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Stark systems in which a linear gradient field is applied across a many-body system have recently been har-
nessed for quantum sensing. Here, we explore sensing capacity of Stark models, in both single-particle and
many-body interacting systems, for estimating the strength of both linear and nonlinear Stark fields. The prob-
lem naturally lies in the context of multi-parameter estimation. We determine the phase diagram of the system
in terms of both linear and nonlinear gradient fields showing how the extended phase turns into a localized one
as the Stark fields increase. We also characterize the properties of the phase transition, including critical ex-
ponents, through a comprehesive finite-size scaling analysis. Interestingly, our results show that the estimation
of both the linear and the nonlinear fields can achieve super-Heisenberg scaling. In fact, the scaling exponent
of the sensing precision is directly proportional to the nonlinearity exponent which shows that nonlinearity en-
hances the estimation precision. Finally, we show that even after considering the cost of the preparation time
the sensing precision still reveals super-Heisenberg scaling.

I. INTRODUCTION

Due to extreme sensitivity to variations in environment,
quantum systems can serve as sensors whose precision can
exceed their classical counterparts [1–8]. This superiority
manifests itself in the uncertainty of their estimation, quan-
tified by variance, which scales as L−β, where L is probe
size and β is scaling exponent [9–11]. The best perfor-
mance of the classical probes is limited to the standard quan-
tum limit, namely β=1, determined by the central limit the-
orem. More favorable estimation precision with β>1 might
be achievable through harnessing quantum features, e.g. en-
tanglement, which is known as quantum-enhanced sensitiv-
ity. Originally, such enhancement was discovered for a probe
made of non-interacting particles initialized in a certain type
of entangled states, known as Greenberger-Horne-Zeilinger
(GHZ) states [12–19]. In GHZ-based sensors, the scaling of
uncertainty improves to the Heisenberg limit, i.e. β=2. Never-
theless, susceptibility of those probes to decoherence [17, 20–
24] and inter-particle interaction [25, 26] puts serious chal-
lenges for scaling up. Moreover, the precision of GHZ-based
sensors with non-interacting particles is strictly bounded by
the Heisenberg limit. To overcome these challenges, strongly
correlated many-body systems, have been proposed as alter-
native types of sensors in which interaction between particles
plays a central role. In particular, quantum criticality has been
identified as a resource for achieving quantum-enhanced sen-
sitivity. Several types of criticality have been used for achiev-
ing quantum enhanced sensitivity, including first-order [27–
29], second-order [30–45], dissipative [46–55], time crys-
tals [56, 57], Floquet [58, 59], topological [60–63] and Stark
phase transitions [64, 65]. The notion has also been general-
ized to non-Hermitian open quantum systems [66–69].
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Unlike GHZ-based sensors, the precision of criticality-
based many-body probes is not bounded and super-
Heisenberg scaling, namely β>2, may also be achievable [1,
5, 6, 32, 38, 39, 70]. However, the stringent requirement of
initializing these probes in their ground state near the criti-
cal point, via, for instance, the adiabatic evolution, imposes
difficulties in accessing this enhancement. As such, the pos-
sibility of exploiting the criticality turns to a hot debate in
both theoretical [38] and experimental [41, 63, 71] arena.
Recently, Stark many-body probes have been introduced for
measuring linear gradient fields with an unprecedented preci-
sion of β≃6 [64, 65]. Emerging onsite off-resonance energy
in the presence of a gradient field localizes the wave func-
tion of the particles even in the presence of strong interac-
tion. This interesting phenomenon, known as Stark localiza-
tion [72], has been subject of recent studies [73–97] and has
been observed in different experimental platforms including
ion traps [98], optical lattices [99, 100], and superconducting
simulators [101]. There are two key features that make the
Stark probes very distinct from the other many-body sensors.
First, their best performance is obtained for small fields which
most probes fail to estimate. Second, the Stark transition takes
place across the whole spectrum and thus the requirement of
precise preparation of the ground state is relaxed. While the
localization properties of nonlinear Stark systems have been
studied in several works [85, 86, 89, 93], their potential as
quantum sensors have not yet been explored.

In this work, we address this issue by investigating the sens-
ing capability of the Stark probe for estimating both linear
and nonlinear gradient fields. Thus, the problem naturally lies
in the context of multi-parameter sensing [44, 102–105]. We
consider the single-particle case as well as the many-body in-
teracting probe. The phase diagram of the system which de-
notes the transition from extended to localized phase is speci-
fied by all elements of the quantum Fisher information matrix
with respect to linear and nonlinear gradient fields. Quantum-
enhanced sensitivity is achievable throughout the extended
phase. In the case of single-particle probes, one recovers β≃6
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for linear gradient fields while the scaling exponent enhances
to β≃8 for the nonlinear field. For many-body interacting
probes, one achieves β≃3 and β≃5 for estimating linear and
nonlinear gradient fields, respectively. In fact, we show that
the exponent β linearly increases with increasing nonlinearity.
In addition, we fully characterize the critical properties of the
probe through finite-size scaling analysis. Remarkably, the
obtained quantum enhancement is still reachable even after
considering the cost of preparation time.

