
NeuroMorphix: A Novel Brain MRI Asymmetry-specific Feature
Construction Approach For Seizure Recurrence Prediction

Soumen Ghosh, Viktor Vegh, Shahrzad Moinian, Hamed Moradi, Alice-Ann Sullivan, John Phamnguyen,
David Reutens

ABSTRACT

Seizure recurrence is an important concern after an initial
unprovoked seizure; without drug treatment, it occurs within
2 years in 40-50% of cases. The decision to treat currently
relies on predictors of seizure recurrence risk that are inac-
curate, resulting in unnecessary, possibly harmful, treatment
in some patients and potentially preventable seizures in
others. Because of the link between brain lesions and seizure
recurrence, we developed a recurrence prediction tool using
machine learning and clinical 3T brain MRI. We developed
NeuroMorphix, a feature construction approach based on
MRI brain anatomy. Each of seven NeuroMorphix features
measures the absolute or relative difference between corre-
sponding regions in each cerebral hemisphere. FreeSurfer
was used to segment brain regions and to generate values
for morphometric parameters (8 for each cortical region and
5 for each subcortical region). The parameters were then
mapped to whole brain NeuroMorphix features, yielding a
total of 91 features per subject. Features were generated
for a first seizure patient cohort (n = 169) categorised
into seizure recurrence and non-recurrence subgroups. State-
of-the-art classification algorithms were trained and tested
using NeuroMorphix features to predict seizure recurrence.
Classification models using the top 5 features, ranked by
sequential forward selection, demonstrated excellent perfor-
mance in predicting seizure recurrence, with area under the
ROC curve of 88-93%, accuracy of 83-89%, and F1 score
of 83-90%. Highly ranked features aligned with structural
alterations known to be associated with epilepsy. This study
highlights the potential for targeted, data-driven approaches
to aid clinical decision-making in brain disorders.
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learning
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I. INTRODUCTION

Accurate prediction of seizure recurrence is important
after a first unprovoked seizure because of the potential
for injury or death from recurrent seizures. Currently, an-
tiseizure medications are started in individuals predicted to
be at elevated risk of seizure recurrence. However, currently
used clinical, electroencephalography (EEG) and magnetic
resonance imaging (MRI) predictors are unreliable, being
associated with a recurrence rate of 60% [1] compared to
25% if these risk factors are absent [2] [3]. As a result,
a significant fraction of individuals receiving treatment are
unnecessarily exposed to the side effects of medication
and conversely, a significant fraction of those who remain
untreated are exposed to the risk of a further seizure.

The search for better predictive models utilising ma-
chine learning is active and ongoing. A predictive model
developed using clinical data and EEG findings from the
most extensive study to date on individuals experiencing
a single seizure, the Multicentre trial for Early Epilepsy
and Single Seizures (MESS) only achieved a discriminatory
power slightly higher than a random guess (C-statistic: 0.59)
[4]. The Area under the Received Operating Characteristic
curve (AUC) for other seizure recurrence prediction models
using clinical information and EEG has ranged between 0.63
[5] and 0.86 [6]. Although a recent Large Language Model
utilising unstructured electronic medical records for seizure
recurrence prediction achieved an AUC of 90% [7], training
inputs included information on medication and prognosis and
could also have been biased by the expertise of clinicians.

Abnormal brain imaging is a known risk factor for seizure
recurrence [2], [8], [9], [10]. The hazard ratio for seizure
recurrence in individuals with abnormal versus normal neu-
roimaging is 2.44, higher than that for individuals with
epileptiform abnormalities on the EEG versus those with a
normal EEG (2.16) [3]. Detection of an epileptogenic lesion
of the cerebral cortex on MRI is associated with seizure
recurrence in 67% of cases [11]. While lesions such as
hippocampal sclerosis [12], malformations of cortical devel-
opment [13], [14] and tumors are often amenable to diagnosis
by visual inspection, a range of epileptogenic pathologies are
difficult to detect in this manner [15], [16], [17], [18], [19].
Machine learning algorithms have shown promising results
in medical image segmentation [20], classification [21], and
diagnosis [22] with recent studies [23], [24] showcasing
effectiveness in detecting subtle lesions on brain MRI scans.
This raises the possibility of increasing the accuracy of
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Sl No FreeSurfer Parameter Name Label
1 Surface Area (in mm2) SurfArea
2 Gray Matter Volume (in mm3) GrayVol
3 Average Thickness (in mm) ThickAvg
4 Thickness StdDev (in mm) ThickStd
5 Integrated Rectified Mean Curvature MeanCurv
6 Integrated Rectified Gaussian Curvature GausCurv
7 Folding Index FoldInd
8 Intrinsic Curvature Index CurvInd

TABLE I: Cortical parameters computed by FreeSurfer.

