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Spontaneous splitting of d-wave surface states:
Circulating currents or edge magnetization?
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Pair-breaking edges of d-wave superconductors feature Andreev bound states at the Fermi energy.
Since these states are energetically highly unfavorable they are susceptible to effects that shift them
to finite energy. We investigate the free energy of two different mechanisms: spontaneous phase
gradients in the superconducting order parameter and surface ferromagnetism caused by Fermi
liquid interaction effects. We find that the surface magnetization appears at lower temperatures
than the spontaneous current flow of the phase-crystal state. The magnetic state can, however, be
energetically favorable at lower temperatures for sufficiently strong Fermi liquid effects. As a result,
first-order transitions between the two states are possible, suggesting a rich low-temperature phase

diagram in d-wave superconductors.

I. INTRODUCTION

The rich physics of unconventional superconductors
has been the subject of intense research for many years.
A point of particular interest is the topologically pro-
tected surface states that have a large impact of the
physics of such materials[1-4]. In the case of d-wave su-
perconductors, misaligned surfaces give rise to Andreev
bound states at the Fermi energy as a result of scatter-
ing between lobes of the order parameter with different
sign. These states carry a substantial spectral weight
due to the large degeneracy with respect to the momen-
tum parallel to the surface. As a result, they are ener-
getically unfavorable and any mechanism that can move
them away from the Fermi surface will reduce the ground
state energy of the system[5, 6]. The Andreev states are
experimentally observed as a zero bias tunneling conduc-
tance peak (ZBCP)[7-10] and give rise to a paramag-
netic Meissner effect[11]. The ZBCP peak has been ob-
served to split into two separate ones in the presence of
external magnetic fields but also spontaneously, i.e. with-
out external field, at low temperatures[12-14]. Over the
years, different models for the underlying physics have
been discussed, such as a subdominant s-wave order pa-
rameter at the surface that leads to a local breaking of
time-reversal symmetry and shifts the Andreev bound
states away from the Fermi energy[15, 16]. As a compet-
ing mechanism, the possibility of ferromagnetic order-
ing at surfaces was suggested to appear due to electron-
electron interaction[5]. At zero temperature arbitrarily
small interactions lead to spin splitting of surface states
and a resulting magnetization, which was shown to be
energetically favorable compared to subdominant s-wave
order[17]. An underlying assumption in the scenarios
above is translational invariance along the surface. This
disallows another possible mechanism, the spontaneous
development of spatially non-trivial phase gradients in
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the d-wave order parameter[18]. This phase-crystal state
exhibits a periodic modulation of the phase, character-
ized by a wave vector q, and associated current flow.
The surfaces states are then Doppler shifted away from
the Fermi energy, the resulting free energy gain at the
surface exceeds the cost of the loop currents in the inte-
rior of the sample[19, 20]. Strong correlations have been
shown to stabilize the phase crystal, even in the pres-
ence of disorder[21]. In Refs.[18-21] spin degeneracy was
assumed which neglects the possibility of magnetic or-
dering. It is thus an open question which of the two
scenarios is going to be dominant, especially at experi-
mentally relevant finite temperatures.

In the present work, we use the quasiclassical theory of
superconductivity and allow for both spontaneous phase
gradients, as well as magnetic ordering at the surface.
We consider a thin d-wave film at finite temperatures
and for different magnetic interaction strengths in order
to determine the state with minimal free energy. We find
that the minimal-energy state is usually a phase-crystal
state, with magnetic ordering dominating for large mag-
netic interaction strength and at low temperatures. As
a result, there can be a crossover from one state to the
other that appears as a first-order transition. Our re-
sults thus give insight into the competition between the
two different orders as well as fingerprints of the different
phases.

II. THEORY
A. Quasiclassical theory

For our study, we use the quasiclassical theory of
superconductivity in the Eilenberger form[22-24]. We
only give a brief overview here, for details can be found
in our earlier publications[25, 26] and other extensive
literature[27-29]. In the equilibrium situations con-
sidered here, all physical observables of interest can
be calculated from the quasiclassical Green’s function



dM(pr, R, €,) that depends on the momentum direction
on the Fermi surface pg, spatial coordinate R, and the
Matsubara frequency €,. We obtain g™ as a solution to
the Eilenberger equation

ihve - V™ (pr, R, €n)
+ [ients — AM(pr, R, €), 4 (Pr R, n)] = 0, (1)
subject to the normalization condition
M (pr, R, )3 (pr, R, e) = —7°. (2)

In Eq. (1), a commutator between matrices A and B is
denoted [A, B] and " indicates a Nambu (particle-hole)
space matrix such as the third Pauli matrix 73. The
equation also contains the Fermi velocity vg and the self-
energy matrix hM that we discuss in detail below. The
Green’s function g™ in Eq. (1) and Eq. (2) is a two-by-
two matrix in particle hole space,

M M
M= (f;M ﬁM) 3

with the quasiparticle Green’s function on the diagonal
and anomalous superconducting correlations on the off-
diagonal. Each of these four elements is, in turn, a two-
by-two matrix in spin space, for example

. M . M
gM _ (9 + gz Gz —1Gy _ gT_ gz —1Gy )
9z +19y Go—G= gz +19y gl
(4)

The self-energy matrix hM has an identical structure in
particle-hole and spin space. In this work we consider
two selfenergy contributions,

WM = hMp + AR, (5)

with a spin-singlet, mean-field order parameter

B 0 Agio
M 5 st02
hMF - (iUgAS 0 > ) (6)

and a spin-dependent Fermi-liquid interaction

= (77,0 ). @

v-o*
Following Refs. [27, 30, 31] , the i-th element of v is

vi = Ao,ikBTZ (Tro, 0i8)ps - (8)

Here, (...),, denotes an average over the Fermi surface,
and Tr, is a trace over spin space. While v; has the
dimension of energy, Ay, is a dimensionless scalar pa-
rameter that specifies the strength of the Fermi-liquid
interaction along the spin axis i. It is related to the first
spin-antisymmetric Landau parameter F§ as

