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Abstract—Intelligent communications have played a pivotal
role in shaping the evolution of 6G networks. Native artificial
intelligence (AI) within green communication systems must meet
stringent real-time requirements. To achieve this, deploying
lightweight and resource-efficient AI models is necessary. How-
ever, as wireless networks generate a multitude of data fields
and indicators during operation, only a fraction of them imposes
significant impact on the network AI models. Therefore, real-
time intelligence of communication systems heavily relies on a
small but critical set of the data that profoundly influences the
performance of network AI models. However, this aspect remains
unclear and often overlooked. These challenges underscore the
need for innovative architectures and solutions. In this paper, we
propose a solution, termed the pervasive multi-level (PML) native
AI architecture, which integrates the concept of knowledge graph
(KG) into the intelligent operational manipulations of mobile
networks, resulting in the establishment of a wireless data KG.
Leveraging the wireless data KG, we characterize the massive and
complex data collected from wireless communication networks
and analyze the relationships among various data fields. The
obtained graph of data field relations enables the on-demand
generation of minimal and effective datasets, referred to as
feature datasets, tailored to specific application requirements.
Additionally, this approach facilitates the removal of redundant
data fields with minimal impact on network AI performance.
Consequently, this architecture not only enhances AI training,
inference, and validation processes but also significantly reduces
resource wastage and overhead for communication networks. To
implement this architecture, we have developed a specific solution
comprising a spatio-temporal heterogeneous graph attention
neural network model (STREAM) as well as a feature dataset
generation algorithm. Experiments are conducted to validate the
effectiveness of the proposed architecture. The first experiment
validates the advantages of STREAM in the wireless data KG link
prediction, demonstrating its exceptional capability in handling
the spatio-temporal data. The second experiment confirms that
the PML native AI architecture effectively reduces data scale
and computational costs of AI training by almost an order
of magnitude. This affirms its potential to support green and
prompt-response network intelligence for the next-generation
wireless networks.

Index Terms—Mobile networks, native AI, green intelligence,
wireless big data, graph embedding, feature datasets.

I. INTRODUCTION

THE future landscape of mobile networks is undergoing
rapid expansion, characterized by a surge growth in

connected devices, mobile data traffic, and an imperative
for new functionalities and applications [1]. Consequently,
forthcoming networks are expected to embrace innovative ar-
chitectures and supporting technologies to ensure the extreme

connectivity for seamless coverage and high-value services
[2]. Traditional operational models and rule-based algorithms
confront challenges in adapting to evolving user demands
and network environments. Though it is widely known that
achieving native AI is crucial to enable advanced autonomous
driving and customized services within the network [3], the
development of native AI driven by data and model synergy in
wireless networks is still in its early stages, facing significant
challenges in data, architecture, and algorithm design [4]. One
specific challenge lies in real-time requirements for native AI
in communication systems [5]. Leveraging rapidly advancing
large language models (LLMs) can be helpful at the cost of
extensive computational and storage resources, hindering real-
time communication and exacerbating energy consumption.
According to the GSMA report, considering only mobile net-
works, the annual energy consumption is approximately 130
TWh, with greenhouse gas emissions of around 110 MtCO2e,
accounting for about 0.6% of global electricity consumption
and 0.2% of global greenhouse gas emissions. As per the
International Energy Agency’s “Net Zero by 2050” report,
global greenhouse gas emissions need to be cut in half by
2030 [6]. Therefore, the “green” issue will continue to be a key
focus in the development of 6G [7]. In future 6G intelligent
communication, the development of green and lightweight
intelligent solutions will be especially critical.

Among these challenges, data stands out as the cornerstone
forming the crucial foundation [8]. One primary way of
attaining green and lightweight native AI primarily lies in
understanding the data comprehensively, extracting highly-
valuable knowledge, and unveiling essential data insights
through a meticulous process of data analysis and exploration.
Mobile communication networks generate tons of data fields
and indicators during their network operations. Among the
massive amount of data, certain data fields and indicators
have interdependent effects on AI models, while others poses
minimal impact. Hence, the effective classification, analysis,
and extraction of features from diverse data types, along with
geneating minimal and effective datasets (referred to as feature
datasets) tailored for different on-demand applications, is
crucial for driving AI training, inference, and validation. This
process stands out as the most fundamental challenge in the
development of 6G native AI and represents the most efficient
approach to achieving intelligent and simplified networks [9].

To address these challenges, we advocate a new architec-
ture of pervasive multi-level (PML) native AI for networks
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by involving the proposed knowledge graphs (KG) into the
domain of mobile networks, resulting in the establishment of
a wireless data KG. The core of this architecture lies in the
utilization of the wireless data KG to organize and condense
intricate and disordered wireless data, thereby extracting a
concise subset of the wireless data that represents the most
effective and critical impact on network AI models using
a large volume of wireless data. As a result, this approach
loosens the need for extensive dataset scale that is traditionally
required for the AI model training, consequently reducing the
costs associated with training these models. This ultimately
leads to the creation of a green, efficient, and lightweight AI
network.

A. Related Work

In recent years, there has been a surge in the development
of native AI architectures tailored for wireless networks,
which has enhanced the performance of wireless systems
in both academia and industry. Researchers have developed
data-driven architectures and methodologies for managing
wireless data, incorporating deep learning (DL) techniques
and intelligent computing frameworks [10]–[12]. Additionally,
other researchers have explored the general processes involved
in handling wireless big data, encompassing data acquisition,
preprocessing, storage, model design, training, and application
[13]. It is important to note that the aforementioned studies
predominantly focus on leveraging data and AI algorithms to
address existing challenges within wireless networks, without
delving deeply into comprehensive analysis and understand-
ing of the system itself. Moreover, while these endeavors
have introduced new data processing technologies into the
domain of wireless communication, the potential requirement
of additional overhead and energy consumption stemming
from these technologies has not been adequately considered.
Therefore, the proposed PML native AI architecture not only
enables the utilization of the wireless data KG to elucidate
the underlying relationships within wireless data but also
facilitates the generation of feature datasets through intelligent
inference. This approach effectively reduces the data collection
scale and the training cost of AI models.