The paper is organized as follows. We begin by recapitu-
lating the theory of multi-parameter quantum estimation and
laying the analytic arguments of relevance to this study in
section II. The results for the single-particle Stark probe are
presented in section III and followed by our analysis for the
many-body interacting probe in section IV. After presenting
the resource analysis in section V, we focus on assessing the
uncertainty of simultaneous estimation of considered parame-
ters in section VI. Finally in section VII, we provide a detailed
discussion on the general effect of nonlinearity on the perfor-
mance of the Stark probe in both single-particle and many-
body interacting cases. The paper has been summarized in
section VIII.

II. PARAMETER ESTIMATION THEORY

In this section, we briefly review the concepts of estimation
theory for multi-parameter quantum sensing [44, 102–104].
We consider a quantum probe described by a density matrix
ρh with encoded unknown parameters h = {h1, h2, ..., hp}. The
precision of estimating h is quantified through a p × p co-
variance matrix Cov(h) with elements as (Cov)i j(h)=⟨hih j⟩ −

⟨hi⟩⟨h j⟩. This matrix satisfies the multi-parameter quantum
Cramér-Rao inequality

Cov(h) ⩾
1
M
FQ
−1(h), (1)

where, M is the number of samples, and FQ is the p× p Quan-
tum Fisher Information (QFI) matrix. The elements of QFI
matrix are given by [106]

(FQ)i j(h) =
1
2

Tr[ρh(LiL j + L jLi)], (2)

where the Hermitian operator Li, known as the Symmetric
Logarithmic Derivative (SLD), is defined as

∂ρh

∂hi
=

1
2

(ρhLi + Liρh). (3)

For pure states, namely ρh=|ψ(h)⟩⟨ψ(h)|, the QFI matrix ele-
ments are simplified to

(FQ)i j(h) = 4Re
[
⟨∂iψ|∂jψ⟩ − ⟨∂iψ|ψ⟩⟨ψ|∂jψ⟩

]
, (4)

with ∂i=∂/∂hi. In the case of single-parameter estima-
tion, the Eq. (1) reduces to a scalar inequality of the form
δh2

1⩾M−1(FQ)−1
11 (h) with δh2

1=⟨h
2
1⟩−⟨h1⟩

2 denoting the vari-
ance. In this case, the bound can always be saturated, in the

limit of a large number of samples M, using an optimal mea-
surement basis given by the eigenvectors of the corresponding
SLD operator L1. However, in the case of multi-parameter es-
timation with p>1, the bound is not tight. Intuitively, this is
due to the non-commutativity of the optimal measurements
associated to different parameters. When [Li, L j] = 0, for all
choices of i and j, the SLD operators are simultaneously di-
agonalizable, and the saturation condition is satisfied. It turns
out that weaker condition Tr(ρh[Li, L j])=0 for all i and j is
both necessary and sufficient for the multi-parameter quantum
Cramér-Rao bound (1) to be attainable [102].

Note that Eq. (1) is a matrix inequality and to obtain a scalar
inequality, one can multiply both sides with a positive weight
matrix W and compute the trace

Tr[WCov(h)] ⩾ M−1Tr[WFQ
−1(h)]. (5)

The weight matrix W can be chosen to add any combination
of the elements of the covariance matrix as a measure of total
uncertainty on the left side of the above inequality. In partic-
ular, one can choose W=I for which the total uncertainty be-
comes the summation of variances of all the parameters and is
bounded through

∑p
i=1 δh

2
i ⩾ M−1Tr[FQ

−1(h)]. If one is only
interested in the precision of estimating hi, the weight matrix
W needs to be chosen with only one non-zero element, namely
(W)ii=1. In this case, Eq. (5) reduces to δh2

i ⩾M−1(FQ
−1(h))ii.

On the other hand, if all the parameters from the set h are
exactly known except hi, the problem reduces to a single
parameter estimation in which δh2

i ⩾M−1(FQ)−1
ii (h). For any

positive semi-definite matrix, such as FQ, one can show that
(FQ

−1)ii⩾(FQ)−1
ii with equality being achieved if FQ is a diag-

onal matrix. This clearly shows that the simultaneous estima-
tion of multiple parameters reaches the same performance as
the separate estimation schemes only if there are no correla-
tions between parameters.

III. SINGLE-PARTICLE STARK PROBE

We begin by briefly recapitulating the physics of Stark lo-
calization transition in single-particle level. Consider a one-
dimensional probe with L sites in which the particle can tun-
nel between neighboring sites with rate J > 0, in the presence
of linear h1>0 and nonlinear h2>0 gradient fields which we
would like to estimate. The total Hamiltonian of the system
reads

H(h1, h2) = J
L−1∑
i=1

(|i⟩⟨i + 1| + h.c.) +
L∑

i=1

Vi(h1, h2)|i⟩⟨i|, (6)

where the potential Vi is ,

Vi(h1, h2) = h1(i − 1) − h2(i − 1)2. (7)

In the absence of gradient fields, i.e. Vi=0, the Hamiltonian
can be easily diagonalized which results in extended Bloch
eigensystem as

