
(1)

where x̄ ∈ Rn is the state vector, u ∈ R is a control input,
y ∈ R is a measured output, and f : Rn+1×[0,∞] → R is an
unknown function representing the time-varying uncertainty,
which contains external disturbance d(t) ∈ R, unmodeled
dynamics, and parameter uncertainty. Terms A0, B0, E0 and
C0 are real and known matrices with appropriate dimensions.
For the particular case of a two-inertial system with n =
4, meaning two states for each inertial position/angular and
velocity/angular velocity, please refer to the details in the
example in Sec. IV. The justification of classifying (1) as a
nonlinear time-varying system can be found in [16], [17].

Traditionally, an ESO is established for a system in a
chained integrator form [6]. However, in our most recent
work [18], we have significantly expanded the applicability
scope of ESO and rigorously proved that for a general
system (1), given that Assumption 1 and the Assumption
2 are satisfied, an ESO can be established to estimate f by
releasing the chained integrator form requirement.

Assumption 1. (A0, C0) is observable.

Assumption 2. (A0, E0, C0) has no invariant zeros.

For system (1), under the Assumptions 1, and 2 , there
exists a matrix

S =


C0

C0A0

...
C0A

n−1
0

 (2)

such that



Ā0 = SA0S
−1 =


0 1 . . . 0
...

. . . . . .
...

0 . . . 0 1
−a0 −a1 . . . −an−1


B̄0 = SB0 =

[
0 0 . . . b

]T
C̄0 = C0S

−1 =
[
1 0 . . . 0

]
Ē0 = SE0 =

[
0 0 . . . 1

]T
(3)

form the following new system{
ẋ = Ā0x+ B̄0u+ Ē0f

y = C̄0x
(4)

The readers are referred to [18] for more details on the
matrix transformation. The new system (4) has an observable
canonical form such that an ESO can be established for
estimating f .

Remark 1. Assumption 2 is equivalent to the following
conditions. The proof can be found in [18].

C0E0 = 0, C0A0E0 = 0, . . . , C0A
n−1
0 E0 ̸= 0

According to whether or not the system dynamics are
available, we have the following two variants of ESO:

A. MB-ESO

If the model information, i.e., −a0,−a1, · · · ,−an−1, b, in
matrix Ā0 and B̄0 is available, we have

ẋ =


0 1 . . . 0
...

. . . . . .
...

0 . . . 0 1
−a0 . . . . . . −an−1


︸ ︷︷ ︸

Ā0,MB

x+


0
0
...
b


︸︷︷︸
B̄0,MB

u+


0
0
...
1


︸︷︷︸
Ē0

d︸︷︷︸
f

(5)
The total disturbance can be represented as:

f = d (6)

where d is the external disturbance, b is the true control gain.

B. MF-ESO

If the model information, i.e., −a0,−a1, · · · ,−an−1, b, in
matrix Ā0 and B̄0, is not available, we have

ẋ =


0 1 . . . 0
...

. . . . . .
...

0 . . . 0 1
0 0 . . . 0


︸ ︷︷ ︸

Ā0,MF

x+


0
0
...
b0


︸ ︷︷ ︸
B̄0,MF

u+

0...
1


︸︷︷︸
Ē0

(−a0x1 − · · · − an−1xn + (b− b0)u+ d)︸ ︷︷ ︸
f

(7)

where −a0x1−· · ·−an−1xn+(b− b0)u is the internal dis-
turbance (unknown/unmodelled dynamics), b0 is the nominal
control gain, and d is the external disturbance. In such a case,
the total disturbance becomes:

f = −a0x1 − · · · − an−1xn + (b− b0)u+ d (8)

ESO treats the total disturbance f as an extended state,
such that a Luenberger observer can be designed to estimate
both the original system state x and the total disturbance f .
The augmented dynamic system is as follows:

[
ẋ

ḟ

]
= A

[
x

f

]
+Bu+ Eḟ

y = Cx

(9)

where A =

[
Ā0 Ē0

01×n 0

]
(n+1)×(n+1)

, B =

[
B̄0

0

]
(n+1)×1

,

C = [C̄0, 0]1×(n+1), E = [0, · · · , 0, 1]T(n+1)×1.
The Luenberger observer has the following form:[

˙̂x
˙̂
f

]
= A

[
x̂

f̂

]
+Bu+ L

(
y − C

[
x̂

f̂

])
(10)

where x̂ and f̂ are estimations of x and f , L is the observer
gain. We have the following estimation error dynamics:

ė = (A− LC)e+ Eḟ (11)

where e =
[
x− x̂ f − f̂

]T
.