The core component of the PML native AI architecture is to
construct a high-quality wireless data KG. Currently, wireless
data KGs are typically crafted by experts through parsing the
parsing of the 3GPP protocols. However, this manual con-
struction process is labor-intensive and prone to information
loss and even errors due to the subjectivity and limitations
of expert knowledge. Moreover, the unpredictable, intricate,
and dynamic nature of future networks transforms the wireless
data KG into a massive and highly dynamic KG for each com-
munication instance. Hence, achieving a balance between the
quality, efficiency, and cost in constructing wireless data KGs
has become a fundamental concern in practice. To enhance
the efficiency and accuracy of establishing a wireless data
KG, it is imperative to integrate wireless expert knowledge
and protocol understanding with the wireless big data, fully
exploring and utilizing their potential. Consequently, task of
the link prediction based on wireless big data and wireless

data KGs emerges as a key research focus. Traditional link
prediction algorithms only utilize graph structures and attribute
information to calculate the similarity between nodes [14].
In the wireless data KGs, however, nodes not only possess
graph structure and attribute data but are also accompanied
by collected wireless big data. Moreover, relationships within
the wireless data KG, as well as the data from nodes, ex-
hibit variability under different environmental conditions. This
results in specific instantiations of the wireless data KG at
each sampling point and contributes to a highly dynamic
framework. Nodes within each instantiation of the wireless
data KG not only reveal spatial correlations related to protocol
specification processes but also demonstrate temporal correla-
tions across different wireless data KG instantiations. Given
these characteristics, conventional link prediction methods are
not directly applicable to the wireless data KG. Consequently,
exploring the comprehensive integration of wireless big data,
graph attributes, and graph structure data becomes essential.
The development of appropriate graph embedding algorithms
and their applications in the link prediction for wireless data
KG management is thus imperative.

Graph embedding is a method that reshapes complex graph
data into a continuous low-dimensional space. This process
preserves vital information, capturing the inherent network
structure while efficiently compressing redundant data [15].
Across diverse domains, e.g., bioinformatics and social net-
works, graph embedding methods have been successful in
seeking to reveal hidden relationships and features within
graph data. Despite their adaptability, these methods frequently
overlook the nuanced manipulations of the node-level data,
neglecting the dynamic relationships inherent in the graph.
In addition, they often failed to account for the non-uniform
nature of node attributes and the robust spatio-temporal cor-
relations within the collected data [16].

Upon completing the graph embedding learning and link
prediction tasks, we not only acquire the graph structure of
the wireless data KG but also determine the similarity between
nodes, which provides a metric for the relationship between
nodes. To uncover the critical factors that influence the Key
Performance Indicators (KPIs) in experiments, we exploit the
graph structure and the degree of inter-node relationships to
evaluate the impact of each node on the KPIs and rank them
accordingly. Subsequently, by considering both fitness and
feature compression rate, we can choose the minimal efficient
dataset comprising the top-ranked nodes that are identified
with the most significant impact on KPIs. This procedure en-
sures lightweight input for subsequent AI algorithms, enabling
real-time and green intelligence.

B. Contributions

Based on the aforementioned considerations, this paper
proposes a PML native AI architecture that utilizes a wire-
less data KG as its core component, contributing to the
advancement of green intelligence. By extracting a mini-
mal yet highly effective feature dataset closely connected
to the network AI performance from massive wireless data,
this architecture supports subsequent lightweight AI models,
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thereby reducing computational costs. Firstly, a wireless data
KG embedding learning model referred to as the Spatio-
Temporal Heterogeneous Graph Attention Neural Network
Model (STREAM) is introduced. Secondly, precise degrees
of association between wireless data fields and the graph
structure obtained through STREAM is utilized to generate
the feature dataset. Finally, the effectiveness of the generated
feature dataset is validated through a experiment. Technical
contributions of this work are summarized below.

• We establish a PML native AI architecture that leverages
a wireless data KG as its core component, extracting
crucial and effective feature datasets from massive and
complex wireless big data. This approach significantly
diminishes the data volume needed by conventional AI
model training, thereby promoting a green, real-time, and
lightweight AI solution for the wireless network.

• We develop a novel end-to-end STREAM framework
specifically tailored to the discovered characteristics of
wireless data KG. This framework excels in extracting
heterogeneous spatial, temporal, and attribute information
from wireless networks across various operating states.
The STREAM is verified skilled in link prediction tasks,
enabling a more precise capture of the correlations un-
derlying wireless data fields in dynamically complicated
communication environments. It consequently promotes
more accurate and intelligent construction and refine-
ment of the wireless data KG. These characteristics
have been validated through extensive experiments, which
demonstrate superior performance compared to existing
alternative methods.

• We propose a method for generating feature datasets
based on the wireless data KG and the two evalua-
tion metrics for assessing feature datasets. The proposed
method offers a benchmark for identifying the minimal
yet effective dataset with the dominating impact on the
performance of network AI. Experimental validations
have also demonstrated that the obtained feature dataset
can significantly reduce the costs, thereby providing a
practical pathway for realizing green intelligent wireless
networks.

The remainder of this paper follows the following structure:
Section II introduces a PML native AI framework based on the
wireless data KG, detailing the definition and characteristics
of the wireless data KG, along with an illustrative example.
Section III provides a detailed exposition of the construction
and application of the wireless data KG. Section IV presents
specific techniques for constructing the wireless data KG
with a blend of knowledge and data, as well as methods for
generating feature datasets using the wireless data KG. Section
V encompasses the experimental setup and results. Finally,
Section VI concludes the paper and discusses future research
directions.

II. WIRELESS DATA KG BASED PML NATIVE AI
ARCHITECTURE

In this section, we first propose a PML native AI architec-
ture based on the wireless data KG, as shown on the right side
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Fig. 1. Comparison of two different wireless network intelligence frameworks

of Fig. 1. In contrast, traditional wireless network intelligence
is depicted on the left side of Fig. 1. The current wireless
network intelligence primarily relies on real-time collection
of wireless big data to drive AI models for intelligent network
optimization. Due to the diversity of wireless data types, it
typically requires high-dimensional datasets and large-scale AI
networks. The data collection, AI training, and inference entail
substantial costs, making it challenging to meet real-time and
low-power requirements of wireless native AI. For the PML
native AI architecture based on the wireless data KG depicted
in Fig. 1, we propose for the first time the development
of a wireless data KG to accurately utilize key features of
wireless small data, enabling lightweight and green real-time
native AI. The proposed architecture consists of a non-real-
time outer layer and a real-time inner layer. In the outer
layer, wireless big data is collected in a non-real-time manner.
We semi-dynamically learn and construct a wireless data KG,
analyzing, understanding, and representing the current intrinsic
relationships between data fields. This allows us to identify a
critical subset of feature data that influences the current KPI.
Guided by the outer layer, the inner layer real-time collects
a significantly reduced-scale feature data set and drives real-
time AI training and inference, thereby achieving efficient real-
time native AI for wireless networks. In the proposed PML
native AI architecture, we only need to collect a small amount
of key data fields in real time, thereby being able to train
lightweight AI models, thus reducing the costs associated with
data collection and computation, and supporting the realization
of real-time, green network intelligence.

Furthermore, this section introduces the concept of the wire-
less data KG and provides a detailed description. Additionally,
we offer an illustrative example of the wireless data KG, with
a focus on throughput as a KPI.