Ek = −2Jcos(
kπ

L + 1
)
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FIG. 1. The QFI matrix elements, (a) log[(FQ)11], (b) log[(FQ)22] and (c) log[(−FQ)12], as a function of linear h1 and nonlinear h2 terms of the
potential landscape Vi, when the probe with size L = 501 is prepared in the ground state. log[(FQ)22] as a function of h2 for a fixed value of
(d) h1/J = 10−8 and (e) h1 = h2(L− 1). The dashed lines describe the algebraic decay of the Fisher information in the localized phase which is
well-fitted by |h2 − hmax

2 |
−α with α=2.00. The insets are the corresponding finite-size scaling analysis. The optimal data collapse is obtained for

the reported (hc
2, α, ν). Note that all the axes are in a logarithmic scale. (f) The maximum values of the QFI matrix elements (dots) as a function

of probe size L. Lines are the best fitting function as (FQ)i j(hmax
1 , hmax

2 ) ∝ Lβ to describe the scaling behaviour of the QFI matrix elements.

|Ek⟩ =

√
2

L + 1

L∑
j=1

(−1) j sin
(

jkπ
L + 1

)
| j⟩, (8)

where index k=1, · · ·, L counts all the eigenstates of the sys-
tem. Clearly, in the absence of gradient fields h1 and h2, the
eigenstates are extended across the entire system, known as
the extended phase [74, 76]. In the presence of gradient fields
Vi,0, the off-resonant energy splitting at each site tends to lo-
calize the wave function of the particle, known as Stark local-
ization. It is well known that, the transition from the extended
to the localized phase takes place across the entire spectrum
for a gradient field that approaches zero in the thermodynamic
limit (L→∞) [76, 96].

Recently, the Stark probe, in the linear regime, namely
where h2=0, has been exploited for sensing the gradient field

h1 [64, 65]. Three main results have been observed. First, all
the eigenstates of the system show quantum-enhanced sensi-
tivity, in terms of the system size L, with super-Heisenberg
precision in the extended regime and transition point. Sec-
ond, in the localized regime, the sensitivity becomes size in-
dependent and the system shows universal behavior. Third,
the phase transition from the extended to the localized phase
is described by a continuous second order phase transition for-
malism which implies the emergence of a diverging length
scale at the transition point.

Relying on multi-parameter estimation theory, in this work
we assess the performance of the Stark probe for estimating
both linear and nonlinear gradient fields which compete to lo-
calize the system through their different signs. Note that, the
opposite signs of h1 and h2 in Vi create a parabolic poten-
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FIG. 2. The potential landscape Vi=h1(i−1)−h2(i−1)2 and probability
distribution of the ground state |ci|

2, labeled on the left and right side
of the plots, respectively, as a function of lattice site i with probe size
L=101. The values of the parameters are chosen as (a) h1<h2(L− 1),
(b) h1=h2(L − 1), and (c) h1>h2(L − 1).

tial landscape across the lattice. By focusing on the ground
state of the Hamiltonian Eq. (6), we aim to estimate both
the parameters h1 and h2. As the figure of merit, we com-
pute the QFI matrix whose elements are plotted in Fig. 1.
Since the QFI matrix is symmetric, one has (FQ)12=(FQ)21.
In Figs. 1(a)-(c), we depict (FQ)11, (FQ)22 and (FQ)12 as a
function of h1 and h2 for the probe of size L=501, respec-
tively. The phase diagram is indeed fully described by both h1
and h2. Several common features can be observed. By chang-
ing the parameters (h1, h2), all the elements of the QFI matrix
show a clear transition from the extended phase in which the
Fisher information remains steadily high for small values of
h1 and h2 (a rectangular region in the lower left corner of the
phase diagram with hot color) to a localized phase in which
the Fisher information significantly shrinks (regimes with cold
colors). The Fisher information reveals a peak along the line
h1=h2(L − 1) that represents the situation in which the Stark
potential Vi becomes symmetric around the center of the sys-
tem, namely Vi=VL−i+1. We come back to this interesting case
later. To clarify this Stark localization transition in our probe,
in Fig. 1(d) we plot (FQ)22 versus h2 for h1=10−8J and dif-
ferent probe sizes. The QFI initially follows a plateau, in-
dicating the extended phase, and then starts to decrease at a
specific value of h2 = hmax

2 , which is size dependent. By in-
creasing the size of the system, three important features can
be observed. First, hmax

2 ’s tend to smaller values signaling
hmax

2 →hc
2=0 in the thermodynamic limit. Second, the value

of the QFIs in the extended phase dramatically increases by
increases the system size, hinting its divergence in the ther-
modynamic limit (i.e. L→∞). Third, in the localized phase
the QFIs becomes size independent and shows a universal al-
gebraic decay as ∝|h2−hmax