Theorem 1. Under Assumption 1 and Assumption 2, the
eigenvalues A − LC can be placed at the left side of the
plane to make the estimation converge [18], [17].

All eigenvalues can be placed at −ωo, which is called the
observer bandwidth of ESO [19].

III. LEARNING-ENABLED ESO
The model-based ESO in (5) and the model-free ESO in

(7) can be further expanded as follows:

0 1 . . . 0
...

. . . . . .
...

0 . . . 0 1
−a0 . . . . . . −an−1︸ ︷︷ ︸

Ā0,MB

Ē0

01×n 0


︸ ︷︷ ︸

AMB

[
x̂

f̂

]
+


0
...

b0 + b− b0︸ ︷︷ ︸
B̄0,MB

0


︸ ︷︷ ︸

BMB

u =



0 1 . . . 0
...

. . . . . .
...

0 . . . 0 1
0 . . . . . . 0︸ ︷︷ ︸

Ā0,MF

Ē0

01×n 0


︸ ︷︷ ︸

AMF

[
x̂

f̂

]
+


0
...
b0︸︷︷︸

B̄0,MF

0


︸ ︷︷ ︸

BMF

u+

[
Ē0

0

]
(−a0x1 · · · − an−1xn + (b− b0)u)

(12)



Remark 2. By incorporating model information, MF-ESO
becomes equivalent to MB-ESO.

Remark 3. The motivation for proposing the learning com-
ponent can be justified in that the model information is learn-
able to facilitate the incorporation of model information.

Remark 4. The learning component is even possible to
learn the external disturbance together with the internal
disturbance to be incorporated.

Since the learning component has a feedforward esti-
mation f̂L for the total disturbance, ESO can serve as a
feedback correction to estimate the residual total disturbance
as ∆f̂ . The combination of the feedforward estimation and
the feedback correction is realized as follows:[

˙̂x
˙

∆f̂

]
= A

[
x̂

∆f̂

]
+Bu+ L

(
y − C

[
x̂

∆f̂

])
+

[
Ē0

0

]
f̂L

(13)
Since the learning component is expected to capture the

unknown dynamics, we employ a model-free ESO, see Fig.
1. The learning block in Fig. 1 is a function hθ(x, u)
parameterized by θ. To learn the total disturbance (see (8)),
we establish a mapping from the input (x̂ estimated by ESO
and control input u) to the output f̂ , where f̂ = f̂L + ∆f̂ .
The total disturbance estimation consists of two parts: 1)
the feedforward estimation from the learning component
f̂L = hθ(x̂, u); 2) feedback correction for the residual
disturbance ∆f̂ by an MF-ESO. To optimize the parameters
of the machine learning model, a general regression problem
is formulated using the following cost function:

J(θ) =
1

2

n∑
i=1

(hθ(x̂
i, ui)− f̂ i)2 (14)

where n is the size of the training data. The details are in
Alg. 1. When the batch is not yet filled, we run the MF-
ESO (see Line 7-14, the learning component does not return
optimized parameters).

Our framework has superior modularity. The design of the
ESO is just a conventional model-free convention. We only
need to use the estimation from ESO to drive the training of
our learning component. First, the learning component can
serve as an add-on to existing ESO-based control architecture
by just adding a few connections. Second, the learning
component is so flexible that users can customize it by
choosing appropriate machine learning models, e.g., linear,
non-linear, parametric, non-parametric, etc.

