2404.10270v1 [cs.DC] 16 Apr 2024

arxXiv

Optimizing BIT1, a Particle-in-Cell Monte Carlo

Code, with OpenMP /OpenACC and GPU
Acceleration

Jeremy J. Williams®, Felix Liu', David Tskhakaya?, Stefan Costea®, Ales
Podolnik?, and Stefano Markidis!

! KTH Royal Institute of Technology (KTH), Stockholm, Sweden
2 Institute of Plasma Physics of the CAS (IPP CAS), Prague, Czech Republic
3 LeCAD, University of Ljubljana (UL), Ljubljana, Slovenia

Abstract. On the path toward developing the first fusion energy de-
vices, plasma simulations have become indispensable tools for support-
ing the design and development of fusion machines. Among these critical
simulation tools, BIT1 is an advanced Particle-in-Cell code with Monte
Carlo collisions, specifically designed for modeling plasma-material in-
teraction and, in particular, analyzing the power load distribution on
tokamak divertors. The current implementation of BIT1 relies exclu-
sively on MPI for parallel communication and lacks support for GPUs.
In this work, we address these limitations by designing and implement-
ing a hybrid, shared-memory version of BIT1 capable of utilizing GPUs.
For shared-memory parallelization, we rely on OpenMP and OpenACC,
using a task-based approach to mitigate load-imbalance issues in the par-
ticle mover. On an HPE Cray EX computing node, we observe an initial
performance improvement of approximately 42%, with scalable perfor-
mance showing an enhancement of about 38% when using 8 MPI ranks.
Still relying on OpenMP and OpenACC, we introduce the first version
of BIT1 capable of using GPUs. We investigate two different data move-
ment strategies: unified memory and explicit data movement. Overall,
we report BIT1 data transfer findings during each PIC cycle. Among
BIT1 GPU implementations, we demonstrate performance improvement
through concurrent GPU utilization, especially when MPI ranks are as-
signed to dedicated GPUs. Finally, we analyze the performance of the
first BIT1 GPU porting with the NVIDIA Nsight tools to further our
understanding of BIT1’s computational efficiency for large-scale plasma
simulations, capable of exploiting current supercomputer infrastructures.

Keywords: OpenMP - Task-Based Parallelism - OpenACC - Hybrid
Programming - GPU Offloading - Large-Scale PIC Simulations

1 Introduction

Plasma simulations are vital for understanding complex interactions between
plasma and wall materials, which present significant modeling challenges, includ-
ing the need of resolving different simulation time and spatial scales or modeling
accurately atomic and collision processes.

2 Jeremy J. Williams et al.

Particularly, these challenges are notable when modeling plasma-loaded di-
vertors in fusion devices, such as the ITER tokamak, a major nuclear fusion
project. In summary, the divertor manages the heat and particle fluxes that oc-
cur during the operation of the tokamak. In fact, during a fusion reaction, high
energy neutrons are produced, and these can cause damage to the first wall of
the tokamak. Additionally, impurities from the plasma, need to be efficiently
removed to maintain optimal conditions for the fusion process. The divertor ac-
complishes these tasks by diverting the flow of plasma to a specific region of the
tokamak. This region, known as the divertor region, is usually located at the
bottom of the toroidal chamber (see Fig. 1).

Among the tools used to address these
challenges, BIT1 is a specialized plasma simu-
lation tool, focusing on describing accurately
atomic processes and collisions in plasmas /a —
during plasma-wall interactions. In particular,
BIT1 is widely used to analyze how power is
distributed on divertors in these devices. BIT1
plays a critical role as a massively parallel
PIC code for studying complex plasma sys-
tems and their interactions with various ma-
terials.

Initially introduced by D. Tskhakaya and | /
collaborators [8,9], BIT1 has distinctive capa- \

bilities. It models plasmas confined between /

two conducting walls and includes collision

modeling to capture complex plasma dynam-

ics. What makes BIT1 unique is its capability /

of modeling accurately processes occurring at

the interface of plasma and a wall, such as

sputtering from the wall, emissions, and colli- Fig. 1. BIT1 simulates plasma be-
sions. While it has shown that BIT1 is scalable havior in the tokamak divertor re-
for thousands MPI processes [13], it has two gion (blue arrow), such as in the
major limitations. The first one is that BIT1 ITER fusion device.

relies only on MPI for parallel communica-

tion, even for on-node communication, where

a shared-memory computing approach is more convenient and can decrease the
memory usage and allow for task-based approaches. The second limitation is
the lack of support for running on GPU-accelerated supercomputers. Given the
fact that most of the top supercomputers in the world, such as Frontier, Au-
rora, Eagle and LUMI, the lack of support for GPUs is a major limitation that
hinders the usage of BIT1 in the largest supercomputers available. This work
addresses these BIT1 limitations by designing and implementing hybrid MPI
and OpenMP /OpenACC version that can exploit shared-memory and GPUs.