A. Definition and Characterization of Wireless Data KG

In contrast to traditional KGs, the wireless data KG pos-
sesses several distinctive properties. Accordingly, the follow-
ing offers a definition and a comprehensive characterization
of the wireless data KG.

Definition 1. Wireless Data Knowledge Graph (wireless
data KG) is a KG that comprehensively portrays the asso-
ciation among the various factors in the environment, device
properties, and the complete flowchart protocol stack within
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wireless communication networks. A wireless data KG can be
denoted as G = {V, E ,W,T,A,X}.

The meanings of the symbols in the above definitions are
described respectively below.

• G denotes a wireless data KG. For the sake of better
examples in this paper, G can refer to the global wireless
data KG expressed in Definition 1, or to a wireless data
KG that portrays a certain local environment of wireless
communication with a KPI or several KPIs as core nodes.

• V denotes the set of all nodes in G, where the i-th node
is indicated by vi with the number of nodes |V| = N . Each
node in V corresponds to the various factors in Definition 1,
collectively referred to wireless data fields.

To distinguish the different types of nodes, vi is denoted
by (s)i, where s ∈ RN represents the node type vector of all
nodes. Let Φ : V → S be the node type mapping function,
where S denotes the set of node types.
• E is the set of all edges in G, ei,j indicates the connec-

tions between vi and vj . Guided by wireless protocols and
communication principles, the correlations between wireless
data fields are determined. However, in real communication
scenarios, these correlations between wireless data fields may
not always be established. In other words, the edges between
these nodes may change over time.

There are also multiple types of edge ei,j , which can be
denoted by relation type (R)i,j , where R ∈ RN×N indicates
the relation type matrix. Let Ψ : E → R be the relation type
mapping function, where R denotes the set of relation types.
• W ∈ RN×F is a static attribute matrix representing the

fixed attributes associated with each node. Each row of W
denotes a node and columns indicate F attributes. The fixed
attributes are determined according to the protocol, such as
node type, communication layer and adjustability.

• T = {t1, t2, · · · } primarily reflects the temporal nature
of the wireless data KG, where 0 < t1 < t2 < · · · and
ti ∈ {t1, t2, · · · } is a sampling time. Furthermore, ti and
ti+1 represent adjacent sampling times, and t1, t2, and all
subsequent ti add up to a contiguous sampling time period.
The importance of T is emphasised because the wireless
data KG may have different graph structures at these sam-
pling moments, i.e., the wireless data KG is a continuous
time dynamic graph. The wireless data KG is modeled as
a sequence of time-stamped events G = {G(t1), G(t2), · · · },
representing the graph structure corresponding to each instance
of communication, which may be the same or different, at each
sampling time.

Actually, a wireless data KG has two timelines: protocol
process and sample time series as shown in Fig. 2. Starting
with the protocol process, we have decided to use the Service
Data Adaptation Protocol (SDAP) layer, Packet Data Conver-
gence Protocol (PDCP) layer, Radio Link Control (RLC) layer,
Medium Access Control (MAC) layer, and Physical (PHY)
layer for the wireless access network. The influence between
nodes within the same layer is considered simultaneous, while
the influence between different layers follows the chronologi-
cal order according to the protocol. For instance, in the uplink,
MAC layer throughput determined at τ3 can have impact on
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Fig. 2. Dynamic graph model of wireless data KG.

the subsequent PHY layer throughput at τ4. Nevertheless,
the time difference introduced by the protocol process is
negligible, allowing the different layers to be treated as the
same timestamp in the sampling timeline. The layer to which
these nodes belong is also one of their attributes, and the rest
attributes such as node type will be described in the following.
Unlike a static graph where relations remain constant, the
graph structure keeps evolving during the sampling process
in the wireless data KG. For example, at sample time t1, the
dual_connectivity_PDCP_throughput has an effect
on the PDCP_throughput. However, due to the changes
in channel state and communication tasks, this effect may
dissipate at sample time t2.

From the above analysis, we readily see that the topology
of the wireless data KG changes over time, although not
continuously. In particular, the wireless communication net-
work channel state is stable within each the coherence time.
Therefore, the wireless data KG topology can be determined
with the assistance of coherence time. In our scenario, where
a moving car consistently sends and receives signals around
several base stations, the coherence time is computed by

Tc =
1

fm
=

λ

v cos θ
, (1)

where Tc and fm denote the coherence time and Doppler shift,
respectively, and λ, v, and θ are the wavelength, car movement
speed and clip angle, respectively. Upon the determination of
coherence time Tc, the wireless data KG can be segmented
into discrete graph slices as shown in Fig. 3. The coherence
time switch point is mTc, where m ∈ N+. In other words, the
graph from (m− 1)Tc to mTc − 1 share the same topology,
determined by the aforementioned construction process. The
m-th graph slice is denoted as Gm and the total number of
graph slices is M .

Therefore, the wireless data KG during a sampling time
period T can be modeled as a series of graph slices
{G1,G2, . . . ,GM}. The graph slice Gi represents numerous
sampling instances, each corresponding to a G(tj), signifying
that the graph structure of these G(tj) remains unchanged
within Gi. The m-th graph slice can be denoted by Gm =
{V, Em,W,Am,Xm}, where V and W remain constant; in
other words, the number of nodes and node attributes in the
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wireless data KG stays consistent over time. However, Em,
Am, and Xm vary elaborated in the following.
• A denotes the adjacency matrix corresponding to the

wireless data KG at each moment t, where t ∈ T . The element
Ai,j in i-th row and j-th column indicates whether vi and vj
are connected, which is defined as

A = (A)i,j ∈ RN×N , (A)i,j =
{
1, if (vi, vj) ∈ E
0, otherwise. (2)

and Am represents the adjacency matrix of the graph slice.
Since the graph structure of wireless data KG changes over
time, Aj varies with Gi.

• X denotes the matrix formed by the real wireless data
collected by each node in the wireless data KG. Within a
coherence time period, the wireless big data can be collected
at each time t. In Fig. 4, the data formats of the three
selected entities are presented to demonstrate this feature.
It worth to note that this authentic data is generated from
the true-data testbed for 5G/B5G intelligent network (TTIN),
which is the first real-world platform for real-time wireless
data collection, storage, analytics, and intelligent closed-loop
control [17]. Let the real data collected of node vi at time
t be xi

t ∈ R. Hence, the data collected by all N nodes at
time t can form a data vector xt = [x1

t , x
2
t , . . . , x

N
t ]T ∈ RN .

Accordingly, the data matrix corresponds to the graph slice
Gm is written as Xm, which consists of a series of data vectors
Xm =

[
x(m−1)Tc

,x(m−1)Tc+1, . . . ,xmTc−1

]
∈ RN×Tc .