IV. SIMULATION RESULTS

A. Two-Mass-Spring Problem Formulation

Fig. 2 depicts a schematic of a two-mass-spring system,
which is from a well-known benchmark control problem
[20]. The system includes two masses: m1 and m2, which
can slide freely over a horizontal surface without friction.
Note that it has been proved that a non-friction setting is
more challenging for a controller design [9]. The masses are
connected by a light horizontal spring with a spring constant

Algorithm 1 L-ESO
Input: Control input u, system output y, learning rate α,

batch size n, maximum running time Nmax

Output: Total disturbance f̂
1 Initialize:
2 machine learning input batch I0 = ∅
3 disturbance estimation by ESO batch ∆F0 = ∅
4 machine learning output batch FL

0 = ∅
5 machine learning model parameter θ
6 machine learning output f̂0

L = 0
7 for i = 1 to n do
8 Get x̂i and ∆f̂ i by running L-ESO ▷ see (13)
9 Compute ui ▷ see (22)

10 Ii := [Ii−1, [x̂i
1, x̂

i
2, . . . , x̂

i
n, u

i, 1]T ]

11 ∆F i := [∆F i−1,∆f̂ i]

12 FL
i := [FL

i−1, 0] ▷ append data into three
batches

13 f̂ i
L = 0

14 end
15 for i = n to Nmax do
16 Get x̂i and ∆f̂ i by running L-ESO ▷ see (13)
17 Update Ii ▷ pop oldest datum, push new

datum
18 Update ∆F i ▷ pop oldest datum, push new

datum
19 Update θi ▷ According to (14)
20 FL

i = hθi(Ii)

21 f̂ i
L = hθi(xi)

22 f̂ i = f̂ i
L +∆f̂ i ▷ compute total disturbance

23 Compute ui ▷ see (22)
24 end

k. The system is subject to two external disturbance forces
w1 and w2, which act on masses m1 and m2, respectively.
The control signal u is the force applied to mass m1. Both
the positions of mass m1 and mass m2 are measured, and
either one can be used as an output to be controlled.

The states of the two-mass-spring system are defined as the
displacements and velocities of the two masses. Specifically,
the displacement and velocity of mass m1 are x1 and x3,
respectively, while the displacement and velocity of mass
m2 are x2 and x4, respectively. The dynamics of the system
can be represented in the following state-space form:

ẋ1

ẋ2

ẋ3

ẋ4

 =


0 0 1 0
0 0 0 1

− k
m1

k
m1

0 0
k
m2

− k
m2

0 0



x1

x2

x3

x4



+


0
0
1

m1

0

 (u+ w1) +


0
0
0
1

m2

w2

y =
[
c1 c2 0 0

] [
x1 x2 x3 x4

]T

(15)

A time-varying unknown external disturbance w2 is from



 

Fig. 2: Two-mass-spring system with uncertain parameters

the mass m2, control needs to be conducted on m1 to allow
x2 track any desired trajectory. For the output y, i.e., x2, a
chained integrator system is derived by taking the derivatives
of the output four times. The input and disturbance are in
the last channel of this fourth-order system with b = k

m1m2
:

y(4) = −k
m1 +m2

m1m2
ÿ +

k

m1m2
w2 +

1

m2
ẅ2 + bu (16)

B. ESO design

The states in the system are:

x =
[
y ẏ ÿ

...
y
]T

(17)

The state-space description of the system is
[
ẋ

ḟ

]
= A

[
x

f

]
+Bu+ Eḟ

y = Cx

(18)

1) Model-free ESO: The state-space model is:

AMF =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

, B =


0
0
0
b0
0

, C =

[
1 0 0 0 0

]
, E =

[
0 0 0 0 1

]T
. As we can see,

the model-free design assumes unknown dynamics, such that
the total disturbance f can be represented as:

f = −k
m1 +m2

m1m2
ÿ+

k

m1m2
w2 +

1

m2
ẅ2 + (b− b0)u (19)

where −km1+m2

m1m2
is the model parameter information, b0 is

the nominal control gain. We have

y(4) = f + b0u (20)

where everything besides b0u is considered as total distur-
bance (see (16)). It can be validated that such a system
satisfies Assumptions 1, 2, and 3. Therefore, an ESO can
be designed for the estimation of f , see (10).

The observer gain is chosen where all the eigenvalues
of AMF − LC are placed at −ωo [19], i.e., LMF =
[5ωo 10ω2

o 10ω3
o 5ω4

o ω5
o ].