Recently, findings presented in [13] have led to a detailed investigation of
the BIT1 code performance, pointing out performance bottlenecks, and iden-

Optimizing BIT1 with OpenMP/OpenACC and GPU Acceleration 3

tifying a roadmap for BIT1 performance optimization. The work highlighted
areas for optimizing BIT1 to enhance the performance, suggesting a focus on
the particle mover function, particularly the particle pusher, as an initial step,
given the challenges posed by arranging particles into cells and MPI ranks. This
work’s primary focus is on the enhancement of BIT1’s performance with a goal
to optimize the particle mover function, one of the most computationally inten-
sive parts of the code. This optimization utilizes OpenMP and OpenACC for
multicore CPUs and GPUs, enabling researchers to harness the full potential of
modern hardware for plasma simulations, ultimately improving our understand-
ing of plasma dynamics and advancing research in fusion and plasma science.
The contributions of this work are the following:

— We design and implement hybrid MPI+OpenMP and MPI+OpenACC ver-
sions of the BIT1 code to improve on-node performance. This implemen-
tation uses a task-based approach to address potential issues with load-
imbalance.

— We develop the first GPU porting of the BIT1 code to NVIDIA GPUs with
OpenMP and OpenACC in the particle mover stage of the BIT1 code.

— We critically analyze and discuss the performance of the newly ported BIT1
code, showing major performance improvements, and identify the next per-
formance optimization steps.

2 Background

Particle-in-Cell (PIC) methods are among the most crucial tools for plasma
simulations. They find applications in a diverse range of plasma environments,
from space and astrophysical plasma to laboratory settings, industrial processes,
and fusion devices. BIT1, in particular, is a PIC code specifically tailored for
plasma-material simulations. What sets BIT1 apart is its handling of collisions
and interactions with material boundaries, including models for phenomena like
sputtering at material interfaces.

BIT1 is a 1D3V PIC code, allowing simulations in one dimension while con-
sidering particles with three-dimensional velocities. The foundation of BIT1’s
computational approach is the PIC method, widely adopted in plasma physics.
This method involves tracking the trajectories of millions of particles within a
field consistent with density and current distributions, while abiding to Maxwell’s
and Poisson equations. Fig. 2 provides a visual representation of BIT1’s explicit
PIC method. To initiate the PIC simulations, BIT1 configures the computational
grid and sets up particle positions and velocities for various species, including
electrons and ions. Subsequently, a computational cycle iteratively updates the
electric field, particle positions, and velocities, accurately representing the dy-
namic interactions within the plasma. BIT1 employs advanced Monte Carlo tech-
niques to simulate collisions and ionization processes. It is important to note that
one of the most computationally intensive stages in BIT1 is the particle mover,
which is responsible for calculating the trajectories of millions of particles [9].

4 Jeremy J. Williams et al.

BIT1 Initialization ‘

BIT1 Time Step @

\ l

Particle Mover Plasma Density Calculation
Solve Equation of Motion of Particles Interpolation Particle Charge into the Grid
Particle Collisions and Density Smoother
Plasma-Wall Interaction

L Field Solver J

Solve a Poisson Equation

Fig. 2. A diagram representing the algorithm used in BIT1. After the initialization
the PIC algorithm cycle is repeated at each time step [13]. In orange, we highlight the
particle mover step that we parallelize with OpenMP and OpenACC.

In the current implementation, BIT1 employs domain decomposition for par-
allelization, utilizing MPI for efficient parallel communication. MPI point-to-
point communication is essential for managing information exchange at domain
boundaries, crucial for tasks like the smoother, Poisson solver, and handling
particles exiting the computational domain. However, the existing BIT1 imple-
mentation relies solely on MPI, lacking support for hybrid parallel computing
capabilities, such as MPI+OpenMP, MPI+OpenACC, GPU offloading or accel-
eration.

One of the main and distinctive features of the BIT1 code is the data layout
particle information, such as positions and velocities, are stored in memory. BIT1
associates the particles with the cells they are located in, e.g. each grid cell has
an associated list with particle information. As soon a particle move from a cell
to a neighboring one, then a particle information is removed from one list and
added to another one. In plasma simulations, there may be regions of space
where plasma particles concentrate, resulting in situations where certain cells
have a large number of particles while others have only a few. This results in
work imbalance in the particle mover.

3 Methodology & Experimental Setup

In this work, our focus is on investigating the porting of the BIT1 particle mover
to leverage OpenMP and OpenACC for shared memory programming and GPU
acceleration.

Optimizing BIT1 with OpenMP/OpenACC and GPU Acceleration 5

3.1 Hybrid MPI and OpenMP/OpenACC BIT1

OpenMP Tasks Particle Mover Parallelization. OpenMP is one of the
most widely used programming model designed to facilitate shared-memory par-
allel programming in high-performance computing (HPC) environments. The
OpenMP standard is supported by major compiler suites, including GCC and
LLVM, making it accessible to a broad range of developers.