_ g
1+ FY

Ao (9)

and displays a ferromagnetic Stoner instability for Fj§ —
—1[32]. For simplicity, we assume that a non-zero Ag ; ex-
ists only along the spin-quantization axis which we label
z. Generally, the interaction is ferromagnetic for nega-
tive values of Ay, so we replace Ay, — —|Ap| and specify
|Ap| in the following[31]. Assuming an antiferromagnetic
interaction (positive Ag) results in a vanishing Fermi-
liquid selfenergy in our system. In total we thus have a
self-energy contribution

ve = =2 AokpT Y (9:)ps - (10)

To solve Eq. (1) we use a Riccati parametrization for the
Green’s function g [33-36], and a finite element method
(FEM) that, compared to previous work[26], was ex-
tended to systems with full spin structure. Details on
this extended method can be found in the appendix of
the present work. To ensure that physical conservation
laws are satisfied we solve for both the self-energies as
well as the Green’s function until self-consistency[25, 37].
Once such a self-consistent solution has been found, we
calculate the difference in free energy from the normal
state AQrw = Qs — Qn using the Luttinger-Ward form
of the free energy. Following Refs. [27, 38-41], we arrive
at

AQpw = Qg — QN
1

- ;kBT;(/ <Tr BgA>FSd/\—% <TY 71§>FS)- (11)

Here, h and g are the self-consistently determined selfen-
ergies and Green’s function, respectively. In contrast, gx
is a solution of Eq. (1) for scaled selfenergies, 3 — A3,
meaning a scaling of all self-energies from zero to the orig-
inal value. Note that the boundary values of the Green’s
function have to be iteratively found for this scaled prob-
lem, while the self-energies are kept at the fixed scaling
of the self-consistent solution. In the present case, we
have a spin-singlet order parameter Ay and a diagonal
self-energy that is proportional to o, thus

TI' ;Lg = 2 (Vzgz + ngz - fsAs - fsAs> ) (12)

and a similar expression for the term lAng.

Lastly, we calculate the spin-resolved density of states by
solving Eq. (1) for the retarded Green’s function. To this
end, we replace i, — € + in, in this work we use n =
0.01kpT. as a broadening parameter. From the retarded
Green’s function we obtain the Fermi-surface averaged
density of states for spin component o = 1, as

N
Ny (Ree) = ==F (Im gff ) (pr. Ro5)) , (13)

where g4(y) is defined in Eq. (4). The full density of states
is then simply

NR,e) = N+(R,e) + N (R,¢). (14)



B. Calculational strategy

Our calculations proceed as follows. We initially as-
sume a uniform order parameter and in-plane magnetic
field that enters Eq. (1) as a Zeeman-term Yzeeman =
0,hyz = upBext. This field serves as a seed for the surface
magnetization by creating a spin splitting everywhere in
the system. After ten selfconsistency iterations, we re-
move the external field by setting By = 0. Depending
on the strength of the Fermi liquid interaction, |Ag|, the
magnetization at the surface then either disappears, or
remains and is present in the final self-consistent solu-
tion. For fixed |Ap|, we then calculate the free energy
using Eq. (11).

C. Model

We consider a thin-film d-wave superconductor in two
different geometries. Firstly, a strip that is infinite in
the y-direction but has a finite length L = 40&y in the
x direction, delimited by two fully reflective interfaces.
This system is translationally invariant in the y-direction
and quasi one-dimensional, hence we can solve Eq. (1)
along a one-dimensional line. Secondly, we have a square
with sides of length L = 40, and fully reflective surfaces.
In both systems, we assume specular scattering at the
surfaces and a misalignment of « = 7/4 between the
crystal axis and the respective surface normal[42].

IIT. RESULTS
A. Translationally invariant strip (1D)

In the translationally invariant system we cannot find
a solution with spontaneous current flow. For a strip of
width L = 40&; we also do not find signs of the spon-
taneous symmetry-breaking phases that occur in narrow
confined geometries[43]. The only possible transition is
then to a magnetized state. At a transition temperature
Ty — that depends on |Ap| — the surface Andreev bound
states are shifted away from the Fermi energy. The spin-
resolved density of states for up- and down-spin quasipar-
ticles in Fig. 1 shows that the two peaks are spin polar-
ized, this gives rise to a magnetization at the surface. The
energy gained by this bound-state energy shift is larger
then the cost of the induced magnetization that extends
into the interior of the sample. The surface magnetiza-
tion can be either of equal or opposite sign at the two
edges, both configurations have equal free energy AQqw.
The resulting free energy difference is shown in Fig. 2
for several values of |Ap|. Both AQpw and its derivative
indicate a second-order phase transition to the magneti-
cally ordered state at Ty;. The inset of Fig. 2 shows the
dependence of Ty on the Fermi-liquid parameter |Ag|.
Clearly, for smaller |Ag| the transition temperature Ty
is lowered. This connects to the results of Ref. [17] where,
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FIG. 1. Fermi liquid interaction effects split the zero-energy
Andreev bound states. The full density of states (dash-dotted
blue) is split as a result of opposite energy shifts of up-spin
(solid orange) and down-spin (dashed green) states. All quan-
tities are shown directly at the surface of a translationally in-
variant strip with |[Ag| = 0.7 at T' = 0.157¢. Inset: Enlarged
view of the main plot around zero energy.
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FIG. 2. Free energy AQrw as function of temperature T in
a infinite strip of length L = 20y in the z-direction. In red
triangles, the free energy in the absence of magnetic inter-
action, |Ag| = 0, and for finite Fermi-liquid parameter |Ag|
as indicated in the legend. Inset: Dependence of Tw, the
transition temperature to the magnetic state, for various Ag
(orange dots) together with a quadratic fit (blue dashed line)
and T, the temperature of the phase crystal in the absence
of magnetic interaction (red-dotted line).

at zero temperature, an infinitesimally weak interaction
is sufficient to create surface magnetization.