B. Exploring Wireless Data KG: An Illustrative Example

In this section, we provide an example of a wireless data
KG, based on the technical specification 21.205 of the 3GPP
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Fig. 5. A partial of the constructed uplink throughput wireless data KG.

Release 17 [18]. According to the aforementioned definition,
a wireless data KG visually and in real-time depicts the cor-
relation between different wireless data fields. In the practical
construction of the wireless data KG, an illustrative example
corresponding to a graph slice within a coherence time is
presented here to offer a concise and clear representation. The
subsequent paragraphs will use the uplink throughput wireless
data KG fragment as an example to intuitively showcase the
fundamental elements of the wireless data KG. A segment
of the constructed uplink throughput wireless data KG is
visualized in Fig. 5.

TABLE I

EDGE CLASSIFICATION IN WIRELESS DATA KG

Category Number Definition Example

Causal Relation 70
Causal relation indicates a strong link between

two entities with a direct causal influence.
MAC_throughput &
PHY_throughput

Explicit Relation 35
Explicit relation describes a less tight link

with specific expression.
prb_num_ul_s &
PHY_throughput

Implicit Relation 28
Implicit relation describes a less tight link

without specific expression.
nr_total_txpower &
PHY_throughput

Total 133 / /

An uplink throughput wireless data KG centers around the
uplink throughput and visually represents the relationships
among 82 nodes in the form of a graph. Figure 5 depicts
a local view of the uplink throughput wireless data KG.
In this representation, nodes of different colors represent
different types of entities, categorized into nine classes based
on their physical attributes, namely: 1) throughput, 2) power,
3) scheduling indication, 4) modulation encoding indication,
5) resource blocks, 6) block error rate, 7) switch indication, 8)
antenna configuration indication, and 9) frame structure. Thus,
there are a total of 9 categories denoted by symbol S. Each pair
of interconnected nodes signifies a relationship between them,
categorized into three types: causal relation, implicit relation,
and explicit relation, i.e., R = {causal, implicit, explicit}. A
total of 133 relations are identified in the uplink throughput
wireless data KG, and the relation between any two entities
belongs to R. The definitions and examples of these three
types of relationships can be referred to in Table I.

III. CONSTRUCTION AND APPLICATION OF WIRELESS
DATA KG

This section primarily delves into the pathways to achieve
PML native AI, with a focus on exploring the wireless data
KG. The first task is to construct a wireless data KG by
integrating knowledge and data. The second task involves
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generating a feature dataset based on the constructed wireless
data KG. A brief description of the implementation process
and technical approach for these two tasks is provided, laying
the groundwork for the subsequent specific algorithm designs.

A. Construction of Wireless Data KG with a Blend of Knowl-
edge and Data

Acknowledging the dynamic nature of the constructed
wireless data KG, with complex relationships evolving over
time, manual construction poses challenges due to significant
labor costs and time overheads. The inherent subjectivity in
human decision-making introduces the possibility of errors
and omissions during the construction process. Therefore, a
more desirable approach involves the synergistic integration
of both knowledge and data to streamline the wireless data
KG construction. This strategic combination harnesses the
insights gleaned from manually constructed local wireless
data KGs and tapping into the vast potential of wireless
big data. By doing so, the generation and refinement of the
remaining portions of the wireless data KG can be achieved
with greater efficiency. This integrated approach not only
enhances accuracy but also contributes to a notable reduction
in construction costs.

This subsection delineates an intelligent approach to con-
struct a wireless data KG by strategically leveraging ex-
pert/protocol knowledge in conjunction with wireless big
data. Importantly, this approach avoids the need for specific
experimental processes. The emphasis here is on explaining
the processes of graph embedding learning and graph link
prediction tailored for the wireless data KG.

1) Wireless data KG graph embedding formulation: With
multiple sources of information given, useful information can
be extracted and the high-dimensional raw data can be com-
pressed into a low-dimensional representation vector, thereby
facilitating subsequent manipulation. This boils down to a
graph embedding problem.

Definition 2. Graph Embedding. Given a graph G =
{V, E ,W,T,A,X}, graph embedding is the task to learn the
c-dimensional embedding matrix Z ∈ RN×c for all vi ∈ V
that are able to capture the rich structural and semantic
information.

Graph embedding for a wireless data KG poses several chal-
lenges. Foremost among these challenges is the tremendous
amount of wireless data collected by the nodes in the graph.
This data holds vast potential information, intensifying the
complexity of its embedding. To tackle this, wireless big data
is processed in batches corresponding to the graph slices and
undergoes subsequent processing with a graph neural network
(GNN) post time convolution processing.

Secondly, the wireless data KG is characterized by its
composition as an attribute graph, incorporating various types
of nodes and edges, thus exhibiting heterogeneity [19]. This
makes it challenging to mine nodes and edges for multiple
attributes. To address this challenge, a concept of meta-path
is introduced. Then, the previously mentioned GNN will
be transformed into a heterogeneous graph attention neural
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Fig. 6. Illustration of explicit, implicit, and causal subgraphs.

network. This section will elaborate on the utilization of these
heterogeneities by meta-paths. In the wireless data KG, var-
ious relation types encapsulate distinct semantic information,
signifying different degrees of influence. Consequently, the
significance of relation types surpasses that of node types,
thereby introducing the notion of generalized meta-paths.

Definition 3. Generalized Meta-path. A generalized meta-
path ϕp is defined as a path in the form of · R1−→ · R2−→ · · · Rl−→ ·
(abbreviated as R1R2...Rl, where (·) denotes a node of any
type), which describes a composite relation R = R1◦R2◦· · ·◦
Rl between nodes, where ◦ denotes the composition operator
on relations.

Example. As shown in Fig. 6, three generalized meta-paths,
· causal−→ ·, · implicit−→ · and · explicit−→ ·, are defined, respectively.
Accordingly, wireless data KG can be divided into three sub-
graphs, i.e., causal, implicit and explicit subgraphs. Different
from the original meta-path definition, generalized meta-path
only focuses on relation types rather than node and relation
types. In what follows, generalized meta-path is simplified as
meta-path.

Given a meta-path ϕp, there exists a set of meta-path based
neighbors of each node which can reveal diverse structure
information and rich semantics in a heterogeneous graph.

Definition 4. Meta-path-based Neighbor. Given a meta-path
ϕp in a heterogeneous graph, the meta-path-based neighbors
N ϕp

i of node i are defined as the set of nodes that connect
with node i via meta-path ϕp. Note that the node’s neighbor
N ϕp

i includes itself if ϕp is symmetric.

Example. Taking Fig. 6 as an example, given the
explicit subgraph, the meta-path based neighbors of
PHY_throughput includes itself, prb_num_ul_s
and nr_pusch_tb_size_average_s. Obviously, meta-
path based neighbors can exploit different aspects of the
structure information in a heterogeneous graph.