1 #pragma omp parallel shared(chsp, sn2d, dinj, nstep, np, X, yp, YyX, vy)
2 private(isp, i, j) firstprivate(nsp, nc)

1 #pragma omp single

for (isp = 0; isp < mnsp; isp++) {

#pragma omp taskloop grainsize (500) nogroup
for (j = 0; j < nc; j++) {
#pragma omp simd
for (i = 0; i < nplispl[jl; i++)
x[isp][j1[i] += nsteplisp]l * vx[ispl[jl[il;

COENO W

0 N

}

#pragma omp taskloop grainsize (500) nogroup
for (j = 0; j < nc; j++)
#pragma omp simd
for (i = 0; i < nplispl[jl; i++)
x[isp][j1[i] += nsteplisp]l * vx[ispl[jl[il;

PR R R RHR R AR R

[SEERRNRCY

=
&

}

3}

Listing 1.1. Simplified C code snippet illustrating the OpenMP parallelization for
CPU in the particle mover.

Listing 1.1 showcases our OpenMP port of the core computational function
for the particle mover. In the code, x[1[]1[] and vx[1[][] represent particle
position and velocity in one dimension. nsp is the number of plasma species,
and nc is the number of cells in the one-dimensional grid. np[] [] denotes the
number of particles per species per cell.

Our parallelization approach uses the OpenMP taskloop construct. The out-
ermost loop, with a small number of iterations (species present in the simulation),
is deemed unsuitable for traditional parallelization methods. The taskloop con-
struct dynamically distributes loop iterations among available threads, ensuring
effective load balancing and optimizing the parallelization strategy for enhanced
performance on multicore CPUs.

When examining the code, the #pragma omp parallel pragma initiates a
parallel region with shared variables (chsp, dinj, sn2d, nstep, np, %, yp, vx, vy),
while isp and i are private to each thread. The firstprivate clause ensures
private and initialized values for nsp and nc for each parallel thread.

Within the parallel region, the single construct ensures that the subsequent
block of code is executed by a single thread, crucial for the initialization section.
The taskloop grainsize(500) nogroup pragma parallelizes the subsequent
loop, dividing iterations into tasks, while optimizing task granularity for efficient
parallel execution based on empirical testing and adjustments to achieve optimal
performance. The nogroup clause allows for dynamic scheduling.

6 Jeremy J. Williams et al.

Finally, the simd pragma within the innermost loop exploits SIMD paral-

lelism, improving vectorization and the efficiency of particle movement calcula-
tions.
OpenACC Multicore Particle Mover Parallelization. OpenACC, akin to
OpenMP, is a directive-based programming model primarily designed for GPU
accelerators. However, the directive-based approach for GPU offloading can also
be advantageous for CPUs, offering a straightforward method for porting codes
to CPUs with minimal code changes.

| #pragma acc parallel loop present(chsp[:lenA], sn2d[:lenAl], dinj[:1lenA], nstepl[:lenA],
2 np[:lenA][:1enB], x[:lenA][:1lenB]l[:1lenC], ypl[:lenAl[:1lenB]l[:1lenC],
vx[:lenA][:1enB]l[:1enC], vyl[:lenAl[:1lenB]l[:1lenC])

for (isp = 0; isp < nsp; isp++) {

7 #f;agma acc loop gang vector

8 for (j = 0; j < nc; j++) {

) #pragma acc loop vector

0 for (i = 0; i < nplispl[jl; i++)

1 y x[ispl[j1[i]l += nsteplispl * vx[ispl[jl[il;

2

for (j = 0; j < nc; j++) {
6 #pragma acc loop vector
7 for (i = 0; i < nplispl[jl; i++)

1

1

1

g 000

14 #pragma acc loop gang vector
15

1

1

18 x[isp]l [j1[i] += nsteplisp]l * vx[ispl[jl1[i];

20 ¥

Listing 1.2. Simplified C code snippet illustrating the OpenACC Multicore CPU
parallelization in the particle mover.

Listing 1.2 shows our optimized OpenACC parallelization for the particle
mover on multicore CPUs. The #pragma acc parallel loop directive initiates
concurrent execution, specifying essential data arrays. Utilizing gang and vector
directives enhances parallel processing in a nested loop structure (#pragma acc
loop gang vector) for particle and grid index iterations. Particle positions are
updated based on nstep and vx.

In the else clause, a similar nested loop (#pragma acc loop vector) opti-
mally executes particle indices (i). Further efficiency is achieved with a condi-
tional statement triggering an additional nested loop to update yp and x.

This version strategically uses OpenACC directives (#pragma acc loop gang
vector and #pragma acc loop vector) to optimize multicore CPUs for the
particle mover function, enhancing parallel performance in nested loops.

3.2 Accelerating BIT1 with OpenMP and OpenACC

Accelerating BIT1 with OpenMP Target. Listing 1.3 illustrates our use
of the OpenMP target construct to parallelize BIT1’s particle mover function
for GPU offloading. The code strategically employs OpenMP target directives
to optimize particle movement computations by offloading them to GPUs.