B. Square geometry (2D)

In a true square geometry we can find two non-
trivial and distinct solutions as ground-state candidates.
Firstly, a magnetically ordered state with magnetization
on all edges, similar to the one found in the infinite strip.
Secondly, we find the so-called phase crystal that fea-
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FIG. 3. Surface magnetization for parameters Ap = 0.52 and
T = 0.093T. in a square with an area A = (40&)2. In (a),
a filled contour plot of the magnetization M. (R), which is
symmetric around y = 0, in the upper half of the square.
In (b), in solid blue M.(R) along y = 0£, — seen as a black
line in (a) — showing the exponential decay into the bulk,
and in dashed orange the magnetization along the surface at
y = —20&p, red line in (a), showing the decrease away from
the center and small positive value close to the corners.

tures spontaneous phase gradients and currents along the
edges. These currents typically flow in pairs of loops that
have a radius of around five coherence lengths and carry,
per loop-pair, counterflowing current. We find that self-
consistent solutions are always either one or the other
state and do not observe any mixed states. If the solution
is of one or the other type depends on the temperature
T and Fermi-liquid interaction strength | Ag]|.

We start by discussing the magnetic state, shown for
one choice of parameters in Fig 3. As seen in Fig. 3(a),
the magnetization is non-uniform along the edges and
suppressed close to the grain corners due to interference
effects. Fig. 3(b) shows that M,(R) is maximal in the
center of each edge, and decays exponentially, on the
scale of the superconducting coherence length, with dis-
tance from the surface. Similar to the infinite strip, we
can find configurations with oppositely pointing magnetic
fields at adjacent edges with no difference in free energy.
We now turn to the phase crystal state. The main char-
acteristic are spontaneous currents that form loops along
the edges, seen in Fig. 4(a). This spontaneous flow is
the results of an oscillation of the order-parameter phase
shown in Fig. 4(b). For details on the physics of this
phase and how such currents can reduce the free energy,
we refer to the existing literature [18, 19, 44]. The un-
derlying solver package for the quasiclassical equations of
motion in two dimensions, SUPERCONGA, has been made
publicly available[45]. The phase crystal is also found in
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FIG. 4. Example for the phase crystal state in a 2D square
with area A = (40&)? for T ~ 0.08847.. In (a), the norm
of the current vector j(z,y) in units of jo = NrvrkgTe. In
(b), the dimensionless phase of the order parameter x(x,y) =
arg(A). Both quantities are symmetric around y = 0 and we
show only the upper half of the square.
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FIG. 5. Free energy AQuw for finite Ag as indicated in the
legend. Additionally, the case of vanishing Ao for either a
purely real (complex) order parameter marked with blue dots
(orange crosses). At sufficiently low temperatures and large
enough values of |Ag| the free energy of the magnetic state is
lower than that of the phase crystal.

microscopic models and stabilized when including strong
correlations[20, 21].

To compare the free energy of the two phases for dif-
ferent temperatures T we consider two sets of param-
eters. First, we allow for a complex order parameter
while Fermi-liquid effects are neglected, A9 = 0, such
that only a phase-crystal solution can appear below a



critical temperature of T* =~ 0.177,[18]. In a separate
set of calculations, we choose a finite |Ag| and force the
superconducting order parameter to be real. Depending
on temperature, we then find either a magnetized state
or a pure d-wave state without current loops. For the
sake of comparison, we also calculated the free energy
of a system with no magnetic interaction and real order
parameter. In this case neither of the two mechanisms
shifts the surface bound states and they stay at zero en-
ergy. Fig. 5 shows the free energy for these different sets
of calculations. For finite |Ag|, the surface magnetization
lowers the free energy below the case of a purely real or-
der parameter (blue line with crosses in Fig. 5). From a
purely real order parameter, the state with surface mag-
netization is reached via a second-order phase transition
at a temperature Ty; that depends on Ag. This behav-
ior is completely analogous to the infinite strip discussed
earlier. In the two-dimensional square geometry, how-
ever, we can also find the phase crystal state. For a
large temperature range this state with spontaneous cur-
rent flow has even lower free energy, and is energetically
favorable, compared to the state with surface magnetiza-
tion. For sufficiently large |Ag| and low enough temper-
ature, the magnetic state can have a lower free energy
than the phase crystal. In Fig. 5 this is the case for
|Ag] = 0.4 and |Ag| = 0.5. In comparison, for smaller
values such as |Ag| = 0.3 the phase crystal is always the
state with lower free energy. Thus, the prevalence of e.g.
the state with surface magnetization over the phase crys-
tal depends strongly on the strength of Fermi liquid ef-
fects in a given material. For conventional superconduc-
tors, spin-polarized electron tunneling has been used to
experimentally determine |Ag|, e.g. for dirty aluminum
with a value of |Ag| = 0.43 £ 0.1 [46-48]. An attempt to
use similar experimental techniques on YBCO has been
reported but gave inconclusive results[49]. What values
to expect for typical d-wave materials is thus an open
question to experiment. Recent microscopic calculations
have predicted a large increase in the spin susceptibil-
ity close to pair-breaking surfaces compared to the bulk
in such materials[50]. Since the spin susceptibility is to
lowest order given by s o pZN*/(1 + F§), this indi-
cates a finite, negative Fermi-liquid parameter F§[32].
The values of Ref. [50] correspond, through Eq. (9), to
Ag =~ —0.7 which suggests that a low temperatures a
dominance of the magnetic state over the phase crystal
is likely. Experimentally, materials with strong enough
Fermi liquid interactions should first display a second-
order transition to a phase crystal state at T ~ 0.177.
The state with surface magnetization then appears at a
lower temperature by a by a first-order transition. An ex-
perimental fingerprint of the surface-magnetized states is
the relatively uniform magnetization along pair-breaking
edges compared to the phase crystal that features neigh-
boring circular regions of oppositely-pointing magnetic
fields generated by the current loop pattern[18]. The two
phases should thus be experimentally distinguishable by
the magnetic fields generated in the respective case.