Sl No FreeSurfer Parameter Name Label
1 Volume (in mm3) Volume
2 Number of Voxels NVoxels
3 Intensity normMean normMean
4 Intensity normStdDev normStdDev
5 Intensity normMax normMax

TABLE II: Subcortical parameters computed by FreeSurfer.

seizure recurrence prediction by developing methods that
are sensitive to subtle or currently invisible abnormalities.
Since developmental and acquired disorders associated with
epilepsy are known to cause deviations from the typical
pattern of asymmetry between the cerebral hemispheres [25],
[26], we developed NeuroMorphix, an approach involving
the construction of brain asymmetry-specific features using
3D brain MRI data and applied it to predict seizure recur-
rence using state-of-the-art classification algorithms. Neuro-
Morphix features collectively quantify differences between
cerebral hemispheres based on a range of cortical and subcor-
tical region-specific measures. The classification algorithms
learn patterns from the whole-brain features generated from
clinical brain MRI to classify patients into those with and
without recurrent seizures after a first unprovoked seizure.

II. METHODS

We used FreeSurfer (Version 7.1.1; [27]) to generate
a set of standard region-specific parameters from which
NeuroMorphix features were created. These features were
used to perform the classification task. Figure 1 summarises
the steps in this process.

A. Region-specific parameters

These were calculated for cortical and subcortical regions.
1) Cortical parameters: We considered curvature index,

folding index, Gaussian curvature, mean curvature, thickness,
thickness standard deviation, and volume of cortical regions,
as listed in Table I. The cortical parameters were stored as
XR and XL, matrices of dimension C × P , where C is the
number of cortical regions, and P is the number of region-
specific parameters generated for the right (R) and left (L)
cerebral hemispheres.

2) Subcortical parameters: These parameters included
maximum intensity, mean intensity, standard deviation of
intensity, and volume, see Table II, which were also stored
in the XR and XL format.

B. NeuroMorphix features
Seven asymmetry features, f1,i, f2,i, ..., f7,i, were calcu-

lated, reflecting cosine similarity, outlier count, and hemi-
spheric ratio for each region-specific parameter, i = 1, ..,M .

1) Features based on cosine similarity: We defined f1,i as
the cosine similarity between corresponding regions in each
cerebral hemisphere:

f1,i =
XL,i ·XR,i

||XL,i||||XR,i||
, (1)

where i denotes a specific column of the matrix (i.e., region-
specific parameter).

Feature f2,i was based on the normalised absolute devia-
tion from the mean of all the brain regions considered:

ZL,i =
|uXL,i −XL,i|

XL,i

, (2)

ZR,i =
|uXR,i −XR,i|

XR,i

, (3)

where ZL,i and ZR,i are vectors corresponding to the left
and right hemisphere regions, u is a vector of all ones and,
for example, XL,i is the mean of XL,i. Feature f2,i measured
the similarity between ZL,i and ZR,i according to:

f2,i = ZL,i · ZR,i. (4)

2) Feature based on outlier count: Features f3,i and f4,i
were the ratios of the number of regions outside a specified
cutoff defined as X ± ε, where ε was chosen to suit the
problem. Here, following common practice statistical outlier
detection, we considered ε to be the standard deviation of
XL,i or XR,i. Feature f3,i was calculated from the ratio
between the number of regions above the cutoff in each
hemisphere:

f3,i = min
(
yL,i

yR,i
,
yR,i

yL,i

)
, (5)

where yL,i = count(XL,i,j |j=1,..,N > (XL,i + ε)), yR,i =
count(XR,i,j |j=1,..,N > (XR,i + ε)), N is the number of
brain regions considered, yL,i and yR,i take integer values,
and f3,i is a scalar between 0 and 1.

Similarly, f4,i related to the case when the cutoff was set
at a threshold below the mean:

f4,i = min
(
yL,i

yR,i
,
yR,i

yL,i

)
. (6)

where yL,i = count(XL,i,j |j=1,..,N < (XL,i−ε)) and yR,i =
count(XR,i,j |j=1,..,N < (XR,i − ε)).