Optimizing BIT1 with OpenMP/OpenACC and GPU Acceleration 7

1 #pragma omp target enter data map(to: chsp[:lenA], sn2d[:lenAl, dinj[:lenAl], nstepl[:
lenAl,

2 np[:lenA][:1enB], x[:lenA][:1lenBl[:1lenC], ypl[:lenAl[:1lenB]l[:1lenC],

3 vx[:lenAl[:1enB]l[:1enC], vyl[:lenA][:1lenB][:1lenC])

1 {
5 for (isp = 0; isp < mnsp; isp++) {
6
7 #pragma omp target teams distribute parallel for thread_limit (256) num_teams
(391)
8 for (j = 0; j < nc; j++) {
9 #pragma omp simd
10 for (i = 0; i < nplispl[jl; i++)
11 N x[ispl[j1[i] += nsteplisp] * vx[ispl[jl1[il;
12
13 0o
14 #pragma omp target teams distribute parallel for thread_limit (256) num_teams
(391)
15 for (j = 0; j < nc; j++) {
16 #pragma omp simd
17 for (i = 0; i < nplispl[jl; i++)
18 x[ispl[j1[i] += nsteplispl * vx[ispl[jl[il;
19 }
2

20 #pragma omp target exit data map(from: x[:lenA][:lenB][:lenC]...)
: }

Listing 1.3. Simplified C code snippet illustrating the OpenMP (OMP target)
parallelization with data clauses and array "shape" for GPU porting in the particle
mover.

The pragma #pragma omp target enter data initiates the data transfer
from the host to the GPU, encompassing crucial arrays such as chsp, sn2d,
dinj, and the arrays for particle position and velocity (%, yp, vx, vy).

Within the unstructured data mapping region, the #pragma omp target
teams distribute parallel for directive initiates worksharing across multi-
ple levels of parallelism using combined constructs, thereby enabling the parallel
execution of the nested loops for particle movement calculations on the GPU.
To fine-tune parallelism, directives thread_limit (256) and num_teams(391)
are used to set thread and team limits based on our experimental setup’s system
specifications and workload requirements.

In the nested loops, the #pragma omp simd directive provides a hint to the
compiler for potential vectorizations of the inner loops, optimizing SIMD paral-
lelism. The calculations, updating particle positions based on velocities and time
steps, are concurrently distributed across GPU threads.

Finally, the #pragma omp target exit data directive ensures seamless trans-
fer of modified data, specifically particle positions, from the GPU back to the
host for efficient GPU offloading and parallelization of particle mover computa-
tions.

Accelerating BIT1 with OpenACC Parallel. OpenACC, designed for GPU
acceleration, simplifies the task of offloading functions to GPUs, offering an
accessible solution without complex GPU programming. Supported by platforms
like NVIDIA and GCC, OpenACC empowers developers to harness GPU parallel
processing efficiently.

In Listing 1.4 , we showcase our OpenACC parallelization of the particle
mover function for GPU acceleration. Data movement between CPU and GPU
is facilitated using #pragma acc enter data and #pragma acc exit data di-

8 Jeremy J. Williams et al.

#pragma acc enter data copyin(chsp[:lenA], sn2d[:1lenA], dinj[:lenA], nstep[:lenAl,
npl:lenA][:1enB], x[:1lenA][:1enB][:1enC], ypl[:lenAl[:1enB][:1lenC],
vx[:lenA][:1lenB]l[:1enC], vyl[:lenAl[:1lenB]l[:1lenC])

oA W N

for (isp = 0; isp < nsp; isp++) {

~

#pragma acc parallel loop gang worker vector vector_length (128)
present (np[:lenA][:1enB], nstep[:lenA], x[:lenA][:1lenB][:1lenC],
vx[:lenA]l[:1lenB][:1enC]) firstprivate(nc,isp,nsp) private (i)
for (j = 0; j < nc; j++) {

#pragma acc loo
for (i = 0; i < nplispl[jl; i++)
x[ispl[j1[i]l += nsteplisp] * vx[ispl[jl[il;

o ©®

}

#pragma acc parallel loop gang worker vector vector_length (128)
present (npl[:lenA]l[:1enB], nstepl:lenA], x[:lenA][:1lenB][:1lenC],
vx[:1lenAl[:1enB]l[:1enC]) firstprivate(nc,isp,nsp) private (i)
for (j = 0; j < nc; j++)

#pragma acc loop
for (i = 0; i < nplispl[jl; i++)
x[ispl[j]1[i] += nsteplisp] * vx[isp][jl1[il;

O Y e prar g
OO U W~

=

}
#pragma acc exit data copyout(x[:lenAl[:lenB]l[:1lenC]...)
}

NN NN NN

¥
-

Listing 1.4. Simplified C code snippet illustrating the OpenACC (ACC parallel)
parallelization with data clauses and array "shape" for GPU porting in the particle
mover.

rectives with copyin and copyout clauses, managing the transfer of relevant
arrays (chsp, sn2d, dinj, nstep, np, X, yp, VX, Vy).

In the GPU parallel unstructured data region, the #pragma acc parallel
loop directive is employed to parallelize the outer loop over j for components
(nc). The present clause ensures availability of specified arrays, while the first
private and private clauses handle variables nc, isp, nsp, and i appropriately.