Thirdly, the wireless data KG is dynamic, which makes it
harder to represent the continuous embedding of the evolving
graph. In this regard, different from the static graph, a con-
tinuous dynamic graph embedding problem must be formu-
lated. The objective is to devise a neural network model that
can generate c-dimensional embedding for each graph slice.
Specifically, given a series of graph slices {G0,G1, . . . ,GM},
a series of embedding matrix need to be generated for each
graph slice. That is

{Z0,Z1, . . . ,ZM} = f(G0,G1, . . . ,GM ), (3)
where Zm = [z1m, z2m, . . . , zNm]T represents the embedding
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matrix for graph slice Gm, and zim indicates the embedding
vector of node vi in graph slice Gm. Then, downstream
applications such as link prediction can be performed based
on the obtained embedding vectors.

2) Wireless data KG graph link prediction task: Following
the acquisition of node embedding representation vectors for
the wireless data KG in the preceding section, the subsequent
phase involves employing a similarity function. This function
converts the vectors of two nodes into a measure of the
degree of association between them. This measure of relational
association can be subsequently utilized to ascertain whether
a connection exists between the nodes, which aligns with the
objective of graph link prediction.

B. Intelligent Generation of Feature Dataset Based on Wire-
less Data KG

The main purpose of this section is to verify that our
proposed PML native AI architecture can achieve green and
lightweight intelligence. The work primarily involves the gen-
eration of feature datasets and the evaluation of these datasets.

1) Feature selection based on wireless data KG: In order
to identify a subset of critical nodes from a large volume of
wireless data fields that have the most substantial impact on
the target KPI, we leverage a wireless data KG for feature
selection. Here, each node represents a feature related to the
KPI node. Initially, the graph structure is used to identify
all paths connecting the KPI. Subsequently, the influence of
each node on the KPI is determined based on the relationship
between neighboring nodes on the paths. The degree of
relationship between neighboring nodes can be measured using
node similarity in link prediction tasks. The nodes are sorted
according to their impact on the KPI. Finally, feature ranking
is employed to guide the selection of features.

2) Feature dataset generation and evaluation: After se-
lecting important nodes based on their impact on the KPI
from a plethora of wireless data fields, we proceed to eval-
uate the feature dataset to ensure that we have identified a
minimally sized subset that maximizes information content
and importance. Two metrics are utilized for the assessment
and optimization of the feature dataset. The first metric is the
goodness of fit, which involves utilizing the selected nodes and
the corresponding collected data to predict the target KPI and
calculating the disparity between predicted values and actual
values. In practice, the goodness of fit needs to be ensured
at a certain level based on real-world scenarios. The second
metric is the feature compression ratio. Given the prerequisite
of ensuring a good fit, feature selection is performed based on
the feature compression ratio to maximize the retention of the
most essential information within the selected features and to
minimize redundancy. This approach reduces costs and aligns
with the requirements of green intelligence.

IV. METHODOLOGY FOR CONSTRUCTION AND
APPLICATION OF WIRELESS DATA KG

In this section, we present two specific algorithms for con-
structing and applying wireless data KGs. The first algorithm
is the STREAM framework, designed for constructing the
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wireless data KG, while the second algorithm is the feature
dataset generation algorithm based on the wireless data KG.
This section offers a detailed description of the implementation
process of these two algorithms.

A. Wireless Data KG Graph Embedding

In this section, a general framework tailored for the intel-
ligent construction of wireless data KG is described, taking
into account the salient features of wireless data KG as
well as wireless big data. The proposed framework, named
STREAM, employs the spatial-temporal graph neural network
to leverage information from topology, data matrix, and node
attributes. It incorporates a hierarchical attention mechanism
to handle the heterogeneity of nodes and edges. The overall
framework, illustrated in Fig. 7, consists of an input layer,
two stacked spatial-temporal convolution (ST-Conv) modules,
and an output layer. Each ST-Conv module comprises two
temporal convolutional layers and one spatial convolutional
layer, which effectively exploits the spatio-temporal nature
of wireless data KG. Moreover, the spatial convolution layer
adopts a hierarchical attention mechanism, i.e., node-level
aggregation is performed in each subgraph firstly, and then
meta-path-level aggregation is carried out for the entire graph.
We refer to this layer as the heterogeneous graph attention
network, abbreviated as H-GAT. Details of these convolution
layers are explained in Fig 7.

To tackle the issue arising from the extended data length of
the coherence time block, hindering its direct involvement in
temporal convolution, a crafted data segmentation approach is
presented, depicted in Fig. 8. To uphold time dependency, a
coherence time block is partitioned into multiple overlapping
data frames. No overlap is permitted between different coher-
ence time blocks. It is noteworthy that the length of the data
frame can be adaptively adjusted. Extremely short data frames
are ineffective in capturing time dependencies, whereas exces-
sively long frames can increase the computational burden.

1) Spatial convolution layer: Graph data is a typical non-
Euclidean data and cannot be processed by standard convolu-
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tion operation, so we employ the graph convolution. Firstly,
the adjacency matrix of the m-th graph slice Am is simplified
as A, and the normalized adjacency matrix Ã is defined by

Ã = A+ I, (4)
where I ∈ RN×N is the identity matrix. The degree matrix is
defined as a diagonal matrix D with (D)i,i =

∑N
j=1(A)i,j .

Similarly, the normalized degree matrix is defined as D̃ with
its diagonal element (D̃)i,i =

∑N
j=1(Ã)i,j . Let Θ be a graph

convolution kernel. Combining with the activation function σ,
the multilayer propagation rule of GCN can be written as,

Hl+1 = σ
(
Θ⊚Hl

)
= σ

(
D̃−1/2ÃD̃−1/2HlOl

)
, (5)

where O is a trainable parameter matrix. In the middle
layers of the STREAM framework, the representation matrix
becomes the representation tensor due to existence of multiple
channels. Therefore, the graph convolution needs to be gen-
eralized to 3-dimensional, the convolution result of the j-th
kernel can be calculated as follows,

(H)
l+1
j =

cin∑
i=1

σ
(
D̃−1/2ÃD̃−1/2 (H)

l
i O

l
i

)
, 1 ≤ j ≤ cout,

(6)
where cin and cout indicate the input channel and output
channel, respectively. Namely, a total of cout kernel participate
in the graph convolution of the l-th layer. Particularly, the
representation tensor of the first layer equals to the data matrix,
i.e., H0 = X.

• Node-level Attention Mechanism
For a given meta-path, each node’s neighbors play different

roles in the graph embedding for a particular task and show
different importance. Therefore, introducing node-level atten-
tion can learn the importance of meta-path-based neighbors
for each node in aggregation.