3) Ratio features: These features involve the ratio of
region-specific parameters. We first computed, using entry-
wise division, a vector of ratios:

ri = [min (XL,i,j ÷XR,i,j |j=1,..,N )] , (7)

where ri is of length N , and entries in ri lie between 0 and
1. The features were computed as:

f5,i = µ(ri), (8)

2



Fig. 1: Proposed framework for seizure recurrence prediction using proposed NeuroMorphix features.

f6,i = σ(ri), (9)

f7,i = min(ri). (10)

where µ is the arithmetic mean operator, and σ is the standard
deviation.

III. EVALUATION DATASET

The study was approved by the institutional Human
Research Ethics Committee (LNR/2019/QRBW/55712). We
collected retrospective brain MRI scans for first seizure pa-
tients seen from March 2016 to October 2020 at the Epilepsy
Clinic of the Royal Brisbane and Women’s Hospital, Bris-
bane, Australia. A total of 169 brain MRI datasets were
collected and categorised into those from patients with (n =
145) and without (n = 24) recurrent seizures. The cohort
comprised 102 males with an average age at the time of first
seizure of 37.7 (±16.3) years. Scans were collected using
a 3T MRI scanner (Magnetom Vida, Siemens HealthCare).
Our analysis utilised T1-weighted images (TR = 2.3s, TE
= 2.31ms, matrix = 256 × 256, α = 8◦) with a resolution
of either 0.9mm3 (132 scans) or 0.9 × 0.45 × 0.45mm3

(37 scans). The datasets were resampled using trilinear
interpolation to a common resolution of 1.0mm3 and matrix
size of 256×256×192 using the Medical Image Processing,
Analysis and Visualisation (MIPAV, Version 10.0.0) software
package.

IV. EXPERIMENT DETAILS

The FreeSurfer (Version 7.1.1) software package was used
for brain segmentation and region-specific parameter gener-
ation, and machine learning approaches were implemented
using Python (Version 3.9.16). Multi-dimensional matrix
operations were performed using the NumPy (Version 1.23.5)
and pandas (Version 1.5.2) libraries. Tools necessary to
perform sequential forward feature selection and sequential
backward elimination were imported from scikit (Version
1.2.1). Algorithms were implemented and run on Linux-
centos7 OS-based computing systems.

A. FreeSurfer parameters

Each MRI, in native space, was segmented into cortical
and subcortical regions according to the Desikan-Killiany
atlas using the recon all command in FreeSurfer. Corti-
cal parameters were obtained from the lh.aparc.stats and
rh.aparc.stats files for each hemisphere and subcortical

parameters were obtained from the aseg.stats file for both
hemispheres.

Eight parameters (see Table I) for 34 cortical regions were
available for each hemisphere in all participants. Using the
aparcstats2table command, the aparc parameters of all
subjects were organised in eight csv files, each representing
one FreeSurfer parameter for each hemisphere. The dimen-
sion of each csv file was 169×34, in keeping with 34 cortical
regions in 169 participants. The 5 parameters (see Table II)
for 14 subcortical regions in each hemisphere were similarly
organised in 5 csv files of dimension 169× 14.

B. Feature construction

Each pair of corresponding left and right hemisphere csv
files was used to generate NeuroMorphix features (i.e., f1
to f7), yielding 56 cortical features (seven NeuroMorphix
features for each of the eight FreeSurfer parameters) and
35 subcortical features (seven NeuroMorphix features for
each of the five FreeSurfer parameters). These features were
separately concatenated for cortical and subcortical regions,
yielding a cortical NeuroMorphix feature set of dimension
169 × 56 and a subcortical NeuroMorphix feature set of
dimension 169× 35.

C. Class imbalance

To upsample the minority class prior to classification, we
employed the Synthetic Minority Over-sampling Technique
(SMOTE) [28], which adds synthetic samples to the minority
class by interpolating between existing instances and their
K-nearest neighbours. We used the SMOTE algorithm, as
implemented in Python (imblearn library Version 0.10.1).
SMOTE was chosen because it generalises well and is less
prone to overfitting than upsampling methods such as random
sampling [29].

