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TOPOLOGICAL FUKAYA CATEGORY OF TAGGED ARCS

CHEOL-HYUN CHO AND KYOUNGMO KIM

ABSTRACT. A tagged arc on a surface is introduced by Fomin, Shapiro, and Thurston to study cluster theory on
marked surfaces. Given a tagged arc system on a graded marked surface, we define its Z-graded Ao-category,
generalizing the construction of Haiden, Katzarkov, and Kontsevich for arc systems. When a tagged arc system
arises from a non-trivial involution on a marked surface, we show that this A.c-category is quasi-isomorphic to
the invariant part of the topological Fukaya category under the involution. In particular, this identifies tagged

arcs with non-geometric idempotents of Fukaya category.
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1. INTRODUCTION

Fomin, Shapiro, and Thurston introduce the concept of tagged arcs in [20] to study cluster theory on marked
surfaces. A tagged arc is an arc with additional data of tagging at the endpoints lying on interior marked points.
Here, a tagging is a choice of an element of Z/2Z. An ideal triangulation of a marked surface by tagged arcs

and flips of triangulations (given by replacing a diagonal by the other one) relate the combinatorial geometry
1
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of marked surfaces with cluster algebras. In particular, tagged arcs solve the problem of flipping self-folded
triangles.

On the other hand, gentle algebra is a special-type of associative algebra introduced in [8]. Its derived category
has been intensively studied both in algebraic and in geometric perspectives. Algebraically, indecomposable
objects in the derived categories of gentle algebras are studied in [15], [14], [I7], [I8], and morphisms between
them are studied in [6]. A combinatorial derived invariant of gentle algebra is introduced in [II]. Also, in [35],
they show that the class of gentle algebras is closed under derived equivalence. In [7], gentle algebras are realized
as Jacobian algebras of ideal triangulations of boundary-marked surfaces.

Surprising relations between geometry of surfaces, in particular its Fukaya category, and gentle algebras
have been found. In [I6] and [26], Bocklandt and Haiden-Katzarkov-Kontsevich introduce topological Fukaya
category of surface, which is a topological version of (partially) wrapped Fukaya category in [23], [1], [9], [10],
[37]. Topological Fukaya category gives an A..-enhancement of derived category of graded homologically smooth
and proper gentle algebra. In [32], Opper, Plamondon, and Schroll give a geometric model for derived category
of any ungraded gentle algebra. Also in [12], Baur and Simdes give a geometric model for module category of
finite dimensional gentle algebra. These geometric models provide geometric interpretations of many algebraic
properties. In [30], Lekili and Polishchuk give the converse construction of [26] and find a geometric interpretation
of the derived invariant in [I1]. Also, in [B], Amiot, Plamondon, and Schroll use the model of [32] to interpret
the invariant for any gentle algebra.

Skew-gentle algebra is introduced by Geil and de la Pena [24] as a generalization of a gentle algebra.
Labardini-Fragoso associates a quiver with potential to an ideal triangulation by tagged arcs of a marked
surface in [28]. GeiB}, Labardini-Fragoso, and Schréer [25] and Qiu and Zhou [34] show that the Jacobian algebra
of an appropriate triangulation is a skew-gentle algebra.

It is known that skew-gentle algebras are related to Z/2Z-orbifold surfaces. Suppose that a marked surface
and an associated arc system for a gentle algebra are equipped with a Z/2Z-action. In [], [3], [29], [2], they
use Z/27Z-equivariant theory to study indecomposable objects and derived-equivalences of skew-gentle algebras.
In [34], [33], they introduce geometric models for the intersection numbers between tagged arcs and study the
derived categories of (graded) skew-gentle algebras. The space of stability conditions on the latter are shown to
be isomorphic to that of quadratic differentials in [3T]. Here, interior marked points for tagged arcs correspond
to Z/2Z-orbifold points in the former, and we will not distinguish them from now on.

Therefore, it is natural to conjecture that the derived category of a skew-gentle algebra should be related to
a partially wrapped Fukaya category of the corresponding Z/2Z-orbifold surface (see [29]). In this paper and
the sequel, we give an answer for this conjecture. Let us explain this in more detail. Consider a graded marked
Z/2Z-orbifold surface (S, M,O,n).

Our first main observation is the precise relationship between tagged arcs on S and the Fukaya category
of Z/2Z-orbifold surface S. Recall that tagged arcs are defined in a combinatorial way and have been lacking
direct geometric interpretations (cf. [33]). We find that arcs ending at Z/2Z-orbifold points in the orbifold Fukaya
category admits non-trivial idempotents. These types of non-geometric idempotents do not seem to appear in
the smooth Fukaya categories. We will explain the correspondence between idempotents and tagged arcs. This
explains why tagged arcs are relevant to the study of skew-gentle algebras in light of the above conjecture.

Next, we define topological Fukaya categories of tagged arc systems of Z/2Z-orbifold surfaces, generalizing
the construction of Haiden-Katzarkov-Kontsevich [26] for arc systems on smooth surfaces. Namely, we define
morphisms between tagged arcs, and also define A,.-operations on morphisms in a combinatorial way.

Contrary to smooth cases, when two tagged arcs meet at an interior marking, morphisms exist only in one
direction (depending on the grading and the tagging). We call this morphism an interior morphism, and call the
imaginary non-existing morphism in the other direction a non-morphism. Intuitively, as tagged arcs correspond
to idempotents, a non-trivial morphism between arcs does not necessarily induce a non-trivial morphism between
their idempotents.

Another new feature is a composition sequence. Recall that a disc sequence in [26] provides contributions
of “holomorphic discs” to As.-operations. First, we can generalize the notion of disc sequence in our setting
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by allowing foldings along arcs to interior marked points. Furthermore, if one of the corner of a disc is a non-
morphism, then the complementary morphism can be regarded as an output of an A,.-operation, and we call

thick

this a composition sequence. There is one more non-trivial operation, called m , when the operation involves

two different tagged arcs of the same underlying arc.

Theorem 1.1. Let (S, M,O,n) be a graded marked Z/27Z-orbifold surface and T' be a tagged arc system. We
can define a Z-graded unital Ao -category Fr(S,M,O,n).

Different choices of tagged arc systems on (S, M, O,n) result in Morita equivalent A.,-categories.

Theorem 1.2. Let (S, M,0,n) be a graded marked Z/2Z-orbifold surface and T'1,Ts be tagged arc systems on
it. Then, two A -categories Fr, (S, M,0,n) and Fr,(S,M,O,n) are Morita equivalent.

A special class of tagged arc systems, called involutive tagged arc system, can be obtained from the arc system
of the Z/2Z-covering. These are defined as follows. For a Z/2Z-orbifold surface S, we have the 2-to-1 branched
covering given by a smooth surface S with the deck transformation ¢ satisfying 2 = id 5. Suppose that we have
a marking M and a grading n which are preserved by ¢, and denote by O the set of +-fixed points and by M the
induced marking on S. Then, (S, M,0,n) is a graded Z/2Z-orbifold surface. Let us choose an arc system I on
S which is invariant under .. We associate an involutive tagged arc system I' on (S, M, O,n) corresponding to
I, which can be defined combinatorially as in Definition

There are three main reasons to consider involutive tagged arc systems. First, this allows us to relate tagged
arcs and non-geometric idempotents of the Fukaya category, as we have explained earlier. Second, we will prove
the Morita invariance of the A.-category of tagged arc system in Theorem using the Morita invariance of
the arc system in the cover (via Theorem and . And third, involutive tagged arc systems will correspond
to skew-gentle algebras.

Let us give more detailed explanations on each of these reasons. First, any involutive tagged arc system has a
special property that there exists at most one underlying arc that meets a given interior marking. If two tagged
arcs meet at an interior (orbifold) marking, then they intersect transversely in the two-fold covering. As arcs in
the arc system are disjoint, this does not happen in the cover. In particular, there are no interior morphisms for
the involutive tagged arc system. Hence, the special feature of interior morphisms and non-morphisms cannot be
seen directly. Nonetheless, the derived Fukaya category has additional objects in the form of twisted complexes
and interior morphisms arise in this setting. In Section[6.4] we will illustrate the geometric origin of our definition
of interior morphisms between tagged arcs, by computing morphisms between the corresponding idempotents.

Second, an involutive tagged arc system defines an A..-category by Theorem We can give another
definition by taking the Z/2Z-invariant part of the topological Fukaya category of the arc system in the cover.
From [26], we have a Z-graded A.-category Fr(S,M,n). This admits a strict Z/2Z-action from ¢ and its
Z/2Z-invariant part, after taking idempotent completion, defines the A..-category .}’-'1:(57 v, M, 7). In this A-
category, the (-invariant arc v has two non-geometric idempotents, hence idempotent completion is necessary.
We prove that the Morita equivalent class of the A..-category is independent of the choice of t-invariant arc
system on S,

Theorem 1.3. Let (5’, L,M,n) be an involutive graded marked surface and f‘l,f‘g be t-invariant arc systems.
Then, two A -categories }}1(5', v, M,n) and Fr, (S,1,M,n) are Morita equivalent.

We show that these two constructions of A,-categories are quasi-isomorphic to each other.
Theorem 1.4. Let (S,M,0,n) be a graded marked Z/2Z-orbifold surface and (S, 1, M,n) be its double cover-
(1) There is a one-to-one correspondence between the following two sets:
{Involutive tagged arc systems on (S, M,0,n)} — {t-invariant arc systems on (S, v, M,n)}.

(2) For an involutive tagged arc system T' of (S, M,O,n) and the corresponding t-invariant arc system T of
(5’, v, M, n), there is a quasi-equivalence between two A -categories Fr(S, M,0,n) and .7’-'1:(5'7 L M,n),
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(8) Any tagged arc system can be transformed into a Morita equivalent involutive tagged arc system, by a
sequence of adding or subtracting tagged arcs (such that intermediate ones are also tagged arc systems).

In the sequel, we will find that different choices of tagged arc systems result in different derived-tame algebras.
Being a skew-gentle algebra is not a derived invariant notion. Namely, there are other types of algebras that
are not skew-gentle themselves, but derived equivalent to some skew-gentle algebras. Our A, -category of a
tagged arc system provides an efficient tool to study these algebras. In particular, involutive tagged arc systems
correspond to skew-gentle algebras. As a corollary, we know algebras corresponding general tagged arc systems
are all derived equivalent to skew-gentle algebra. For example, we reprove that derived-tame cyclic Nakayama
algebra in [13] and generalized gentle algebras in [21] are derived equivalent to skew-gentle algebras. In addition,
we prove the algebras introduced in [19, Definition 5.7] are derived-equivalent to skew-gentle algebras.

Before we finish the introduction, let us illustrate our construction for the case of D,,-quiver. Namely, we
consider tagged arc systems on a disc with one interior marking, such that the endomorphism algebras of the
direct sum of chosen tagged arcs in the A.-category are path algebras of D,,-quivers.

Example 1.1.
ot €

o —— f—— 7 o — B ——7

5~ o*
Let us consider a disc with four boundary markings and one interior marking. Its double cover is also a disc

and we can take a Z/2Z-invariant line field on it. Let T'y, 'y, and T'. be the tagged arc systems as illustrated in
Figure a), (b), and (c), respectively.

— —
o, 8,
v r
¢(
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3 —

() (B) ()

F1GURE 1. Disc with three arc systems

(a) T, consists of 5 tagged arcs where the pair (67,67) is a thick pair. Namely §* and §~ have the
same underlying arc, but have opposite taggings at the interior marked point. There is a morphism
03 (resp. 03) from 7 to 6+ (resp. 7). Morphisms can be concatenated via A.-operation m§*®, and
the corresponding endomorphism algebra is the path algebra of the first D,,-quiver above. This is a
skew-gentle quiver.

(b) Ty consists of 5 tagged arcs as in the figure. We can choose a line field and grading so that we have
an interior morphism ¢ from the arc € to §+. (There is no morphism from 6 to €, and we say it is
a non-morphism.) Three arcs (¢,7,d") bound a disc but the corner at the interior marking is a non-
morphism. In this case, we have a new A-operation m®™P | called a composition sequence, and we
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have ms”™P (4,05 ) = ¢. The corresponding endomorphism algebra is the path algebra of the second

D,,-quiver above. Note that ¢ represents the path from € to §+. This second quiver is not skew-gentle.
(c) T. consists of 6 tagged arcs. Now there are two interior morphisms 1 € Hom(J ™, ¢) and ¢ € Hom(e, 7).
There is a disc sequence (05,1, 84) which defines m3(05 ,1),604) = %ey.

Both T', and T’y are Morita equivalent to I'. from Proposition [5.1] Thus, we can deduce via geometry that two
quivers above are derived equivalent. Note that A.-categories for (a) and (b) are formal and (c) is not formal.

Upon circulation of this work, we have learned that there is a similar work in preparation by Barmeier,
Schroll, and Wang.

ORGANIZATION

In Section 2, we recall the concept of topological Fukaya category following [26]. Then, we generalize the
notion to Z/2Z-orbifold surface in Section 3. In this section, we introduce tagged arc system, interior morphism,
and disc and composition sequences. In Section 4, we define A,-category associated with tagged arc system
and topological Fukaya category associated with Z/2Z-orbifold surface by introducing Theorem In Section
5, we prove Theorem [[.2] and the first part of Theorem [I.4] In Section 6, we define topological Fukaya category
in involutive setting and prove Theorem and the second and third parts of Theorem In Section 7, we

prove Theorem

CONVENTION

We fix an algebraically closed field k with characteristic 0. Any A,.-category in this paper is unital. We use
the sign convention in [36], but we use the reverse order for composition. That is, for objects Xy,..., X, the
Agso-structure map is a map

m,, : Hom(Xy, X1) ® - - - ® Hom(X,,_1, X;,) = Hom(Xo, X,,).
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2. TOPOLOGICAL FUKAYA CATEGORIES OF SURFACES

In this section, we recall the concept of topological Fukaya category mainly following [26]. Section and
[2:2] contain basic definitions and properties of graded boundary-marked surfaces and graded curves. Then, in
Section we review the notion of topological Fukaya category. For more details, see [26].

2.1. Boundary-marked surfaces. Let us consider a compact oriented surface S with nonempty boundary
0S. We set an orientation on S clockwise. Also, we use the induced orientation on 0S as the clockwise rotation
of inward vector field.

A boundary marking on S is an orientation preserving embedding M : [[;_, I; — S from a disjoint union of
finite number of unit intervals with the canonical orientation. We call both the restriction M; = M|;, and its
image Im(M;) a marking. The pair (S, M) is called a boundary-marked surface if each boundary component of
S contains at least one marking.

A curve on (S, M) is an immersion vy : (I,0I) — (S, M). In particular, M; itself and a restriction of it
are curves and we call them boundary curves. We say two boundary curves #; and 6 are concatenable when
01(1) = 02(0), and denote the concatenation by 6, e 0s.

We say two curves are isotopic to each other when they are homotopic as maps from (I,97I) to (S, M). An
arc is an embedded curve v : I — S such that v intersects M transversely, v~ 1(M) = I, and 7 is not isotopic



6 CHO AND KIM

to a boundary curve. By abuse of notation, we also denote by « the image of the arc 7. An arc system is a
collection of arcs I' = {71, ..., v, } satisfying the following two conditions.

e For each pair i # j, v; Ny; = 0 and ~; % ;.

e Each component of S\ |J!_; 7; is a topological disc with at most one unmarked boundary component.

Example 2.1. Let us consider the 2-dimensional disc D with n-boundary markings M, and an arc system
consisting of n-arcs which are isotopic to unmarked boundary components. The case of n = 4 is illustrated in
Figure a). Such a disc with arc system can always be made into the canonical configuration, as in Figure b),
up to isotopy. Although it is not an arc system in the rigorous sense as each arc is on the boundary, it is useful
to regard it as an boundary-marked surface when we define A..-structure for topological Fukaya category. Let
us denote the canonical n-boundary marking, the arcs, and the boundary morphisms by MS*", 6;,...,d,, and
052", ..., 02" respectively.

//?/
O
can
" e
can
.
3
yeen Y,mﬂ
o
—
(A) Non-canonical arc system (B) Canonical arc system

FIGURE 2. Disc with arc systems

Let (S1,M;) and (S2, M3) be two boundary-marked surfaces. A morphism from (S, M;) to (Se, Ms) is an
orientation preserving immersion f : S — Sy such that f(M;) C M. For a curve «y : (I,0I) — (S1, M), the
morphism f induces the curve f.y on (Ss, M3). Also f sends a boundary morphism 6 on M; to the boundary
morphism f,0 on Ms. Now let us recall the definition of disc sequence.

Definition 2.1. Let (S, M) be a boundary-marked surface and ~1,...,7, be arcs on it. A disc sequence is a
sequence (01, ...,0,) of boundary morphisms 6; : v; — ~;+1, where ~,41 = 71, such that there is a morphism
from (D, M) to (S, M) satisfies the following two conditions.

can

e For each 7, f,y{* = ;.
e For each i, f.(65*") = 6.

2.2. Gradings. The projective tangent bundle P(T'S) is a fiber bundle on S whose fiber at p is the projective
space P(T,,S). The orientation on S induces an orientation on P(7},S) for each p € S. So we have the preferred
generator w,, of m (P(T},S)) = Z. For distinct x,y € P(T,S), we denote the shortest clockwise path from z to y
by k.

A line field is a smooth global section of P(T'S). Two line fields n and 7’ are said to be equivalent if there
is a path from 7 to 1’ in the space of line fields. For example, any line fields on a contractible surface are all
equivalent. A graded boundary-marked surface is a triple (S, M,n) of a surface S, a boundary marking M, and
a line field 7 on S.

Let v : I — S be a curve and consider the pullback bundle v*(P(7T'S)) on I. Then, we have two sections
v*(n) =mno~ and 4. A grading of v is a homotopy class of paths 4 from v*(n) to 4 in the space of sections of
¥ (P(T'S)). A graded curve is a pair (vy,%). We often write the graded curve by v omitting the grading 4. When
the curve is an arc, we call it a graded arc.
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Let (o, &) and (ﬂ,B) be graded curves intersecting at p = a(t) = S(s) transversely for ¢, s € I. Then, the
intersection indez is given by the winding number of the following loop.
a(t) - K50 - (B(s)) ™ € m(B(T,S),n) = L.
The following lemma is immediate from the definition so we omit the proof.
Lemma 2.1. Let (v, %) be the third graded curve such that (u) = p for some u € I. Also assume that ¢(s), B(t),
and 4(u) are all distinct. Then,

| | ip() if (6(s), B®),4(w) s clockuise,
ip(ev, B) +ip(B,7) = § " o A e .
ip(a,v)+1 if (&(s),B(t),¥(u)) is counterclockwise.
A shift of a graded arc («, &) is given by composing w, with & pointwisely. More precisely, for an integer
n € Z, the grading of the n'"-shift a[n] is given by & - w™, where (& - w), = &(p) - (wp)". For another graded
curve (3 intersecting with « transversely at p, we have

ip(aln], Blm]) = ip(a, B) +n —m.

Now let us recall the notion of boundary morphism. Let « and 8 be graded arcs in (S, M, n) with endpoints p
and ¢, respectively, on the same marking so that there is a boundary path 67. We call 61 a boundary morphism
from a to 8 and its degree is given by

‘05| =iy, 08) —iq(B,0).
Note that the degree |0}17 | is independent of grading of 9. We denote by ©(a, 3) the set of all boundary

morphisms from « to 3.

Lemma 2.2. Let (01,...,0,) be a disc sequence. Then, we have
O+ 10a =2,

Proof. Let f: (D, M) — (S, M) be an immersion associated with the disc sequence. Then, the pull-backed
section f*n defines a line field on the disc D. Also, one can prove that intersection index doesn’t change if we
perturb the line field or arcs isotopically. Since any bundle on D is trivial, we may assume the line field on D is
given by foliation of parallel straight lines. We may further assume the arcs are straight lines. Then, the degree
of boundary morphisms are nothing but the inner angles between lines divided by 7. So the sum of degrees is
the sum of inner angles of n-gon divided by 7, which is exactly (n — 2). a

A graded arc system on (S, M, n) is a collection of graded arcs ' = {1, ..., v, } such that the underlying arcs
form an arc system on (S, M). If it has no disc sequence, then we say the system formal. More precisely, formal
arc system is defined as follows.

Definition 2.2. Let I' = {v1,...,7,} be a graded arc system on (S, M,n). We say T is formal if each disc

S\ U’Yi
i=1

component of

has exactly one unmarked boundary component.

2.3. Topological Fukaya categories of graded boundary-marked surfaces. A graded arc system I' on
a graded boundary-marked surface (S, M,n) gives rise to an As.-category Fr(S, M,n). It turns out that the
Morita equivalence class of it is independent of the choice of I'. This gives the topological Fukaya category of
(S, M, 7).

First let us recall the definition of the associated A..-category.