2 |
−α with α=2.00, see the dashed fit-

ting line in the panel (d). Note that these three observations are
valid for all the elements of the QFI matrix (data not shown).
Similarly, one can fix h2 into a small value and plot the ele-
ments of the QFI matrix as a function of h1 which all show
similar qualitative behavior, namely a size-dependent plateau
followed by a universal size-independent behavior. This is
analogous to the Stark localization transition observed for a
single parameter [64, 65]. In Fig. 1(e), we investigate the be-
havior of the QFI along the symmetric line h1=h2(L − 1) for
various system sizes. Interestingly, (FQ)22 shows a peak at
the transition from the extended to the localized phase. The

emergence of peaks during the symmetric line can be ob-
served in all the QFI matrix elements (shown as dark points on
Figs. 1(a)-(c)). To elucidate the origin of this extra enhance-
ment in the QFI elements, we note that for h1 = h2(L − 1),
one has [H,M]=0, where M is the mirror operator defined
asM|i1, · · · , iL⟩=|iL, · · · , i1⟩. This implies that the eigenstates
of the system are either symmetric, namely M|Ek⟩=|Ek⟩, or
anti-symmetric, namely M|Ek⟩=−|Ek⟩, around the center of
the chain. We conclude that the presence of this mirror sym-
metry is the origin of the extra sensitivity that one observes
in Figs. 1(e). For the sake of completeness, we also investi-
gate the wave function of the ground state |E1⟩=

∑
i ci|i⟩ for

arbitrary values of Vi. In Figs. 2(a)-(c), both Vi and |ci|
2

as a function of lattice site i and in three different regimes
are presented. The mirror symmetry of the ground state for
h1=(L − 1)h2, see Fig. 2(b), results in the bilocalization of the
particle in both edges of the system. By getting distance from
the symmetric line, for instance in regimes with h1<(L − 1)h2
or h1>(L − 1)h2, the mirror symmetry breaks and, hence,
[H,M],0, therefore the particle fully localize in either left
or right side of the chain, see Figs. 2(a) and (c).

To determine the quantum enhancement in terms of the sys-
tem size, in Fig. 1(f) we plot the maximum values of the QFI
matrix elements along the symmetric line h1=h2(L − 1) as a
function of the probe size. Clearly, the numerical simulations
(markers) are well defined by a fitting function of the form
(FQ)ii ∝ Lβi (solid lines). Interestingly all the QFI matrix
elements provide super-Heisenberg scaling as (FQ)11∝L6.47,
(FQ)22∝L8.47, and (−FQ)12∝L7.47. To describe the Stark tran-
sition, we rely on the second-order phase transition framework
which suggests that the QFI matrix elements satisfy the fol-
lowing ansatz

(FQ)ii = Lαi/νiGi(L1/νi (h − hc)) (9)

where Gi(•) is an arbitrary function and αi and νi are
critical exponents. One can extract the critical expo-
nents through finite-size scaling analysis in which the
quantity Lαi/νi (FQ)ii is plotted versus L1/νi (h − hc) for
various system sizes. By varying the critical exponents,
one can collapse the curves of different sizes. In the
inset of Fig. 1(d), the corresponding data collapse for
(FQ)22 is obtained for (hc

2, α2, ν2)=(1.03×10−12J, 2.00, 0.25).
Similarly, for the transition along the symmetry line,
the data collapse shown in the inset of Fig. 1(e)
is obtained for (hc

2, α2, ν2)=(1.10×10−11J, 1.98, 0.24).
Applying the finite-size scaling analysis for (FQ)11
results in (hc

1, α1, ν1)=(1.14×10−10J, 1.99, 0.31) and
(hc

1, α1, ν1)=(1.02×10−10J, 1.99, 0.33) for the transition
during the symmetric line and beyond it. For the obtained
critical parameters, one can check the validity of βi=αi/νi
(for i=1, 2) which shows that the critical exponents are not
independent of each other, see Ref. [64] for more details.

IV. MANY-BODY INTERACTING PROBES

Quantum many-body probes exploit interaction between
particles to enhance their sensitivity. This is in sharp contrast
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FIG. 3. The QFI matrix elements, (a) log[(FQ)11] and (b)
log[(FQ)22], as a function of h1 and h2 when the many-body inter-
acting probe (Eq. (10)) with size L = 18 is prepared in its ground
state. (d) the values of the QFI matrix elements at (h1=h2=10−4 J)
(deep in the delocalized phase) as a function of the probe size.
The numerical results are properly described by a fitting function as
(FQ)i j(h1, h2) ∝ Lβ with reported β’s.

to interferometry-based quantum sensing in which interaction
deteriorates the sensitivity. Therefore, it is worth studying
many-body effects and the role of interaction on the perfor-
mance of our Stark probe. We start by considering a probe of
size L in the half-filling regime where N=L/2 particles inter-
act with each other based on the following Hamiltonian

H(h1, h2) = J
L−1∑
i=1

σi · σi+1 +

L∑
i=1

Vi(h1, h2)σz
i , (10)

where σi=(σx
i , σ

y
i , σ

z
i ) and σ

x,y,z
i are the Pauli operators act-

ing at site i. The half filling subspace is defined by
⟨S tot

z ⟩=⟨
∑L

i σ
z
i=1⟩=0. To evaluate the probe’s performance, we

calculate the QFI matrix for the ground state of systems up
to size L=18, obtained using exact diagonalization. The re-
sults are presented in Figs. 3(a)-(c). Similar to the single-
particle probe, by varying h1 and h2 from small to large val-
ues, the QFI matrix elements change remarkably from a re-
gion where their value remains steady (the area with warm
colors) in the delocalized phase to a region where their values
decrease monotonically (the area with cold colors) in the lo-
calized phase. Although the finite-size effect in many-body
interacting probes results in a wider area for the extended
phase, by increasing the size of the system this area shrinks
until eventually vanishes at the thermodynamic limit. Con-