D. Feature selection

The total number of features (91) is large relative to
the number of available datasets. We evaluated sequential
forward selection and sequential backward elimination ap-
proaches for dimensionality reduction to prevent the ro-
bustness of the classification model from being compro-
mised [30]. Feature selection was performed using the
SequentialFeatureSelector function in the Sklearn Python
library (Version 1.2.1). The feature subset that achieved the
highest classification accuracy for all classifiers was selected
for use with the classification models.
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E. Classification models

Being agnostic to the choice of classification model, we
evaluated the performance of a range of state-of-the-art
machine learning approaches for classification: K-Nearest
Neighbours (KNN; [31]), Decision Tree (DT; [32]), Random
Forest (RF; [33]), Gradient Boosting (GB; [34]), Extreme
Gradient Boosting (XGB; [35]), and Light Gradient Boosting
Machine (LGBM; [36]) classifiers.

The upsampled dataset was randomly split into training
and test sets in a ratio of 70:30. A one-dimensional vector
of length 290 (145 samples in each class) was provided as
the class label. We used the default classifier function from
the sk-learn machine learning library. The specifications of
the classifiers used for training and testing were K = 3 for
KNN, depth = 4 for RF, learning rate of 1.0 for GB and
gbdt boosting type for LGBM classifiers. In each case, 5-
fold cross-validation was performed.

F. Performance evaluation

The following metrics were computed from the number of
true positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN) [37]:

Accuracy = (TP + TN)/(TP + TN +FP +FN), (11)

Specificity = TN/(FP + TN), (12)

Sensitivity = TP/(TP + FN). (13)

F1 = 2× TP/(FP + 2× TP + FN). (14)

The Area Under the Receiver Operator Characteristic (AU-
ROC) curve was also used to assess the performance of each
model.

V. RESULTS

We report the results of five experiments. First, we ascer-
tained the optimal number of features to be used with each
classification algorithm. Second, we considered the case of
using a fixed number of features and assessed the effects
of the performance of each method. Third, we investigated
the importance of individual features for each classification
method. Fourth, 5-fold cross-validation was performed. Fifth,
performance was evaluated in a test dataset to establish how
well each model generalises.

A. Optimal number of features

KNN (K = 3) was used for the sequential forward selec-
tion and backward elimination steps. Results are presented
in Figure 2, in which the horizontal and vertical axes re-
spectively represent the number of features and the achieved
classification accuracy. The purpose of this analysis was to
identify the number of features above which classification
accuracy does not significantly improve. For example, for
XGB with the use of sequential forward selection, around
12 features were needed to obtain the best classification ac-
curacy. However, around half as many features was required
when KNN was used for classification. Of note, classifiers
required a different number of NeuroMorphix features to

achieve their highest classification accuracy. Generally, more
features were required to achieve high classification accuracy
when sequential backward elimination was used for feature
selection. Other than KNN, classifiers also appeared to
perform better when sequential forward selection was ap-
plied. While nearly 90% classification accuracy was achieved
using KNN with forward selection, classification accuracy
exceeded 90% for XGB and LGBM with forward selection.
This was not the case when sequential backward elimination
of features was used. We therefore used sequential forward
selection in the final method.

Table III summarises the number of features selected
using sequential forward selection and the corresponding
performance metrics of each classification method. As few
as two features can be used to achieve relatively good
performance with DT and XGB, whereas KNN and LGBM
require six and eight features, respectively, to achieve their
best classification performance. RF and GB required 28 and
20 features, respectively, to perform well. One advantage
of using a low number of features for classification is that
interpretation of the features may be simpler than for a large
feature set.

B. Fixed number of features

To assess the variability between methods when the di-
mension of the feature space was fixed, we considered
the cases of five NeuroMorphix features identified by se-
quential forward selection and of 25 features identified by
sequential backward elimination. The results are presented
in Table IV. High performance could be achieved using
the forward selected features (around 88% accuracy for
DT, RF, GB and XGB and 100% sensitivity for DT, GB
and LGBM). Accuracy and sensitivity were lower with
sequential backward elimination. Note that in Figure 2a, the
number of features required by XGB and LGBM to achieve
high classification accuracy plateaus quickly, and additional
features only marginally changed the performance metrics.
For KNN, performance degraded progressively as the number
of sequential forward selected features increased.