2) Model-based ESO: The model-based design has the
following state-space representation:

AMB =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 −km1+m2

m1m2
0 1

0 0 0 0 0

, B =


0
0
0
b0
0

, C =

[
1 0 0 0 0

]
, E =

[
0 0 0 0 1

]T
. In contrast to

the above-mentioned model-free design, such a system tries
to leverage the prior knowledge of the dynamic model, by
assuming −km1+m2

m1m2
is known (see (16)). In this case, the

total disturbance becomes:

f =
k

m1m2
w2 +

1

m2
ẅ2 + (b− b0)u (21)

such that y(4) = −km1+m2

m1m2
ÿ + f + b0u

The observer gain is chosen where all eigenvalues of
AMB − LC are placed at −ωo [19]. Let a = −km1+m2

m1m2
,

the coefficients of LMB are listed in Table I.

Parameters Values

LMB,1 5ωo

LMB,2 a+ 10ω2
o

LMB,3 5aωo + 10ω3
o

LMB,4 a2 + 10aω2
o + 5ω4

o
LMB,5 5a2ωo + 10aω3

o + ω5
o

TABLE I: coefficients of LMB

3) L-ESO: As shown in (19), the internal disturbance has
a linearly structured mapping between the input (state and
control) and the output (disturbance). Therefore, a linear
regression model is a reasonable choice for the learning
component, with hθ(·) = θT

[
x̂1 x̂2 x̂3 x̂4 u 1

]T
.

Note that as we mentioned before, the learning model is
flexible to be linear, nonlinear, parametric, non-parametric,
etc. Our contribution is not about the complexity of the
learning model but the novel design to seamlessly combine
machine learning models with an ESO. A batch gradient
descent method is used for optimizing the cost function. In
our experiments, we initialize θ with all zeros.

C. Controller Design

The control law for the system (20) can be designed as:

u =
−f̂ + u0

b0
(22)

such that
y(4) = u0 (23)

It can be controlled by a state feedback controller

u0 = −Kx̂ = k1(r − x̂1)− k2x̂2 − k3x̂3 − k4x̂4 (24)

with a control gain K =
[
ω4
c 4ω3

c 6ω2
c 4ωc

]
, where ωc

is the close-loop natural frequency [19].

D. Simulation Results

The system parameters are taken from the benckmark
problem [20], i.e., m1 = m2 = 1 kg, k = 1 N/m,
c1 = 0, c2 = 1. Tracking a desired trajectory for the
position of mass m2 is the control objective. A sinusoidal
wave with a frequency of 1 rad/s and amplitude 1 is applied
in the training phase for L-ESO. After 110 seconds, a step
reference is given to all three approaches. A band-limited
white noise with noise power 10−12 is added at the system



output side. A sinusoidal external disturbance with frequency
π/10 rad/s is applied on m2 as w2 starting at 150 s. The
learning algorithm is running online. The learning phase
is designed to emulate the typical operational scenarios of
the machine under general conditions, whereas the step
response is employed to assess and compare the tracking
performance. All the control parameters are set identically
for fair comparison.

The controller bandwidth ωc and the observer bandwidth
ωo are set to 1 rad/s and 10 rad/s, respectively. The control
gain is set to 1. All three approaches share such same settings
for fair comparison.

120 140 160 180 200 220 240 260
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0
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0.8
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MF-ESO

L-ESO
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1

Fig. 3: Tracking performance for MB-ESO, MF-ESO, L-ESO
plotting from 120s.
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MB-ESO

120 140 160 180 200 220 240 260
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T
o
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u

e
 (

N
m

)

MF-ESO

120 140 160 180 200 220 240 260

Time (s)

0

0.5

1
L-ESO

Fig. 4: Control signal for MB-ESO, MF-ESO, L-ESO plot-
ting from 120s.

The tracking performance and the control input are shown
in Fig. 3 and Fig. 4, respectively.

1) MB-ESO and L-ESO have similar performance for the
step reference tracking (see the zoom-in plot from 126
s to 134 s, Fig. 3) after the training phase, see the
position plot of m2 in Fig. 3, which are better than
MF-ESO in terms of overshoot percentage (0 vs. 5‰
) and settling time (12s vs. 16s).