The loop parallelization strategy uses gang, worker, and vector directives.
The gang directive divides loop iterations into gangs, potentially assigned to
different cores. Within each gang, worker directive enables concurrent execution,
and vector directive subdivides each worker, specifying simultaneous processing
with vector_length(128) determining vector size.

The innermost loop over i is parallelized with #pragma acc loop directive,
optimizing GPU capacity for parallel computations on inner loops while mini-
mizing data transfer overhead.

The #pragma acc exit data copyout directive ensures copied back modi-
fied data to the CPU after GPU computations are complete.

3.3 Experimental Setup
In this work, we use the following two systems:

— Dardel, an HPE Cray EX supercomputer, features a robust CPU partition
with 1,270 compute nodes. Each node is equipped with two AMD EPYC™
Zen2 2.25 GHz 64-core processors, 256GB DRAM, and interconnected using
an HPE Slingshot network with Dragonfly topology providing 200 GB/s
bandwidth. The Lustre file system has a 12 PB capacity, and the operating
system is SUSE Linux Enterprise Server 15 SP3. We load GNU compiler suite

Optimizing BIT1 with OpenMP/OpenACC and GPU Acceleration 9

option “PrgEnv-gnu” for compiler "gcc v11.2.0" and MPI library, “cray-mpich
v8.1.17".

— NJ, an HPC system, has an AMD EPYC 7302P 16-Core Processor with
32 CPU cores. It operates on the x86 64 platform, 2 threads per core, and
16 cores per socket, running at a 3.0 GHz base clock. NJ also hosts two
NVIDIA A100 GPUs with 40 GB HBM2e memory, 6912 Shading Units, 432
Tensor Cores, and 108 SM Count. GPUs have 192 KB L1 Cache per SM,
40 MB L2 Cache, and offer double-precision matrix (FP64) performance of
approximately 9.746 TFLOPs. We load CUDA Driver v11.0, NVIDIA HPC
SDK v23.7 with compiler version "gcc v12.2.0," and MPI “openmpi v4.1.5”".

In this work, we focus on optimizing the particle mover function in BIT1, with
a particular emphasis on closely monitoring and analyzing BIT1 performance.
As a test case, we simulate neutral particle ionization resulting from interactions
with electrons in upcoming magnetic confinement fusion devices like ITER and
DEMO. The scenario involves an unbounded unmagnetized plasma consisting
of electrons, DT ions and D neutrals. Due to ionization, neutral concentration
decreases with time according to On/dt = nn.R, where n, n. and R are neutral
particles, plasma densities and ionization rate coefficient, respectively. We use a
one-dimensional geometry with 100K cells, three plasma species (e electrons, D
ions and D neutrals), and 10M particles per cell per species. The total number
of particles in the system is 30M. Unless differently specified, we simulate up to
1K time steps. An important point of this test is that it does not use the Field
solver and smoother phases (shown in the diagram of Fig. 2).

4 Performance Results

4.1 Hybrid MPI and OpenMP/OpenACC BIT1

Focusing on intra-node testing, an in-depth investigation into how BIT1 performs
in terms of "execution time" has been conducted, to explore the advantages of
utilizing hybrid approaches on the two HPC systems. The aim was to determine
if using both MPI and OpenMP /OpenACC, instead of just MPI, would make a
significant difference. Fig. 3 shows executions of hybrid BIT1 total execution vs.
optimized mover function using 2 and 16 ranks per node for 1000 times steps
on NJ. For both 2 ranks and 16 ranks, our hybrid MPI+OpenMP version of
BIT1 shows a reduction in both total simulation and mover function time. This
suggests that parallelizing BIT1 with OpenMP threads improves performance
by enabling multiple threads to work on the problem concurrently. Similar to
OpenMP, our hybrid MPI+OpenACC version for multicore CPUs also results in
a reduction in both total simulation and mover function time. This demonstrates
that BIT1 benefits when used with multicore CPUs, due to better utilization of
CPU cores through parallelization.

Investigating the scalability of hybrid BIT1 on CPUs and Fig. 3, it is easy
to see that with an increase in MPI ranks from 2 to 16, there is a significant
improvement in performance for both total simulation and optimized mover

10 Jeremy J. Williams et al.

150 —

133.25

= 2 MPI Ranks
= 2 MPI + OpenMP Threads
2 MPI + OpenACC Multi-Cores
= 16 MPI Ranks
= 16 MPI + OpenMP Threads
16 MPI + OpenACC Multi-Cores

100 -

Execution Time (s)

7125 2498 1350

837

712 536 567 437

BIT1 Total Simulation BIT1 Mover Function

Fig. 3. Hybrid BIT1 total simulation and optimized mover function using 2 and 16
ranks per node on Dardel for 1000 times steps.

function execution times. This shows that our hybrid BIT1 scales well. However,
to confirm these findings, our second system, Dardel, was used for further in-
vestigation with a focus on the optimized mover function using OpenMP (since
OpenACC was not used).