IV. DISCUSSION AND OUTLOOK

We have studied the free energy of two distinct ground
states in d-wave superconductors. We discussed a state
with surface magnetization and another one with orbital
currents circulating along the surfaces. In both cases,
the free energy of the system is reduced by shifting the
surface Andreev bound states to finite energy. At the
same time, both the induced currents or magnetization
cost energy in the interior of the sample[19]. The bal-
ance between the surface and interior free energy con-
tributions determines the transition temperature to ei-
ther of the two states. Both configurations are reached
from a pure d-wave state via second-order phase tran-
sitions. For weak Fermi-liquid interaction, the transi-
tion to a magnetic state happens at a temperature Ty
that is lower than the transition temperature of the phase
crystal, T* ~ 0.177.. The magnetic state can, however,
end up as the ground state for intermediate values of
the Fermi liquid parameter and at lower temperatures.
Which of the two states ends up being the ground state
for given external parameters is determined by material
properties, such as the strength of Fermi-liquid effects
that renormalize the quasiparticle spectrum. The ap-
pearance of a d 4 ip-wave state at the surface has been
discussed in Ref. [51], an analysis of this is beyond the
scope of the present work. Additionally, Fermi liquid
interaction beyond the lowest-order s-wave contribution
considered can give rise to spin-orbit coupling and lead to
additional splitting or broadening of the surface states.
Lastly, an external magnetic field applied in-plane on a
thin film introduces a Zeeman splitting of the density of
states that would make a surface magnetization energy
more favorable while suppressing the phase crystal state.
A detailed study of this biasing of the competition could
thus alter the competition studied in this work, while also
allowing for easier comparison to experiment.
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APPENDIX

Discontinuous Galerkin method for the
quasiclassical theory with general spin structure

We give here an overview of a finite-element based solu-
tion strategy to the general Eilenberger equation of qua-
siclassical theory with the full spin degrees of freedom.
This extends a previously reported method for spin-
degenerate system[26]. We focus here on the method for
the imaginary-energy, or Matsubara, part of the Green’s
function that determine the equilibrium properties of a
superconducting system. The generalization to nonequi-
librum scenarios follows similar lines.

The starting point is a parametrization of the Green’s
function g™ in terms of coherence amplitudes v, ¥[34, 35].
For positive Matsubara frequencies, the Green’s function

can be written as
M M M
M . g~ ]': . A g~ f
g = 2m<_]__ _g) +inTs = (fM gM.) (15)

where GM = (1 —/yMAM)~1 and FM = GMAM[29]. In the
following, we omit the superscript M to simplify notation.
In the previously reported method for spin-degenerate
systems, all elements of §, and hence also the coherence
amplitudes, are scalar quantities. For general spin struc-
ture, both the Green’s function elements and the coher-
ence amplitudes become instead two-by-two matrices in
spin space.

We thus obtain a set of four coupled equations that have
to be solved. The convention is to write e.g.

_(90+39: Gz _igy
9= <gf+igy 90 —gz>’ (16)
f= (]{E:ZJ;U J};‘_’;}{}) ios. (17)

Similarly, we write for the coherence amplitude

Y= <70+'vz Vo —wy> iy — (71 72) i (18)

Yr+ 1Yy Yo — 7V Y3 Y4

. ry T'o\
ithvg -V <F3 F4) =

I3 Ty 33l + 34y 3yl + X3l

Schematically, this system is equivalent to

Fl T1 [Fa v, A7 Z] A1

. FZ _ T2 [Fv v Aa E] AQ

ZhVF vV F3 B T3 [Fa Y5 Aa E] B AB (24)
F4 T4 [F7 e Aa E] A4

Ty (—Auy + Azysz) +Ta (Agy; — Ay
Ty (—A1ys 4+ Aoy ) + T3 (Asys — Ay

_ 9 (Fl Fz) + <21F1 + 3203 X1Is + Z21—‘4> B (Fli4 — BTy T35 — Flié‘;) B <A1 Az)

3%, — YTy TyY, — 3%

with an analogous form for 4. In the following, we will
use the latter labeling of the elements of v in terms of
numerical indices k € {1,2,3,4}. Similarly, we then label
the elements of the selfenergy matrices as

_ (A1 Az, _ (X X2
A= <A3 A4> iog, = (Zg Z4) . (19)

The projections onto singlet (0) or a given triplet (z,y, 2)
component can be obtained via the reverse linear trans-
formation of Eq. (18), e.g. for the coherence amplitude

(70 %) _1 ( MY P +73> (20)
Ty V= 2 \i(v2—73) 711 —7)"

For general complex energies ¢, the Riccati equation for
the coherence amplitude ~ reads

ihvy - Vy = yAy — 267 + Sy — 43 — A, (21)

with a symmetry-related equation for 4. Note that all
objects in Eq. (21) expect for € are two-by-two spin ma-
trices. Clearly, Eq. (21) is nonlinear in the unknown
function v which we aim to solve through the iterative
solution of a linearized problem using a finite element
method. One possibility to get such an iterative sequence
is to assume that the n-th iterative guess 4" is given as
a solution to the linearized problem

ihve - V4™ = 4 A (=1 _ 9y ()
+ 3y 4T A (22)

Given a starting guess v(?) we then hope that the se-
quence 7" will convergence up to a desired accuracy
in a reasonable amount of iterations. To unburden the
notation, we denote I' = 4™ and v = 4"~V in the fol-
lowing. Using the labeling of Eqgs. (18-19) and removing
factors of ioq, Eq. (22) leads to an equation system of
the form

Ty (—Asye + Azyy) +To (Agya — Ajyy
Ty (—A1va 4+ Axya) + T3 (Azys — Ayye

Ay A (23)

(

As specified in Eq. (23) the four right-hand side functions
ri —with k € {1,2,3,4} — depend on various elements of
T', v, X, and A, which are in turn spatially dependent. In



FIG. 6. A domain Q (grey) with its inflow (outflow) bound-
ary 02— (094) in marked in light blue (dark red) for the
given transport direction vr (orange arrow). The collection
of internal edges 7 is marked in dark green. The mesh nodes of
the underlying triangulation is marked by green circles. Small
arrows on the domain boundary denote outward-pointing sur-
face normals.

the following we only write out an explicit spatial depen-
dence of 7, (R). The ”driving term®, Ay, is written out
explicitly because it is the only one that is independent of
T';.. Note also that the differential operator vg-V acts on
each element of the four-vector separately. By construc-
tion of Eq. (22) we have a linear system of equations for
the unknown functions I'y in Eq. (23) and Eq. (24).