Definition 2.3. [20, Section 3.3] Let (S, M,n) be a graded boundary-marked surface and T" be a graded arc
system. Then, an A..-category Fr (S, M, n) consists of the following data.
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The set of objects is I'.
The basis for morphism space consists of boundary morphisms and the unit. More precisely, for two
graded arcs o, 8 € T,

k(G , k a if o = )
Hom . (5,0, (e, B) = {Ik EGEZ Zi; e 1f Z = g

The differential m; is set to be zero.
For two concatenable boundary morphisms 6; and 62, mo(61,62) := (—1)‘91‘91 ° 0.

Let (0y,...,0,) be a disc sequence with 6; : v, — v;+1, where 7,41 is set to be 1. Also, let ¢ : v — 71
and 1 : 7, — B be boundary morphisms concatenable with 6; and 6,,, respectively. Then,

My, (01,...,0,) =€y,
mn(¢.017' .. 797L) = (_1)|¢|¢a
mn(elv"wgn.w) = ¢

e The other m,,’s are all zero.

(A) Composition of boundary mor-
phisms (B) Disc sequence

FIGURE 3. A-structure for topological Fukaya category of surface

Theorem 2.3. [26, Lemma 3.2 and Proposition 3.3] Let (S, M,n) be a graded boundary-marked surface. Then
the following hold.

(1) For two graded arc system I'y C T'g, the inclusion functor
Fr, (S, M,n) — Fr, (S, M,n)
induces a quasi-equivalence A -functor
Tw(Fr, (5, M,n)) = Tw(Fr, (S, M,7)).
(2) The Morita equivalence class of Fr(S, M,n) independents of T.

Definition 2.4. The topological Fukaya category of a graded boundary-marked surface (S, M,n) is the Aso-
category
f(S, M, 77) = TW(fF(Sv M, 77))

for a graded arc system I'.
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3. TAGGED ARC SYSTEMS

In this section, we introduce the tagged arc system and generalize Sections [2.1] and [2.2] to this setting. The
concept of tagged arc is first introduced in [20]. It is a graded curve each of whose endpoints is either a boundary
marking or an interior marking, with a choice of an element in Z/27 = {0, 1} at each interior marking endpoint.

3.1. Graded marked Z/2Z-orbi-surfaces and tagged arcs.

Definition 3.1. A marked surface is a triple (S, M, O), where (S, M) is a boundary-marked surface and O is
a finite subset of Int(S) whose elements are called interior markings.

We define arcs on a marked surface as follows.

Definition 3.2. An arc is an embedding ~ : (I,9I) — (S, M U O) such that y~1(M U O) = I and it is not
isotopic to a boundary path nor a constant path. We denote the set of interior endpoints of 4 by O(~) and define
the interior number v(7) as the cardinality of O(7). For an interior marking p € O(v), we say ~ is hanging at p.

In order to define the notion of grading to a marked surface and arcs, we regard the surface S as an orbifold
surface, by equipping the points in O with Z/2Z-orbifold structure. Namely, a neighborhood of any point in O
in S admits a uniformizing cover with Z/2Z-action. Thus (S, O) is a Z/2Z-orbifold surface with boundary. It is
well-known that (S, 0) admits a 2-fold branched covering

7:8—> S

by a smooth surface S with boundary whose ramification locus is O. We fix S and 7 from now on.

Denote by ¢ : S — S the deck transformation. We have 2 = idg and hence ¢ is an involution. The inverse
image 7~ 1(M) is an invariant boundary marking on S and we denote it by M. Let 7 be an t-invariant line
field on S. It is not hard to see that such 7 exists: in a uniformizing cover at Z/2Z-points, line fields may be
given by horizontal or vertical ones. We call these data, abbreviated by the tuple (S, 0, M, n), a graded marked
7./27-orbi-surface, or more simply, a graded marked orbi-surface.

We define a grading on an arc « as a grading 4 on the lift 4 that is compatible with Z/2Z-action. Let us
explain what this means for each type of arc.

e () = 0. Then, v does not pass through orbifold points in O. It has two disjoint lifts 4 and ¢,%, which
are arcs on (S‘, M) Note that 7 is gradable since it is an arc, this induces a grading on ¢.7.

e v(y) = 1. Then, 7~ '(y) is a one dimensional Z/2Z-invariant submanifold on S with boundary on M.
We choose a parametrization 7 : [0,2] — S so that + o 5(t) = 7(2 — t) and hence 7o (1) € O(y). Also,
7 and ¢,y can be graded as before.

e v(y) =2. Then, 7~ 1(v) is a Z/2Z-invariant circle on S. We choose a parametrization 7 : R/2Z — S so
that ¢ o ¥(t) = 4(2 — ¢).

Lemma 3.1. Let v be an arc on S with v(y) = 2. Then, its lift 5 is gradable.

Proof. To show the loop is gradable, we have to find a homotopy between 4 and 1 along 4. Since
¥(2—1t) = (toF)(t) and n is t-invariant, we have

Y2 —1) = LA),  Tae—t) = tn5)-
Let o be any homotopy from ’:?|[0,1] to 71l[,1]- Then, define & so that afjp,;) = @ and &(2 —t) = a(t).
This gives a homotopy from 7 to n. (Il

For each arc -, we fix a lift 4 as above. The parametrization of 4 provides an orientation of 4. Note that in the
cases of v(y) = 1,2, 4 and ¢ o 4 has the same underlying curve but have opposite orientations.
Now we define tagging of a graded arc as a choice of an element of Z/27Z at each interior endpoint.

Definition 3.3. Let (v,%) be a graded arc on S. A tagging on v is a function 7 : O(y) — Z/2Z. If 7(p) =1
(resp. T7(p) = 0), ~ is said to be notched (resp. plain) at p. A tagged arc is a triple (7,4, 7). For a tagged arc
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v,%,7) and an integer n € Z, its nth—shift is
4
('y, 9, T)[n] = (’y, 4 [n], T+ n)

We often simply write a tagged arc as v omitting the grading 4 or the tagging 7. A notched arc is indicated
by a small stick near p as in other literature (see Figure [4]).

We will show in Section [f] that tagging can be understood geometrically as a choice of idempotent in the
Fukaya category of Z/2Z-orbifold surfaces.

3.2. Interior morphisms. We define morphisms between tagged arcs intersecting at the interior marking. In
the standard Floer theory, if two curves L, and Lo transversely intersect at a point p, then this gives rise to
two generators a, € CF (L1, Ls), @, € CF(L2, L1).

The distinctive feature in our tagged setting will be that when two tagged arcs intersect at the interior
marking p, among two seemingly possible generators at p, only one of them will be declared to be a morphism,
and this choice depends on the degree of the intersection and the data of tagging. A geometric reason for this
phenomenon will be explained in Section [} roughly speaking the data of tagging is a choice of an idempotent,
and thus morphisms only exist between the correct pair of idempotents. Also, in our case, exactly one of the
two possible generators has the correct pair.

In this section, we give its combinatorial definition using the degree and tagging data as follows. Let («, o) and
(8,7) be tagged arcs hanging at p € O. Their lifts & and B intersect at p = 7 1(p) € S giving two morphisms:

P € CF(&,B),p2 € CF(B, ).

The intersection index i5(&, 5) from the gradings is independent of the choice of lifts, and we denote it as
ip(a, B).
We will discard the morphism p§ from (, o) to (8, 7) if
o(p) = 7(p) # ip(e, B).
Then, one may observe that exactly one out of {pg,pg} is discarded from i, (o, 8) = 1 — i, (8, @).

Definition 3.4. Let (S,0, M, n) be a graded marked orbi-surface and («, o), (8, 7) be tagged arcs on S hanging
at p € O. When o(p) — 7(p) = ip(c, B), we say p defines an interior morphism from (o, o) to (8,7) and we

o

denote it by pg:T. Its degree is given by
=ip(a, B).

@,
Ps,r

Here, we give an example. Figure b) illustrates possible choices of taggings of « and § and the corresponding
interior morphisms. The opposite morphism has been discarded, and will not be considered as a morphism. (In

this example, as in Figure a), we assume that 7 is an oriented line field of S, thus the parity of ip(a, B) agrees
with signed intersection number of & and S at p.)

Lemma 3.2. Suppose that an interior marking p defines an interior morphism from («, o) to (8,7). Then the
following hold.

(1) The intersection p does not define an interior morphism from (8,7) to (o, 0).

(2) For any m,n € Z, the intersection p defines an interior morphism from («,o)[m] to (8, 7)[n].
Proof. These follow from i,(5, ) = 1 —iy(a, 8) and i,(a[m], B[n]) = ip(e, B) +m — n. O

3.3. Disc and composition sequences. For the A -structure of tagged arcs, we introduce the notion of disc
and composition sequences. Let us first adapt the notion of disc sequence for tagged arcs. We will allow two
new phenomena. One is to allow interior morphisms between two tagged arcs as a part of a disc sequence (see
Figure a)). Also, we allow some of the boundary arcs of a disc to be folded and mapped to the double of
tagged arcs (see Figure [5b)). Let us formally define it using the canonical arc system of the disc (D, M) in

Example
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NN

(B.0) (o, 0) (B.1) (x,0)
'\/\/‘ v\//\/«
(B.0) (o, 1) (B (o.1)
(A) Intersection morphism on the covering (B) Interior morphisms on the orbi-surface

FIGURE 4. Interior morphisms

(A) Disc sequence (B) Folded disc sequence (¢) Composition sequence

FIGURE 5. Ag-structure with tagged arcs

Definition 3.5. Let (S,0,M,n) be a graded marked orbi-surface and 71,...,7v, be tagged arcs. Also, let
@i : vi — Yir1 be boundary or interior morphisms. We call the sequence (¢1,...,¢,) a disc sequence if there is
an orientation preserving immersion (on the interior) f : (D, M) — (S, M U O) that satisfies the following
two conditions.

e For each i, f(7§*") equals v; (up to reparametrization of the domain) or the double cover of ~; branched

at one point in the middle (in the latter case, we say that (0;,-1,6;) is folded).
e For each i, f.(05*") = ¢;.

We will set vp,41 := 71 and 60,41 = 61 for notational convenience.

In Figure [5[b), it is folded between 65 and 5 (along v3) and between 6, and 65 (along ~4). Note that 6, and
03 are concatenable, and so are 6, and 5. These are the only folded pairs in the disc sequence.

Now, we also need a new notion, called a composition sequence (see Figure c)) We defined the notion of
interior morphism between two tagged arcs hanging at the same marking. (The opposite of an interior morphism
was not a morphism.) A composition sequence is similar to a disc sequence, but occurs when the output of the
disc operation is such an interior morphism. (Hence, the opposite of this output is a non-morphism.)
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Definition 3.6. Let (5,0, M,n) be a graded marked orbi-surface and 71, . .. vn, Ynt1 be tagged arcs. Also, let
®i : i — Yi+1 be boundary or interior morphisms and ) : y1 — 7,41 be an interior morphism at an orbifold point
p. We call the sequence (¢1,...,¢n;%) a composition sequence if there is an orientation preserving immersion
(on the interior) f: (D, MS3") — (S, M U O) that satisfies the following two conditions.

e For each 7, f(7§*") equals ; (up to reparametrization of the domain) or the double cover of «; branched

at one point in the middle.

e Foreachi=1,...,n, f.(65*") = ¢; and f.(052"1) = p.
We say, for i = 1,...,n — 1, the pair (¢;, ;1) are folded if they are concatenable. If the disc is folded along ~;
(resp. vn), then we will say (¢, ¢1) (resp. (én,)) is folded in this case.

Remark. Note that if (v, ¢1) is folded, then ¢ has a decomposition ¢, e 6 for some nonzero interior morphism
6. Similarly, if (¢,,) is folded, then ¢ has a decomposition 0 e ¢,,.

For a composition sequence (¢1, ..., ¢n; %), ¥ is uniquely determined by (¢1, ..., ¢,). So we sometimes omit
1. We call ¢ the value of the composition sequence. The following can be proved as in Lemma [2:2] We will use
this in Section [7] repeatedly.

Lemma 3.3. The following hold.
(1) Let (¢1,...,¢n) be a disc sequence. Then, |p1| + -+ |dn| =n — 2.
(2) Let (¢1,...,0n;%) be a composition sequence. Then, |p1| + -+ + |dn| = || +n — 2.

3.4. Tagged arc systems. Let us generalize the notion of arc system for tagged arcs. First, we define an arc
system using the underlying arcs. With grading and tagging, we will define a pre-tagged arc system. Then, we
will define a tagged arc system as a pre-tagged arc system satisfying thick, good, and full conditions.

Definition 3.7. Let (S, M, O, n) be a graded marked orbi-surface. An arc system is a collection I' = {~1,..., v}
of arcs satisfying the following three conditions (see Figure E[)
e For each pair i # j, v; Ny; C O and v; % ;. If they meet at O, then they are transversal.
e Bach component of S\ |J!_; 7; is a topological disc satisfying one of the following conditions.
— It is a disc with at most one unmarked boundary and no interior marking.
— It is a disc with at most one interior marking and no unmarked boundary.
° UweF v is a forest. That is, it is a disjoint union of trees.
e Let v € T be a tagged arc with v(y) = 2. Then, there is p € O(v) and a disc component D € S\ U], v
such that p € D and D has an unmarked boundary component.

Remark. The last condition guarantees that there are no disc sequences or composition sequences containing a
tagged arc of interior number 2 in their interior.

Definition 3.8. For a collection of tagged arcs T' = {(y1,71), .- -, (Yn, Tn)}, we denote by T the set of underlying
arcs. We call T' a pre-tagged arc system if I is an arc system.

We sometimes allow two different taggings of a single underlying arc in a pre-tagged arc system. The precise
condition is formulated as a thick pair and the thick condition.

Definition 3.9. Let (o, 0) and (8,7) be two tagged arcs. We say the pair ((«,0),(8,7)) a thick pair if they
have the same underlying arc v with v(v) > 1 and satisfies one of the following condition.

e If v(y) =1, (B, 7) can be obtained by changing the tagging of (o, o) and by taking an overall shift. (i.e.

(ﬂvT) = (Oé, —U)[?’L]. )
o If v(y) = 2, (B,7) can be obtained by changing the tagging of (a, o) at one of its end point and by
taking an overall shift.

In this case, let p be the endpoint where the tagging is changed. We will say the underlying arc is thick at p.

Definition 3.10. We say a pre-tagged arc system I is thick if the following conditions hold.
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(A) Valid arc system (B) Violate the third condition (c) Violate the fourth condition

FI1GURE 6. Examples of arc and non-arc systems

e Given an underlying arc 7 € I, there are at most two tagged arcs in I' whose underlying arc is ~. If
there are two, then they form a thick pair. (Hence « is thick.)
e If 7 is thick at p and v() = 2, then + is the only arc hanging at p.

The last condition is imposed to have simpler As.-operations. In particular, we can work with a nice tagged
arc system, which will be introduced soon.

Let T' be a pre-tagged arc system satisfying thick condition. Now let us explain the good condition. This
concerns the ordering of tagged arcs hanging at a single point p € O.

Definition 3.11. For an orbifold point p € O, we take a sequence of tagged arcs hanging at p:

((7177—1)7 R (’anTn))

for any n > 2. Assume that none of them are thick and that they are ordered clockwise at p. We say the sequence
is good if p defines the interior morphism from (v;,7;) to (Yit1,7i41) foralli=1,...,n — 1.

Figure a) illustrates a good sequence of length 3. Here, the arrows indicate interior morphisms. Note that
interior morphisms in a good sequence can be concatenated. Figure m(b) illustrates a non-good sequence.

Lemma 3.4. If ((71,71),.-.,(Vn,Tn)) is good, then p defines the interior morphism from (v;, ;) to (v;,7;) for
any 1 <1< j<n.

Proof. It is enough to show the lemma for n = 3. Since p defines p2!°7! and pJ2:72, we have

m2(p) = 11(p) +ip(71,72),  T3(p) = T2(p) +ip(r2,73)-

Using Lemma we have i,(v1,72) +ip(V2, ¥3) = ip(71,73). So we get m3(p) = 71(p) +ip(y1,73), which implies
p defines p71-7L. O

Thus a subsequence of a good sequence is good as well. Later we will use this concatenation to define my
multiplication of A, structure, so let us make the following definition.

P

8,0
o and p7 are concatenable

Definition 3.12. If ((a, p), (8, 7), (v, 7)) is a good triple hanging at p € O, we say pj

and define the concatenation

a,p B,0 . op
Pgio ® Pyr =Py

One can also check that if the triple is not good so that p defines interior morphisms pJ:? and pgz‘;, then p
defines the interior morphism pg; using similar arguments (see Figure [7| right).

Now, we are ready to define the good condition of pre-tagged arc system. For an interior marking p € O, let
I', be the set of tagged arcs hanging at p. It has a cyclic ordering by clockwise orientation. We will consider

linear subordering of certain subsets of I', and require them to form good sequences.
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v 14

(4) (B)

FIGURE 7. Good triple and not-good triple

Definition 3.13. Let I" be a thick pre-tagged arc system and p € O be an interior marking. We say I" is good at
p if one of the following holds. Let I', = {(vi,,7,), ..., (i, 7i,.)} be the set of tagged arcs hanging at p, which
is ordered clockwise.

o T', has at most one thick pair. If it has a thick pair, then ((v;,,7,), (7., 7:,.)) is the thick pair.
e If I, has no thick pair, then there is 1 < k < r such that the following sequence is good:
((Pyik77—ik)7 EER (’Virv Ti'r‘)’ (’Y’il’Til)7 s (Vik—lﬂ’rik—l)) .

e If I', has a thick pair, then following two sequences are good:

(Vo> i) G i) s (Vi Tig)s - s (i 75)) -
We say I' is good if it is good at all interior marking p € O.
We finally define the full condition.
Definition 3.14. Let I' be a pre-tagged arc system satisfying thick and good conditions. Then, we say I is full

if each component of S\ | yer Y isa topological disc satisfying the following conditions.

e If it has neither an interior marking nor an unmarked boundary, then it defines a disc sequence or a
composition sequence. If it is a folded composition sequence, then each folded arc must be thick. If it is
a folded disc sequence, then at most one folded arc can be not thick.

e If it has an interior marking, then it defines a disc sequence. If it is folded, then each folded arc must
be thick.

e If it has an unmarked boundary, then it defines a disc sequence after adjoining an arc following the
unmarked boundary. If it is folded, then each folded arc must be thick.

Remark. The conditions can be summarized as follows. Let D be a disc component of S\ U'yEF v. Let us say
an interior marking p € DN O inward if the interior morphism defined by p points to D and outward otherwise.
Then, D must satisfy the following.
#(D N O) + #{unmarked boundary components of D}
+#{outward interior markings of D} + #{not thick folded arcs of D} < 1.

Putting together three conditions, we get the following definition of tagged arc system.

Definition 3.15. Let (S, M,O,n) be a graded marked orbi-surface. A tagged arc system is a pre-tagged arc
system I" which is thick, good, and full. We say I is nice if every interior morphism between tagged arcs in I'
is of degree 0. Here, boundary morphisms are allowed to have arbitrary degrees.

Lemma 3.5. Any tagged arc system is nice up to degree shift. More precisely, let T = {(v1,71),--., (Vn,Tn)}
be a tagged arc system. Then, there is a sequence of integers 7 = (1, .., n) such that the collection

F[ﬁ} = {(7177-1)[/“1]7 sy (’Yna Tn)[ﬂn]}

18 a nice tagged arc system.
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Proof. By Lemma F[ﬁ] is still a tagged arc system for any sequence of integers 7 Let us explain how to
choose an appropriate ﬁ to make I' nice.

Let ~ be an equivalence relation on I' defined as («, ) ~ (8,0) if and only if they are the same or form a
thick pair. Let TV be a set of representatives of I’/ ~. Let us define a graded directed graph G as follows. Its
vertices are tagged arcs in I whose interior number is nonzero and edges are irreducible interior morphisms
with the same grading.

We claim that each component of G is a tree. Note that the construction above gives a one-to-one corre-
spondence between components of G and I'. Let us assume G is connected. Also let us denote by vg, eq, vrv,
and er the number of vertices and edges of G' and I, respectively. By the good condition and absence of thick
arcs the number of irreducible interior morphisms defined by p is one less then the number of arcs hanging at
p. Thus we have

eq = Z (val(p) — 1) = 2er — vr.
peO
Together with
vg = the number of arcs in IV = er,
we get
vg —eq =eg — (2e¢ —vg) =vr —er = 1.
Here, the last equality comes from the fact that I' is a tree. This proves G is a tree.

Let us take any vertex of G as the root and denote the distance from the root to a vertex v by d(v). We
prove the lemma by induction on distance. Suppose that we have shifted degrees of arcs corresponding vertices
v such that d(v) < k for some k € Zsq so that edges between them are of degree 0. Let a € TV be an arc with
d(a)) = k. As G is a tree, there is a unique arc § with d(f) = k — 1 with an interior morphism ¢ between a and
B. By shifting 8 by +|¢|, we can make ¢ to be of degree 0. Since there are no edges between vertices of distance
k, we can shift degree of all arcs of distance k at the same time. By induction on distance, we can make any
interior morphisms between arcs in IV to be of degree 0.