FIG. 4. The energy gap between ground state and the first-excited
state ∆E as a function of h1 and h2 for (a) single-particle probe with
size L = 501; and (c) many-body interacting probe with size L = 20.
(b) and (d) the energy gap as a function of probe size L for differ-
ent choices of h1 and h2 in single-particle and many-body interacting
probes, respectively. The dashed black lines are eye guides that de-
scribe the decreasing behavior as ∆E∼L−z.

sidering the strong finite-size effect on the results, extract-
ing the scaling behavior in the vicinity of the phase bound-
aries is very challenging. Therefore, in Fig. 3(d), we focus
on the delocalized phase and plot the value of QFI matrix
elements at h1=h2=10−4J. The numerical results (markers)
are well-describe by the fitting function as (FQ)i j ∝ Lβ (solid
line) with β>2 for all QFI matrix elements. The exact values
for h1=h2=10−4J are obtained as (FQ)11∝L3.23, (FQ)22∝L5.76,
and (−FQ)12∝L4.49. These results guarantee that similar to
the single-particle probe, the many-body interacting probe can
also offer quantum-enhanced sensitivity.

V. RESOURCE ANALYSIS

As discussed above, the ground state of Stark probes can
achieve quantum-enhanced sensitivity. So far, in our analysis,
we have considered the probe size L as the relevant resource
for achieving such enhanced precision. However, preparation
of the ground state might be challenging and time-consuming.
Therefore, one may include the time t which is needed to
prepare the probe in its ground state as another resource. In
order to incorporate time into our resource analysis, we use
the normalized QFI matrix t−1FQ(h) as a figure of merit. To
estimate the time t, we consider adiabatic state preparation in
which one can slowly evolve the probe from a simple ground
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state into the desired one. To avoid emergence of excited
states during this evolution and guarantee that the system
ends up in the desired ground state, the quench rate of the
parameters needs to be adequately small, namely t ∼ 1/∆E
with ∆E being the lowest energy gap during the variation
of the Hamiltonian [107]. When the system is adiabatically
evolved nearby a phase transition point, the minimum energy
gap at the criticality scales as ∆E∼L−z [38], where z is known
as the dynamical critical exponent. Therefore, the time
required for state preparation is t ∼ Lz. In Fig. 4(a), we plot
the energy gap between the ground state and the first excited
state ∆E as a function of h1 and h2 for the single-particle
probe of size L=501. By moving from the extended phase
to the localized one, the energy gap ∆E increases. Fig. 4(b)
illustrates the obtained ∆E for different sizes of the probe,
in three points including deep in the extended phase, namely
h1=5.5 × 10−10J and h2=10−12J, near the transition point
(hmax

1 , hmax
2 ), and deep in the localized side, namely h1=5.5J

and h2=0.01J. Not that to avoid the ground-state degeneracy
in the transition point (hmax

1 , hmax
2 ) which is across the sym-

metric line h1 = h2(L − 1), we focus on h1 = 1.1 × h2(L − 1).
In both the extended phase and near the transition points,
one has ∆E∝L−1.99 and ∆E∝L−2.10, respectively, which is in
agreement with our previous observations [64]. However,
the energy gap becomes positively correlated to the probe
size as ∆E∝L0.77 in the localized phase, which might be
beneficial to the state initialization. Based on this result
the ultimate scaling of the QFI matrix elements is obtained
as t−1(FQ)11(hmax

1 , hmax
2 )∝L4.37, t−1(FQ)22(hmax

1 , hmax
2 )∝L6.37,

and t−1(−FQ)12(hmax
1 , hmax

2 )∝L5.37, confirming the quantum-
enhancement in the achievable precision. The same analysis
can be done for the many-body interacting probe. In Fig. 4(c),
the energy gap ∆E as a function of h1 and h2 for a probe
of size L=20 is reported. Again, increasing the parameters
widens the energy gap between the ground state and the first
excited state. Extracting the dynamical critical exponent
through studying ∆E versus L in Fig. 4(d) results in z∼0.76
for a many-body probe that works deeply in the delocalized
phase. This results in the following normalization for the
QFI matrix elements as t−1(FQ)11(h1=h2=10−4J)∝L2.47,
t−1(FQ)22(h1=h2=10−4J)∝L5.00, and
t−1(−FQ)12(h1=h2=10−4J)∝L3.73. Obviously, the quantum-
enhancement can still be achieved even after considering the
time that one needs to spend for initializing the probe.