Performing a scalar product of both sides of the equation
with a four vector of, currently unspecified, test func-

T
tions ¢ = (91(R), 62(R), 63(R), 61(R)) , and integrat-
ing over the domain §2 gives

Y [ u(R) (ve  VIL(R)) do

k:lﬂ

=Y [a® ) - AR, @)
k=1

Q

The integration over the domain gets now split up into
a sum of integrals over a set of cells 7; that satisfy
Q) = Ur,e7Tj, i.e., over a triangulation 7 of the domain
Q. For the transport equation in Eq. (24) it is crucial
to use a so-called discontinuous Galerkin method where
neighboring cells have independent degrees of freedom as-
sociated with each geometric node. This means function
values can be different in neighboring cells even at the -
geometrically identical - shared cell corners[53, 54].

The splitting of the global integral into a sum of per-cell
integrals gives

4
iy Y / or(R) (vi - VI, (R)) dQ;
k=1 TjeTQj
4
=Y > [ &(R)(re(R) — Ap(R))dQy. (26)

k=1T5€Tg,

A partial integration of the left-hand side yields

mi? 3 {/ S (R)T,(R)vp - n; ds;

k=1T;€T 09,

- /Fk(R)VF -Vor(R) dQ;

Q;

=> > / or(R) (r(R) — Ar(R)) Ay, (27)
T;€T, ;

=1 Q

where the first integral is now over the boundary 052;
of a cell T; and contains the edge-dependent, outward-
pointing normal vector n;. A given edge of such a cell
will either be on the geometric boundary 92 or one of the
internal edges. We label the collection of such internal
edges 7. The geometric boundary 0f2 is further split into
an inflow boundary 9€2_ and an outflow boundary 9,
defined via

N_={Re€d|vr-nR) <0}, (28)
00 ={R €| vr-n(R)>0}. (29)

The various sets are shown in Fig. 6. The sum over the
cell-edge integration then consists of three different types
of contributions. Firstly, integrals over edges on the in-
flow boundary where a boundary value I'; g has to be
specified. We refer to the discussion in Ref. [26] on how
these boundary values are found since the procedure is
identical to the spin-degenerate case. Secondly, we have
integrals over the outflow boundary where the functions
Iy, are unknown and determined in the later solution
procedure. Lastly, Eq. (27) features a sum over inter-
nal edges. Each edge is integrated over twice, once for
each of the two cells that share a given edge. The sign of
n; - vp will be different for the two respective cells which
leads to terms proportional to the difference of ¢, 'y, in
the two cells. We will just label two cells sharing an edge
as cell 1 and cell 2. It has been shown[55, 56] that a
numerically stabilized form of rewriting the integral con-
tributions from internal edges in Eq. (27) is

4
SN [ 6k (wve) - n; ds;
k=1T;€T 5,
= Z(Z /{Fk(R)VF}u [Px(R)] d7;
k=1 T]‘GTTj
+ (nj . VF) Fk(R)¢)k(R) de
5;€00 4

Sj

+ Z /(nj -vr) e s(R) ¢k (R) dsj>. (30)

s;E€E00_ s

In Eq. (30) the first term on the right-hand side originates
from the flow through internal edges, the other two terms



originate from the domain boundary. The first term con-
tains brackets with a subindex u, {...},, that indicate
the so-called upwind value

F{%VF ifvp-n; >0
{TAvp} = THvp  ifvp-m <O . (31)
{I‘R}VF ifvp-n; =0
This definition and Eq. (30) contain the jump [...] and
average {...} of a function along the edge shared by two
cells. These bracket operators are defined for vectors a
and scalars ¢ as
[a] = a; -1y +az - ny,

[¢] = ¢1n1 + ¢ony, (32)

(= (e ta), (6= (i+a).  (33)
with the function value and the outward-pointing nor-
mal vector n; in the respective cell labeled by an in-
dex (1,2). Effectively, this entire stabilization procedure
means that function values are i) specified on the inflow
boundary, ii) propagated through internal edges along
the given transport direction v, and iii) found on the

J

ithZ/{rk Jved, - [Be(R

k=1Ll7eT 5;€004 4

—ZZ/% )ri(R)dQ; _“[

k= 1T€TQ T;€T¢

This weak form can now be treated with textbook meth-
ods in order to assemble and solve the corresponding ma-
trix equation system[58]. By solving the resulting system,
we obtain a candidate for a new guess I' for the original
non-linear system in Eq. (21) under the assumption of
previous guess v = ("~ In some cases, directly taking
the solution I' as the next iterative guess 4™ is numer-
ically unstable. We observe such instability in particu-
lar when solving the transport equations for real ener-
gies rather than purely imaginary Matsubara or Ozaki
poles[59]. Given a solution T'y of the linearized problem,

one way to stabilize the iterative procedure is to update
'y,in) via

W =Y +a (T =) (35)

Here, a € (0,1] is a numerical parameter. We find that
for general complex energies small values of v < 0.4 are
required which increases the number of iterative guesses.
Adaptive methods that scale «, e.g. based on the differ-
ence between I' and ~, can lead to faster convergence. In
contrast, for purely imaginary poles it is stable to choose

dTJ—F Z /l’l] \%0 Fk )¢k dS] Z /Fk VF ngﬁk( )dQ
) /«m AL(R)AY,

outflow boundary as part of the solution step. This prop-
agation is followed for positive Matsubara poles or the
retarded components of the Green’s function on the real
axis. For advanced components, or negative Matsubara
frequencies, the propagation directions swap. In the lat-
ter case boundary values are prescribed on the outflow
boundary and values found on the inflow boundary while
a downwind value, defined analogously to Eq. (31), prop-
agates function values through internal edges. In sum-
mary, this treatment mirrors the propagation of func-
tion values from a starting point to an end point along
classical trajectories typically used in finite-difference
approaches[29, 45, 57].

Lastly, the linear FEM weak form in Eq. (27) should
be written such that all terms containing the unknown
functions I'y, are on the left-hand side while all terms that
do not on the right-hand side of the equation. For our
present problem, this means that the inflow-boundary
term containing I'; g in Eq. (30) needs to be moved to the
right-hand side, while the term containing 7 is moved to
the left when combining Eq. (27) and Eq. (30). Doing so
gives the translation of Eq. (23) into the corresponding
weak form

T; ETQ

- > /nj vi T s(R)L(R )dsjl. (34)

SJEGQ,S

(

o = 1, i.e. directly assigning 'y, as the next guess for
(n)
Vi -



[1] C.-R. Hu, Midgap surface states as a novel signature for
d2,-z2-wave superconductivity, Phys. Rev. Lett. 72, 1526
(1994).