Let « be a tagged arc in T' \ I with its thick pair 8. Suppose that v(a) = 1 and « is hanging at p. Then,
either « is a source or a sink in I',. So we can shift a so that degree of interior morphisms defined by p is 0.
Now suppose that v(«) = 2 and O(«) = {p, ¢}. Then, by thick condition either I', = {e, 8} or I'y = {«, 8}. So
this case is essentially the same with the previous case. This proves the lemma. O

4. Ao-CATEGORIES OF TAGGED ARC SYSTEMS

In this section, we define an A..-category Fr(S,M,O,n) associated with a nice tagged arc system I' of
a graded marked orbi-surface (S, M,O,n). Since any tagged arc system is nice up to degree shift, a general
construction for any tagged arc system can be obtained by adapting the signs (see [22] or [?, Section 31I]). If
there are no interior markings (orbifold points), then the resulting A..-category is the same as that of [26].
Objects of the Ay -category Fr(S, M, O, n) are tagged arcs. Morphisms are given by boundary and interior
morphisms (together with an identity morphism). For a composable sequence of morphisms 6, the desired
Ao-operation will be defined as a sum of several types of operations (for n > 2 while m; = my = 0):
m,(0) = me(4) + m¥=(9) 4+ mem2(4) + mihiek ().
con

Actual definition involves delicate signs and weights, so let us start with the concatenation operation mg

con

2O is non-trivial if and only if n = 2. Recall that

and introduce relevant notions. Concatenation operation m
we denote by using e the geometric morphism obtained by the concatenation of two interior or two boundary

morphisms. We record it as an m§°" operation as follows. Figure illustrates some of possible cases for boundary
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G| GZ : ’ ” “”
&JQZ L;Ll wﬁ»&

F1GurE 8. Composition of boundary morphisms

morphisms. Then, the compositions for the cases of Figure |8 will be defined as
m$ (61, 05) = (—=1)1%10; @ 05,
con(p/ pl\ _ (_ |01|1/ ’
m3™ (01, 05) = (—1) 291'92a
7 1
s (67, 65) = — (-1 26} e 65

The same holds regardless of intersection number and tagging of the first or third arc. Similarly, the compositions

L «~
N . . "
¢3 ¢. 2 ¢' ¢z

F1GURE 9. Composition of interior morphisms

s\

for interior morphisms in Figure [9] will be defined as
ms™ (f1, P2) = ¢1 ® o,
o 1
W64, 65) = 56 @ 0

1
con /! AN /1 Ui
m3 (97, ¢y) = 5% ® Py

Again, the same holds regardless of tagging at the interior marking defining the morphisms and interior number
and tagging of the first and third arcs. As niceness implies (—1)!1l = 1, the formulas are similar to boundary
cases.

To handle interior numbers and signs more efficiently, we introduce following notations. First, let us call a
boundary or interior morphism a basic morphism (so it is not a unit nor a non-trivial linear combination of
different types of morphisms).

Definition 4.1. For a basic morphism 6, we define
o — {1 if # is an interior morphism,
0 otherwise.
For two basic morphisms 6 : v1 — 2 and 65 : v9 — 3, we define
1 if #; and 6, are concatenable boundary morphisms and v(y2) = 1,

(01,62) == {1 if 6; and 65 are concatenable interior morphisms and v(y3) = 2,

0 otherwise.
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Here (61, 603) measures whether disc can be folded between 6; and 2. Thus, for the second and third cases
of Figure |8 and Figure @ we have (61, 603) = 1 whereas for the first case we have (61,65) = 0.

Definition 4.2. For a nice tagged arc system, we define a sign for a basic morphism as follows.

0 if # is a boundary morphism,
o(0) = o

71(p) if 6 is an interior morphism Pgra-

From the nice condition, if p3’7" is an interior morphism, we have 1 (p) = 72(p).

We define a sign for a pair of basic morphisms by the tagging of the other end point of the possible folded
arc in the middle. That is, we define

0 if (01,602) =0,
7(gq) 1if (f1,02) =1 and q is the other interior marking endpoint of the middle arc (2, 7).

0'(01,02) = {

One can check that the previous concatenation formulas can now be written in a uniform way in Definition

Definition 4.3. For a disc sequence 7 = (01,...,60,), we define its weight and sign as follows.
% n
B(0) = ([0 + (1= [0:]) (6:, 01 ),
i=1
% n
2(0) =Y (0(0:)(1 = (6:,0:11))).

i=1

For a not-folded disc se%lence ?, the weight counts the number of interior morphisms among (61,...,6,).
For a folded disc sequence 6 , the weight counts in addition the number of folded arcs attached to the boundary
(not attached to the interior marking). The sign 3 counts the number of interior morphisms between notched
arcs minus the number of folded notched arcs among them.

Definition 4.4. For a composition sequence 3 = (¢1,...,d,) with value ¥, we define its weight and sign as
follows.
N n—1 n—1
(G;0) =D o]+ D> (1 =[]) (bis div1) ),
=2 i=1

n—1
Z(X;i/}) =0V, 1) + 0 (Pn, ) — (1) + Z (o(gi)(1 = (i, div1)))-
i=1
Here, if (¢, ¢1) is folded, there exist 8 such that ¥ = ¢; e 6. In addition, we define

(,d1) = (01,0), o(¥,¢1) = 0(¢1,0).
We define (¢, 1) and o(dn, ) in a similar way. They are defined to be zero if not folded.
Now, we are ready to define the desired A..-category.
Definition 4.5. Let (S, M,0,n) be a graded marked orbi-surface and T' be a nice tagged arc system. Then,

define an A..-category Fr (S, M,0,n) as follows.

e The set of objects is I'.

e The basis for morphism space consists of boundary morphisms, interior morphisms, and the unit. More
precisely, for distinct tagged arcs a, 8, the hom space is given as follows. Here, ©(a, ) is the set of basic
morphisms from « to 5.

Hom]:r(S,M,O,’r]) (Oé, Oé) =k <®(a7 O[)> &k <60£>

k(©(w, B)) if (o, B) is not a thick pair

Hom g (s, 1,0, (v, B) ==
ol g 0 if (o, B) is a thick pair
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e The my is set to be zero.
e For two concatenable boundary or interior morphisms ¢; and 65,

1 (01792)
1) S (6, 0) = (— 1)) (2) 0, 0y,

%
o Let ¢ = (¢1,...,d,) be a disc sequence with ¢; : v; — vi+1 (See Figure (a) and (b)). Let 0 : a — 7
and ¢ : 7, — B be boundary or interior morphisms concatenable with ¢; and ¢,,, respectively. Then,

e’hv

1\ ()= (6n.00)
)

md (G ) = (—1)5) (

B(F)—(6,4
(—1)S(D+loro0.sn (1 (e

2
1><1><$>—<¢n,w>

2

mdSC (G ey, ..., by): 9,

mgisc(qsl, e On e ,d)) — (_I)Z(X)Jﬂ’((ﬁnﬂ/’) < ’1/}

%
e For a composition sequence ¢ = (¢1,...,d,) with value ¢ (see Figure c)),

®(4 1)
Z. 1
:Lomp((bl, L ¢n) — (_1)2((1571“ <2>

o Let 0; : v; — 7vit1, ¢ = 1,2,3 be such that 6, is a boundary morphism, 62 and 3 are interior morphisms,

.

and (y2,74) is a thick pair. Then, there is another boundary morphism 6 : v; — ~4. Here, we call the
pair (02, 03) and the triple (61; (62, 603)) a thick pair and thick triple, respectively. Then,

. 1 1+(02,03)
mghlck(61’02793) — (71)\61|+1+a(02)+0(92,93) <2) 01/,

o Let 0; : v; — 7vit1, ¢ = 1,2,3 be such that 03 is a boundary morphism, 6; and 6, are interior morphisms,
and (y1,73) is a thick pair. Then, there is another boundary morphism Y63 : v; — ~4. Here, we call the
pair (01, 02) and the triple ((61,62);603) a thick pair and thick triple, respectively. Then,

) 1 1+(01,02)
mgh‘Ck(Hl,Gg,Gg) — (_1)0(91)+0(91,02) <2) V93.

. . . —
e The value of m® mdis¢ m©mP  and m*hik for other inputs are all zero. Then, for a sequence § =

(01,...,0,), we define
4

).

Remark. Let (01;(02,03)) be a thick triple. Then, since 6 and 63 are interior morphisms, we have
0Y] = 161] + (02| + 105 — 1 = [61] — 1.

To force every interior morphism have degree 0, #; cannot be an interior morphism. This is the reason why we
need the second condition of thick condition.

%
Let us unravel the definition in some cases. Suppose that a disc sequence ¢ = (&1, ..., d,) is not folded. Let
k be the number of interior morphisms among them, and let ¥’ be the number of interior morphisms between
notched arcs (recall that due to the nice condition either both 7; and 7,11 are notched at p or both are not).
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Then mds¢ can be expressed as, when (6, ¢1) and (¢,,) are not folded,
. S (1\F
milsc((blw"»(bn) = (_1)k (2) €y1)

k
W0 01, 0) = (-1 (1)

1

k
W= (G000 = (1 (3)

Intuitively, (%) factor is a contribution from idempotents, and negative signs are from the notched arcs.

Suppose that a disc sequence Z = (1, ..., d,) has Iy folded arc attached to boundary markings and ls folded
arc attached to interior markings. Let &k be the number of interior morphisms among (¢1, . .., ¢,). Let k' be the
number of interior morphisms between notched arcs and k" be the number of folding pairs among these notched
arcs. Then, m35¢ can be expressed as

n

ai K 1 k+ll_<¢n7¢1>
(2) mnlsc(¢17~-~a¢n) = (_1) B (2> Ey, -
_>
Suppose that a composition sequence ¢ = (¢1,...,¢,) with value ¢ is not folded. Let j be the number
of interior morphisms among (¢, ..., ¢n—1) (namely, we ignore the first and last morphisms ¢; and ¢,), and
let j/ be the number of interior morphisms between notched arcs among (¢s, ..., d,—1). Then, m®™P can be
expressed as '
(1Y
W 00) = (-7 (3) v
%
Suppose that a composition sequence ¢ = (é1,...,¢,) with value 1 has a folding but not along v, nor ~,.

Then, define j and j’ as above. Let j” be the number of folding pairs among notched arcs at interior markings.
Let Iy (resp. l2) be the number of folded arcs attached to the boundary markings (resp. interior markings).

-/ =11 ]. j+ll
W1 0) = (1) o) (1)

Although the appearance of m{"* might look surprising, it has a geometric explanation. An arc of interior

number 1 has a lift in the double covering surface, which is preserved under Z/2Z-action. After suitable per-
turbations of arcs involved in the operation mi"k one can see a disc sequence among them. However, we will
proceed with the above algebraic definition.

These data indeed form an A..-category.

Theorem 4.1. Let (S, M,O,n) be a graded marked orbi-surface and T be a nice tagged arc system in it. Then,
the data Fr (S, M,0,n) defined in Definition[4.5) is an Ao -category.

Its proof will be given in Section |7} and we only illustrate the idea here (without sign).

Consider a disc D that defines a disc sequence as in Figure a) or (b). Suppose that there is a tagged arc «
on D (in the tagged arc system) that divides D into two pieces D1 and Dy. We will consider how this can be
realized as a composition of two A..-operations.

We can divide this into three cases, depending the number of ends of « lying on folded interior markings of
D. The first case (i) is when none of the ends of « lie on folded interior markings of D, and we will see that
this corresponds to the composition of two disc sequences. The second case (ii) is when exactly one end lies on
folded interior markings D, and we will see that this corresponds to the composition of a disc sequence and a
composition sequence. The last case is when two ends lie on folded interior markings, but this is excluded by
the assumption of our tagged arc system that at least one of Dy and Dy must have an unmarked boundary
component (but this cannot happen because D is a disc sequence).

e (Disc splits into two discs) This is the case (i) as illustrated in Figure [[0fa). In this case, the
arguments are similar to that of [26], except that we allow folded discs as in Figure b). Suppose the
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inputs for the A..-formula are

(¢17"' aqﬁiawla"' ’¢n°¢i+1"" 7¢m)
When ¢ > 0, the splitting as in Figure a) produces the following two canceling terms.

(3) mk((blv"' ’d)i’mn(q/)la”' 71/)n.¢i+1)7"’ 7¢m),mm+n—l(¢1;"' 7m2(¢i7w1)7"’ 7wn.¢i+17"' a¢m)

In the case of i = 0, two canceling terms are given by

(4) mm(mn(d}l; 7wn.¢1)7"' 7¢m)amn(¢17"' 7mm(7pn.¢17"' 7¢m))

We will check later that they have the same weights (the same factor of %) and opposite signs.

Ficure 10. Two ways of disc sequence splitting

e (Disc splits into composition and disc sequences) Let us discuss the case (ii) as illustrated in
Figure b). This gives rise to the following three canceling terms Suppose the inputs for the A.-
formula are

(¢17"' ,¢i,¢17"‘ 7wnv¢i+1,"' a¢m)

Then, we have the following three possible quadratic expressions.

(5) m?rii:l((blv e 7¢i7mzomp(¢17 e 711[}77,)7 ¢i+17 T 7¢m)
(6) m;irisfl(¢17 e 7m(2:0n(¢i71/)1)a e 7’(/)7“ ¢i+1a T 7¢m)
(7) mgi:fl((bl, e a¢ia’l/}13 T 7mgon(wn7 ¢i+1)7 e a¢m)

Figure [10|(b) represents the expression (]) and Figure [11|a) and (b) represent the folded disc sequences
for the expressions @ and , respectively.

The interior marking (at the output of m&°™P) contributes weight % to mﬂfjfl operation, but weight 1
to mE®™P in the first formula. So the total weight is 3. In the second and third formula, both m&i5¢, and
ms°™ have weight %, so the total weight is i. Thus they are canceled in the form % — % — %. Therefore,
it is crucial for the A..-identities that we have these weights. Here, we assume that 1 < i < m. The

other cases have to be handled differently.
Let us also illustrate other properties of our A..-identities.

e (Composition sequence splits) The basic idea is similar to the case of disc sequence, but there
are more variations depending on whether a splitting involves the first or last input of a composition
sequence or not. A composition sequence can be split in three ways : (iii) one disc sequence and one
composition sequence, (iv) two composition sequences, and (v) one disc sequence and a disc which is
neither a disc sequence nor a composition sequence.
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FIGURE 11. Folded discs for As-identity of case (ii)

FiGure 12. Splitting of composition sequences

Lemma 4.2. A composition sequence splits into the following cases as in Figure [I4 A disc D of a
composition sequence with an output & decomposes in one of the following way. Let a be the dissecting
arc.

(1) Figure (a), when a does not meet neither folded interior markings nor the output &. The disc D
decomposes as (iii).

(2) Figure [13(b), when o does not meet folded interior markings but meet the output &. The disc D
decomposes as (iii). This divides into two subcases: (b)-1 if (D) is an interior morphism (hence (2)
is a non-morphism), and the case (b)-2 on the other case.

(8) Figure (c), when « meets a folded interior marking but does not meet the output . This has
two subcases: (c)-1 If @) is an interior morphism, the disc D decomposes as (i), (c)-2 if @) is an
interior morphism, then the disc D decomposes as (v).

(4) Figure (d), when a meets both a folded interior marking and the output . This divides into four
subcases: the disc D decomposes as (v), (v), (), and (v), respectively.

(d)—1 @, 3 are interior morphisms (hence 2), @) are non-morphisms),
(d)—2 @), @ are interior morphisms (hence 1), @) are non-morphisms),
(d)—3 @, @ are interior morphisms (hence 2), 3) are non-morphisms),
(d)—4 @), D are interior morphisms (hence D), 3) are non-morphisms).

In Section |7} we will spell out the corresponding disc/composition sequences and compute related

weights and signs.
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e (Thick pairs) Suppose that we are given a disc with two markings and one interior marking p. Let
at,a™, 3, and v be tagged arcs on the disc as in Figure Here, (o™, ™) is a thick pair and assume
p defines ngr and pg _. Then, we have one disc sequence (p’g _,07,¢) and one composition sequence

0F, (/);pg+). In particular, mo (pg+,m3 (p’g, ,07,9)) = i%pgﬁ. Then, there has to be a term cancel this.

thick

This is why we need m operation. Indeed, we have

ot _ 1 1 .+
m2(m3(pﬁ 7p§—,9 )7(725) = i§m2(0+a¢) = iipﬁ .

FIGURE 13. Example of A-identity including mthick

e (Negative sign for notched interior morphisms) It is not immediately clear why these extra signs
are necessary. One important usage is for the generation of the Fukaya category. This will be discussed
in complete generality in the next section, so let us only explain the idea by a single example. Consider
a disc with one interior marking, and a tagged arc system as in Figure Here, we have the thick pair
(75,75 ), and morphisms 6i € Hom' (v1,75), 05 € Hom' (v, v3).

FIGURE 14. Example of a twisted complex

Lemma 4.3. We have a twisted complex, which is quasi-isomorphic to the arc 4,

(07,67) _ (03,65)
no @y S s

Proof. To show that it defines a twisted complex, it is enough to check that the following vanishes:
mg™ (07, 03) +ms* (6, 60)

By definition, it equals %93 — %93 = 0 and we obtain the claim. Isomorphism to -4 will be proved at the

next section in greater generality. (I
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5. MORITA EQUIVALENCE

We have defined an A..-category of tagged arc system on a graded marked orbi-surface (S, M, O, n). We will
investigate an equivalence relation among different tagged arc systems in this section. We will show that we can
transform any tagged arc system in its equivalence class into a special type, called an involutive arc system.

Definition 5.1. We say two tagged arc systems I'y and I's for a graded marked orbi-surface (S, M,O,n) are
Morita equivalent if their associated A.o-categories Jr, (S, M,O,n) and Fr, (S, M,O,n) are Morita equivalent.
That is, their idempotent completions of triangulated enhancements

H(TW(J:Fl(Sﬂ Maoaﬂ)))» H(TW(FF2(S7 M70777)))
are quasi-equivalent. In this case, we denote by I'y ~ I's.
We consider the case of an inclusion.

Proposition 5.1. Let (S, M,0,n) be a graded marked orbi-surface and T’ be a tagged arc system. Suppose that
for an arc vy € T, TV =T\ {7} is also a tagged arc system. Then, the natural inclusion functor

fF’(S7M7Oa77) — FF(Svaovn)

is a Morita equivalence. In particular, I' and I are Morita equivalent.

Given a disc sequence (61, . ..,0,) for surfaces in Section [2| v, is isomorphic to the twisted complex

91 91‘—2
YL T Y1

as shown in |26l Section 3.3]. We will show a tagged arc version of this lemma, and the above proposition follows
immediately.

We introduce some notations. Let I be a nice tagged arc system on (S, M,0,n), and (64,...,0,) be a disc
sequence with 6; : v; — 7;41 for each 7 such that each folded arc is thick. If 7; is not folded, we also write v; as

A9, If 4; is folded, then we write ; as fyi'" and denote by 7, its thick pair. Hence, we introduce the following
notation to make folded arc thick.

%»0 if ~y; is not folded,
A(y;) = n B ) ]
v &y [di] if vy is folded.
The shift d; € Z will be defined below. We introduce the index set I; as I; = {0} if ~; is not folded, and
I; = {+,—} if it is folded. We also make the basic morphism 6; : ; — 7,41 into a thick version. Namely, there

are basic morphisms (0;)7! : 77" — vy, for o1 € I;;02 € I;11. These form the following [I; 1] x |[;| matrix
A(0;).

_(91)8] if both 7; and ;41 are not folded,
(6:) e .

-~ if ~; is not folded and ~;4; is folded,
[(91‘)3 (Qi)q if ~y; is folded and ~;11 is not folded,
[0 (0:)7

( )I ( )J_r] if both v; and ;41 are folded.
L(0:)T (6:)=

In the definition, we shift v, so that the grading of 7~ and ~; [d;] are the same. This makes A(6;) homogeneous.
Lemma 5.2. The complex T given by
INC) INC)
A) = AG)lsa] 2 AG)lsa] = -+ > A1) [sr-1]
is a twisted complex and quasi-isomorphic to A(vy,)[—|0,]]. Here s; = |A(01)] + -+ -+ |A(0;—1)] — i + 1.

Assuming this lemma, let us give a proof of Proposition [5.1
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Proof. We claim that there is a disc sequence containing ~ in I' such that any folded arc other than  are all
thick. Suppose that 7 is a boundary of only one disc component D. Then, ~ is folded. Since T'\ {7} is still a
tagged arc system, D has to be a disc sequence such that every folded arc other than ~y is thick. Now suppose
that « is a boundary of two disc components D; and Dy. Then, D1 U Dy has at most one unmarked boundary,
folded arc which is not thick, or outward interior marking. Therefore, either D1 or D5 defines a disc sequence
with the desired property.