VI. MULTI-PARAMETER ESTIMATION

Up to now, we only focus on the performance of the Stark
probes by studying the QFI matrix elements. Despite the dif-
ferences in these elements, their behavior in the extended and
localized phases, as well as at the transition point look sim-
ilar. This hints that the Stark probe can potentially realize a
multi-parameter estimation scenario. Back to Eq. (5), one can
establish an equally weighted multi-parameter estimation by
choosing W=I and calculating Tr[FQ

−1(h)] as the ultimate es-

FIG. 5. Total uncertainty Tr[(FQ)−1] for the equally weighted multi-
parameter estimation, as a function of h1 and h2 for (a) single-particle
probe and (c) many-body interacting probe prepared in the corre-
sponding ground state. (b) and (d) Tr[(FQ)−1] versus L for single-
particle probes at (hmax

1 , hmax
2 ), and many-body interacting probes at

h1=h2=10−4 J, respectively. The Numerical simulation (markers) are
well describe by a fitting function as Tr[(FQ)−1]∝L−β with β = 6.3
for single-particle probe and β = 3.2 for many-body interacting one.

timation precision that lower bound total uncertainty

δh2
1+δh

2
2 ≥ Tr[FQ

−1(h)] =
(FQ)11 + (FQ)22

(FQ)11(FQ)22 − (FQ)12(FQ)21
(11)

Our results for Tr[FQ
−1(h1, h2)] is presented in Fig. 5(a) for

single-particle probe of size L=501. Obviously, the lowest
uncertainty is obtained in the extended phase as well as along
the symmetric line. As Eq. (11) shows, the nonvanishing off-
diagonal elements of the QFI matrix (FQ)12=(FQ)21, affect the
precision of multi-parameter estimation. This shows that the
total uncertainty in simultaneous estimation of both linear and
nonlinear terms of Vi is larger than the case of estimating them
individually as

Tr[FQ
−1(h)] ≥

1
(FQ)11

+
1

(FQ)22
(12)

This correlation effect shows itself properly in the scaling be-
havior of the probe. In Fig. 5(b), we report the lowest val-
ues of Tr[FQ

−1] which happens at (hmax
1 , hmax

2 ) for system of
different sizes. The behavior of the numerical results (mark-
ers) can approximately be described by the fitting function
Tr[FQ

−1]∝L−β with β=6.30. Regarding many-body probes,
in Fig. 5(c) we plot Tr[FQ

−1] for a many-body probe of size
L=18. Clearly, the lowest uncertainty can be obtained in the
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FIG. 6. The extracted exponent β’s, governing the divergence of QFI
asFQ ∝ Lβ, as a function of the nonlinearity γ for both single-particle
and many-body interacting probes, prepared in the ground state. The
numerical simulation (markers) are fitted by a linear function β(γ) =
aγ+ b (solid lines), with (a, b)∼(1.99, 3.97) for single-particle probe,
(a, b)∼(3.69,−0.45) for many-body interacting probe.

delocalized regime. In Fig. 5(d) we report Tr[FQ
−1] (markers)

of different probe sizes obtained for parameters deep in the
delocalized phase, namely h1=h2=10−4J. The solid line is the
best fitting function of the form Tr[FQ

−1]∝L−β with β=3.20.
In the multi-parameter estimation scenario, despite the effect
of the correlation between the parameters on the uncertainty
of their estimation, another challenge is the saturation of the
Cramér-Rao bound, namely finding a set of measurement that
is optimized respect to the all unknown parameters. As has
been discussed before, this relies on the satisfaction of either
[Li, L j]=0 or Tr(ρh[Li, L j])=0. One of the striking property of
our model is that, while SLD operators do not satisfy the for-
mer except for h1=(L−1)h2, they always satisfy the latter one.
This implies that there is always a set of optimized measure-
ments that guarantee the saturation of the Cramér-Rao bound.

VII. EFFECT OF NONLINEARITY

Having elucidated the effect of parabolic potential land-
scape across the chain on the precision of estimation, in this
section we aim to expand our study to a wider range of non-
lineraities. To this end, we replaced Vi(h1, h2) in Eqs. (6) by
a potential landscape of form Vi = hiγ with γ determining
the nonlinearity. In particular, we focus on γ ∈ [0.25, 3]. In
this scenario, h is the only parameter to estimate and thus we
are back to single parameter estimation framework. To assess
the role of the nonlinearity in a single-particle probe, for each
given value of γ and different system sizes L ∈ {101, · · · , 501},
we calculate the QFI as a function of h for a probe initialized
in the relevant ground state. Picking the highest value of the
QFI which appear at the transition point hmax and analysing

its behaviour respect to L, results

FQ(γ, hmax) ∝ Lβ(γ). (13)

The extracted β’s as a function of γ is presented in Fig. 6.
Obviously, the numerical results (markers) are well-described
by fitting function