[2] T. Lofwander, V. S. Shumeiko, and G. Wendin, An-
dreev bound states in high-Tc superconducting, Super-
cond. Sci. Technol. 14, R53 (2001).

[3] S. Ryu and Y. Hatsugai, Topological Origin of Zero-
Energy Edge States in Particle-Hole Symmetric Systems,
Phys. Rev. Lett. 89, 077002 (2002).

[4] M. Sato, Y. Tanaka, K. Yada, and T. Yokoyama, Topol-
ogy of Andreev bound states with flat dispersion, Phys.
Rev. B 83, 224511 (2011).

[5] C. Honerkamp and M. Sigrist, Time-reversal symmetry
breaking states at [110] surfaces of dx2-y2 superconduc-
tors, Physica C 317-318, 489 (1999).

[6] T. Lofwander, V. S. Shumeiko, and G. Wendin, Andreev
bound states in high-T. superconducting junctions, Su-
percond. Sci. Technol. 14, R53 (2001).

[7] T. Becherer, C. Stolzel, G. Adrian, and
H. Adrian, Normal electron tunneling in ramp-type
YBagCu307/PrBazCu307/YBa2Cu307 qulCtiOnS pre-
pared by laser ablation, Phys. Rev. B 47, 14650
(1993).

[8] S. Kashiwaya, Y. Tanaka, M. Koyanagi, H. Takashima,
and K. Kajimura, Evidence for d-wave symmetry in high-
Tc superconductors based on tunneling theory and STM
experiment, Physica C 235-240, 1911 (1994).

[9] S. Kashiwaya, Y. Tanaka, M. Koyanagi, H. Takashima,
and K. Kajimura, Origin of zero-bias conductance peaks
in high-T. superconductors, Phys. Rev. B 51, 1350
(1995).

[10] S. Kashiwaya and Y. Tanaka, Tunnelling effects on sur-
face bound states in unconventional superconductors,
Rep. Prog. Phys. 63, 1641 (2000).

[11] S. Higashitani, Mechanism of Paramagnetic Meissner Ef-
fect in High-Temperature Superconductors, J. Phys. Soc.
Jpn. 66, 2556 (1997).

[12] J. Geerk, X. X. Xi, and G. Linker, Electron tunneling
into thin films of Y1Ba2Cu307, Z. Phys. B: Condens.
Matter 73, 329 (1988).

[13] J. Lesueur, L. H. Greene, W. L. Feldmann, and A. Inam,
Zero bias anomalies in YBa2Cu307 tunnel junctions,
Physica C 191, 325 (1992).

[14] M. Covington, M. Aprili, E. Paraoanu, L. H. Greene,
F. Xu, J. Zhu, and C. A. Mirkin, Observation of
Surface-Induced Broken Time-Reversal Symmetry in
YBayCusO7 Tunnel Junctions, Phys. Rev. Lett. 79, 277
(1997).

[15] M. Matsumoto and H. Shiba, Coexistence of Different
Symmetry Order Parameters near a Surface in d-Wave
Superconductors 11, J. Phys. Soc. Jpn. 64, 4867 (1995).

[16] M. Fogelstrom, D. Rainer, and J. A. Sauls, Tunneling
into Current-Carrying Surface States of High- T. Super-
conductors, Phys. Rev. Lett. 79, 281 (1997).

[17] A. C. Potter and P. A. Lee, Edge Ferromagnetism from
Majorana Flat Bands: Application to Split Tunneling-
Conductance Peaks in High-7T. Cuprate Superconduc-
tors, Phys. Rev. Lett. 112, 117002 (2014).

[18] M. Hakansson, T. Lofwander, and M. Fogelstrom,
Spontaneously broken time-reversal symmetry in high-
temperature superconductors - Nature Physics, Nat.

Phys. 11, 755 (2015).

[19] P. Holmvall, M. Fogelstrom, T. Lofwander, and A. B.
Vorontsov, Phase crystals, Phys. Rev. Res. 2, 013104
(2020).

[20] N. W. Wennerdal, A. Ask, P. Holmvall, T. Loéfwander,
and M. Fogelstrom, Breaking time-reversal and trans-
lational symmetry at edges of d-wave superconductors:
Microscopic theory and comparison with quasiclassical
theory, Phys. Rev. Res. 2, 043198 (2020).

[21] D. Chakraborty, T. Lofwander, M. Fogelstrom, and A. M.
Black-Schaffer, Disorder-robust phase crystal in high-
temperature superconductors stabilized by strong corre-
lations, npj Quantum Mater. 7, 1 (2022).

[22] G. Eilenberger, Transformation of Gorkov’s equation for
type II superconductors into transport-like equations, Z.
Physik 214, 195 (1968).

[23] A. Larkin and Y. N. Ovchinnikov, Quasiclassical Method
in the Theory of Superconductivity, Zh. Eksp. Teor. Fiz.
55, 2262 (1968), [Sov. Phys. JETP 28, 1200, 1969].

[24] G. Eliashberg, Inelastic electron collisions and nonequi-
librium stationary states in superconductors, Zh. Eksp.
Teor. Fiz. 61, 1254 (1971), [Sov. Phys. JETP 34, 668
(1972)].

[25] K. M. Seja and T. Lofwander, Quasiclassical theory
of charge transport across mesoscopic normal-metal—
superconducting heterostructures with current conserva-
tion, Phys. Rev. B 104, 104502 (2021).

[26] K. M. Seja and T. Lofwander, Finite element method
for the quasiclassical theory of superconductivity, Phys.
Rev. B 106, 144511 (2022).

[27] J. W. Serene and D. Rainer, The quasiclassical approach
to superfluid 3He, Phys. Rep. 101, 221 (1983).

[28] N. Kopnin, Theory of Nonequilibrium Superconductivity
(Oxford University Press, Oxford, England, UK, 2001).

[29] M. Eschrig, Scattering problem in nonequilibrium quasi-
classical theory of metals and superconductors: General
boundary conditions and applications, Phys. Rev. B 80,
134511 (2009).