Then, by Lemma the object A(7y) is quasi-isomorphic to a twisted complex consisting of tagged arcs of
I. Thus 7 is in the category Il Tw(Fr (S, M, O,n)), which proves the inclusion functor from Fr (S, M, O,n) to
Fr(S,M,0,n) is a Morita equivalence. |

Now let us begin the proof of Lemma

Proof. Let us first show that T is a twisted complex. Since (01,...,0,_2) forms neither a disc sequence nor
a composition sequence, the only nonzero terms in the Maurer-Cartan equation are ma(A(6;), A(6;41)), for
i=1,...,7 — 2. However, this also becomes 0. If ;7 is not folded, then, for any o; € I; and ;45 € I;42,

mo(05°,605,,,) =0

0 2Yoito
as they are not concatenable. Now suppose that 7,1 is folded so that A(~;11) = ’sz:-l ©%;;11div1]. Let 71 be the
tagging of fyil at the interior marking opposite to 6;. Then, by the full condition, we have 7 =7_ +d; 1 + 1.
So, we have
o . _ 1 e de
ma((0)F, (1)) + ma((0:)7, (0iv1)5,,,) = (=)™ 0i 00y + 2( 1) 14410, 00,14 = 0.

This shows the complex T is a twisted complex.

Now let us show the quasi-isomorphicity. It is enough to show that following two morphisms (from the last,
and to the first term of T')

9) A(Or—1) : T = Aly) 10,1, AWOr) - Aly)[=16r]] = T

are quasi-isomorphisms and they are quasi-inverse to each other (up to scaling).

Denote by X, ® and v the sign, the weight of the disc sequence (61,...,0,), and the number of folded arcs
among (v1,...,7r), respectively. The differentials in the twisted complex T is denoted by 6. Namely, one can
think of § as a (r — 1) x (r — 1) block matrix whose (7,7 + 1)st block is A(6;) of size |I; 11| x |I;| and 0 matrices
on other blocks. In this setting, two morphisms in @ can be written as the following block matrices. We write
AB(6,) the 1 x (r — 1) block matrix whose first block is A(f,.) and AP(6,_1) the (r —1) x 1 block matrix whose
last block is A(6,—1).

First, let us compute mj’ S0(AB(6,), AB(6,_1)). We have

)
my®*(AB(6,), AP(6,-1)) =m, (AP (9,),6,...,5,A5(0,_1))
=m,(A(6,), A(6 ) A(Ba), ..., A(r-1))
Z mr((‘g )0'1?(91>o'2""7(07' 1)(” 1)

(01500007 —1,07)EIL XX I

When +, is folded, this equals
3 [mr((e DE (003 (0,)7 ) 0
XIr_1

(01500 y0pr1)ETL X

e (3) rg’* 0] 7 (3) s
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Now let us compute the converse composition. Let AZ(6;),1 <4 <r—2 be the (r — 1) x (r — 1) block matrix
with the only non-zero block is the (4, 4+ 1)st block, which is the matrix A(6;) in (8).

my % (AP (0,-1), A (6,))

r—1
=my(AP(0,_1), AP (0,) + Y me( 6.0 AP(0,1),AP(0,), 5,....5 )
=1

(r —i—1) times (i — 1) times

- mQ(AB(OT’—l)a AB(HT)) + Timr(AB(el)a R AB(er—l)a AB(ar)v AB(al)v LR AB(Gi—l))

B 5 5 7"—1_ . 1 d—v
=mo(A%(0r-1), AT(0)) + D (1) (3] eacr

Here, mo(AZ(60,_1),AB(6,)) = 0 by the same reason with the first paragraph. Therefore, we know AZ(6,_;)
and (—1)* (%)Vﬁq) AB(6,) are quasi-inverse to each other. O

Now let us define a notion of involutivity of a tagged arc system.

Definition 5.2. Let (S, M, O,n) be a graded marked orbi-surface and T" be a tagged arc system. Then, we say
I is involutive if the underlying arc system I satisfies the following two conditions.

e For each interior marking p € O, there is at most one arc in [" hanging at p.
e Each arc o € " has v(a) <1 and if v(a) = 1, then it is thick.

In particular, an involutive tagged arc system has no interior morphisms. Thus it has no composition se-
quences. Also, the weight of a disc sequence (61,...,6,) is the number of folded pairs (6;,60;+1) in it. Using
Proposition [5.1} we get the following result.

Lemma 5.3. Let (S, M,0,n) be a graded marked orbi-surface and T' be a tagged arc system. Then, there is an
involutive tagged arc system I which is Morita equivalent to T'.

Proof. We prove the lemma by induction on #{y € I : v(y) = 2} and #I', for each p € O. In order to prove,
we fix some temporal notions. We mean by a disc component the closure of a component of S\ Uﬂ{EF v. We
say a disc component open if it has an unmarked boundary component and closed otherwise. We call tagged
arcs, simply, arcs. We say an arc v with v(v) = 2 is flat when there is only one disc component containing v as
boundary but ~y is not folded.

Step 0. Suppose that I', has less than two arcs. If I', is an empty set, then add a thick pair (o, ) from p
to a marked boundary component. If I';, has only one arc o, then add a thick pair a— of at. By Proposition
(.1} we have I' ~ T'U {a4, a—}. So we may assume I' has no such an interior marking p.

Step 1. Let v be an arc with v(y) = 2, which is a boundary of a closed disc component D. Our goal is to
remove 7 from I'. Since D is closed, we can add arcs in D without changing Morita equivalent class of I" as long
as it is a tagged arc system. If v is flat, add an arc from an endpoint of v to a marked boundary component
of D so that v is not flat anymore. (See Figure In the figure, orange lines, green lines, and x stand for
tagged arcs, boundary markings, and interior markings. Also, e stand for either boundary markings or interior
markings.) So we may assume boundaries of disc components are not flat.

Step 2. The setting is the same with Step 1. If D defines a disc sequence, then we can remove ~y by using
Proposition Now suppose that D has an outward interior marking p. Then, I'), has no thick pair (by the
thick condition). Let o and g be the last and first arcs hanging at p. If one of them is of interior number 1, then
we add its thick pair to I'. Otherwise, we add a new thick pair from p to a marked boundary component of D.
In both cases, we get a new tagged arc system I such that I' ~ T’ and 7 is a boundary of a disc component
defining a disc sequence. So we can remove -y from . The new system I" has one less arc of interior number 2
than T' (see Figure . In this way, we can remove arcs of interior number 2 which is a boundary of a closed
disc component. So we may assume I' has no such arcs. That is, any disc component whose boundary contains
an arc of interior number two is open.
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FIGURE 16. Step 2

Step 3. Let D be an open disc component and 61, ...,60, the basic morphisms associated with D with
0; : v; = 7vit1. Let 7, be the first arc of interior number 2. Then, we add a new arc from 6,7 to the marked
boundary component where ~; lies (see Figure . Then, we can remove -, as in Step 2. In this way, we can
remove all arcs of interior number 2.

FIGURE 17. Step 3

Step 4. Suppose that an interior marking p defines a irreducible interior morphism pg from « to . Then,
there is a disc component D such that « and § are its boundary components. If D defines a disc sequence, we
can remove . If not, D has an unmarked boundary component. After adding an arc isotopic to the unmarked
boundary component, we can remove 3. Then, we get a new tagged arc system which has one less arc of interior
number 1 than I'. In this way, we can remove all interior morphisms.
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Step 5. For p € O such that I', has only one arc o, we add the thick pair of . Therefore, we have constructed
an involutive arc system IV from I without changing its Morita equivalent class. O

From Lemma [5.3| together with theory of involutive surfaces in Section[6} we can prove the Morita equivalence
class of A,.-categories associated with tagged arc systems are independent of the choice of the system.

Corollary. Let (S, M,0,n) be a graded marked orbi-surface. Then Morita equivalent class of the A -category
Fr(S,M,0,n) does not depend on the choice of tagged arc system I'.

Proof. Let T'; and T’y be tagged arc systems of (S, M,O,n). Then, by Lemma there are involutive arc
systems T and T such that I'; ~ T} for i = 1,2. Let (S, M, n) be the 2-fold branched covering of (S, M, O, n)
with the involution ¢. Then, by Lemma the liftings I and T, of I} and T} are involutive graded arc systems
of (5,1, M,n). Also, by Theorem we have, for i = 1,2,

]:f‘ (S’ﬂLaM7n) %J]:F;(SaMaO7n)

However, by Theorem we know .7-"~,1(§, v, M,n) and .7-"~,2(§, v, M,n) are Morita equivalent to each other.
Therefore, Fr; (S, M,0,n) and Fr, (S, M,0,n) are Morita equivalent, which implies Morita equivalency of
Jr, (S, M,0,n) and Fr, (S, M,O,n). O

Now we define the topological Fukaya category of orbi-surfaces.

Definition 5.3. The topological Fukaya category of a graded marked orbi-surface (S, M, O, n) is the A, -category
F(S,M,0,n) = I(Tw(Fr(S, M,0,n)))

for a tagged arc system I.

6. TOPOLOGICAL FUKAYA CATEGORIES OF INVOLUTIVE SURFACES

Let (§ .M, 1) be a graded boundary-marked surface and T" be a graded arc system on it. Let ¢ be a non-trivial
involution (i.e. 12 = idg) on S. We assume that ¢ preserves an orientation of S, a boundary marking M and
the line field 5. The topological Fukaya category .F]"(g M, 7)) in Section [2| admits a Z/2Z-action from ¢, and by
taking its Z/2Z-invariant part, we can define the A -category ]-"F(S, L, M, n).

In this section, we observe that non-trivial idempotents arise in this setting. We investigate their proper-
ties and find an explicit correspondence between this A..-category ]—'F(S', L,M ,n) and the Fukaya category
(constructed in Section [3)) of involutive tagged arc system (defined in Definition [5.2)).

6.1. Involutive graded marked surfaces.

Definition 6.1. We call the pair (S, ) an involutive surface. Its orbit space S/t is a Z/2Z-orbi-surface and we
denote it by S (with a projection 7 : S — S). We say a boundary marking M on S is involutive if 1o M and M
are the same map up to permutation. The boundary marking M descends to a boundary marking M of S. We
say a line field 5 on S is involutive if 1* () = 1. We denote by O and O the set of Z/2Z-fixed points in S and
its image 7T(O)7 respectively. We call the tuple (5 ., M, 1) an involutive graded boundary-marked surface.

Note that the set O is finite, and we have the induced graded marked orbi-surface (S, O, M, 7).
Let « be a graded curve on an involutive graded boundary-marked surface (S .1, M, 7). The involution ¢ sends
« to the graded curve t,a. For another graded curve 3, intersecting transversely with « at p, we have

Z‘L(p) (L*Ot, L*B) = ip(a7 B)

Now let us define the involutive version of graded arc system.

Definition 6.2. Let (5‘ M ,n) be an involutive graded marked surface. We say a graded arc system I' =
{Y1,...,7n} on (S, M,n) is involutive if

I=0uT = {1, tsVn}



28 CHO AND KIM

We say a graded arc v; is special if 1, (v;) = 75, and ordinary otherwise. We denote by I'o,q and I'sp the set of
ordinary and special graded arcs, respectively.

Lemma 6.1. For an involutive graded arc system T' = {y1,..., v}, we have

#FSp < #O

Proof. As the involution ¢ acts as orientation-reversing reparametrization on the domain of special arcs, each
special arc passes through precisely one fixed point. This defines a function ¢ : I'g,, — O. Since two arcs do not
intersect, ¢ is injective. This shows #I'g, < #0. ([l

6.2. Topological Fukaya categories of involutive graded marked surfaces. Let (S,L,M ,n) and I" be
an involutive graded boundary-marked surface and an involutive graded arc system. Since ¢ preserves 7, the
topological Fukaya category ]:[‘(g .M, 1) admits a strict Z/2Z-action induced by ¢: a boundary morphism from
Y1 to v are mapped to the boundary morphism from ¢,y to t4y2 with the same sign. For a special v, two
graded arcs v and ¢, (7) have the same underlying curve (with the same grading) and there is a unique identity
morphism between them. The Z/2Z-action sends the identity to the identity in this case. Note that a morphism
between a special arc v and an ordinary arc § is not invariant by itself since the boundary morphism between
~ and f goes to the boundary morphism between ¢,y(= ) and ¢.(8)(# B). Here, a strict action means that

Lamp (21, ) = Mg (61, ooy LTk

Given a strict Z/2Z-action on a unital A, -category A, there is an induced strict Z/2Z-action on Tw A as well.
For each arc a of S, the direct sum object o @ ¢, () is invariant under Z/2Z-action. In fact, Z/2Z-invariant

part of twisted complexes (Tw A)%/?% (

on objects and morphisms) forms a unital A, -category as well.

Later, we will describe morphisms in this category explicitly. It is necessary for us to choose a representative
in each Z/2Z-orbit of arcs of S because some morphisms from/to idempotents might have different sign if we
work with the other representative. There is a convenient way to choose representatives.

First, we choose and fix a representing arc (in S) among each t-orbit of arcs. Now, we define the notion
of a preferred morphism. The involution ¢, acts on the set of markings M freely. Thus for each connected
component C of M, t(C) is disjoint from C. We choose and fix a representing connected component in M
in each c-orbit. Recall that boundary morphisms in S are defined when along the boundary marking M. A
preferred boundary morphisms are the ones that are defined along the chosen representing boundary markings.
Note that the concatenation of preferred boundary morphisms are preferred ones. From now on, if we write an
orbit as {a, t.a}, a is the chosen representative. Between {0,:.0}, 0 is the preferred morphism.

Let us define a strict functor A : A — (Tw A)%/?% as follows.

o For an object X € A, A(X) = X & . (X).
e For a morphism z : X7 — X5, A(z) == v 0 )
0 ()

This is indeed a functor. First of all, A(x) is Z/2Z-invariant. Also, for any sequence of n composable morphisms

T1y..-3Tn,

A(mn(m,...,xn)) = [mn(xl’d"’wn) L*mn(xlo... xn)l

- 0 My (e (1), -+ e (T0))

—m,, ([:%1 L*((il)l s [won L*((;nJ) =mu (A1), ..., A(zn)).

One of the special feature in our setup is that when ~ is a special arc, A(y) has two nontrivial idempotents.

_ [mn(xl,...,xn) 0 1



TOPOLOGICAL FUKAYA CATEGORY OF TAGGED ARCS 29

Lemma 6.2. Let v be a special arc. Then, the following two morphisms are idempotents of the endomorphism

algebra of A(7).
1le, e 1|e —e
S - _ 2| & 7|
Py =3 [ey 67] » P T l—eAY 67‘|

We omit the proof as it is a direct computation. From these, we get the following objects in the idempotent
completion A..-category II(Tw(Fr (S, M,n)))", for each special arc 7,
AWy = (v,pF), AM)- = (1,p;).

This is our geometric interpretation of tagging. We remark that the idempotents are not involved in higher
compositions as they consist of units.

Now let us define an A.,-category associated with an involutive graded arc system.

Definition 6.3. Let (S‘ LM, 7) be an involutive graded boundary-marked surface and I be an involutive graded
arc system. Then we define an A.-category Fp(S, ¢, M,n) as the full sub-A.-category of I(Tw(Fr (S, M,n))")
with the set of objects

{A@) : {a, .} C Tom} U{A(B)+, A(B)- : B € Ty}
Let us compute its morphism spaces explicitly. First, the following is easy to check.

Lemma 6.3. For any special arc vy, we have

~—

Hom]:r(g,L,I\;I,n) (A(’Y
Homz 5,y (Aly

v
>
—~
=2
<H

1

o

Let a7 and as be ordinary arcs. Then, boundary morphisms
01:a1 = ag, Oy:a; = i(ag), O3:(ar) = ag, 0O4:u(ar) = tl(ag),
give the following morphisms from a; @ t.(a) to as @ t.(ae), under the functor A,

0, 0
0 Uy (91)

0 Ly (92)
0 0

A(6)) = L*(Oeg) 9031 A02)0 = lb*((;%) e(j

Now suppose « is an ordinary arc, with a unique boundary morphism 6 : @ — v to a special arc 7. Then,

A(61)) = [

5 A(92)8 = [

Hom, 7,531,y (A(0), () = { lz n Egﬂ labede k:} _

The t-invariant part is given by a = d,b = ¢. By multiplying the idempotents from the right, we have

Hom g, 5.1, (D), A7) ) = ;{ P (b“”*(")] labe k}

(bt a)d (axd)(H)
We choose a generator of the morphism space for each + as

1
0.2
A(f)} = 5

0 +u.(0)
0 1.(0)

We remark that if we did not fix a preferred morphism (and a representative), then the above choice has an
ambiguity of overall sign.

For two special arcs 81 and B with a preferred morphism 6 : 51 — (3, the morphism ¢, () is also a morphism
from (1 to B2. Moreover, these span the morphism space Hom(S3, 32). Thus, the invariant morphism space is
given by

Hom (A (1), A(B2))"/** = ]k< df + cu.(6) b0+ av.(0)

af + b (0) b+ dL*(G)‘| >
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Then, by multiplying the idempotents, we get the following.

11 es Eeg | [af+be(0) cb+du(0)| 1 t'eg,
2 |Lep, e | |dO+c(0) b0+ aw(0)]| 2 [£ 652 €,
1 [ (a+'d=+ (c£'b))0 b:l:’c:l:(d:l:’ a))es(0) (£(at' d) + (¢ £’

D)0 + (£(b+ ¢) + (d £/ a))u@]
12 () (b4 ¢+ (d+'a))0 + (a ' d+ (c£'b))i.(6)
)0

)
+(

4|(£bE )+ (d+ a)f+ (£(a L' d) + (c ' D)
(

)
1 (et d+(ct' b))+ ((ax d) £ (ct b (0) *((at'd) £ (cL'Db)
4| (et d) £ (£ b))+ (e’ d) & (cH' b)en(0) ++ ((at'd)+ (c+

+' ((a'd) £ (c£'b))i.(0)
b)0 4+ (a ' d £ (c ' b))e.(0)

O++'0,(0) 0+ 0. (0)

1
—(at'd+(c£'b
“ CEN N Lpsin() +4/0+0(0)

1

Take these together, let us make the following definitions. Here, the sign rule will explained in Section

Definition 6.4. Let oy, @y be an ordinary arc and (1, B2 be special arcs of T'.

e Let ¢: a3 — ag and ¥ : a3 — t.(a2) be preferred morphisms. Then, we define

¢ O 0 0 Lx (1/))
A(9)) = , A = .

e Let ¢ : a1 — B2 and ¥ : 1 — ap be preferred morphisms. Then, we define

82 @2 e L[ w2 2
) (w)o T

£0/2  1(0)/2 0 (¥)/2 1(9)/2
e Let 0 : By — (2 be a preferred morphism. Then, we define

(O£ +1,(0)/4 (£0£ 1,(0))/4
(O£ 0,(0)/4 (£ 0+0,(0)/4]

A(¢)L =

A(O)E, =

From the definition, we get the following relation between hom spaces of the original A,-category and the
invariant A..-category.

Lemma 6.4. Let a1, as be ordinary arcs and B, B2 be special arcs of I'. Then we have the following.

HOHI}-F(S L, M ) (A( ) (a2)i> = HOl’n]:F (0617()(2)/ (Z/QZ)’
Homyz (g, i (Ale1), A(B2)+) = Homyz_ 5 v )(a, Ba),
) (
) n(

Homz (5, 7. (A(B1)+, Alaz) Homfrg )51»0!)

Hom}‘r(S}LJ\Z,n)(A(ﬂl)ivA(ﬂ2):|:/ = Homy g, B, Ba) /.
Proof. Morphisms defined in Definition are basis of morphism spaces of ]-'F(S .1, M, n). |

Recall that the idempotent completion may be taken before or after taking the invariant part.
Corollary. [38, Lemma 2.19] Ao -categories TI(Tw(Fr(S, 1, M,1))) and II(Tw(Fr(S, M,n))") are quasi-equivalent.

Now let us show that the Morita equivalence class of Fr (5 o, M ,n) does not depend of the choice of T'. Let
I’ be another involutive graded arc system. From Theorem [2.3| there is an A.-functor from Fr(S,M,n) to
Tw(Fr/ (S, M,n)). Following the algebraic construction in [T 5, Definition 4.2] and [32, Theorem 2.12], we can
find an explicit twisted complex associated with each arc in ' as follows.

Let F’f be a formal graded arc system contained in I, which always exists. Then for a graded arc « in T,
there is a unique sequence of graded arcs (v1,...,7:) in F} with the following properties.

e For each i = 1,...,(r — 1), there is either a boundary morphism ;" from 7; to v;11 or 6; from ;41 to
v; of degree §;. Let us denote ¢; the sign of the upper index of 9;:.
e The concatenated path v; e 91i o0 9;{1 e ~,. is isotopic to 7.
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Then let us define dy, := Zf:z €-1(16;"| —1) for k =1,...,r. In particular, d; is zero. Then, we define a twisted
complex T, == @)_, vi[d;] with the twisting map @]_6". Then, T, is the image of v up to degree shift.
From this construction, we get the following lemma.

Lemma 6.5. Let 'y and 'y be two involutive graded arc systems of (5’, M,n). Then the canonical functor
]'—1“1(57]\;[777) - TWfF2(gaM777)
is 7./ 27.-equivariant.