β(γ) ≃ aγ + b, (14)

with (a, b)≃(1.99, 3.97) for a single-particle probe that tuned
to operate in its transition point. Applying the same anal-
ysis for the many-body interacting probe results in qualita-
tively similar behavior as Eq. (14) with (a, b)∼(3.69,−0.45).
In this case the β’s are obtained from analysing many-body
interacting systems of size L ∈ {4, · · · , 16}. Several impor-
tant observation need to be highlighted. First, by increas-
ing nonlinearity the performance of the Stark probe improves.
The origin of this improvement is the enhancement in the off-
resonant energy splitting between neighboring sites. While
∆Vi(γ=1)=Vi+1−Vi=h, one has ∆Vi(γ=2)=(2i+1)h. This in-
crease in the off-resonant energy splitting not only elevates
the distingushablity of the energy difference but also boosts
the power of localization in a way that transition point van-
ishes even in finite size systems. Second, in single-particle
probes, quantum-enhanced sensitivity can be obtained for all
values of γ while in many-body probes it can only be achieved
for γ> 0.5. Third, the nonlinearity of the gradient field plays
stronger role in the many-body probe and results in sharper
growth of β in comparison with the single-particle probe. This
hints that for γ > 2.5, a many-body probe operates better for
reasonable large system sizes.

VIII. CONCLUSION

The capability of Stark probes has already been identified
for measuring linear tiny gradient fields with unprecedented
precision, well beyond the capacity of most known critical-
based sensors. In this work, we investigate the ability of these
probes in providing extra enhancement in the presence of non-
linear Stark fields. As such, we applied a potential, containing
both linear field h1 and nonlinear field h2 on the probe and
simultaneously estimate them. The performance of the probe
shows quantum enhanced sensitivity, with super-Heisenberg
scaling, in both single excitation and half filling sectors for all
the elements of the QFI matrix. In the single-particle Stark
probe, the estimation precision of h1 recovers the previous re-
sults with scaling exponent β≃6, while nonlinearity boosts the
precision of the probe in estimating h2 to β≃8. Having de-
picted the phase diagram for all elements of the QFI matrix
with respect to (h1, h2), we show that for h1=h2(L − 1) the
emergence of a mirror symmetry in the system can enhance
the precision of estimation. In many-body interacting probes,
the corresponding scaling exponent for estimating h1 and h2
becomes β≃3 and β≃5, respectively. Furthermore, our results
show that the scaling exponent β for the QFI depends linearly
on the nonlinearity exponent γ as β≃aγ + b with a, b∈R and
a>0 independent of L. This clearly shows that nonlinearity
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can directly contribute to the quantum-enhanced sensitivity of
Stark probes. Interestingly, quantum-enhanced sensitivity re-
mains valid even if one incorporates the preparation time in
our figure of merit.
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N. Goldman, and J. Cai, Experimental demonstration of topo-
logical bounds in quantum metrology, Natl. Sci. Rev. (2024).

[64] X. He, R. Yousefjani, and A. Bayat, Stark localization as a
resource for weak-field sensing with super-Heisenberg preci-
sion, Phys. Rev. Lett. 131, 010801 (2023).

[65] R. Yousefjani, X. He, and A. Bayat, Long-range interact-
ing Stark many-body probes with super-Heisenberg precision,
Chin. Phys. B 32, 100313 (2023).

[66] J. Wiersig, Enhancing the sensitivity of frequency and energy
splitting detection by using exceptional points: application to
microcavity sensors for single-particle detection, Phys. Rev.
Lett. 112, 203901 (2014).

[67] J. C. Budich and E. J. Bergholtz, Non-Hermitian topological
sensors, Phys. Rev. Lett. 125, 180403 (2020).

[68] A. McDonald and A. A. Clerk, Exponentially-enhanced quan-
tum sensing with non-Hermitian lattice dynamics, Nat. Com-
mun. 11, 5382 (2020).

[69] S. Sarkar, F. Ciccarello, A. Carollo, and A. Bayat, Quantum-
enhanced sensing from non-Hermitian topology (2023),
arXiv:2311.12756 [quant-ph].

[70] J. Rubio, J. Anders, and L. A. Correa, Global quantum ther-
mometry, Phys. Rev. Lett. 127, 190402 (2021).

[71] T. Ilias, D. Yang, S. F. Huelga, and M. B. Plenio, Criticality-
enhanced electric field gradient sensor with single trapped
ions, npj Quantum Information 10, 36 (2024).

[72] G. H. Wannier, Wave functions and effective Hamiltonian for
Bloch electrons in an electric field, Phys. Rev. 117, 432 (1960).

[73] H. Fukuyama, R. A. Bari, and H. C. Fogedby, Tightly bound
electrons in a uniform electric field, Phys. Rev. B 8, 5579
(1973).

[74] M. Holthaus, G. Ristow, and D. Hone, Random lattices in
combined ac and dc electric fields: Anderson vs. Wannier-
Stark localization, EPL 32, 241 (1995).

[75] A. Kolovsky and H. Korsch, Bloch oscillations of cold atoms
in two-dimensional optical lattices, Phys. Rev. A 67, 063601
(2003).

[76] A. R. Kolovsky, Interplay between Anderson and Stark local-
ization in 2d lattices, Phys. Rev. Lett. 101, 190602 (2008).

[77] A. R. Kolovsky and E. N. Bulgakov, Wannier-Stark states and
Bloch oscillations in the honeycomb lattice, Phys. Rev. A 87,
033602 (2013).