On Dardel, as seen in Fig. 4, the execution time significantly decreases as the
number of MPI ranks and OpenMP threads increases, showcasing the potential
for efficient parallel executions. For instance, with 128 MPI ranks versus 8 MPI
ranks with 16 OpenMP threads, the execution time reduces to 10.55 seconds, a
notable improvement from the original 12.72 seconds.

4.2 Accelerating BIT1 with GPUs

The challenge of enhancing the performance of the particle mover function in
BIT1 by tapping into the computational power of GPUs has been systematically
deliberated, revealing valuable insights. In addressing this challenge, our focus
shifts to improving the particle mover function’s execution time by offloading
it to the GPU using OpenACC and OpenMP. In doing this, we are one step closer
for BIT1 being ready for Exascale platforms. To achieve this target, two main
strategies provided by OpenACC and OpenMP were investigated: the explicit
approach, where data regions for GPU offloading are clearly defined using direc-
tives, and the unified memory method, which simplifies memory management
by sharing a common space between the CPU and GPU.

BIT1 OpenACC GPU Explicit. Initial work began by using OpenACC’s
explicit approach on the GPUs on NJ for up to 10 time steps for better visual-
ization of profiling results, particularly focusing on the particle mover function.
The profiling results, using NVIDIA Nsight Systems, reveal crucial insights. The
CUDA kernel statistics showed that the primary kernel responsible for the parti-
cle mover function consumes 99.7% of the GPU execution time, emphasizing its
significance in the overall computation. In Fig. 5, the memory operation statistics

Optimizing BIT1 with OpenMP /OpenACC and GPU Acceleration 11

200.00
163.05 163.05
150.00 —
m BIT1 Mover (MPI) Version
—_ m BIT1 Mover (MPI+OMP) Version
X
[
£ 10000
=
c
L
=
3
o
[
>
w 50.00 [
282 248
1272 4955
0.00

8 MPIRanks 16 MPI Ranks 32 MPIRanks 64 MPI Ranks 128 MPI Ranks

vs vs vs vs vs
8 MPI Ranks + 8 MPI Ranks + 8 MPI Ranks + 8 MPIRanks + 8 MPI Ranks +
1 Thread 2 Threads 4 Threads 8 Threads 16 Threads

Fig. 4. Optimized mover function - scaling up to 128 MPI ranks on Dardel for 1000
times steps.

shed light on the substantial time spent on memcpy operations. Specifically, 80%
of the GPU time is allocated to copying data from host to device, emphasizing
the importance of efficient data transfer strategies.

These findings emphasize the importance of optimizing data movement and
kernel execution in the particle mover function. Strategies such as overlapping
computation and communication, along with exploring ways to minimize data
transfer size, can be instrumental. Additionally, considering the high memory
bandwidth of the NVIDIA A100 GPUs on NJ, enhancing the efficiency of mem-
ory operations becomes pivotal for achieving optimal performance.

» CPU(32)

~ Threads (9)

~ [V [3008635] MPIRank0
—_—

OpenACC BIT1
Unstructured e [T VAR RO S
MPI Data Region
CUDA API ARSI S T W——— .]
Profiler overhead
8 threads hidden. e | § 1 1 1 1 1 s
- 24.8% Kemels L Ll L

DtoH
memcpy

» 99.7% _pgi_uacc_cuda_fill_42_gpu
» 0.2% move0_152_gpu

kil e il il
» 0.1% move0_181_gpu
HtoD HtoD HtoD
< 75.2% Memory memecpy memcpy memcpy
80.0% HtoD memepy

20.0% DtoH memepy

Fig. 5. NVIDIA Nsight Systems OpenACC Explicit View - GPU porting of BIT1 mover
function on NJ with 1 time step.

12 Jeremy J. Williams et al.

BIT1 OpenACC GPU Unified Memory. Next, the particle mover function
has been initially investigated on NJ using OpenACC Unified Memory. The pro-
filing results revealed critical insights into the dynamics of memory management
and kernel execution.

The CUDA kernel statistics showed the primary mover kernel moveOis2 gpu
dominated GPU execution time, accounting for 66.7% with a total execution
time of 1.623457 seconds. Similarly the second kernel moveOig1 4p, contributed
33.3% with an average execution time of 0.8106292 seconds, highlighting the
significance of these kernels in the overall computation.

For hybrid BIT1 data movement and the implementation of a unified memory
strategy, the runtime system manages the seamless transfer of data between the
host and the device. One key advantage, aside from programmer convenience, is
the opportunity for the runtime to automatically detect instances of overlapping
computation and communication. Fig. 6 displays NVIDIA Nsight Systems’ view
of such overlapping, revealing that the unified memory version exhibited faster
overall runtime than explicit copies. This indicates automatic overlapping of
computation and communication. However, we observe that BIT1 OpenACC
Unified Memory performance is still hindered by substantial data movement
between the host and device.