Proof. For a graded arc v € I'y, we have constructed the twisted complex T’,. Note that this may depend
on the choice of a formal arc system (I'z);. However, we can take t.((I'2)s) to define T, (). Then, we get
t«(Ty) =T, (v), which gives Z/2Z-equivariance of the canonical functor

]:I‘I(S,M,TD — TW]:FQ(S,Mﬂ]).

Then, we deduce the independence of the Morita class of Fr(S, ¢, M,n) of T.

Theorem 6.6. Let 'y and I'y be involutive graded arc systems of an involutive graded boundary-marked surface
(5’, L M,n). Then, there is an equivalence of A -categories

H(TW(FF1(§7L7M377))) = H(TW(]:F2(§7L3M7U)))'

Proof. Since the equivalence between Tw(Fr, (S, M,n)) and Tw(Fr, (S, M,n)) is Z/2Z-equivariant, their fixed
category are equivalent as well. Thus, we have

H(TW(IIH (5’, L M’ 77))) = H(TW(-FF1 (Sv Mv W))L) = H(TW(}-F2 (57 M, U))L) = H(Tw(frz (‘gv L, M, 77)))

As in Definition [2:4] we define the topological Fukaya category of an involutive surface as follows.

Definition 6.5. The topological Fukaya category of an involutive graded boundary-marked surface (S ., M, n)
is the idempotent completion of the triangulated enhancement of the A..-category for an involutive graded arc
system I':

F(S,M,n) =(Tw(Fr (S, ., M,n)).

6.3. Fukaya categories of involutive arc systems and tagged arcs. Now, we show that the construction
of Fukaya category of involutive arc system in this section is equivalent to that of tagged arc system defined in
Definition [I.5] The correspondence simplifies a lot because the corresponding tagged arc system is also involutive.
In particular, there are no interior morphisms between tagged arcs, because the tagged arcs of the involutive
system do not meet at interior markings. (See the next section for the discussion on interior morphisms.)

Let (S, ¢, M,7) be an involutive graded boundary-marked surface, and let (S, M, O, n) be the graded marked
surface obtained by the quotient.

Definition 6.6. For a graded arc system I' of S, we define a tagged arc system 7,I" of S as follows: 7, I' consists
of the following associated arcs for all representing (among each Z/2Z-orbit) ordinary and special arcs:
(1) For an ordinary arc a, 7o « is a graded arc of (S, M, O,n) and we denote it by 7. ().
(2) For a special arc 8 (assume that 6(%) € 0), mo ,6’\[0)%] is a graded arc of (S, M,0,n) and for each
tagging +, we have two tagged arcs 7, ()4 and m.(8)_.

Lemma 6.7. The collection 7, (I") is an involutive nice tagged arc system of (S, M,O,n). Moreover, any invo-
lutive nice tagged arc system of (S, M,O,n) is obtained in this way.

Proof. Let us first show the collection of underlying arcs of 7. (T') is an arc system. Since any two distinct arcs
a and B in I' are disjoint and non-isotopic, so are m,(«) and m.(8). So it satisfies the first and third conditions
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in Definition Also, the second condition follows the fact that the restriction of the projection map

T8\ U a— S\ U B
ael Bem.(B)
is a covering map. The fourth condition vacuously holds. Thus, 7. (T') is a pre-tagged arc system.

The thick condition and good condition follow the definition. Also, since m,I" has no interior morphisms and
any arcs of interior number 1 are thick, it satisfies the full condition as well. Moreover, it is nice as it has no
interior morphism. This proves the first part of the lemma.

Now suppose that I' be an involutive tagged arc system. Let us define the lift of I" as follows. As we have
explained in Section any a € I' with v(a) = 0 has two lifts 7*(a) and ¢.(7*(«)), and any § € T with
v(8) = 1 has branched double covering 7*(3) which is involutive. Then, define

(1) = {7 (@), 1a(7"(a)) s @ € T, () = 0} U {x*(8) s B € T,vx §) = 1}.
One can check this is an involutive graded arc system of (S, ¢, M, 7). Then, we have 7, (7*(I')) = T.. O
Theorem 6.8. The following two A -categories are isomorphic to each other
Fo(S,0, M, m) = Fr0y(S, M, 0,m).
Proof. Let us define a strict functor W : Fp(S, ¢, M,n) — Fr. (S, M,0,n) as follows.
e For a € T'orq, ¥ sends the object A(a) to m.(a).

o For B € I'sp, ¥ sends the objects A(5)+ to tagged arcs m.(5)+.
e For a boundary morphism 6 from « to 3 in S, we define

i (A0)y) = ma(0) : Te(@)a = m(B),

where a,b € {0,+, —}.
e Higher functor maps ¥y are defined to be zero (for k > 2).
By the construction, the functor ¥ gives a bijection on the object level. Also, by Lemmal6.4] it gives a bijection
on the morphism level. Hence it is enough to check that ¥ is a strict A..-functor. As we have explained in

the beginning of this section, there are no interior morphisms as the tagged arc system m,(T") is involutive. In
thick

-,

particular, the A, ,-operations m®™P m vanish. Moreover, the sign X(¢) becomes trivial as well. However,

discs on S may be folded along tagged arcs (which lift to honest discs in 5') and the weight factors % for meon
and mds¢ are still non-trivial.

Let us first check the case of concatenation m®”. Let ¢ : a — 8 and ¢ : 8 — v be boundary morphisms in I"
on (S, J\Z7 n). Assume that «,v € I'o,q and B € T's, (all other cases are similar and we leave them as exercises).

Then, (¢, %) and (t.(¢), ¢« (1)) are concatenable while (¢, ¢(¢)) and (c(¢), 1) are not. So we have

0 1)) _ ¢/2  *u.(9)/2 ¥/2 /2
¥ (ma(A(9)L AW)y)) =¥ <m2<i¢/2 L*<¢>/z]’i ()2 L*(w/z))
(el [ |PeY/2 0 et o0

1 1

=+ (=)o (6 0 w) = £(-1)?Iom(¢) e 7 (1)

=m3” (M (9), 7 (1)) = m5™ (W (A(9)), Y(A())).
Now let us check ¥ is compatible with higher 4., -structure, namely disc operations my (on the left) and m%is‘:
(on the right). We will show the claim for disc sequences of length 3. (As the proof generalizes in a straightforward
way, we will leave the rest as an exercise.)

Let (01,02, 605) be a disc sequence in I" with 6; : v; — 7,41, where 74 = 1. To show ¥ and mg are compatible,

we have to show

1\ B (01),7 (02) 7. (03)) = (7 (63), 74 (61))
> 67"*(71)'

(A 61), A(Ge), M) = mar. (1), 7. 0n) . 60) = 5
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However, the weight is the number of special arcs among ;’s. Thus, we need to show

1 ) # of special arcs in {v2,v3}

ma(A(01), A62), A(f3)) = <2

Also, note that at least one of the arcs has to be ordinary. If ; is special, then 6;_; and 6; are on different
markings which are in the same Z/2Z-orbit of M. Thus, one and only one of them is a preferred morphism. So
in this case, we have to act ¢, in order to compute A(;—1) or A(6;). Now, we have the following cases.

€A(71)-

(1) 7 is ordinary. There are four possibilities.
(a) Both 72,73 are ordinary. Then ms(A(61)), A(62)), A(63))) = ea(,)-
(b) 72 is special and 3 is ordinary. Then,

ma(A(61)%, A (02))5 A (65))0)
( 01/2  Lu.(61)/2 1 (62)/2 ib*(ag/z} [ 0 @,D
—mg + :

)

i91/2 L*(el)/2 i92/2 92/2 L*(¢93) 0
_il +2m3 (61,02, 03) 0 _ le
T 0 £2m3 (04 (01), 14 (02), 14 (03)) |~ 220

(¢) 72 is ordinary and s is special. This is the same with the previous case.
(d) Both v9 and 3 are special. Then,

ma(A(01)%, Al (02))F, A(03))F)

—m 91/2 iL*(el)/Q + (L* (92) + ileg)/él (iL*(eg) 4’ 92)/4 93 i/eg
TN E0/2 0 (002 |7 | (e (02) £0)/4 (£ 1 (02) +0)/4] 7| £ (03)  a(63)
gl + £ dmy (61,02, 03) 0 1

T 0 o dmg (1 (01), 0a(62), 1 (05)) | 47RO

(2) 7 is special. Then there are three possibilities.
(a) Both 75 and ~y3 are ordinary. Then,

m3(A(01)5, Af2)0, Al (6)5)

g (i 01/2  £0,/2 7[0 (0] [ a(0)/2  £65/2

ib*(ag)/Q 93/2

)

:l:L*(el)/2 L*(ol)/Q 02 0

)

4 1 |£mg3(01,02,03) £ mz(ea(01), (02),0:(03))  m3(01,02,03) + m3(ex(01), s (02), 1 (63))
4| mz(es(01), 1(02), 4(03)) + m3(61,62,03)  E£ms(1s(01), 4(02), L4 (03)) £ ms(61,02,05)
=CA()£-

(b) 72 is special and ~3 is ordinary. Then,

mg (A01)%, A (62))5 s Al (63))%)

(e e o @A) @72 En@)/2] [z s

s (£ (01) £ 01)/4  (1.(01) £ +01)/4| "~ | +6,/2 02/2 |7 |£0(05)/2  03/2

— 4 :Izli 4+ 4/ 21113(91, 02, 93) + :|:/2m3(b*(01)7 L*(eg), L*(ag)) :I:’2m3(91,02, 03) 4/ 2m3(b*(91)7 L*(QQ), L*(gg))
o 16 | +'2m3(01,00,03) £ 2m3(1.(01), 14 (02), 14(63)) + 4" 2m3 (01, 02,03) £ £'2m3(1.(01), 14 (02), 1 (63))
:%eﬁ(%)f'

(¢) 72 is ordinary and 3 is special. This is the same with the previous case.

Thus, ¥ is compatible with A.-structure. O
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FIGURE 18. Interior morphism between tagged arcs and idempotents

6.4. Interior morphisms between tagged arcs and idempotents. Let us justify our definition of interior
morphism between tagged arcs in Definition [3:4] An involutive tagged arc system does not allow two tagged
arcs in the arc system to meet at an interior marked point. However, we can add such arcs into the arc system
in the form of twisted complexes and investigate the morphisms between them. We will consider the following
simple example to illustrate “interior morphisms” between idempotents of two arcs in the setting of Fukaya
category.

Suppose we are given a special arc o and an ordinary arc 8 with a boundary morphism 6 : @ — § as in
Figure (18| Then, there is another arc ¢, () with the boundary morphism ¢, (). Let us assume that the boundary
morphisms 6§ and ¢,(0) are of degree 1. Then, the blue arc v can be understood as a twisted complex

0 00
vi=|ald ®Bld®uwB)d,=] 0 0 0]],
t(6) 0 0
for some d € Z. The t-image of it is the twisted complex
0 00
w(y) = | aldl @ w.(B)[d] & Bld], 6 = |w(8) 0 0
6 00

Then, the hom spaces (in a minimal model) Hom(~, ), Hom(c4(7), @), Hom(a, ), and Hom(c, ¢4 (7)) are all
one-dimensional and generated by the following morphisms, respectively.

0 0
¢ = leal—d] 0 0] . ¢ = [ea[fd} 0 0] L =1 6d |, F=]u0Od
—+(0)[d] —0[d]
respectively. Two twisted complexes v and ¢.(7y) are identified via the morphism
ea O 0
e= 10 0 e g sy = ().
0 ep 0

This identifies the generator ¢ (which has degree d) with (—1)%¢’ via

e, O 0
mo(e,d)=ma [ [0 0 e ,[ea[—d} 0 o} — (~1)d [ea[—d] 0 o}=<—1)d¢/.
0 eg 0



TOPOLOGICAL FUKAYA CATEGORY OF TAGGED ARCS 35

Similarly, we can identify ¢ with (—1)‘“‘16/ via

0 ea 0 0 0
ma@ ) =ma | | Old |10 0 eng| | = (D —n@ld)] = (DT
—u(0)d]| [0 es O 01d]

Here the sign comes from the degree shift of ¢.
Hence, ¢ acts on the hom spaces Hom(y, o) and Hom(¢.(7), @) of two special arcs as

w(9) = (-1)%,  w(9) = (1),

From this action, we know

S T w -
HOIH(A(’Y)7A(04)) = { |f—1)#)(b (—1)‘%(;51 ta,b e ]k} ) ‘ l(_l)db¢ (—1)da¢] ‘ d,

ap bo ag bo
Hom(A(a), A(v))" = — —|:a,bek,, — —|l=1-d.
om(Ala), A) { [(_1)d+1b¢ <—1>d+1a¢1 ’ } ‘ L_l)% (1)
Together with idempotents of o and -y, we get the following results.

e When d is even,

Hom<A<w>+,A<a>+>:k<;[j jD Hom(A(a) 4, A(7)4) =0,

Hom(A(7)+, A)_) =0, Hom(A(a)_, A(y)) = lk<
Hom(A(7)—, A(a)+) =0, Hom(A(a)+, Ay)-) = lk<

Hom(A<v>7A<a>>—k<1[_¢¢ ‘fD, Hom(A(a)—, A(7)-) = 0.

e When d is odd,

Hom(A()+, Afa)s) =0, Hom(A(a)+, A()+) = k <; [f; ﬂ > |
Hom(A(7)1, Ala)_) = k <; [j j] > . Hom(A(a)_,A()4) =0,

Hom(A(7), A(n)4) = k <; [_Z ‘qﬂ > . Hom(A(a)+, A() ) =0,

Hom(A (), Aa) ) =0, Hom(A(a)_, A()) = k <; [_@ ‘j’] > .

In summary, there is a morphism from A(y),, to A(a),, if and only if d = 01 — 09 modulo under 2. This

explains the algebraic rule in Section [3.2]

7. Aoo-IDENTITIES

In this section, we prove Theorem [{.1] that the data in Definition [£-5] indeed form an A.-category. In the
first subsection, we introduce easy but useful lemmas. Then, we compute A,.-relations in the next section.
First, we define the following sets.
e Con is the set of concatenable pairs of boundary/interior morphisms.

e Disc is the set of disc sequences.
e Comp is the set of composition sequences. We usually denote a composition sequence as (¢1, ..., Gm; ).
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e Thick is the set of thick triples. For a thick triple (¢1; (é2, ¢3)) and its value ¢4, we set ¢y = ¢4 and
¢4 = ¢1. Similarly, for a thick triple ((¢1,%2);%3) and its value ¥4, we usually set Va3 = 14 and

Mpy = b3,
We denote the domain and codomain of a morphism 6 by s() and t(6), respectively. Let « and S be tagged
arcs meeting at an interior marking p. We say a meets 3 on the left or right if p defines an interior morphism
pg or p, respectively. Let (¢,1)) be a concatenable pair. Then, we say t(¢) = s(v)) divides the morphism ¢ e 1.

7.1. Preliminary Lemmas. There could be multiple A, -operations for a given input : some pair can be a
concatenable pair and form a composition sequence at the same time. Similarly, some triple can be a thick triple
and disc sequence at the same time. But we can prove the following lemma.

Lemma 7.1. Let ¢1,...,0, be a sequence of composable basic morphisms. Then, for 1 <1i < j < n such that
(i,7) # (1,n), at most one of the following expression (among o,[0 € {con, disc, comp, thick}) is nonzero.

My (@1 Gt M (G D) Dyt s D).

Proof. We show that values of different A..-operations are at different markings, hence one of the outer operation
should vanish.

Let (0, ¢) is concatenable pair such that (6, ¢; 1)) is also a composition sequence. Suppose that 6, ¢, and ) are
at the same marking. Since % is the value of a composition sequence, the marking has to be an interior marking.
Also, since 6 and ¢ are concatenable, the composition sequence (6, ¢; ) is folded. In particular, v(8) = 2. Now
let D be a disc associated with the composition sequence. Then, D bounds both endpoints of 3, which violates
the fourth condition of Definition This proves 1 cannot be at the same marking with 6 and ¢.

Let (é1; (42, ¢3)) be a thick triple such that ¢3 has a decomposition (¢3, #3) such that (¢1, g2, ¢3) is a disc
sequence. Then, m{* (¢ éa, ¢3) is a boundary morphism while m3'¢(¢1, ¢o, ¢b3) is an interior morphism. The
case of a thick triple ((¢1, ¢2); ¢3) is the same. Thus we deduce the following result. O

From now on, we look at the splittings of disc and composition sequences and how their weights and sign
factors are related. In the case that output is a result of a disc sequence, we have seen that we have two possible
cases as in Figure(l0fa) and (b). This is when a disc sequence splits into two disc sequences, or one disc and one
composition sequence as explained right after Theorem We compute the relevant weights and sign factors
here. Note that the weight and sign factor for the disc sequence is cyclic symmetric. So sometimes we will omit
some cases when they can be obtained by cyclic rotations.

Lemma 7.2. (Disc splits into two dlscs) Let us consider the case of . ) (the computation for (3|) can
be obtained from a cyclic rotatzon) Let qb = (P1,. -y Pm) and Y = (YP1,...,%,) be disc sequences such that

(¢m7wl) (1/)77-’ d)l) € Con and ¢ 1/1 - (wn o d)la ¢)23 ceey ¢M—la ¢m o ¢17¢27 cee awn—l) € Disc. Th€TL,

(10) B(G 0 h)=0(3) +B(F) — (U, 61) — (b 1) ,
(11) S(3 0 §) =5(8) + 5(F) = 0(thn, 1) — (s 1)
Proof. From

= Z ¢z ¢u ¢z+1> [¢l] <¢17 ¢i+1>) )

B(0) =3 (5] + (g y1) =[] (05, 05541)),

i—1
NN Zn 1 n—1

(P o) = ([ps] + (s, Pig1) — [04] (Ds, Div1)) + Z W3] + (W5, ¥41) — [5] (g, 0541))
i=1 Jj=1

we get

B(D)+B(D) — (S o 8) = [bm] + (G B1) — [Dm] (s d1) + [1n] + (s 1) — U] (o, 1)
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Note that (¢, ¢1) = 1 if and only if (¥, 1) = 1. If they are 1, then (¢,,, 1) and (i, ¢1) are also 1, so
holds. If they are zero, then (¢, 1) = [,] and (¥, ¢1) = [¢yn]. Thus holds in this case as well.
Similarly, we have

£(9)+ () = 2(3 o ) =) (oo ) (65 0i1)) + Y (o ) (5 541))
Y 6 {05, 6041)) — 3 (010) = o 55) iy 1)

((bm U( ) <¢m7 ¢1> + O'(wn) - U(wn) <wn7 ¢1) .
If (¢, 1) and (¥,, 1) are 1, then o(¢n, d1) = 0(Pm,11). If they are zero, then o(¢n,, 1) = o(dy,) and

(¢m, 1) = o(wy,). In both cases, holds. |
Lemma 7.3. (Disc splits into composition and disc sequences) Let us consider the case of (@ Let
¢ =(d1,...,0m) bea composztzon sequence with value 0 and 1/1 (V1,...,%n,0) be a disc sequence such that

(d)mawl) (Q/Jn,¢1) GCOD and ¢ 1/1 = <¢17'"a¢mfl7¢m.w17w27"'awn);
1/’ d) —(d’lw-wd’n—lﬂ%‘¢17¢27"'a¢m)€DiSC Then7

O(3 0 0) = 2(4:0)+2(¥),
(8 o ) = 5(8:0) + 5(8) — 0 (. ),
o1 0 4) = 0(9:0) + (V).
S(0 0 §) = 5(8:6) + X(4) — ot b1).

From now on, let us consider the case when the disc for a composition sequence splits into two parts. This
was divided into several types in Lemma We can compute the related weights and sign factors as in the
disc cases. We will leave the details as an exercise (or see [27]).

— —
Lemma 7.4. (Figure (a)) Let ¢ = (¢1,...,0m) be a composition sequence with value 0 and ) =
(_1>/Jl, o , W) be a disc sequence such that (¢r,v1), (Vn, drt1) € Con for some k and

¢ L4 w = (¢17 ) ¢k§—1a ¢k¢ L4 ,(/}17’(/)27 s 7,(/}n—1a wn o ¢k+17 ¢k+27 ey ¢m7 6) S Comp Then;

O(P o 0:0) =0(3:0) + B(D) — (dr, 1) — (W, brsn)
S(6 0 4:0) =5(3:0) + 2(V) — 0(d 1) — 0 (i, drs1).

— —
Lemma 7.5. (Figure (b)-l) Let ¢ = (¢1,...,0m) be a composition sequence with value 6 and p =
(¥1,...,%n) be a disc sequence such that 6 =, 8, (1, 1) € Con and

E) o g = (?/127~ .. 7¢n—1,77/1n .¢17¢27' . ~a¢m'0,) S Comp Then7
E( ) ( )+E(¢ )_U(wnud)l) _U(whe/)'

Lemma 7.6. (Figure (b)-2) Let 3 = (¢1,...,0m) be a composition sequence with value 6 and E) =
(¥1,...,%n) be a disc sequence such that @ = 0" e ¢, (¢, 1) € Con and

g‘ﬁ = (¢17'~~a¢m—17¢m ‘1/)171/)2a~~~71/)n—1;9/) S Comp Th@’ll,
O(G e 0:0)=0(3:0) + <1><$> 1= (O ),
(P 0 §30) = 5(8:0) + (D) — 0(m, 1) — o(8, ).