[78] E. van Nieuwenburg, Y. Baum, and G. Refael, From Bloch os-
cillations to many-body localization in clean interacting sys-

https://arxiv.org/abs/2311.12756


10

tems, Proc. Natl. Acad. Sci. U.S.A. 116, 9269 (2019).
[79] M. Schulz, C. Hooley, R. Moessner, and F. Pollmann, Stark

many-body localization, Phys. Rev. Lett. 122, 040606 (2019).
[80] L.-N. Wu and A. Eckardt, Bath-induced decay of Stark many-

body localization, Phys. Rev. Lett. 123, 030602 (2019).
[81] D. S. Bhakuni, R. Nehra, and A. Sharma, Drive-induced

many-body localization and coherent destruction of Stark
many-body localization, Phys. Rev. B 102, 024201 (2020).

[82] D. S. Bhakuni and A. Sharma, Stability of electric field driven
many-body localization in an interacting long-range hopping
model, Phys. Rev. B 102, 085133 (2020).

[83] R. Yao and J. Zakrzewski, Many-body localization of bosons
in an optical lattice: Dynamics in disorder-free potentials,
Phys. Rev. B 102, 104203 (2020).

[84] T. Chanda, R. Yao, and J. Zakrzewski, Coexistence of local-
ized and extended phases: Many-body localization in a har-
monic trap, Phys. Rev. Res. 2, 032039 (2020).

[85] S. R. Taylor, M. Schulz, F. Pollmann, and R. Moessner, Exper-
imental probes of Stark many-body localization, Phys. Rev. B
102, 054206 (2020).

[86] Y.-Y. Wang, Z.-H. Sun, and H. Fan, Stark many-body localiza-
tion transitions in superconducting circuits, Phys. Rev. B 104,
205122 (2021).

[87] L. Zhang, Y. Ke, W. Liu, and C. Lee, Mobility edge of Stark
many-body localization, Phys. Rev. A 103, 023323 (2021).

[88] Q. Guo, C. Cheng, H. Li, S. Xu, P. Zhang, Z. Wang, C. Song,
W. Liu, W. Ren, H. Dong, et al., Stark many-body localization
on a superconducting quantum processor, Phys. Rev. Lett. 127,
240502 (2021).

[89] R. Yao, T. Chanda, and J. Zakrzewski, Many-body localization
in tilted and harmonic potentials, Phys. Rev. B 104, 014201
(2021).

[90] E. V. Doggen, I. V. Gornyi, and D. G. Polyakov, Many-body
localization in a tilted potential in two dimensions, Phys. Rev.
B 105, 134204 (2022).

[91] G. Zisling, D. M. Kennes, and Y. B. Lev, Transport in Stark
many-body localized systems, Phys. Rev. B 105, L140201
(2022).

[92] A. L. Burin, Exact solution of the minimalist Stark many-body
localization problem in terms of spin-pair hopping, Phys. Rev.
B 105, 184206 (2022).

[93] C. Bertoni, J. Eisert, A. Kshetrimayum, A. Nietner, and
S. Thomson, Local integrals of motion and the stability of
many-body localization in Wannier-Stark potentials, Physical
Review B 109, 024206 (2024).

[94] I. Lukin, Y. V. Slyusarenko, and A. Sotnikov, Many-body lo-
calization in a quantum gas with long-range interactions and
linear external potential, Phys. Rev. B 105, 184307 (2022).

[95] E. Vernek, Robustness of Stark many-body localization in the
J1−J2 Heisenberg model, Phys. Rev. B 105, 075124 (2022).

[96] E. V. H. Doggen, I. V. Gornyi, and D. G. Polyakov, Stark
many-body localization: Evidence for Hilbert-space shatter-
ing, Phys. Rev. B 103, L100202 (2021).

[97] A. Sahoo, U. Mishra, and D. Rakshit, Localization-driven
quantum sensing, Phys. Rev. A 109, L030601 (2024).

[98] W. Morong, F. Liu, P. Becker, K. Collins, L. Feng, A. Kypri-
anidis, G. Pagano, T. You, A. Gorshkov, and C. Monroe, Ob-
servation of Stark many-body localization without disorder,
Nature 599, 393 (2021).

[99] P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P. Zupan-
cic, Y. Lahini, R. Islam, and M. Greiner, Strongly correlated
quantum walks in optical lattices, Science 347, 1229 (2015).

[100] T. Kohlert, S. Scherg, P. Sala, F. Pollmann, B. H. Madhusud-
hana, I. Bloch, and M. Aidelsburger, Experimental realiza-
tion of fragmented models in tilted Fermi-Hubbard chains,
arXiv:2106.15586 (2021).

[101] A. H. Karamlou, J. Braumüller, Y. Yanay, A. Di Paolo, P. M.
Harrington, B. Kannan, D. Kim, M. Kjaergaard, A. Melville,
S. Muschinske, et al., Quantum transport and localization in
1d and 2d tight-binding lattices, npj Quantum Inf. 8, 1 (2022).

[102] S. Ragy, M. Jarzyna, and R. Demkowicz-Dobrzański, Com-
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