C. Ranking of features

We compared sequential forward feature selection with
KNN, DT, RF, GB, XGB and LGBM. Figure 3 depicts the
ranking of features selected using each of the algorithms and
Table V outlines the interpretation of the top-ranked features.
To aid visualisation of the result, Figure 3 depicts feature
rankings compared with the KNN rank from highest (i.e.,
1) to lowest (i.e., 35). In Figure 3, the rows correspond to
NeuroMorphix (f1 to f7) features and FreeSurfer parameters
with the row order reflecting the feature rank using KNN for
selection. The gray scale reflects the feature rank obtained
with each selection algorithm from 1 (darkest) to 35 (light-
est).

Feature f4(FoldInd) was the highest-ranked feature for
all feature selection algorithms tested. Asymmetry in cortical
region size (measured by NV oxels and V olume) also
ranked highly, along with cortical thickness (ThickAvg)
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(a) Sequential forward selection (b) Sequential backward elimination

Fig. 2: Shown are feature selection results using the (a) sequential feature selection and (b) sequential backward elimination
approaches. The horizontal axis represents the number of features used to achieve that level of accuracy (vertical axis).
Colours correspond with the different classification algorithms evaluated.

Algorithm Number of features AUROC Accuracy Sensitivity Specificity F1
KNN 6 94.27 88.51 90.70 86.36 88.36
DT 2 86.58 87.36 97.67 77.27 88.42
RF 28 90.17 85.06 86.05 84.09 85.06
GB 20 92.92 82.76 79.07 86.36 81.93
XGB 2 91.49 85.06 88.37 81.82 85.39
LGBM 8 93.13 81.61 76.74 86.36 80.49

TABLE III: Classification performance of the classifier assessed using sequential forward selection of features. The highest
number in each column is denoted in bold font.

Algorithm Sequential forward selection: 5 features Sequential backward elimination: 25 features
AUROC Accuracy Sensitivity Specificity F1 AUROC Accuracy Sensitivity Specificity F1

KNN 89.01 82.76 88.37 77.27 83.52 89.32 83.91 72.09 95.45 81.58
DT 88.74 88.51 100.00 77.27 89.58 81.50 81.61 72.09 90.91 79.49
RF 88.66 88.51 90.70 79.55 85.71 92.76 81.61 81.40 81.82 81.40
GB 92.55 88.51 100.00 77.27 89.58 86.31 85.06 79.07 90.91 83.95
XGB 89.90 87.36 95.35 79.55 88.17 95.08 89.66 83.72 95.45 88.89
LGBM 87.55 86.21 100.00 72.73 87.76 92.81 85.06 81.40 88.64 84.34

TABLE IV: Summarised is the classification performance when the number of features for sequential forward selection and
sequential backward elimination are fixed. Bold depict largest values for the column.

Rank Feature Interpretation
1 f4(FoldInd) Asymmetry in cortical surface folding between the hemispheres.
2 f3(NVoxels) Asymmetry in the number of sub-cortical voxels between the hemispheres, based on the number of regions above a specific threshold.
3 f3(Volume) Asymmetry in sub-cortical volume between the hemispheres, based on the number of regions above a specific threshold.
4 f4(NVoxels) Asymmetry in the number of sub-cortical voxels between the hemispheres, based on the number of regions below a specific threshold.
5 f4(Volume) Asymmetry in sub-cortical volume between the hemispheres, based on the number of regions below a specific threshold.

TABLE V: Selected features for the classification algorithms using KNN-based sequential forward selection approach.

across selection methods. These findings are in keeping
with pathological changes in the cerebral cortex associated
with epilepsy. Interhemispheric differences in regional T1-
weighted MRI intensity did not appear to be relevant for dis-
tinguishing between seizure recurrence and non-recurrence
groups.

D. Cross-validation
Cross-validation was performed to validate the machine

learning models, allowing us to assess the stability of pre-
diction accuracy, generalisability to an unknown dataset,
and overfitting. In Table VI, 5-fold cross-validation results
are provided for models using sequential forward selection

and feature subsets comprising 5, 7, 15, and 30 features.
The optimal feature subset contained 5 features. For larger
subsets, additional features were randomly selected from the
remaining features.