) CPU)

~ Threads (3)

~ |V [3177528] MPIRank 0~

OpenACC

BIT1

MPI
CUDA API

Data Region

ofiler overhead
VI B17755718IT1 ~

/| [3177562] cuda-EvtHandir +

6 threads hidden —+

~ CUDA HW (0000:43:00.0 - NVIDIA A100-PCIE-40GE) -y v T TEeW e e oy — —
- 63.4% Contert 1
» [Anstreams] TS I (S
» 99.9%Stream 14 [meemeu L meebimgs | moeiGiom
» 01%Stream 18
~ 36.6% Unified memory
- 1000% Memory oaE e e G | e o el
64.3% HtoD transer ol whilil il o

| wll |
35.7% DioH transfer
HtoD HtoD HtoD DtoH
memcpy memepy memcpy memcpy

Fig. 6. NVIDIA Nsight Systems OpenACC Unified Memory View - GPU porting of
BIT1 mover function on NJ with 1 time step.

BIT1 OpenMP GPU Offloading. Due to the observed performance gain
with hybrid BIT1 on multicore CPU, an investigation was conducted using the
OpenMP target construct for further BIT1 GPU offloading. Fig. 7 and 8 provides
performance evaluation insights into GPU utilization compared to the CPU-only
baseline with 2 MPI and 16 MPI Ranks. Implementations using OpenMP or
OpenACC on GPUs exhibit increased execution times, indicating that paral-
lelization strategies may introduce overhead, potentially outweighing the bene-

Optimizing BIT1 with OpenMP/OpenACC and GPU Acceleration 13

fits of parallel processing. Among BIT1 GPU implementations, OpenMP Target
with 2 GPUs stands out for delivering a substantial reduction in execution time,
demonstrating the performance improvement through concurrent GPU utiliza-
tion, especially when MPI ranks are assigned to dedicated GPUs.

Yet, with promising results, a critical challenge emerges: data transfer con-
straints during each PIC cycle. Profiling results from Fig. 6 expose the impact of
copying substantial data from the CPU to the GPU at each time step, leading
to notable performance bottlenecks. Addressing this challenge involves avoiding
large data transfers from the CPU to the GPU at each iteration. The explo-
ration of CUDA streams and particle batch processing with OpenMP Target
across Multi-GPUs per node emerges as a promising avenue to streamline data
transfer and processing, as also observed in [3].

36718 55108
= 2 MPI Ranks CPU

= 16 MPI Ranks CPU
43 2MPI + GPU OpenACC Explicit | ACC Parallel
30274 = 2 MPI + 2 GPUs OpenACC Explicit /| ACC Parallel
= 2 MPI + GPU OpenMP Explicit / OMP Target
= 2 MPI +2 GPUs OpenMP Explicit/ OMP Target
16 MPI + GPU OpenACC Explicit/ ACC Parallel
= 16 MPI + GPU OpenMP Explicit / OMP Target
21827 24572~ 16 MPI + 2 GPUs OpenACC Explicit / ACC Parallel
16 MPI + 2 GPUs OpenMP Explicit/ OMP Target

300 —

200 —

Execution Time (s)

11243 11236

100

321 081

BIT1 Mover Function

Fig. 7. Optimized mover function execution time(s) on NJ for 100 time steps using
OpenMP and OpenACC Explicit on NVIDIA GPUs.

5 Related Work

BIT1, an advanced PIC code, is designed to simulate plasma-material inter-
action [9] and is utilized in various applications, including fusion devices such
as tokamaks. BIT1 builds upon the XPDP1 code [11], initially developed by
Verboncoeur’s team at Berkeley, and incorporates optimized data layout to ef-
ficiently handle collisions [8]. Recently, Williams, Jeremy J., et al. profiled the
performance of BIT1, highlighting the particle mover as one of the most compu-
tationally intensive parts of the code [13]. Several works have been devoted to
hybrid parallelization using MPI and OpenMP for PIC codes, including Smilei
[4], iPIC3D [6], and Warp-X [10], to mention a few. In contrast to earlier studies,
we employ task-based shared-memory parallelization techniques [1], which are
commonly used in linear solvers [5], to specifically address load-imbalance issues

14 Jeremy J. Williams et al.

in BIT1’s particle mover [13]. Additionally, BIT1 was ported to NVIDIA GPUs
using OpenACC [2]. This approach builds upon previous endeavors, including
the successful OpenACC porting of the GTC-P PIC code [12] and iPIC3D [7]
to NVIDIA GPUs.

150 —
= 2 MPI Ranks CPU
® 16 MPI Ranks CPU
12375 16 MPI + GPU OpenACC UM / ACC Parallel
1544 11537 = 16 MPI + GPU OpenMP UM / OMP Target
R— ® 2 MPI + GPU OpenACC UM / ACC Parallel

133.40

W 2 MPI + GPU OpenMP UM / OMP Target
100 - 16 MPI + 2 GPUs OpenACC UM / ACC Parallel
= 16 MPI + 2 GPUs OpenMP UM / OMP Target
2 MPI + 2 GPUs OpenACC UM / ACC Parallel
2 MPI + 2 GPUs OpenMP UM / OMP Target
67.24

57.98 57.64

Execution Time (s)

327 081

BIT1 Mover Function

Fig. 8. Optimized mover function execution time(s) on NJ for 100 time steps using
OpenMP and OpenACC Unified Memory on NVIDIA GPUs.