2) For external disturbance rejection (see the zoom-in plot
from 170 s to 195 s, Fig. 3), L-ESO’s performance is
the best. By re-visiting (8), if the external disturbance

has a linear component, a linear regression component
can still capture it, e.g., the trends of going up and
down in a sinusoidal external disturbance.

3) Adding external disturbance information to the ob-
server can help reduce the required bandwidth. In our
experiments, we found that MF-ESO and MB-ESO
will need three times more bandwidth to achieve the
same performance as the L-ESO.

4) The control input of the L- ESO has more fluctuations
compared with MF-ESO and MB-ESO, as shown in
Fig. 4. This is caused by the noise signal and the batch
gradient descent method we choose to minimize the
cost function. It can be smoothened by increasing the
batch size in this example.

V. HARDWARE EXPERIMENTS RESULTS

We conduct physical experiments on our ECP Model 205
torsional testbed [21], see Fig.5. It is a mechanical system
that consists of a flexible vertical shaft connecting two disks
- a lower disk and an upper disk. Each disk is equipped with
an encoder for position measurement. A DC servo motor
drives the lower disk through a belt and pulley system, which
provides a 3:1 speed reduction ratio. The system can be used
to study the vibration of a torsional two-mass-spring system.

Fig. 5: ECP Model 205 torsional testbed

A personal computer with MATLAB®Simulink Desktop
Real-Time™ installed is used for computation. The computer
is also equipped with a four-channel quadrature encoder
input card (NI-PCI6601) and a multi-function analog and
digital I/O card (NI-PCI6221). These cards interface with
the torsional plant Model 205 for real-time data acquisition
and control. The quadrature encoder input card enables the
computer to receive position and velocity data from the
encoders on the disks of the plant. The multi-function analog
and digital I/O card allows the computer to send control
signals to the DC servo motor that drives the lower disk.

A. System Model

Since the MB-ESO, as a baseline approach, needs the
dynamics information, we first use MATLAB®System iden-
tification toolbox and get the transfer function: G(s) =

4.6×104

s4+1.901s3+1683s2+1812s+0.1032 .



B. ESO and Controller Design

As this testbed is again a fourth-order dynamic system,
the same ESO design pipeline shown before can be applied.

C. Experiment Results

Tracking a desired trajectory for the upper disk is the
control objective. A sinusoidal wave with a frequency of
π/2 rad/s and an amplitude 0.5π is applied in the training
phase of L-ESO. ωc and ωo are set to 90 rad/s and 40 rad/s,
respectively. The control gain is 5.5 × 104. A trapezoidal
profile reference with the final value π is used.
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Fig. 6: Upper disk position tracking: MB-ESO, MF-ESO,
and L-ESO
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From the results illustrated in Fig. 6 and Fig. 7, we
have the following observations: 1) L-ESO has the best
performance among all the methods after the training phase
in terms of overshoot percentage and settling time. The
reasons for L-ESO outperforming MB-ESO could be the
imperfection of system identification or that our approach
can learn internal as well as external disturbance. 2) The
fluctuation of control input of L-ESO is between MF-ESO
and MB-ESO, as shown in Fig. 7, which is different from
the simulation result. This is because the learning rate is
conservatively chosen due to the large noise in the hardware.
Also, the trapezoidal profile reference is more smooth than
the step reference, which is beneficial for learning.

VI. CONCLUSIONS

A novel learning-enabled extended state observer L-ESO
with the capacity to memorize and generalize from past
estimated disturbances is proposed in this paper. The ma-
chine learning model is seamlessly integrated into existing
disturbance rejection control architecture as a flexible add-
on for boosting robustness performance against unknown and
time-varying disturbances. Compared with existing learning
for control framework, our new paradigm does not rely on
access to full states. In addition, the learning is guarded
by disturbance rejection that provides an extra assurance
layer to compensate for the imperfections of the machine
learning model. The efficacy of the proposed approach has
been supported by simulation and hardware experiments. In
the future, we will further validate in real robotic testbeds.
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