For node pair (vi, vj) on a given meta-path ϕp, the node-
level attention coefficients s

ϕp

i,j of node i to node j are related
to their own characteristics and can be calculated by

s
l,ϕp

i,j = σ((aϕp)T · [Hl
i∥Hl

j ]), (7)
where ∥ denotes the vector concatenation operation, Hl

i de-
notes the embedding matrix of node i at the l-th spatial
convolutional layer, and aϕp represents the node-level attention
vector for meta-path ϕp. After obtaining the attention coeffi-
cients based on meta-paths, they are normalized by the softmax
function to obtain normalized attention coefficient s̃l,ϕp

i,j :

s̃
l,ϕp

i,j =
exp (s

l,ϕp

i,j )∑
k∈Nϕp

i

exp (s
l,ϕp

i,k )
. (8)

The obtained normalized node-level attention weight coeffi-
cients s̃l,ϕp

i,j can thus form a node-level coefficient matrix Sl,ϕp ,
where (S)

l,ϕp

i,j = s̃
l,ϕp

i,j . Accordingly, the node-level coefficient
matrix Sl,ϕp can be directly multiplied with the embedding
tensor Hl:

Hl,ϕp = Sl,ϕp · Hl, (9)
where Hl,ϕp is the learned embedding tensor for meta-path ϕp.
The embedding of each node is obtained by performing the
aggregation on its neighbors. Furthermore, given a set of meta-
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paths {ϕ1, ϕ2, ..., ϕP }, we can obtain P -group specific seman-
tic embedding tensors, denoted by {Hl,ϕ1 ,Hl,ϕ2 , ...,Hl,ϕP }.
• Meta-path-level Attention Mechanism
In general, each node in a heterogeneous graph contains

multiple types of semantic information. Graph embedding
based on a specific meta-path provides insight into only one
facet of the node’s semantics. To learn a more comprehensive
graph embedding, the specific semantics embedded in each
meta-path must be fused. To address this issue, we employ
an meta-path-level attention mechanism. This mechanism au-
tomatically learns the importance of different meta-paths and
fuse them to a specific task. Consequently, the importance of
meta-path ϕp, denoted by el,ϕp , can be calculated by:

el,ϕp =
1

|V|
∑
i∈V

rT · tanh(Q · Hl,ϕp + b), (10)

where Q is the learnable parameter matrix, b is the bias, and
r is the meta-path-level attention vector. After obtaining the
importance of each meta-path, it is normalized by the softmax
function. The normalized meta-path level attention coefficient
of the meta-path ϕp, denoted by ẽl,ϕp , can be calculated by:

ẽl,ϕp =
exp(el,ϕp)∑P
p=1 exp(e

l,ϕp)
. (11)

This normalization can be interpreted as the contribution
of meta-path ϕp to a particular task with the higher ẽl,ϕp is,
the more important indicating greater importance for meta-
path ϕp. For different tasks, meta-path ϕp may have different
weights. The learned weights serve as coefficients to merge
these semantically specific embeddings, resulting in the final
representation matrix of the l-th layer Hl,

Hl =

P∑
p=1

ẽl,ϕp · Hl,ϕp . (12)

2) Temporal convolution layer: In addition to spatial convo-
lution, temporal convolution is employed to capture the tempo-
ral dependencies, thus enabling more comprehensive embed-
dings. Let ⊛ denote the temporal convolution operation and
Φ∈RKS×KT×cin be the c-th temporal convolution kernel of the
l-th layer. The convolution result of the kernel Φ in the l-th
layer can be expressed as (H)

l+1
c ∈ R(N−KS+1)×(T−KT +1).

The element of (H)
l+1
c in the n-th row and m-th column,

denoted as (H)
l+1
n,m,c, is derived by,
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(H)
l+1
n,m,c =

(
σ
(
Φ⊛Hl

))
n,m,c

= σ

KS∑
i=0

KT∑
j=0

cin∑
k=0

(Φ)i,j,k · (H)ln+i,m+j,k

 , 1 ≤ c ≤ cout,

(13)
where σ represents the activation function, and (Φ)i,j,k and
(H)ln+i,m+j,k are the corresponding elements of Φ and Hl,
respectively.

According to (13), the temporal convolution results of the
c-th kernel can be represented as (H)

l+1
c . In the proposed

framework, the l-th layer contains cout convolution kernels.
The results of the convolution kernels are concatenated to-
gether to form the final output as follows:

Hl+1 =
[
(H)l+1

1 ; (H)l+1
2 ; . . . ; (H)l+1

cout

]
∈ R(N−KS+1)×(M−KT +1)×cout .

(14)

Suppose that the total number of layers is L, and the represen-
tation tensor in the last layer is the final representation matrix,
i.e., HL = Z.

B. Link Prediction Task

In general, the quality of a KG embedding algorithm is
typically assessed through a link prediction task, where a
superior algorithm achieves higher metrics. This subsection
details the process of deriving the predicted adjacency matrix
Â from the final node representation matrix Z. Firstly, node-
wise cosine similarity is computed according to

ci,j =
zi · zj

∥zi∥2 · ∥zj∥2
, (15)

where ci,j represents the cosine similarity between node i
and node j. Secondly, cij values are sorted in the descending
order and the top-k value is set as the threshold h. For each
elements in the Â, âi,j is assumed to be 1 when ci,j exceeds
the threshold, and set to 0 otherwise, as summarized by (16):

âi,j =

{
0, if ci,j < h
1, otherwise. (16)

The representation vector pairs output by each two nodes are
subjected to a similarity calculation, and the obtained results
are subsequently compared with the graph constructed from
expert knowledge. The loss function is designed as follows:

L =

N∑
i

N∑
j

(ci,j − ai,j)
2
, (17)

where ci,j is the cosine similarity between node pairs and ai,j
is the true adjacency matrix elements of wireless data KG. ai,j
takes the value of 1 when the two nodes are connected and 0
when they are unconnected. The overall process of STREAM
is shown in Algorithm 1.

C. Feature Dataset Generation

In the above steps, we obtained the cosine similarity be-
tween nodes, which can be used to measure the degree of
association between them, as shown in (18).