6 Discussion and Conclusion

Our primary goal was to enhance the particle mover function in BIT1, focusing
on node-level efficiency and GPU offloading. Hybrid MPI and OpenMP/Ope-
nACC approaches significantly improved on-node performance, showcasing the
potential to leverage multicore CPUs and GPUs efficiently.

Results on multicore CPUs demonstrated the effectiveness of the hybrid ap-
proaches. The scalability of the MPI-+OpenMP version indicates its potential for
large-scale plasma simulations, crucial for efficient use of current supercomputer
infrastructure.

GPU porting using OpenMP and OpenACC unveiled challenges and oppor-
tunities in tapping into GPU resources for the first time. Emphasizing a bal-
anced hybrid approach for optimal GPU performance, our findings suggest that
implementing OpenMP or OpenACC on GPUs may increase execution times,
potentially outweighing parallel processing benefits. Notably, the OpenMP Tar-
get with 2 GPUs demonstrated a significant reduction in execution time among
GPU results, highlighting potential performance improvement through concur-
rent GPU utilization, especially when dedicated GPUs are assigned to MPI
ranks.

Future research can enhance BIT1’s capabilities by fine-tuning GPU opti-
mization and integrating advanced algorithms. Exploring CUDA approaches and

Optimizing BIT1 with OpenMP/OpenACC and GPU Acceleration 15

batch processing shows promise in optimizing particle movement, while collab-
orative efforts with experimental data can bolster simulation reliability.

Hybrid MPI, OpenMP, and OpenACC approaches hold promise for com-
prehensive parallelization. Exploring synergies between these paradigms ensures
BIT1’s adaptability to various computing environments.

Acknowledgments. Funded by the European Union. This work has received funding
from the European High Performance Computing Joint Undertaking (JU) and Sweden,
Finland, Germany, Greece, France, Slovenia, Spain, and Czech Republic under grant
agreement No 101093261.

References

1. Ayguadé, E., et al.: The design of openmp tasks. IEEE Transactions on Parallel and
Distributed systems 20(3), 404-418 (2008)

2. Chandrasekaran, S., et al.: OpenACC for Programmers: Concepts and Strategies.
Addison-Wesley Professional (2017)

3. Chien, S.W., et al.: sputnipic: an implicit particle-in-cell code for multi-gpu sys-
tems. In: 2020 IEEE 32nd International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD). pp. 149-156. IEEE (2020)

4. Derouillat, J., et al.: Smilei: A collaborative, open-source, multi-purpose particle-
in-cell code for plasma simulation. Computer Physics Communications 222, 351—- 373

2018

5.(Liu,)F., et al.: Parallel cholesky factorization for banded matrices using openmp
tasks. In: Euro-Par 2023: Parallel Processing. pp. 725-739. Springer Nature Switzer-
land, Cham (2023)

6. Markidis, S., et al.: The epigram project: preparing parallel programming models
for exascale. In: High Performance Computing: ISC High Performance 2016 Inter-
national Workshops, ExaComm, E-MuCoCoS, HPC-IODC, IXPUG, IWOPH, P~
3MA, VHPC, WOPSSS, Frankfurt, Germany, June 19-23, 2016, Revised Selected
Papers 31. pp. 56-68. Springer (2016)

7. Peng, I.B., et al.: Acceleration of a particle-in-cell code for space plasma simulations
with openacc. In: EGU General Assembly Conference Abstracts. p. 1276 (2015)

8. Tskhakaya, D., et al.: Optimization of pic codes by improved memory management.
Journal of Computational Physics 225(1), 829-839 (2007)

9. Tskhakaya, D., et al.: Pic/mc code bitl for plasma simulations on hpc. In: 2010
18th Euromicro Conference on Parallel, Distributed and Network-based Processing.
pp. 476-481. IEEE (2010)

10. Vay, J.L., et al.: Warp-x: A new exascale computing platform for beam—plasma
simulations. Nuclear Instruments and Methods in Physics Research Section A: Ac-
celerators, Spectrometers, Detectors and Associated Equipment 909, 476-479 (2018)

11. Verboncoeur, J.P., et al.: Simultaneous potential and circuit solution for 1d
bounded plasma particle simulation codes. Journal of Computational Physics 104(2),
321-328 (1993)

12. Wei, Y., et al.: Performance and portability studies with openacc accelerated ver-
sion of gtc-p. In: 2016 17th International Conference on Parallel and Distributed
Computing, Applications and Technologies (PDCAT). pp. 13-18. IEEE (2016)

13. Williams, J.J., et al.: Leveraging hpc profiling & tracing tools to understand the
performance of particle-in-cell monte carlo simulations. Euro-Par 2023: Parallel Pro-
cessing Workshops, arXiv preprint arXiv:2306.16512 (2023)

	Optimizing BIT1, a Particle-in-Cell Monte Carlo Code, with OpenMP/OpenACC and GPU Acceleration