— —
Lemma 7.7. (Figure (c)-l) Let ¢ = (¢1,...,0m) be a composition sequence with value 8 and v =

(1, .., L/}g) be a composition sequence with value ¢y for some 2 < k < m—1 such that (¢px_1,%1), (¥n, drs1) €

Con and (b ®r_1 ? = (¢17"'7¢k727¢k71 .w17¢27'"7wn7¢k+17"'7¢m) and
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B 0kt D= (1, s Bty W1y D2s - ey Doty D ® Bioss Bty - - -, o) are composition sequences with value 6.
Then,

B ot ©50) =0($560) + D(F:64) — 1,

(6 orr B560) =X(8:0) + BT 6x) — 0(h1, 1) — 0(n, Srs1),

B( o1 ©30) =0(550) + (Fs 1) — 1,

E(? ®it1 E); ) 22(35 0) + Z($7 k) — 0(Pr—1,U1) — 0(Vn, Ort1)-

L

Lemma 7.8. (Figure u(c) 2) Let = (61,...,0), ¥ = (Y1,...,¥n) be sequences of composable sequences,
and gzﬁ (P15 -y dm,n) be a disc sequence such that (01, #1), (pm, 1) € Con and

T d = (Bry 011,000 b1, oy sty t),
Do = (01, 00,010,021y b @ D1, By e s )
are composition sequences with value &. Then we have the following.
(0 0 916 = (4 o ¥1¢)
(6 e 6:6) =5(4 o 156).
Lemma 7.9. (Figure (d)-l) Let E} = (¢1,.--,0m,(,n) be a disc sequence, E) = (¢1,...,%,) be a sequence
of composable morphism, and £ be an interior morphism such that (¢m, 1), (n,€) € Con and

G et = (0,61 St S @ 1 Yo, i 9 E),
G oW = (b1 s bty i)
are compositions sequences. Then we have the following.
O3 0 Vined) =2(4 o d56) + (n,6) 1,
(e Pined) =5(6 0 056 +0(0,€) — o, ).

_)
Lemma 7.10. (Figure u(d) 2) Let ¢ = (¢1,...,0m) be a composition sequence with value 0 and 1_&} =
(1, ...,%,) be a composition sequence with value ¢, such that 0 = 0" ey, (drm—1,%1) € Con and qS o,

- s
(D1, s Pm—1,01, ., Yn_1;0") € Comp. Then, ¢ o1 1) = (P1,...,0m—2,Pm_19U1,Ua,...,1¥,;0) € Comp and

we have the following.

B(F w0 0:0) =8(3:0) + B(V: 60) — (0, 00a) + 1,
(6 00 0:6) =2(6:0) + £(V: dm) — 00,0,
B(G 01 1:0) =(3:0) + (&5 0,),

(3 01 0:0) =2(3:0) + S(¢56m) — 0(dm-1, ).

— —
Lemma 7.11. (Figure d)-3) Let ¢ = (¢1,...,0m) be a composition sequence with value 6§ and =

(¥1,...,1,) be a composition sequence with value ¢ such that 6 = 11 ¢ 8, (¢, d2) € Con and E) '3 E) =

— —
(¢27"'7wna¢2a"'7¢m;9/) € Comp Then7 ¢ L2 1/) = (¢17"'awn—17,¢)n.¢2a¢37"'7¢m;9) S Comp and we
have the following.

O(G 01 0:0) =8(3:0) + D(L301) — (41,0 + 1,
(6 o1 0:0') =5(8:60) + X(F51) - o, 0),
B(G o0 050) =0(6:0) + (¥ 01),

(6 o0 §50) =£(6:0) + 2(4:61) — 0(thn, 00)



TOPOLOGICAL FUKAYA CATEGORY OF TAGGED ARCS 39

- —
Lemma 7.12. (Figure (d)-4) Let ¢ = (¢1,...,0m) be a sequence of composable morphisms, ¢ =
(0,01, ... ,y) be a disc sequence, and & be an interior morphism such that (¢, 1), (€,n) € Con and

X.E) = (¢1a"'a¢m—1a¢m.,(/)17’(/}27"'7,(/)77,777;77.5)7

- =

d) o ¢ = (¢1a"'7¢m7w17"'7wn;£)

are compositions sequences. Then we have the following.

O(Getines)=d(dot:6)+(En) —1,
- —

S(F e vines) =5(d 0 0:6) +0(E,n) — o(dm. 1)

We have a computation involving thick triples.

Lemma 7.13. Let_g: (P1,...,0n) be a disc sequence. If ¥ is an interior morphism such that (¢, ¢1); ¢2) is
a thick triple, then ¢V = (P2, ..., Pn; @) is a composition sequence and we have the following.
— —

5(6) =3(8") + o(én) + 0 (6, 61).
Similarly, if 1 is an interior morphism such that (¢n—1, (¢n,)) is a thick triple, then qb V= (1, Pn1;0))

18 a composition sequence and we have the following.
_>

B(3) = 0(3Yi9) + (. ) +1
$(6) =30V 8) + 0(6n) + 0(6n, ).

7.2. Proof of A, -identities. In this section, we prove that the data defined in Section indeed form an
Ao-category. We need to prove that for an input (¢1,..., o),

n n—k

SO () (G G Wk (Gig 1y Bigk)s Big kgt Gn) =0

k=1 i=0
We will prove this case by case.

Suppose that we are given two pairs (;5 = (¢17--~,¢m);$ = (¢1,...,%y) such that m,,(¢1,...,0m) #
0 and m,(¢1,...,%,) = cog, for some nonzero ¢ € k. Then, we will check the A,-identity for the input

— —
(D1, G101, -+ Yy Pkt 1y -« Om). Let us call ¢ and ¢ the outer-input and inner-input, respectively.
Also we call ¢ the value of 1. An outer-input is one of the following.

1) Unit (e, ¢), (¢,e).
2) Concatenable pair (¢1, @2).

(1)

(2)

(3) Disc sequence (¢1,..., ).

(4) Composition sequence (¢1, ..., dy).
(5)

5) Thick triple (¢1; (¢2, ¢3)) and ((¢1, d2); ¢3).

Since computations are similar, we will give the full detail only for the first case and only the sketches for
the other cases. (rest of the details will be available at [27]).

%
7.2.1. Unit. Here, we deal with the outer-input ¢ = (e, ¢). If ¢ is the value of the inner input, then unital
property can be used to show an A..-identity. So let us assume that e is the value of the inner-input 4. Thus
¥ = (¥1,...,%,) has to be a disc sequence. We divide them as follows.

(1) (¢n,1) ¢ Con. (Hence (¢n, 1) = 0.) This further has the following three subcases.
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(a) (¢n,d) € Con.
Mo (M, (Y1, .., ), @) + (= 1) nlin =l () b1, ma (¢, 0))

s (1) st (1)

:(_1) (2) m2(€7¢) - (_1) " (2) mn(wlv"'awn—lawn.gb)
) L2

=(-1)*¥) (2) ¢ — (—1)>¥) (2) ¢ =0.

Let us explain the computation in more detail. From Definition [4.5] we first have my(v¢,,¢) =
(—1)l¥nl+o@n.é) (%)w"’d)> Y, ® . So, the sign becomes |t1]| + -+ + |¥n]| + 1 — 1 + (Pn, @). Since
(1, ...,%,) is a disc sequence, by Lemma [1]+ -+ -+ |tn| +n is even. So the sign is equivalent
to o(1n, @) + 1 and we get the first equality. Then, from the definition of ., (11, ..., Yn_1, ¥, ),
the sign o (¢, ¢) and weight (1),,, ¢) are canceled. Thus we get the second equality. In the following
computations, we will use Lemma [3.3| repeatedly.
(b) (¥n, @) ¢ Con. This further has the following three subcases.
(i) ¢ =1 @ 6 for some nonzero 6.

mQ(mn(/wla s 7’(/}n)7¢1 L4 9) + (_1)‘w1‘+1m2(¢1umn(¢27 cee 7¢n7¢1 ° 9))

><I><Tp’><w1,e>

2 2 m2 (wl I 9)

Lo\ S\
=(=1)%¥) (2) gref—(—1)%¥) <2> Y1060 =0.
(ii) ¢ = 91. This further has the following two subcases.
(A) (¥1,12) ¢ Con.
m2(mn(¢17 e 7¢n)7¢1) + (_1)‘w1‘+1m2(w1amn(1/)27 cee 7¢TL71/)1))

—
a(¥)
—(—1)=D) (1) male, v 0 0) + (— )12 —o(wr.0) (1

—

(%) S ()
=(=1)>(¥) (;) my(e, ) + (—1)¥H1+E0) (;) ma (11, €)

NS NS
02D (3) w- 0P (5) w0
(B) (¢1,%2) € Con.
mZ(mn<w17~-~7wn)7wl)+mn(m2(1/)171/}2)aw3a---7¢naw1)
+ (=D my (g, m (Yo, Y, 1)

1

. ®(P)
=(—1)¥") <2> my(e, Y1) + (—1)‘%”6(%’%)%1‘0&% o o, 3, ..., 1y, Y1)

s (1 B(P)-1
+ (= 1)+ (2) ma (1, €)

o) o) o(P)-1
- /1 - /1 - /1
=(—1)=(¥) <2> Y1+ (—1)F) <2> P — (—1)E) <2> Yy = 0.

(iii) 11 = ¢ e 0, for some nonzero 6. This further has the following three subcases.
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llqb ) divides 9y, into ¥} e ¥? for some 2 < k < n so that wl = (0,2, ..., Yk—1,%1),
= (Y2, Ykt1s- -, Y, ®) € Disc.

mQ(mn(wlv oo 71/}77.)7 ¢) + (_1)‘w1‘+”.+|wk71‘+k}71mk('l/}17 e ;'1/1k71,mn7k+2('(/1k» .o ;'l/Jn; ¢))

o(4) (42— (vhv2)
e 1 L) —o (bl 2 1
:(_1)2(11’) <2> m2(6,¢) _ (_1)\¢|+Z(w )—o (YY) (2) mk(ﬂflwuﬂ/)k—hl/hi)

>¢><$1>+¢<$2><wi,wi><¢,e>
)

()
—(—1)= (L 6 — (—1)2EFE -0 wivh o0 (1
2 2
=0 (by Lemma [7.2).
(B) t(¢) meets t(¢x) on the left for some 1 < k < n with an interior morphism ¢ so that
(9,1#2, e a’l/)kr,g) € Comp and (§7¢k+15 .. -ﬂﬁm(ﬁ) € Disc. In this case, (wk7¢k+1) €

Con and E)/ = (¢79’7/}27' e 71/}k—17wk L4 wk+lawk+27' .. 77/}n) € Disc. AISO, 0(¢a 0) -
U(¢ka¢k+l) and <¢70> = <1/)k7¢k:+1>-

mZ(mn(’(/}h e 71/177,)7 (b) + (_1)‘w1‘+"'+|'¢'k—1‘+k—1mn(d]17 ey ¢k717m2(¢ku ¢k+1)7 ¢k+2u e 7wnu QS)

IR ()
:(_1)2(’¢) (;) m2(€7¢) - ( )|¢|+0'(1/1k71/1k+1) My (1/}17"‘71/]k717¢k ’1/1k+1,1/}k+27---a1/)m¢)

o(4) ®(4)
:(_1)2@) 1 b — (_1)2(173’) 1 )
2 2
=0 (by Lemma [7.3).
ll(,b ) meets t(¢y) on the right for some 1 < k < m with an interior morphism £ so that

Y= (Yrat,---Un, $;€) € Comp and 1/12 = (£,0,vs,...,9;) € Disc. In this case,
(V1 Yrt1) € Con. Also, 0(¢,0) = o(Yr, Yrt1) and (¢, 0) = (Y, Yrt1)-

mQ(mn(d)lv o .. 7wn)7 ¢) + (_1)|’L/11|+~~+|’¢1k_1|+k71mn(w17 .. 71/%—17 m2(¢k; 1/’k+1)7 1/’k+2, ey ¢na d))
+ (=) (g Mt (ks s 6)

R o(%)
:(_1)2(111) (;) m2(67¢) +( )‘¢‘+U(¢k7wk+1 (¢17-~71/1k7177/)k‘¢k+h¢k+2»~-~»¢m¢)

2

— — — —
(¢) () (Y56 +e(P 7)1
e 1 = 1 -1 —2 1
s (L @ (L =@+ (@ a0 (L
(-1) s+ (0= () e () . .
=0 (by Lemma|7.3].
(¢) (¥n, ) is a thick pair so that (¢p_1;(¥n,®)) € Thick. Then, E}V = (Y1, Un_2,y_1;0) is a

composition sequence.

my(my, (U1, ... ), @) + (—1)[VrlFtlvnzlbn=2 o mg(Yn_1, tn, D))

LoD
:(,1)2(1/)) (2> my(e, ¢) — (—1)° o (hn)+0 (n,b) (

—

(1))
- 1 v 1
(=@ (L (e tawr=@Y) (1
@ (1) ey :

=0 (by Lemma [7.13]).

(2) (¥n,%1) € Con. This further has the following three subcases.
(a) (¢, ®) € Con. This further has the following three subcases.

®(4L56)
=, 1
+(71)E(d)1,5) (> mk+l(w17"'7wk’£)

1+(n,9)
) M1 (Y1, Yoo,y )

>1+<wn,¢>+<b<$w

2

¢
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(i) ¢ =11 @0 for some nonzero 6.

mQ(mn(wla cee 71/)n)?w1 o 9) + (—1)|¢1|+1m2(¢1,mn(¢2a KR awnawl hd 9))
+ (71)|¢1|+”.’W"71‘+n71mn(¢17 e a1, Mo (P, Uy @ 0))

S 71\ 21 N 1\ 2(¥)=(1.0)
:(,Dz(w) (2) my(e, vy @ 0) + (71)|w1|+1+2(w)70(w1,9) <2) my (11, 6)

— (- )O’('l/)n 11)1) m (U1, V1,0, @11 00)

=@ (L CW) =@ (1 =@ (1 _
( 1) B 11)1.9 ( ].) B wl.e ( 1) B "(/}1.0 .

(ii) ¢ = 11. This further has the following two subcases.
A) (1/)1,1/12) ¢ Con.

(
m2(mn(,(/)17 s 7¢n)71/)1) + (_1)|¢1|+1m2(¢17mn(w2’ te 7wnaw1))
+ (71)\w1\+~.+|wn71|+n71mn(¢17 ey p_1, Mo (U, Y1)

a(F)-1 o(¥)
— 1 — 1
:(,1)2(1&) (2) my(e, 1) + (,1)|w1|+1+z<w> <2) my (11, €)

_( )U(¢n 1111) m (’(/}17“'72/}77,71711)71.1#1)

- @(?H SN2 L)
CPD(5) - PO (5) w1 (5] w-o.
2 2 2

(B) (¢17¢2) € Con.

mQ(mn(d}la v 71/)n)a Q;Z)l) + mn(mQ(whd}Q)a 11[}35 v aﬂ}na 77[11)

+ (=) g 4y, my (Yo, -y, 1)) + (=) T o (L a, ma (Y, 1))

N e(4)
:(—1)2“”(;) mafe, ) + (~1) b 2 S (1 @ ¥, U5, Un, Y1)

R
[ +1+2(9) (L = o (mipn) L
+(71) 5 m2(¢1a€) - (71) §mn(¢1,-~~,¢n—1,¢n‘¢1)
o(9)-1 o(¥)
- /1 - /1
P (1) e ()
i

(iii) ¥1 = ¢ e @ for some nonzero 6. This further has the following three subcases.
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Il(b ) divides v, into v} e1)? for some 2 < k < n — 1 so that ’(/Jl = (0,9, ..., Yk_1,%1),
(wkawarla ce 7’(/)7“ ¢) € Disc.
mQ(mn(wlv e vwn)v d)) + (_1)|'¢11|+~~+|Ibn71|+n71mn(,¢)1’ v 71/%71»“12(7/’71’ ¢))
+ (_1)‘1/}1‘+m+|wk71‘+k_1mk(wla LR wk717mn7k+2('¢k7 ey wna ¢)>

R B(P)-1 (ton, )
:<_1)E(w) <;) mg(@,(b) - <_1)a(wn7¢) (;) mn(¢17~-~7¢n717¢n°¢)

—
(¢ %) —(vi Wi
(1)@=l (1> Whot)
2

N o(P)-1 . ®(P)
) (;) b (—1)E® <;> s

>¢<$1>+¢($2><w;,wi><¢ﬁ>

mk(djh .. 'u’(/]kfh/wli)

— — 1
(1) E@HEE ok vd—o(60) ( 5

2
=0 (by Lemma [7.2).

(B) t(¢) meets t(1x) on the left for some 1 < k < n with an interior morphism ¢ so that

(0,%2,...,91; &) € Comp and (&, Yg41,.-.,%n,P) € Disc. Then, (i, Yr+1) € Con and

Eﬂ = (0,0,%9,...,Uk_1, Yk ® Vg1, V12, ..,%,) € Disc. Also, o(¢,0) = o(Vi, ¥rt1)
and (¢,0) = (Yr, Yry1)-

mQ(mn(wh e 71/}71)7 (b) + (_1)|1Z11|+‘“+|1/)n71|+71—1mn(w17 s 7¢n717m2(wn7 ¢))
+ (_1)W}1‘+m+|¢k71‘+k_1mn(w17 e awk—hm?(wka ¢k+1)a ¢k+27 e awna ¢)

S o(¥)-1 (tn.9)
02D (3) 0 mled) = 07 (5 et e )

- ( )‘¢‘+U(wk’¢k+l (wlv"'vdjk—lawk.wk+17wk+27"'7wn7¢)

B(F)-1 () a(4")
- (1 (1 =2n (1
=@ (L @ (L @ (L
PP (D) e PP (5) e (1) e
=0 (by Lemma [7.3).
(C) t(¢) meets t()r) on the right for some 1 < k:_>< n with an interior morphism ¢ so
that ! = (Yri1,...%n, ¢;&) € Comp and 2 = (&,0,vs,...,1) € Disc. Then,
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(ks Y1) € Con. Also, 0(9,0) = o(¢, Y1) and (,0) = (Vk, Vi)
My (M (Y1, Pn), @) + (=)ol (g, ma (Y, 9))
+ (=)l el b1, Mo (Y, Vrr1)s Vht2s - -+ s Py D)
+ (=)t R (1 Ok Mt (Y, o, 6))

—

= (1T et (1)
_( 1) 92 m2(67¢) ( 1) 2 mn(wlw'wwnflaql)n.(b)

+( )‘¢‘+U(¢k7¢'k+1 (wla"'7’(/)k—17w/€.¢k+l7wk+27"'7wn7¢)
o)
()R 1
2
¢_

®(F)-1 ®(¢)
- (1 - (1
=(—1)>(¥) <2> (=1)=(¥) (2> b

-

mk+1(¢17 cee 7’(/}]675)

1>¢($1;£>+¢>($2)1
)

(")
@ (L (L E@0S@ ) o0 (L
s (3) e :
=0 (by Lemma [7.3).
(b) (¢, ) ¢ an Then, t(¢) divides 1)y, into ¥, e? for some 1 < k < n so that E)l = (Y1, Vp—1,0} 9) €
Comp and 92 = (¢, %3, Y11, --,Pn) € Disc.
mZ(mn<w17 e 71/}n)a (b) + (_1)|¢1|+-~~+|wn,1|+n—1mn(w17 .. a¢n71,m2(¢m QZS))
+ (_1)W}1‘+m+|wk71‘+kilmk(¢la R ¢k—17mn—k+2(¢k; R 7%, ¢))

@ ()T oty (1)1
(-1 (2 male, ) = (=170 () ma(Wr st Yn e )

=
() —(vi.v})
D) —o (0! 02 1
— (—1)E )T hwi) (2) (Y1, U1, U

@ (N e (1T
2 (D) cpp@® (1)

B(P L) +8(D )~ (w03
_(_1)2($1;¢)+2($2)—o(wi,wi) 1 wh k>¢
2

=0 (by Lemma.
() (¥, ) is a thick pair and (,1; (1, ¢)) € Thick. Then, ¢ = 1 ¢ for some nonzero 0 and ¢ :=
(V1, .-y Pn_2,%,_1;¢) is a composition sequence. Note that (¢, ¢) = 1.
ma(my (Y1, ¥n), 8) + () my (G, my (2, - Y, 6))
(1)l =2 g ma (a1, U, )

1><I><17>—<w1,e>

L1\ 21 .
:(_1)E(w) <2> m2(e’¢) + (_1)|w1|+1+z<w)—a(w1,9) (2 m2(¢179)

1\ )
- (71)U(¢n)+0(¢n,¢) <2> mn—l(wla s 7wn—2; 11/}7\{—1)

1> 1 (U, 0) +0 (3 ¥ 59)
0]

— —
e(p)-1 ()

— 1 — 1 —ry
—(—1)=) [ = _(—1)EW) [ = (1)o@ o (Wn,d)+E(Y V50) [ Z
SR o- ("D (3] e (- >

=0 (by Lemma|7.13).
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The case of (e, ¢) is symmetric and omitted.