ωi,j =

{
0, if ai,j = 0
ci,j , otherwise. (18)

Algorithm 1 Procedure of STREAM
Input: Adjacency matrix A, data matrix X, meta-path set

{ϕ1, ϕ2, . . . , ϕP }, maximum training epochs E.
1: Initialize the embedding tensor H0 ← X, current epoch k and ST-Conv

module number o;
2: for k = {0, 1, . . . ,K} do
3: for o = {0, 1} do
4: Calculate the H3o+1 by TCN according to Eq. (13);
5: for ϕp ∈ {ϕ1, ϕ2, . . . , ϕP } do
6: Calculate the GCN on H3o+1 according to Eq. (6);
7: Calculate the node-level coefficient matrix S1,ϕp according to

Eq. (7) and Eq. (8);
8: Obtain H3o+2,ϕp by performing the node-level aggregation

according to Eq. (9);
9: end for

10: Calculate the meta-path-level coefficient {ẽϕ1 , ẽϕ2 , . . . , ẽϕP }
according to Eq. (10) and Eq. (11);

11: Perform the meta-path-level aggregation according to Eq. (12),
thus obtaining H3o+2;

12: Calculate the H3o+3 by TCN according to Eq. (13);
13: end for
14: Embedding matrix Z is obtained by calculatingH6 through the output

layer;
15: Calculate the cosine similarity ci,j and the loss function L;
16: Back propagation and update the network parameters in STREAM;
17: end for
Output: Z.

We represent the degree of association between each pair
of nodes in the graph using the matrix Ω, where ωi,j is an
element of the matrix. At this stage, we can compute the
impact of node v on node u in the wireless data KG using
(19), where node v is the m-th order neighbor node of node u.
Here, the m-th order neighboring node refers to another node
that can be reached by starting from a node and traversing m
edges in the network or graph structure. When m is infinite,
it indicates that there is no path connectivity between the two
nodes. In the equation,

∏m
h=1 ωth represents the product of

edge association for all edges on the t-th shortest path from
node v to node u.

ivu =

{
max(

∏m
h=1 ωth), if v is the m-th order neighbor of u

0, if v is the infinite-order neighbor of u.
(19)

Next, we calculate the degree of influence of all nodes on
the target KPI, and then sort them. According to the ranking
table, we start with the feature ranked highest in importance,
using it as the dependent variable to predict the KPI through
neural network or similar algorithms. If the predetermined
fitting degree is not achieved, the next feature will be added,
and the KPI will be predicted again in combination with the
first feature. The process stops when the predetermined fitting
degree is reached, and continues adding features if the degree
is not met, until the goal is achieved. In this way, through the
fitness index, we can filter out the most important features as
much as possible. These features, namely the relevant nodes
in the graph and the data collected by the nodes, are combined
to form a feature dataset, which is prepared for input to
some intelligent algorithms in the future. The overall process
of intelligent generation of the feature dataset is shown in
Algorithm 2.
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Algorithm 2 Procedure of the intelligent generation of the
feature dataset.
Input: Adjacency matrix A, data matrix X, degree of association

matrix Ω, predetermined fitting degree d, target KPI w.
1: Initialize an empty importance ranking table T .
2: for each node u in A do
3: for m = {0, 1, . . . , n} do
4: Initialize the influence degree iuw of node u on the target

KPI w to 0.
5: if node u is the m-th order neighbor node of target KPI w

then
6: Compute the influence degree iuw of node u on KPI w

according to Eq. (19).
7: end if
8: Add the influence degree iuw to T .
9: end for

10: end for
11: Sort T in descending order based on the influence degree.
12: Initialize an empty feature dataset F and an empty set of selected

features F′.
13: for each node u in ranking Table T do
14: Add node u to set F′,
15: Use selected features as the dependent variable to predict the

KPI w using neural networks or similar algorithms, obtain the
goodness of fit metric d′.

16: while d′ < d do
17: Select the next node in T for prediction and add it to F′.
18: end while
19: end for
20: Combine the features in F′ with their corresponding data and

store them in F.
Output: F.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present the specific experimental results
of two algorithms: the STREAM and the feature dataset
generation algorithm. We begin by comparing STREAM with
traditional methods for wireless data KG link prediction tasks.
Then, we apply STREAM to a public dataset for traffic flow
prediction and compare its performance with classical traffic
flow prediction algorithms. Subsequently, we showcase the ex-
perimental results of the feature dataset generation algorithm.
Lastly, we validate the effectiveness of the feature dataset by
comparing it with the original dataset. The main objective
of the entire experimental results is to prove that the feature
dataset we generated can effectively reduce the training data
scale of the network AI model. This is achieved by extracting
the minimal yet crucial dataset that mostly impacts the network
AI model, ultimately enabling the realization of green and
lightweight intelligence.

A. Experiment Settings

• Dataset: To assess the effectiveness of the proposed
STREAM, we conduct extensive experiments on wireless
data KG with the following settings. We consider a wire-
less data KG with M = 30 graph slices, the coherence
time Tc is 100 seconds. To capture the dynamics of a real
wireless communication system, data is collected over a
35-minute time interval, yielding a total of 120418-length
observations per node. Different from other KGs, the
adjacency matrix of wireless data KG is a sparse matrix

with 0 and 1 values, where the number of connected
edges (denoted by 1) accounting for only 3% of the total
matrix. During the training process, k is set equaling to
the number of edges that actually exist in each graph
slice.

• Baseline: To demonstrate the superiority of STREAM,
we compare it with some baselines, including TransE
[20], TransH [21], KG2E [22], and VGAE [23]. No-
tably, considering that traditional methods ignore the non-
negligible information contained in the data matrix X of
wireless data KG, we implemented a pre-training strategy
for TransE. Specifically, we initialized the embeddings
of TransE with statistical properties of real data, such as
minimum, mean, median, etc. In addition, the embedding
dimension c is fixed at 128 and consistent across all
instances, the remaining bits of its initial embeddings
are filled randomly according to an N (0, 1) distribution.
To assess the effectiveness of the hierarchical attention
mechanism, we introduced STREAM-homo for compar-
ison. STREAM-homo is a variant of STREAM with
the attention mechanism removed. In other words, for
STREAM-homo, the graph slices are trained as if they
are homogeneous graphs.

• Training process: For each graph slice, a fast real-time
link prediction is executed. Specifically, the unmasked
portion of graph slice is fed into the STREAM, . After
a minimal number of epochs (5 in our case) of training,
STREAM is capable of predicting the links in the masked
portion. In our configurations, the masking proportion is
set to 10%, and the number of graph slices is 30. The
dimension of the convolution kernels are shown in Fig.
7. Moreover, the batch-size is set to 50 and the number of
layer L is 6. The initial learning rate is 10−4 and it decays
by 0.7 every 5 epochs. For the test set, the positive sample
consists of the sum of all masked edges (connected
edges). To assess the model’s performance with extremely
unbalanced samples, the number of randomly selected
negative test samples (unconnected edges) is set to five
times the number of positive samples. This setup allows
for a robust evaluation of STREAM’s ability to handle
imbalanced data.