[30] M. Eschrig, J. A. Sauls, H. Burkhardt, and D. Rainer,
Fermi Liquid Superconductivity, in High-Tc Supercon-
ductors and Related Materials: Material Science, Fun-
damental Properties, and Some Future Electronic Appli-
cations (Springer, Dordrecht, The Netherlands, 2001) pp.
413-446.

[31] X. Montiel and M. Eschrig, Generation of pure super-
conducting spin current in magnetic heterostructures via
nonlocally induced magnetism due to Landau Fermi lig-
uid effects, Phys. Rev. B 98, 104513 (2018).

[32] P. Coleman, Introduction to Many-Body Physics (Cam-
bridge University Press, Cambridge, England, UK, 2015).

[33] Y. Nagato, K. Nagai, and J. Hara, Theory of the An-
dreev reflection and the density of states in proximity
contact normal-superconducting infinite double-layer, J.
Low Temp. Phys. 93, 33 (1993).

[34] N. Schopohl and K. Maki, Quasiparticle spectrum around
a vortex line in a d-wave superconductor, Phys. Rev. B
52, 490 (1995).

[35] N. Schopohl, Transformation of the Eilenberger Equa-
tions of Superconductivity to a Scalar Riccati Equation,
arXiv (1998), cond-mat/9804064.

[36] A. Shelankov and M. Ozana, Quasiclassical theory of


https://doi.org/10.1103/PhysRevLett.72.1526
https://doi.org/10.1103/PhysRevLett.72.1526
https://doi.org/10.1088/0953-2048/14/5/201
https://doi.org/10.1088/0953-2048/14/5/201
https://doi.org/10.1103/PhysRevLett.89.077002
https://doi.org/10.1103/PhysRevB.83.224511
https://doi.org/10.1103/PhysRevB.83.224511
https://doi.org/10.1016/S0921-4534(99)00106-9
https://doi.org/10.1088/0953-2048/14/5/201
https://doi.org/10.1088/0953-2048/14/5/201
https://doi.org/10.1103/PhysRevB.47.14650
https://doi.org/10.1103/PhysRevB.47.14650
https://doi.org/10.1016/0921-4534(94)92177-6
https://doi.org/10.1103/PhysRevB.51.1350
https://doi.org/10.1103/PhysRevB.51.1350
https://doi.org/10.1088/0034-4885/63/10/202
https://doi.org/10.1143/JPSJ.66.2556
https://doi.org/10.1143/JPSJ.66.2556
https://doi.org/10.1007/BF01314271
https://doi.org/10.1007/BF01314271
https://doi.org/10.1016/0921-4534(92)90926-4
https://doi.org/10.1103/PhysRevLett.79.277
https://doi.org/10.1103/PhysRevLett.79.277
https://doi.org/10.1143/JPSJ.64.4867
https://doi.org/10.1103/PhysRevLett.79.281
https://doi.org/10.1103/PhysRevLett.112.117002
https://doi.org/10.1038/nphys3383
https://doi.org/10.1038/nphys3383
https://doi.org/10.1103/PhysRevResearch.2.013104
https://doi.org/10.1103/PhysRevResearch.2.013104
https://doi.org/10.1103/PhysRevResearch.2.043198
https://doi.org/10.1038/s41535-022-00450-w
https://doi.org/10.1007/BF01379803
https://doi.org/10.1007/BF01379803
http://jetp.ras.ru/cgi-bin/e/index/e/28/6/p1200?a=list
http://jetp.ras.ru/cgi-bin/e/index/e/28/6/p1200?a=list
http://jetp.ras.ru/cgi-bin/e/index/e/34/3/p668?a=list
http://jetp.ras.ru/cgi-bin/e/index/e/34/3/p668?a=list
https://doi.org/10.1103/PhysRevB.104.104502
https://doi.org/10.1103/PhysRevB.106.144511
https://doi.org/10.1103/PhysRevB.106.144511
https://doi.org/10.1016/0370-1573(83)90051-0
https://doi.org/10.1093/arclin/13.1.67
https://doi.org/10.1103/PhysRevB.80.134511
https://doi.org/10.1103/PhysRevB.80.134511
https://doi.org/10.1007/978-94-010-0758-0_21
https://doi.org/10.1007/978-94-010-0758-0_21
https://doi.org/10.1007/978-94-010-0758-0_21
https://doi.org/10.1007/978-94-010-0758-0_21
https://doi.org/10.1103/PhysRevB.98.104513
https://doi.org/10.1017/CBO9781139020916
https://doi.org/10.1007/BF00682280
https://doi.org/10.1007/BF00682280
https://doi.org/10.1103/PhysRevB.52.490
https://doi.org/10.1103/PhysRevB.52.490
https://arxiv.org/abs/cond-mat/9804064v1
https://arxiv.org/abs/cond-mat/9804064

superconductivity: A multiple-interface geometry, Phys.
Rev. B 61, 7077 (2000).

[37] J. Sédnchez-Canizares and F. Sols, Self-Consistent Theory
of Transport in Quasi-One-Dimensional Superconduct-
ing Wires, J. Low Temp. Phys. 122, 11 (2001).

[38] J. M. Luttinger and J. C. Ward, Ground-State Energy of
a Many-Fermion System. II, Phys. Rev. 118, 1417 (1960).

[39] E. V. Thuneberg, J. Kurkijarvi, and D. Rainer,
Elementary-flux-pinning potential in type-II supercon-
ductors, Phys. Rev. B 29, 3913 (1984).

[40] A. B. Vorontsov and J. A. Sauls, Thermodynamic prop-
erties of thin films of superfluid ®He — A, Phys. Rev. B
68, 064508 (2003).

[41] S. Ali, L. Zhang, and J. A. Sauls, Thermodynamic Po-
tential for Superfluid 3He in Aerogel, J. Low Temp. Phys.
162, 233 (2011).

[42] E. Zhao, T. Lofwander, and J. A. Sauls, Nonequilibrium
superconductivity near spin-active interfaces, Phys. Rev.
B 70, 134510 (2004).

[43] A. B. Vorontsov, Broken Translational and Time-
Reversal Symmetry in Unconventional Superconducting
Films, Phys. Rev. Lett. 102, 177001 (2009).