_>
7.2.2. Concatenable pair. Here, we deal with the case when the outer-input is a concatenable pair ¢ = (¢1, ¢2).
From symmetry, we may assume tgat the value of the inner input ¢ is ¢;.
Concatenable pair. Suppose that ¢ = (¢1,12) is a concatenable pair with ¢1 = 1)1 ® 9.

ma(ma (1, 92), d2) + (— 1) my (1, ma (2, ¢2)) = 0.

%
Disc sequence. Suppose that ¢ = (¢1,...,%,) is a disc sequence with (¢1,11) € C on. Then, there are following
cases.

(1) (¥n,1) ¢ Con. Then, (¢, ¢2) ¢ Con. In particular, (1, ¢2) is not a thick pair. This further has the
following three subcases.
(a) ¢ =1y @0, for some nonzero 6.

Mo (M, (D1 ® Y1, P,y Pn), 01 @ 0) + (= 1) PFV I ) (81 @ hy my, (2, .. 1,101 @ 0)) = 0.
(b) ¢2 = ;. This further has the following two subcases.
(i) (¥1,12) ¢ Con.
o (M (61 @ 91, Y2, Un), 1) + (D)1 g (61 @ gy, i (W2, o, 91)) = 0.
(i) (¢1,19) € Con.
ma (M ($1 @ 1,4,y ) 1) + (D)1 g (61 @ g ma (o, 91))
+ mp (ma(d1 @ Y1, 2), 93, ..., Yn,th1) = 0.

(c) 11 = ¢ @ 6, for some nonzero . This further has the following three subcases.
(i) t(¢2) divides ¢y into 1} e 92 for some 2 < k < n so that (0,va,...,9}), (V2,... b, ¢2) €
Disc.
ma(my (P1 @ Y1, 92, ... Yn), d2)
+ (_1)‘d’lH’l"/’l|+|¢2|+"'+W)k—1|+k*1mk(¢1 o 1;[}17 1/’27 E) ¢k—17mn—k+2(¢k7 EE) wﬂn ¢2))
=0 (by Lemma [7.2).
(i) t(¢2) meets t(y) on the left for some 1 < k < n with an interior morphism £ so that

(0,92, ...,91; &) € Comp and (&, Yk+1,- .., Yk, ¢2) € Disc. Then, (Y, Yr+1) € Con and
(97¢27 cee 7¢k71a 1/)k L ¢k+17¢k+27 e 71/}77,7 ¢2) € Disc.

ma(my, (1 @ Y1, P2, ..., Pn), P2)
+ (=)o Ehn el ot R = (6 @ 4y, g, ke 1, M (Wk, Ykt Pk2s -5 U, B2)
=0 (by Lemma [7.3).
(iii) t(¢p2) meets t(¢ox) on the right for some 1 < k < n with an interior morphism ¢ so that

(971/)27 T 71/%75) € Disc and (warlv cee >wk, ¢2a£) € Comp Then, (wka ¢k+1) € Con and
(0,902, ..., Yk_1, VK ® Vpt1, Yryo, ..., Yn, d2) € Disc.

mo(m, (1 @ Y1, P2, ..., Pn), P2)

+ (=)l R (6 @ 4y 1o, Y1, Mo (Vk, Yt 1)s Pr2s - - 5 Py B2)

+ (_1)|¢1|+W11\+|¢2|+..-+\wk—1|+\¢k\+kmk+1(¢1 e U1, o, Wk Mp it (Vs Vhgzs - - - s Uy B2))
=0 (by Lemma [7.3).

(2) (%n,1) € Con. This case is the same with the previous case except the following one case.
(a) (Yn, P2) is a thick pair so that (¢,—1; (¢n, d2)) € Thick. Then, ¢o = 1)1 @ 6 for some nonzero 6.

m?(mn(¢1 L4 wlana cee 7’(/)n)a ¢2) + (_1)‘¢1‘+|¢1|+1m2(¢1 o whmn(wQa cee 7,(/}1'7,7 ¢2)) =0.
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_>
Now suppose that ¢ = (¢1,...,1%,) is a disc sequence with (¢,,, ¢1) € C on. Then, there is only one case.
mQ(mn(wlv s 7wn d ¢1)’ ¢2) + (_1)|w1|+---+\wn,1\+n71mn(¢1, BRI 1/]71717 mQ(wn L ¢1a ¢2)) =0.
_>
Composition sequence. Suppose that ¢ = (¢1,...,%n;¢1) is a composition sequence. Then, there are the
following cases.

(1) t(¢2) divides wk into ¢i * wi for some 1 < k < n so that (7/)1’”-71/)1@—1’%%;9171 o QSZ) S Comp and
(Y2, k1, - -+, Pn, d2) € Disc.

mQ(mn(wlv cee ,wn)v ¢2) + (_1)‘w1‘+...+I¢kil‘+k71mk(flpla s ﬂl)k*la mn7k+2(wk') s 71/)717 ¢2))
=0 (by Lemma [7.6).

(2) t(¢2) meets t(1)) on the left for some 1 < k < n with an interior morphism ¢ so that (¢Yk41,. .., Un, $2,&) €
Disc. In this case, (Yk, Yr+1) € Con. Also, (Y1, ., Yk—1,Vk ki1, Yht2, .-, Yn, d2; d1 @ $2) € Comp.

mQ(mn(wh cee 7,(/}1'7,)’ ¢2) + (_1)‘wl‘+”'+|¢k71‘+k_1mn(wl7 LRI wk—lva(wk}a ¢k+1)7 wk-‘rQa HER awna ¢2)
=0 (by Lemma|7.12).
(3) t(p2) meets t(1)y) on the right for some 1 < k < n with an interior morphism & so that (¢1,...,9¥, &) €

Disc and (Y11, .-, Un, P2;&) € Comp. In this case, (g, Yrt1) € Con.
Also, (Y1, k-1, Yk ® Yry1, Vkt2, - -, P2; 01 ® ¢p2) € Comp.

mQ(mn(wla R 71/)71)’ ¢)2) + (_1)W}1‘+m+|¢k71‘+k_1mn(w17 D) wk—th(wka ¢k+1)a ¢k+27 e awna ¢2)
+ (=)l e Ry (ke Mgt (Vkg1s - Yo, 62))
=0 (by Lemma [7.10).
Thick triple. Suppose that $ = (¢1,12) is a thick pair. Then, there are the following cases.

(1) (#7; (w1,102)) is a thick triple. Then, ((t1,%2); ¢2) is also a thick triple.

ma(ma (97, Y1, ¥2), d2) + (=) ma (67, my (11, v, 62)) = 0.
(2) ((w1,12); 1) is a thick triple. Then, ((11,12);"¢1 ® ¢2) is also a thick triple. Note that “¢; @ o =
"1 @ h2).
ma(m3 (Y1, Y2, ¥ ¢1), d2) + mz (1,12, ma(Vé1, ¢2)) = 0.

%
7.2.3. Disc sequence. Here, we deal with the case when the outer-input is a disc sequence ¢ = (¢1,...,0m).

The cases of o
(o1, 02,...,0m) and (P1,..., Pm—1,Pm @ 0) are similar, so we only list the cases for ¢ .
Concatenable pair. Suppose that ¢; has a decomposition ¢} e ¢?. As we have already seen the cases of

(¢%a¢%a¢27"'7¢m)’ (¢1a"'7¢7r7.—1a¢71n7¢3n)?
in Section [7.2.2] we may assume 1 < i < m. Then, there are the following cases.
(1) t(¢}) divides ¢; into (b} . qﬁ? for some j with |i — j| > 1 so that (¢7, ¢it1, . - »,¢j—17¢})7
(93, Pjt1,-- > bic1,¢;) € Disc. We may assume i + 1 < j < m.
mm(¢17 e a¢i—17m2(¢}7 ¢12)7 ¢i+17 ey (bm)
1
+ (~nlet |+1mm—j+z‘+1(¢17 D1, G M1 (0, i1y B5) Biats s Bm)
=0 (by Lemma [7.2).

(2) t(¢;) meets t(¢;) on the left, for some j such that j < i — 1 or j > i, with an interior morphism &

so that (¢ji1,...,0i—1,¢1,€) € Disc and (¢2, ¢i1,...,¢;;€) € Comp. In this case, (¢;,d;+1) € Con.
Also, (¢j @ hj1,Pjt2,-- - Dim1,Op, G2 Pit1, .., Pj—1) € Disc. We may assume 1 < j < m.
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(a) 1<j<i—1.
WMo (P15 -, D1, Mgy Bja1)s Bjgas - s Gi1, Dfr D7 Pit1s - > Oim)
(=)l O T (fy L i1, by Bty Bigas - Bim1, (B, BF), Dits - s D)
=0 (by Lemma.
(b) i<j<m.
M, (b1, o, Pim 1, M (D], 07), Di1s - D)
D (61, G O M1 (02, B, 65), Gt Om)
+ (=l o 0 S (1, Gi1, 08, 07, B b1, (6, 6541), D12 Bon)
=0 (by Lemmal7.3).

(3) t(¢}) meets t(¢;) on the right, for some j such that j < i —1 or j > 4, with an interior morphism ¢

(2

so that (¢j41,...,¢i—1, ¢} &) € Comp and (¢2, dit1,...,0;,&) € Disc. In this case, (¢, ¢j4+1) € Con.
AAISO7 ((]5] ° ¢j+17 ¢j+27 ey ¢i—17 QS}, (725?, ¢i+17 A 7¢j—1) € Disc. We may assume 1 <j <m.
(a) 1<j<i—1.
M (d1, .oy D1, M2(Dj, ja1), Dja2y - ooy Pi1, Bf s OF s Bit s - - s D)
+ (_1)|¢j|+m+‘¢i71|+i_jm’m(¢la R ¢j717 ¢j, ¢j+17 ¢j+27 R (bi,]_,fﬂg((ﬁ,%, ¢$)? ¢i+l7 e 7¢m)
+ (=D iy, (B, B M1 (Bt e D1, D)y B Dik s s Bm)
=0 (by Lemma [7.3).
(b) i<j<m.
mn((blv e 7¢i713m2(¢%a ¢12)7 ¢i+1a ey (bm)
+ (_1)|¢},|+|¢12“H¢i+1|+"‘+‘¢j—1‘+j_i+1mm(¢17 ceey ¢i—17 ¢117¢z2a ¢i+17 ey ¢j—1am2(¢j7 ¢j+1)a ¢j+2a R ¢m)

=0 (by Lemma [7.3).

%
Disc sequence. Suppose that ¥ = (11, ...,1,) is a disc sequence with (1,,, ¢;) € C on. The case of (¢;,11) € Con
is symmetric. There are the following cases.

ot

+

(1) (¢i—1a ¢1) € Con. In this case, (¢17 R 7¢i—27 ¢i—1 L4 wla ¢27 LRI wn—h /l/)n L ¢i7 ¢i+1a SRR ) ¢m) € Disc. This
further has the following two subcases.

(a) i=1.
My (M (U1, U1,V @ D1), D2y .o D)
(=)l T (g 1 M (Y @ B, b2, )
=0 (by Lemma [7.2).
(b) i # 1.

Mypm—2(P1, s Gima, ma(Pim1,%1), Y2, V1, Yn ® Gy Pig1, - - Pn)
+ (_1)‘¢i71|+1mn(¢17 ey ¢’i717 mm(1/]17 e a’l/}mflv wm L ¢2), ¢i+1a ey ¢n)
=0 (by Lemma.
(2) (¢i—1,9Y1) ¢ Con. This further has the following three subcases.
(a) ¢i—1 is an interior morphism from ¢(¢;_1) to s(¢;). Then, t(¢;_2) divides 1, into 1)}, @ 9% for some
1 <k <nso that (wla s awk—la w]ia ¢i—1)a (w]%awk:-i-la s 7,(/}1'7,—1’ wn ° ¢i7 ¢i+17 B ¢i—2) € Disc and
(1/]]%’ /ll)k+17 e 7wn7 (bifl) S Comp
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(i) i=1.
My (M (Y1, -+ Un—1, Un @ 01), P2y -+ ., O
A+ (=)l R ey (W1 ket Mkt (G- Y1, Pn @ B1, B2, 1), Bim)
=0 (by Lemma.
(ii) ¢ = 2.
My k—1 (M1 (D1, V1, -+ ), Pkt 15 Y1, Y0 @ D2, P35, Oy)
+ (=) (G, M (1, 1, Y @ 62), B3, i)
+ (=)l Ry (h,901, - Pty Mkt (Vs -+ Y1, 0 @ G2, B3, - - )
=0 (by Lemmal7.3).
(iii) 3 < i< m.
Moyt k—1 (D1, - - s Pim2, Mp1 (Pim 1,1, - k), Ykt 1y oo, Y1, 0n @ iy Pi1, - Pim)
+ (=D e (61, iz, dimt M (1, Pk Pkt 1, Pne1, Un @ 1), Bk, i)
=0 (by Lemma [7.3).
(b) 1 is an interior morphism from ¢(¢,,) to s(t2). Then, s(19) divides ¢y, into ¢}, e @2 for k such that
k <i—1lork > isothat (df, Y, ..., Yn—1,0n®Pi, Git1,s...,Px—1) € Disc, (B, ..., Pp—1,P%; Pi—1) €
Comp, and (¢%, ¢r41,- .., ¢i—1,%1) € Disc.
(i) i < k.
My (P15 oy Pim2y Pie 1, M (Y1, V1, Y @ Di), Pige1s oo s Pm)
+ (=D ki (f1s Gi 1 M1 (Y2, Y1, @ Gy Git sy Ok), Bt i)
=0 (by Lemma [7.3).
(ii) k <i—1. Here, T == |pp| + - + |pi_1| +i — k.
(D) M (b1, Pim2 Gi1, M (Y1, o Pnm1, Y © B3), Big1s - - - B
+ M pm—ih—1(D15 -+ k1, Wiy 1 (P -+, Pim1,¥01), W2, - U1, U © B4, i1, o, i)
(=D i1 (D1, Gim 1 U Mk 1 (Y2, - U1, U @ Biy Bigds -, Dk Phit Ly - s D)
=0 (by Lemma [7.3).
(¢) (¢i-2;(di-1,%1)) € Thick. Then, ((¢i—1,%1);12) € Thick.
(i) ¢ = 1. This is the same with 1.(a).
(i) ¢ = 2. Then, (5, %3, .-, Yn_1,Vn ® @2, @3, ..., ) € Disc.
(—1)! " me (1, M (1, o1, U © 62), 03, i)
+ My —3(M3(d1, Y1, ¥2), Y3, o, Y1, 0n @ P2, ¢35, ..., i)
=0 (by Lemma [7.2).
(i) 3 <i < m. Then, (¢1,...,0i—2, ¥y, .., Vn_1,Vn ® P, Git1,-- -, Pm),
(P15 s Bimss O 0,2, o V1,00 ® Giy i, - - ., b)) € Disc.
(—1)lo2lHolm (b, i M (Y1, Y1, U @ 65), i1, - -, D)
+ My —3(P1, - -y Gi3, M3(Pi2, Pi1,¥1), Y2y oo, Y01, U0 @ Biy Di1, - i)
+ (=D s (B, i, ma(Bio1, U1, 02), P, - Y1, U @ Biy Byt D)
=0 (by Lemma [7.2).
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%
Composition sequence. Suppose that ¥ = (¢1,...,%,;¢;) is a composition sequence. Then, there are the
following cases.

(1) 1<i<m. Thenv (¢i—17¢1)7(1/’m¢i+1) S Con and (¢1a"'7¢i—25¢i—1 .71}1711[}25'"a¢n7¢i+1a"'a¢m)7
(1,5 Pim1, 01, s Un—1,%n ® Piy1, Gita, - -, dm) € Disc.

(=)l (b1 it M (W1, o W)y Dig s e s i)

+ Mygn—2(d1, - M2(Pim1,91), V2, .-, U, i1, - - -, Om)

+ (=n)lealthn ety (G, Gt U1 Y1, M2 (Vs Big1), Dig2s - - s D)

=0 (by Lemma [7.3).
(2) i =1. Then, (Y1,...,Yn_1,%n ® d1, P2, ..., dm) € Disc.
Mo (M (1,5 n), B2y Gn) + (D) H Ol o (s 1, Mo (Y0, 62), 63, D)
=0 (by Lemma [7.3).
(3) i =m. Then, (¢1, .-, Pm—1,Pm_1®W1,V2,...,1,) € Disc.
(=)= g (1, Gt W (1 Un) + W2 (01, G2, M (D1, 1), 2, )

=0 (by Lemma [7.3).

Thick triple. Suppose that (¢7; (¢1,12)) is a thick triple. Then, (¢, ¢i+1) € Con. If not, ¢, 41, ¥1, and ¥
are all defined by the same interior marking, say p. Since (¢1,12) is a thick pair, p cannot define an interior
morphism from ¢(t3). This contradicts the fact that s(¢;11) = t(¢;) = t(1p2). This proves that ¢; and ¢;1 are
concatenable. Also, we have ((¢1,12); ¢i+1) € Thick. Moreover, t(11) divides ¢y, into ¢ e 7 for some k # i,i+1
so that (Y2, dit1,. .., Pk—1,01)s (V1,08 Prt1s---sPi—1, @) € Disc. Then, there are the following cases.

(1) i+1<k

W (D1, -+, Gim1,m3(9], Y1, 2), Gig1s- - - )
+(-1) o0 (b1, Gim1, 6, M3 (Y1, Y2, dig1), Pit2, - -, Omn)

(=D o (D1 D1y D U, Mg i1 (Y2, Pi s -+ Bl s Pht s -+ s Brm)
=0 (by Lemma |[7.2).
(2) k < i. This further has the following two subcases.
(a) i <m.
(_1)‘¢k‘+m+|¢i_l‘+k_i+1mm(¢1) ey ¢i—17m3(¢1/'\7 wla wQ)a ¢i+1a ey (bm)
+ (=1)IelHFldial+ 97 R (D1 i1, D1 M3 (1,2, Dig1)s -y i)
+ Mt ki1 (D15 oy Ghe1, Moy 2 (Pry - -+, D1, OL V1), V2, Pi1, -, Pn)
=0 (by Lemmal7.2).
(b) i =m.

oA

(71)|¢k|+m+‘¢m71‘+kim+1mm(¢la sy d)mfla m3(¢r/>m ¢1, 1/12))
+ mk+l(¢17 ceey ¢k717mm7k+2(¢k; cery (bm,]_, QN 1p1)7 ¢2)
=0 (by Lemma [7.2).

The case of ((11,12);"¢;) is symmetric.

7.2.4. Composition sequence. Here, we deal with the case when the outer-input is a composition sequence
¢ = (¢177¢ma9)
Concatenable pair. Suppose that ¢; has a decomposition ¢} e ¢?. Then, there are the following cases.

(1) 1 <4 < m. This further has the following six subcases.
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(a) t(¢;) divides ¢; into ¢} e ¢3 for some j with i — j| > 1.
(1) .7 <i-—1 Then’ (¢§a¢i+1; e a¢j—1;¢zl) € Disc and (¢17 e 7¢i—17¢;7¢?5¢j+1a cee 7¢ma0) S
Comp.
(=)l ealt ol i, (h1, . G 1, Mo (B, 02), Pi s -+ s i)
F M1 (P1s ey Dim 1, M i1 (Do ooy Pim 1, OF)y D7, Di1s - -+ s i)
=0 (by Lemma [7.4).

(ii) j >+ 1. This is symmetric to the previous case.
(b) t(¢)) meets t(¢;) with an interior morphism ¢ so that (¢, ¢;4+1) € Con and the following hold.
(i) j <i—1.1In this case, (¢1,...,0j—1,0;9Pji1,Pjt2s- s Pim1, OLs 07, Dit1s- -+, Gm30) € Comp.
(A) € is from t(¢}) to t(¢;). Then, (¢ji1,...,¢i—1, 9}, &) € Disc.

M (P15 @j—1,M2(9), Bjt1), Djg2, - - -, D)
+ (=) lsl IO O () o, dimr, Mo (0], 67), Bk - )
=0 (by Lemma [7.8).
(B) ¢ is from t(¢;) to t(¢}). Then, (¢ji1,-..,Hi—1,61;&) € Comp and
(P15, & 07, bi1, -+ Gms 0) € Comp.
Mo (D1, s @j—1, M2(Bj, Pjt1), Pjtas - o, Bm)
+ D) i (G, by M (1, Gim1,61), 6F, Bir, -, i)
+ (_1)\<f>_7’\+|¢j+1|+~~+|<15i—1|+ifjmm(¢17 Gos s ity Mo (B, 02), Dig1 - s bm)
=0 (by Lemma [7.7).

(ii) j > 4. This case is symmetric to the previous case.
(c) t(¢}) meets s(6) on the left with an interior morphism & so that (£,6) € Con. Then, (£, ¢1,...,¢i—1,0}) €

%

Disc and (¢2, hit1,- -, Pm;E @) € Comp.
My (1, i1, M2(F, B7), i1, - -+, D)
+ (DI g (- i, O, M1 (62, Gi1, - b))
=0 (by Lemma [7.5).