All models were fairly robust. While classification accu-
racy did not necessarily improve with larger feature subsets,
the standard deviation of accuracy fell, suggesting increased
robustness. Trade-offs between accuracy and computational
efficiency are considerations for robust classification model
design.
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Fig. 3: Feature ranking based on classification accuracy. The lower number and dark colour represent higher rank whereas
higher number and brighter colour represent low rank, respectively.
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Number of features
5-fold cross-validation accuracy

KNN DT RF GB XGB LGBM
Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev

5 81.38 10.76 84.83 11.46 70.69 11.07 84.14 12.87 85.17 11.67 83.10 12.40
7 81.38 5.37 78.28 6.41 75.17 3.55 80.00 9.79 83.10 7.51 83.79 7.44

15 84.48 3.08 75.17 4.44 78.28 3.20 79.31 4.50 85.86 4.28 84.83 2.75
30 85.17 3.20 82.07 4.70 85.86 4.80 83.45 4.44 89.31 3.68 90.69 4.44

TABLE VI: The 5-fold cross-validation results for accuracy using different number of sequentially forward selected features
for each classification method.

E. Generalisability of classification models

To assess generalisability, we considered using only the
top five features from the sequential forward selection algo-
rithm. Table VII reports the training and testing performance
of each classification model. For training, classification per-
formance was excellent for all models, with the AUROC
ranging from 85.7% to 90.3%. The best training performance
for AUROC, accuracy, sensitivity, specificity, and F1-score
were 89.9% (XGB), 84.2% (DT), 100% (DT, GB, LGBM),
69.3% (KNN, RF), and 86.4% (DT). The best performance
on the test dataset for AUROC, accuracy, sensitivity, speci-
ficity, and F1-score were 92.6% (GB), 88.5% (DT, RF, GB),
100% (DT, GB, LGBM), 79.6% (RF, XGB) and 89.6%
(DT, GB). This high level of consistency in performance
between the training and testing datasets confirms that the
classification models generalise well for this problem.

VI. DISCUSSION

NeuroMorphix produces whole-brain asymmetry features
based on seven distinct mappings involving MRI-based mor-
phological parameters of brain regions. In essence, Neuro-
Morphix converts image-derived parameters to whole-brain
asymmetry features. We found that a subset of NeuroMor-
phix features were highly predictive of seizure recurrence
after a first seizure.

A. Relevance of features

An important aspect of the NeuroMorphix features is
that they allow the types of brain asymmetries relevant to
the cohort studied to be identified. We did this by ranking
feature importance for seizure recurrence prediction, as in
Figure 3. Cortical features ranked more highly than sub-
cortical regions. This has face validity because changes in
cortical thickness (see f1(ThickAvg) in Figure 3), folding
(i.e., f4(FoldInd)), and gray-white matter junction blurring
(GrayVol for cortical; NVoxels and Volume for subcorti-
cal) are observed in some epileptogenic pathologies such
as focal cortical dysplasia [38], [39], [40], [41]. While,
in some instances, these pathologies may be detected by
visual inspection of clinical brain MRI scans [42], they may
also be MRI-negative [43]. The importance and power of
NeuroMorphix features may lie in their sensitivity to subtle
MRI changes easily missed on visual inspection of the im-
ages by a radiologist. Prediction of seizure recurrence using
NeuroMorphix features achieved a high accuracy, raising
the possibility for future clinical translation to guide the
treatment of patients after their first seizure to reduce the risk

from further seizures without unnecessary drug treatment.
A better understanding of the anatomical correlates of the
changes in NeuroMorphix features associated with seizure
recurrence may also provide new insights into underlying
mechanisms.

B. NeuroMorphix features

Each NeuroMorphix feature is a holistic representation
of a specific type of morphological brain asymmetry based
on region-specific parameters. For other applications, other
features could be added to the current set; this would
necessitate further evaluation in the relevant clinical cohorts.
We did not optimise thresholds required by some features. In
particular, the outlier count features, f3 and f4, require ε to
be specified. We chose one standard deviation from the mean
as ε, but it is possible that a different choice may alter the
ranks of f3 and f4. It is thus plausible to suggest the choice
of threshold used for f3 and f4 in NeuroMorphix may be
application specific.

C. Robustness of FreeSurfer parameters

We used FreeSurfer to segment and produce region-
specific parameters. Although NeuroMorphix features do not
rely on the use of FreeSurfer, they do require a method
of segmenting and parameterising brain regions. We chose
FreeSurfer because segmentation and parameterisation are
integrated into the package, and it is widely used and shown
to be robust.