B. Results and Discussions

Given the uneven distribution of positive and negative
samples, relying solely on a single metric like accuracy might
not objectively reflect the performance of different algorithms.
Therefore, we employ accuracy, precision, recall, F1, and
AUC scores to evaluate STREAM. While accuracy, precision,
recall and AUC scores are not visualized, F1-scores for the
training set are plotted, and all five metrics can be found in
the table for the test set. Fig. 10 illustrates the F1-scores on
the training set for each graph slice. It is evident that the
convergence of both STREAM and STREAM-homo is much
faster than that of other baselines. The metric values stabilize
after around five epochs, and as the learning rate gradually
decreases, fluctuations tend to level off, eventually reaching
a relatively stable state. In terms of final convergence values,
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Fig. 10. F1-scores on the training set.

both STREAM and STREAM-homo outperform other base-
lines, emphasizing their superiority. Thanks to the hierarchical
attention mechanism, STREAM effectively learns the node
physical properties in a heterogeneous KG, obtaining more
holistic node representation vectors. Consequently, STREAM
marginally outperforms STREAM-homo.

Detailed values are presented in Table II. In comparison to
the baselines, the F1 score of STREAM and STREAM-homo
shows an improvement of at least 20%. This enhancement is
attributed to the ability of our proposed methods to extract
information from the synthesis of graph structure, collected
data, and heterogeneity. In comparison to STREAM-homo,
STREAM still performs approximately 4% higher compared
to STREAM-homo. This difference is due to the intentionally
designed hierarchical attention mechanism tailored for hetero-
geneous graphs in STREAM.

TABLE II
SIMULATION RESULTS ON TEST SET

Accuracy Precision Recall AUC F1-score
TransE [20] 0.920 0.774 0.774 0.862 0.774
TransH [21] 0.933 0.811 0.811 0.885 0.811
KG2E [22] 0.933 0.808 0.808 0.884 0.808
VGAE [23] 0.840 0.520 0.520 0.712 0.520

STREAM-homo 0.947 0.840 0.840 0.904 0.840
STREAM 0.960 0.880 0.880 0.928 0.880

C. More Results of Feature Dataset Generation

In the initial stage, we curated 82 data fields from a
pool of 201, shaping them into a wireless data KG with a
focal point on uplink throughput. Subsequently, as depicted in
Fig. 11, we executed a sorting process to rank the influence
levels of all nodes on the KPI node, specifically targeting the
uplink throughput. Due to space limit, we have omitted the
middle section of this figure, which includes the influence
levels of the remaining nodes on uplink throughput. The
prioritization depicted in the figure highlights the significant
impact of variables such as user scheduling frequency, power
levels, modulation and coding strategies, and the number of

Fig. 11. Feature ranking.

uplink physical resource blocks on uplink throughput. These
findings, derived from data training, also broadly align with
fundamental principles of communication.

After obtaining the feature ranking table, we set a
desired fitting goodness of 0.95 and chose the R2 score
as the measurement for fitting goodness. Subsequently,
a fully-connected neural network was designed with
three hidden layers, each consisting of 32 neurons and
utilizing the ReLU activation function. Finally, an output
layer was included specifically for predicting the uplink
throughput. Following the procedure outlined in Algorithm
2, features were sequentially added to the dependent
variable to predict the uplink throughput, until the R2 score
surpassed 95%. Ultimately, four features were selected:
nr_pdcch_ul_grantcount, nr_total_txpower,
nr_ul_avg_mcs, and prb_num_ul_s. These features
yielded an R2 score of 97.36% for predicting uplink
throughput. Considering that these features were chosen from
a set of 201 data fields, the feature compression rate reached
98.01%. At last, we store the selected features together with
the corresponding data for each feature, forming a feature
dataset.

D. Benefits of Feature Dataset and its Implications

The main purpose of this subsection is to evaluate the
feature dataset to validate the effectiveness of the proposed
PML native AI architecture in achieving green and lightweight
intelligence. The quality assessment of the feature dataset
primarily depends on its impact on the performance of down-
stream AI model algorithms. When we can achieve the desired
results with minimal key data and computational costs, which
previously required a large amount of data and computational
expenses, it demonstrates that this architecture is a viable
approach for achieving green and lightweight intelligence.

Upon obtaining the feature dataset from the wireless data
KG, it brings several advantages. Firstly, regarding the KPI
of uplink throughput, the original dataset comprising 201 data
fields has been streamlined to only 4 data fields. This drastic
reduction eliminates extraneous nodes, enabling subsequent
research on uplink throughput in real network environments
to concentrate on essential data fields. Secondly, intelligent
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TABLE III
PERFORMANCE AND COST COMPARISON OF AI MODELS BASED ON RAW

DATASET AND FEATURE DATASET

AI Models based AI Models based
on Raw Dataset on Feature Dataset

Number of feature 188 4
Fitting dgree 99.97% 97.36%

Model parameters 8193 2305
FLOPs (G) 1.63× 10−5 4.51× 10−6

Execution time (s) 465.75 28.33

communication systems incur additional bandwidth allocation
for data transmission. Due to limited bandwidth, the quan-
tity of data to be transmitted is restricted. Therefore, it is
necessary to employ a feature dataset that conveys maximum
information while minimizing its size, thus facilitating efficient
data transmission. Lastly, real-time intelligence in wireless
networks necessitates minimizing computational costs to avoid
latency and energy wastage. In order to predict the throughput
fairly, we removed all data fields in the throughput class when
inputting features and used the remaining 188 features to
predict the physical layer uplink throughput. Based on the
experimental results in Table III, we were able to achieve an
excellent fit of 99.97%. The results of training the model on
the feature dataset show similar performance in comparison,
but the number of features is reduced by about 97.9%, the
number of parameters is reduced by about 71.87%, and the
floating point operations (FLOPs) and execution time are
both reduced by almost an order of magnitude. These results
indicate a significant reduction in computational overhead,
providing preliminary support for the subsequent implemen-
tation of green intelligence.

VI. CONCLUSION

In this paper, we proposes a PML native AI architecture for
green intelligent communications. This architecture incorpo-
rates KGs into the field of wireless communication, forming
a wireless data KG, and utilizes it to generate feature datasets
on demand. This provides a feasible path for achieving green,
lightweight real-time intelligent communications. To improve
the efficiency of wireless data KG construction, the STREAM
is proposed. STREAM aims to improve the utilization of real-
world wireless big data and expert knowledge, automating
the completion and intelligent construction of the wireless
data KG. Compared to other algorithms, STREAM exhibits
outstanding performance in F1 and AUC scores when pre-
dicting hidden relationships. Furthermore, after obtaining the
degree of correlation between nodes through the STREAM,
it is possible to further explore the relationships and graph
structure among these nodes, enabling the deep mining of the
minimal and most effective feature dataset that influences the
target KPI. This feature dataset reduces the training overhead
of the AI model by almost an order of magnitude and provides
a valuable reference for the input of the AI model. Future
research will continue to follow this architecture, using the
generated feature dataset to drive the training of AI models in

specific application scenarios, promoting further advancements
in this field.
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