(d) t(¢}) meets t(6) on the right with an interior morphism & so that (6,€) € Con. This is symmetric
to the previous case.

(e) 0 has a decomposition ¢; e 1 and t(¢}) meets s(¢1) with an interior morphism ¢&.
Then, (¢a,. .., ¢i—1, P} P2, hit1,--.,Pm;n) € Comp. This further has the following two subcases.
(i) € is from t(¢}) to s(¢1).
(_1)|¢2|+M+‘¢i_1|+i72m’m(¢17 RN} ¢i—1a m2(¢117 (Zf)a ¢i+17 B 7¢m)
+ m2(¢17mm(¢27 ) (i)ifl; }’ 127 ¢i+17 ) d)m))
=0 (by Lemma [7.9).
(11) g is from S(¢1) to t(¢11) Then7 (¢17 ey ¢j717 ¢37 5)7 (57 ¢127 ¢i+17 ey ¢m; 0) S Comp
(71)|¢1|+m+‘¢i71|+i71mm(¢17 SRR ¢i—17 m2(¢%7 ¢$)7 ¢i+17 s 7¢m)
+ mm7i+2(mi(¢la teey (bifla ¢21)7 ¢22u ¢i+13 teey (bm)
+ (_1)‘¢1|+1m2(¢1?mm(¢27 R ¢i—17 ¢7}7 ¢12) ¢i+1; ey (bm))
=0 (by Lemma [7.11]).

(f) 0 has a decomposition 7 e ¢,,. This case is symmetric to the previous case.
i = 1. This has three subcases.
2) 4 =1. This has th b
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(a) t(¢1) divides ¢y, into ¢} @ ¢2 for some k > 2 so that (47, ¢o,...,dk—1,¢1) € Disc and
(41, 2, Pk, .., dm;0) € Comp. This is the same with the case 1.(a).ii.
(b) t(41) meets t(¢y) for some 1 < k < m. This is the same with the case 1.(b).(ii).
(c) 0 has a decomposition 7 e ¢,,, and t(¢}) meets t(¢,,). This is the same with the case 1.(f).
(3) i = m. This is symmetric to the previous case.

%
Disc sequence. Suppose that ¥ = (¢1,...,1,) is a disc sequence such that (¢, ¢;) € Con. Then, we have the
following cases. The case of (¢;,171) € Con is symmetric.

(1) i=1.
(a) 91 and 0 are defined by the same interior marking. This further has the following three subcases.
(i) 8 =y o £ for some nonzero &. Then, (Yo, ..., 0n_1,%n ® d1,02,...,¢m; &) € Comp.

mm(mn(wla sy wn—h’(/Jn L4 ¢1)7 ¢2; sy ¢m)
+ (71)|w1‘+1m2(w17mm—i—ﬂ—?(w% s 7wn—17wn 4 ¢1a ¢27 ceey ¢M))
=0 (by Lemma .
(ii) 0 = 1p1. Then, (¢m,12) € Con and (Y2, .., Yn_1,%n ® d1, P2, ..., Pm) € Disc.
mm(mn(wla sy wn—17¢n o ¢1)7 ¢2; ey ¢7n)
+ (71)|w1‘+1m2(w17mm+n—2('¢)23 s 71/1n—1,¢n 4 ¢1a ¢27 ) (rbm))
=0 (by Lemma .

(iii) 11 = 0 @ ¢ for some nonzero . Then, ¢(£) divides ¢y, into ¢ e ¢ for some 1 < k < m so that
(d)Qv s 7¢TL—13 ¢TL ° ¢17 ¢27 L} ¢k—17 ¢11g) € Disc and (57 ¢ia ¢1€+17 LR} d’m) € Disc.

mm(mn<’¢}17 LRI 71/}n717 wn o (bl)a ¢27 ey ¢m)
+ (_1)‘¢1|+1mm—k+2(¢17mn+k—2(¢27 e 711)'0—1’1/)” L4 ¢17 ¢27 sy ¢k‘)a ¢k+17 e 7¢m)
=0 (by Lemma [7.3).

(b) s(t2) meets (1)) on the right with the interior morphism t. Then, s(¢2) divides ¢y, into ¢} e¢? for
some 1 < k < m so that (¢2, e awn—h’l/)n.(éla ¢27 ) ¢k—17 ¢]1€> € Disc and (z/)la (bi? ¢]€+17 ey (bma 9) S

Comp.
My (M (V1o V1, @ D1), 02, o, O)
+ (D) o (Y My ko (Y2, a1, U @ G1, G2, BR), Dhtts s D)
=0 (by Lemma [7.3] [7.11).
(c) t(¢m) meets t(1hy,) on the right with the interior morphism 6. Then, ¢(¢,,,) divides v, into ¢} 3 for
some 1 < k < n so that (Y2, ¥k11,. -, Vo1, Vn @1, P2, ..., ¢m) € Disc and (11, ..., Yk_1,%1;0) €

Comp.

mm(mn(/(pla cee 7’(/}7171’ d}’n L4 ¢1)7 ¢23 ey (b’rn)

A+ (=)l e Ry (g 1, Mgk (Vks - Y1, U @ G1, B2, Bim)

=0 (by Lemma [7.3).
(2) i > 1. This further has the following four subcases.
(a) (¢i717’(/)1) € Con. Then7 ((bl? LR ¢i727 (bifl o ¢17 wQa LR ¢n7171/1n L4 ¢i7 ¢i+17 LR 7¢m7 9) € Comp
(D)1= (b1, Gim 1, M (D1, V1, U @ Di)y Pis -+ s O
+ mm+n—2(¢17 ey ¢i—27m2(¢7ﬂ—17 ¢1),¢27 e 7wn—1awn L4 ¢i7 ¢i+17 ey ¢m)
=0 (by Lemma [7.4).
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(b) s(t2) meets t(1),,) on the right with the interior morphism ;. This further has the following three
subcases.
(i) s(¢2) divides ¢y into ¢ @ ¢2 for some k such that k <4 —1 or k > i.
(A) k<i—1. Then, (¢1,..., Pr—1,0p, %2, Vn_1,"%n ® di, Git1, ..., 0m;0) € Comp and
(¢i7 ¢k+2a ey (bi—l?wl) € Disc.
(_1)‘¢k‘+m+|¢i71‘+i_kmm(¢1a ey (bi—lymn(wla cee 71/)71—1) wn L4 ¢i)7 ¢i+17 sy ¢m)
+ Mtk 1 (@1, P, Mg 1 (Bhy -+ o5 i1, 1), W25 V1, P @ Dy i1y s i)
=0 (by Lemma [7.4).
(B) k> i. Then, (Y2,...,¥n_1,%y ® ¢i, Gig1,-..,Pr—1,01) € Disc and
(¢17 DRI ¢i—1a¢1a ¢z7 ¢k+1) R ¢m7 9) S Comp
mm(¢17 sy ¢i717mn(’¢17 e 71/177,7171#71 L ¢Z)7 ¢i+17 ey (bm)
+ (=) e (B Gim, r My i1 (V2 Y1, P @ iy it ts ey DRy Dhitts - -+ s D)
=0 (by Lemma[7.2] [7.4).

(ii) t(¢1) meets s(6) on the left with an interior morphism & so that (£,6) € C on.
Then7 <w2a s 7’(/}1'7,71’ wn i ¢i7 ¢i+17 ) ¢ma g hd 9) € Comp and (ga ¢17 ) (bifl),(/Jl) € Disc.

mm(¢1a ) (Zsifl,mn('l/}la s 7wn71awn L4 Qsi, ¢i+17 ey ¢m))

+ (D) (B Gim 1 1, M i1 (Yo, 1, Y @ Giy ity s Bm))
=0 (by Lemma [7.9).

(iii) t(t)1) meets t(0) on the right with an interior morphism ¢ so that (0,£) € Con.

Then, (¢1,...,¢i—1,¥1;0 @ &) € Comp and (§,v2,...,Yn—1,%n ® ¢i, dit1,...,bm) € Disc.
(_1)‘(1)1‘+"'+|¢i—1‘+’i*1mm(¢17 DRI ¢i—17 mn(1/}17 DR 11[}%—17 wn L4 ¢l)7 (bi-i-lv ey ¢m)
Mg (Mi(1, - Gim1, 1), Y2, s Vi1, U @ iy Pig1s -, D)
=0 (by Lemma [7.10].

(¢) i = 2 and s(0) meets t(1),) on the left with the interior morphism ¢;. Then, s(6) divides v, into
i @92 for some 2 < k < n so that (¢1,¢1,...,¥k_1,%}) € Disc and

(¢]%a ¢k+1’ e a¢n—1,¢n L4 ¢25 ¢3a sy ¢77I7 0) S Comp
<_1)|¢1|+1mm(¢17 mn(z/}h e 71/}77,717 ¢n o ¢2)7 ¢37 sy ¢m)
+mn+m—k—1(mk+1(¢1a wla e 71/%)’ ’l/)k‘-‘rlv cee 71/)TL—13 ¢n o ¢27 ¢37 DI ¢m)
=0 (by Lemma [7.3] [7.10).
(d) i > 2 and s(¢;i—2) meets s(¢;) on the left with the interior morphism ¢;_1 Then, s(¢;_2) divides
Yy into L e 12 for some 2 < k < n so that (¢i—1,%1,...,¥k_1,¥1) € Disc and
(¢17 ey ¢i727 ¢]€a ¢k+1a e 7wn717wn L4 ¢i7 ¢i+17 sy ¢m7 6) S Comp
(D)1= e (61, dim 1, M (W1, Y1, Yn @ 8), Bt -, Bin)
FMpymk-1(01, s Gim2, M1 (G 1, U1, - V), Vkt1s o Un—1,Vn @ Gy Gig1, oo )
=0 (by Lemma [7.3] [7.7).
(3) (¢i—1,%n) is a thick pair so that ((¢;—1,%1);12) € Thick. Note that ¢ # 2 by thick condition. Then,
(D1, bim2, & 11, V1, U0 @ Gy i1y, B3 0),
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(P15 Pim1, Y s o1, Y0 @ Giy Giga, - - o, B; 0) € Comp.
(1)l Pi2 T 2m (b i1, M (Y1, P, Y ® B2), Bigts - - Brm)
+ Mypgn—3(d1, - - s Gi—3, M3(Pi—2, i1, Y1), Y2, o, 1,0 @ i, Pit1, .. Pim)
+ (=D)L (61, dima, Mg (Gim1, Y1, P2), Vs, U1, U @ By g i)
=0 (by Lemma [7.7] [7.13).

_)
Composition sequence. Suppose that ¥ = (i1,...,%,;¢;) is a composition sequence. Then, there are the
following cases.

(1) 1<i<m. Then, ((7251‘_1,1/}1), (”([Jn, (7251‘4_1) € Con and (¢1, ey ¢¢_2, ¢i—l ) 1/)1,7/12, . ,Ql)n, ¢¢+1, ey ¢m, 9),
(¢17 ) d)i—hd)lv s 7wn—1a wn b4 d)i-‘rla ¢i+2a sy Qbm, 9) S Comp.
(_1)|¢i71|+1mm(¢17 ey (biflumn(wla ... 7wn)7 ¢i+17 ey ¢m)
+ m7n+n—2(¢la s am2(¢i—1a ¢1)7¢27 o ;¢m ¢i+17 o 7¢m)
+ (=)l g o (Gr, s Gic W1 a1, Mo (Y, Gig1), Bigas s i)
=0 (by Lemma [7.7).
(2) i =1. Then, § = 1, @ §’ for some nonzero &'. Then, (Y1,...,Yn_1,%, ® P2, P3,...,Im; ),
(1/’27 e 77/%7 ¢27 DR ¢Tn7 0/) c Comp

W (M (Y1, %), B2, o, Bin)
(=t (W, Y1, Ma (Y, 62), B3, )
+ (D) g (1, M2 (Y2, Uy G2, Gn)

=0 (by Lemma .

(3) i = m. This is symmetric to the previous case.

Thick triple. Suppose that ((11,%2);"¢;) is a thick triple. Then, as we have shown in the disc sequence case,
(¢i—1, i) € Con. Then, there are the following cases.

(1) i = 1. This further has the following three subcases.
(a) 11 = Oef'. Then, t(¢)1) divides ¢y, into ¢;.e¢% for some 1 < k < m so that (2, “d1, P2, ..., Pk—_1, P}),
(0, 92, rs1,- -, dm) € Disc.

mm(m3(¢17¢27 A¢1)7 ¢27 sy ¢m)
+ (_1>|w1|+1mm7k+2(w17mk+1 (1/}27 /\(bla ¢27 LR ¢k}717 ¢k)7¢k:+1a RN (bm)
=0 (by Lemma [7.5] [7.13).
(b) %1 = 0. Then, (¢2,"d1,¢2,...,¢m) € Disc.
mm(m3(1/)177/)2a A¢1)7 ¢23 sy ¢m)
+ (‘1)|¢1|+1m2(¢17mm+1(¢27 /\¢17 ¢2a ey (bm))
=0 (by Lemma [7.13).
(c) @ =11 0. Then, 1y = 0" o & and (£, b1, b2, ..., bm) € Disc.
mm(m3(¢17¢2; A¢1)7 ¢23 ceey Qbm)
+ (_1)|¢1|+1m2(¢17mm+1(w27 /\¢17 ¢2a [ERE) (bm))
=0 (by Lemma [7.13).

(2) > 1. Then7 (¢i—1a (b’b) S COH, (¢i—1; (wla ¢2)) S ﬂliCk7 and ((bla ey ¢i—27 ¢1\'/—17 /\¢ia ¢i+17 ey (bmv 9) S
Comp. This further has the following three subcases.
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(a) t(x1) meets s(0) on the left with an interior morphism & so that (£,6) € Con, (§, ¢1,...,di—1,%1) €
DiSC, and (wQa d)g\v ¢i+17 sy Qbmv 5 L4 0) € Comp

(1)l o2l =2 (b, dima, ma(Bim1, Y1, U2), O, Bist, - -, i)
(=)l O T (L i1, m (Y1, 82, 00), ikt )
+ Wiy (Mi(P1, oy Gim1,U1), 2, 0 big1s - s Om)

=0 (by Lemma [7.5] [7.13).

(b) t(¢1) meets t(6) on the right with an interior morphism & so that (6,&) € Con, (¢1,...,¢;—1,%1;0e
&), and (&, 12, dL, Pit1,- .., Pm) € Disc. This case is symmetric to the previous case.
(c) t(t1) divides ¢y, into ¢, e 7 with k <i—1 or k > 1.

(1) k <i—1. Then7 (¢17 sy ¢k71a ¢]£;7¢27 (b;\v ¢i+17 e 7¢m7 9) S Comp7 and (¢£7 ¢k+17 e 7¢i717¢1) S
Disc.

(—D)lonlt bl ikl (6, dima, ma (i1, Y1, U2), OL, dists -, )

o+ (—1)lorlreFe TRy (1, i1, ma (W, U2, 1), iy, i)

+ M —ig kg 2(D1, -y Okt Mo 1 (P -5 D1, ¥1), V2, B, Pige1s - - -, i)
=0 (by Lemma|[7.4] [7.13).

(ii) &k > 4. This case is symmetric to the previous case.

_>
7.2.5. Thick triple. Here, we deal with the case when the outer-input is a thick triple ¢ = (¢1; (¢2, ¢3)). The
case for a thick triple ((¢1, ¢2); ¢3) is symmetric.
Concatenable pair. Suppose that ¢; has a decomposition ¢} @ ¢?. Then, there are the following cases.

(1) i = 1. Then, (¢?%; (¢2, ¢3)) € Thick and ¢ e (¢3)" = ¢y .

mg (ma (@1, 62), 62, 63) + (—1)|#1 1 my(6}, ms (63, 62, 03)) = 0.
(2) i =2. Then, (¢2,¢3) € Con and (¢1; (pL, ¢2 @ ¢h3)) € Thick.

g (61, ma(0}, 63), é3) + (— 11?2 my(61, 65, ma (0, 03)) = 0.
(3) i = 3. The same with the previous case.

%
Disc sequence. Suppose that ¢ = (¢1,...,1%,) is a disc sequence with (¢;,11) € Con or (¢, ¢;) € Con. There
are the following cases.

(1) (¢1,%1) € Con. Then, ((¢2,d3); "¢b1) € Thick. Also, (¢, 91) € Con and t(¢2) divides ¢y, into 1 e 97
for some 1 < k < n so that (Mp1,90, ..., Yk—1,0%, ¢3), (U2, Vktt1,- -, Pn, 2) € Disc.

mg(my, (¢1 @ Y1, 2, ... ), P2, P3)
+ (=)l R e R (G @ 1, W ket M k2 (Vs - Y, B2), B3)
=0 (by Lemma [7.13).
(2) (¥n,d1) € Con. Then, (¢, ® ¢1; (P2, ¢3)) € Thick.
ma (M, (Y1, .o, Y1, Yn @ 1), @2, 03)
(=)l e T (g g, mg (3 @ B, d2, 63)) = 0,
(3) (¢2,91) € Con. Then, ¢35 = 11 e 0 for some nonzero 6 and (¢1; (¢2 @ ¥1,6)) € Thick.
g (¢r, M (@2 @ 1,2, Un), 03) + (— D) g (g1, dy @ 1, m (., 65)) = 0.

(4) (¢n, P2) € Con. As (p2, ¢3) is a thick pair, this case is not valid.
(5) (¢3,%1) € Con. As (2, ¢3) is a thick pair, this case is not valid.
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(6) (¥n,d3) € Con. Then, ¢o = 0 e 1,, for some nonzero 6 and (¢y; (6,1, ® ¢3)) € Thick.

(=) g (d1, doy M (1,0 Y1, G @ 63)) + Ma(d1, Mp (D2, 91, Y1), @ 63) = 0.
Composition sequence. Suppose that E> = (¢1,...,%n) is a composition sequence with value ¢;. Since the value
of a composition sequence is an interior morphism, ¢ = 2 or ¢ = 3.

(1) 4= 2. Then, (¢1,%1) € Con and (Y1, %2, ..., %n, ¢3) € Disc. Note that ¢ ey = ¢y e 7.
(=) g (g1, mn (1, ¥n), 05) + g1 (ma(61,81), Y2, -, Y, 03) = 0.

(2) i = 3. Then, t(1,,) = t(¢7y). This has three subcases.
(a) ¥, = 0 e ¢ for some nonzero #. This further has the following three subcases.
(i) t(#) divides 9y, into 1}, @ ¥? for some 1 < k < n — 1 so that (¢1, P2, %1, ..., 9¥k_1,%}) and

(Y2, Y41y, ¥p_1,0) € Disc.
(= 1) 2 mg (6, o, m (1, -, )
+ My g1 (Met2(d1, P2, V15 oo Vk), Yet1, -5 )
=0 (by Lemma [7.2] [7.13).
(i) t(0) meets t(1px) on the left for some 1 < k < n — 1 with an interior morphism £ so that
(P1, P2, %1, 3 €) € Comp and (&, Vpi1,---,Yn_1,0) € Disc. In this case, (Vr, Yr+1) €
Con and (¢1, P2, Y1, -, V-1, Yk ® Vi1, Yo, - - -, Yn—1,0) € Disc.
(1) 2mg (b, o, my (1, )
+ M1 (Me2(91, P2, V15 k) kg1, -, Yn)
+ (=1l e R (B o, 1, ke 1, Mo (ks Yr1)s P2 - -5 Yon)
=0 (by Lemma [7.13).
(iii) t(0) meets t(1x) on the right for some 1 < k < n — 1 with an interior morphism £ so that
(b1, P2, 01, -+, Up, &) € Disc and (Ygs1, ..., Yn_1,0;¢) € Comp. In this case, (x,Vri1) €
Con and (@1, do, 1, -, Vk—1, %0k ® Va1, Vks2,---,Pn_1,0) € Disc.
ms(d1, G2, Mn (Y1, ..., ¥n))
+ (=)l e TR (G, 02,01, Vet Mo (Pk, Yk )y Vg, - - )
=0 (by Lemma|[7.3] [7.13).
(b) b, = ¢Y. Then, (é1,p2,%1,...,%n_1) € Disc.
(1)l 2 mg (1, G, m (1, ¥n)) + Mo (Mpg1 (G1, 2,91, - Y1) Uon)
=0 (by Lemma [7.13).
(c) ¢y =6 e1),. Then, ¢ = 0 @) and (¢o,1,...,1") € Disc.
(=D)I 122 2 mg (1, o m (W1, -, ) + Mo (Mg (D1, B2, Y1+ Y1), )
=0 (by Lemma [7.13).
Thick triple. The last case is that $ is a thick triple whose value is ¢;. The only possible case is E) =
(1, 92)543) with Vob3 = ¢1. Then, (¢35 (¢2, #3)) € Thick.
ms (Y1, Yo, ma (Y3, P2, @3)) + ma(ms (Y1, Y2, ¥3), P2, d3) = 0.
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