T1-weighted clinical MRI scans were used as the input
to FreeSurfer. The use of multiple MRI inputs (such as
a combination of T1- and T2-weighted images) improves
FreeSurfer segmentation performance [44] and improves
cortical measurements, such as thickness [45]. We used
images resampled to 1mm3 isotropic resolution as inputs,
a routine choice with FreeSurfer; data of different resolution
can pose challenges. The use of additional MRI contrasts,
the influence of the resolution of acquired images, and the
acquisition of data on different scanners were beyond the
scope of this study but are potential avenues for future
investigation.

D. Other considerations

Class imbalance is an important aspect of classification
studies. In addition to SMOTE, we examined other ap-
proaches to upsampling the minority class, such as random
oversampling and found SMOTE to perform the best (data

7



Metrics KNN DT RF GB XGB LGBM
Train Test Train Test Train Test Train Test Train Test Train Test

AUROC 86.57 89.01 92.24 88.74 86.82 88.66 90.22 92.55 92.16 89.90 89.50 87.55
Accuracy 85.17 82.76 86.90 88.51 82.41 88.51 85.52 88.51 86.90 87.36 83.79 86.21
Sensitivity 99.31 88.37 100.00 100.00 91.03 90.70 100.00 100.00 100.00 95.35 100.00 100.00
Specificity 71.03 77.27 73.79 77.27 73.79 79.55 71.03 77.27 73.79 79.55 67.59 72.73
F1 87.01 83.53 88.41 89.58 83.81 85.71 87.30 89.58 88.41 88.17 86.05 87.76

TABLE VII: Classification performance of each algorithm for seizure recurrence prediction tabulated for the training and
testing datasets.

not presented here). This finding is in accordance with pre-
vious work demonstrating that SMOTE is a robust approach
to the class imbalance problem [28].

The amount of data available and the number of Neuro-
Morpix features created are also important considerations.
For this reason, we evaluated both sequential forward selec-
tion and sequential backward elimination. The former allows
smaller NeuroMorphix feature sets to be considered (refer
to Figure 2), which is advantageous when data are limited.
Additionally, NeuroMorphix features may produce a level
of redundancy, and ranking must be interpreted carefully.
For example, the FreeSurfer parameter FoldInd was only
relevant to f4, but NVoxels ranked highly with f1 to f4
(refer to Figure 3). This suggests that region-specific volume
asymmetries are highly relevant to seizure recurrence and
measurable using a range of metrics.

Subsequent studies may find it useful to manually reduce
the set of NeuroMorphix features instead of relying solely
on an automated approach for feature selection. This should,
however, be tested experimentally in the context of specific
clinical cohorts. Such an approach may be of value when
there is prior knowledge about the importance of specific
region-specific asymmetry.

E. NeuroMorphix beyond epilepsy

In some neurodegenerative conditions such as Alzheimer’s
disease, frontotemporal dementia, and Parkinson’s disease,
neuropathological changes do not affect the cerebral hemi-
spheres symmetrically. Gray matter loss in Alzheimer’s dis-
ease occurs more rapidly in the left hemisphere than in the
right [46]. In early Parkinson’s disease, motor symptoms
are characteristically asymmetrical, with the left nigrostriatal
system being more vulnerable early in the disease. Claassen
et al. [47] observed that cortical atrophy in Parkinson’s
disease tended to occur first in the left hemisphere and
in frontotemporal dementia, asymmetry in disease burden
between the cerebral hemispheres is thought to contribute to
the clinical heterogeneity of the disorder [48]. Asymmetric
atrophy of the gray matter also occurs in amyotrophic lateral
sclerosis [49], and in multiple sclerosis, MRI-based texture
and diffusion tensor parameters may show interhemispheric
differences [50]. NeuroMorphix features may have a role in
detecting and characterising these asymmetries early in the
disease and tracking their evolution as a means of furthering
the understanding of selective regional and hemispheric
vulnerability.

VII. CONCLUSION

We developed NeuroMorphix, a framework to produce
a set of features sensitive to interhemispheric differences
in region-specific parameters generated from clinical MRI
scans of the brain. We tested the ability of state-of-the-art
classification models to use NeuroMorphix features to predict
seizure recurrence in patients after their first unprovoked
seizure. High prediction accuracy was achieved. Our ap-
proach also lends itself to a feature ranking nomenclature and
a framework for interpreting the morphological asymmetries
associated with seizure recurrence. The methods proposed
here may also be used to detect, characterise, and track
hemispheric asymmetries in a range of other brain disorders.
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