[44] P. Holmvall, A. B. Vorontsov, M. Fogelstrom, and
T. Lofwander, Broken translational symmetry at edges
of high-temperature superconductors, Nat. Commun. 9,
1 (2018).

[45] P. Holmvall, N. Wall Wennerdal, M. Hékansson,
P. Stadler, O. Shevtsov, T. Lofwander, and M. Fo-
gelstrom, SuperConga: An open-source framework for
mesoscopic superconductivity, Appl. Phys. Rev. 10,
10.1063/5.0100324 (2023).

[46] P. M. Tedrow, J. T. Kucera, D. Rainer, and T. P. Or-
lando, Spin-Polarized Tunneling Measurement of the An-
tisymmetric Fermi-Liquid Parameter G° and Renormal-
ization of the Pauli Limiting Field in A1, Phys. Rev. Lett.
52, 1637 (1984).

[47] J. A. X. Alexander, T. P. Orlando, D. Rainer, and P. M.
Tedrow, Theory of Fermi-liquid effects in high-field tun-
neling, Phys. Rev. B 31, 5811 (1985).

[48] R. Meservey and P. M. Tedrow, Spin-polarized electron
tunneling, Phys. Rep. 238, 173 (1994).

[49] H. Kashiwaya, S. Kashiwaya, B. Prijamboedi, A. Sawa,

10

I. Kurosawa, Y. Tanaka, and I. Iguchi, Anomalous
magnetic-field tunneling of YBaxCuszOr_s junctions:
Possible detection of non-Fermi-liquid states, Phys. Rev.
B 70, 094501 (2004).

[50] S. Matsubara and H. Kontani, Emergence of strongly cor-
related electronic states driven by the Andreev bound
state in d-wave superconductors, Phys. Rev. B 101,
075114 (2020).

[61] S. Matsubara and H. Kontani, Emergence of d & ip-wave
superconducting state at the edge of d-wave supercon-
ductors mediated by ferromagnetic fluctuations driven by
Andreev bound states, Phys. Rev. B 101, 235103 (2020).

[62] D. Arndt, W. Bangerth, M. Bergbauer, M. Feder,
M. Fehling, J. Heinz, T. Heister, L. Heltai, M. Kron-
bichler, M. Maier, P. Munch, J.-P. Pelteret, B. Turcksin,
D. Wells, and S. Zampini, The deal.II library, version
9.5, Journal of Numerical Mathematics 31, 231 (2023).

[63] B. Cockburn, G. E. Karniadakis, and C.-W. Shu, The
Development of Discontinuous Galerkin Methods, in Dis-
continuous Galerkin Methods (Springer, Berlin, Ger-
many, 2000) pp. 3-50.

[54] B. Cockburn, Discontinuous Galerkin methods, Z. angew.
Math. Mech. 83, 731 (2003).

[655] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini,
Unified Analysis of Discontinuous Galerkin Methods for
Elliptic Problems, STAM J. Numer. Anal. 39, 1749-1779
(2002).

[56] F. Brezzi, L. D. Marini, and E. Siili, Discontinuous
Galerkin Methods for First-Order Hyperbolic Problems,
Math. Models Methods Appl. Sci. 14, 1893 (2004).

[57] R. Grein, T. Lofwander, and M. Eschrig, Inverse prox-
imity effect and influence of disorder on triplet supercur-
rents in strongly spin-polarized ferromagnets, Phys. Rev.
B 88, 054502 (2013).

[58] C. Johnson, Numerical Solution of Partial Differential
Equations by the Finite Element Method (Dover Books
on Mathematics) (Dover Publications, 2009).

[59] T. Ozaki, Continued fraction representation of the Fermi-
Dirac function for large-scale electronic structure calcu-
lations, Phys. Rev. B 75, 035123 (2007).


https://doi.org/10.1103/PhysRevB.61.7077
https://doi.org/10.1103/PhysRevB.61.7077
https://doi.org/10.1023/A:1004896902269
https://doi.org/10.1103/PhysRev.118.1417
https://doi.org/10.1103/PhysRevB.29.3913
https://doi.org/10.1103/PhysRevB.68.064508
https://doi.org/10.1103/PhysRevB.68.064508
https://doi.org/10.1007/s10909-010-0310-4
https://doi.org/10.1007/s10909-010-0310-4
https://doi.org/10.1103/PhysRevB.70.134510
https://doi.org/10.1103/PhysRevB.70.134510
https://doi.org/10.1103/PhysRevLett.102.177001
https://doi.org/10.1038/s41467-018-04531-y
https://doi.org/10.1038/s41467-018-04531-y
https://doi.org/10.1063/5.0100324
https://doi.org/10.1103/PhysRevLett.52.1637
https://doi.org/10.1103/PhysRevLett.52.1637
https://doi.org/10.1103/PhysRevB.31.5811
https://doi.org/10.1016/0370-1573(94)90105-8
https://doi.org/10.1103/PhysRevB.70.094501
https://doi.org/10.1103/PhysRevB.70.094501
https://doi.org/10.1103/PhysRevB.101.075114
https://doi.org/10.1103/PhysRevB.101.075114
https://doi.org/10.1103/PhysRevB.101.235103
https://doi.org/10.1515/jnma-2023-0089
https://doi.org/10.1007/978-3-642-59721-3_1
https://doi.org/10.1007/978-3-642-59721-3_1
https://doi.org/10.1002/zamm.200310088
https://doi.org/10.1002/zamm.200310088
https://epubs.siam.org/doi/10.1137/S0036142901384162
https://epubs.siam.org/doi/10.1137/S0036142901384162
https://doi.org/10.1142/S0218202504003866
https://doi.org/10.1103/PhysRevB.88.054502
https://doi.org/10.1103/PhysRevB.88.054502
https://doi.org/10.1103/PhysRevB.75.035123

	Spontaneous splitting of d-wave surface states: Circulating currents or edge magnetization?
	Abstract
	Introduction
	Theory
	Quasiclassical theory
	Calculational strategy
	Model

	Results
	Translationally invariant strip (1D)
	Square geometry (2D)

	Discussion and Outlook
	Acknowledgments
	Appendix
	Discontinuous Galerkin method for the quasiclassical theory with general spin structure

	References


