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Abstract

We revisit dispersionless version of the multicomponent KP hierarchy considered
previously by Takasaki and Takebe. In contrast to their study, we do not fix
any distinguished component treating all of them on equal footing. We obtain
nonlinear equations for dispersionless tau-function (the F -function) and represent
them using the trigonometric parametrization. In this trigonometric uniformization
the equations considerably simplify and acquire a nice form.
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1 Introduction

The multicomponent KP hierarchy was introduced in the paper [1] in 1981. Since then
it was considered in the works [2, 3, 4]. Recently, some generalization of it was suggested
in [5] under the name of the universal hierarchy. (The difference of the approach in [5]
with the previous works is that the integer variables of the hierarchy are allowed to take
arbitrary complex values, with the equations in these variables being still difference.)

In this note we are mainly interested in the dispersionless limit of the hierarchy, tend-
ing the small “dispersion parameter” h̄ to zero. The general approach to dispersionless
limits of integrable hierarchies was developed in [6] by Takasaki and Takebe. In [3], they
analyzed the dispersionless limit of the multicomponent KP hierarchy. In their approach,
one of the components was distinguished. We find it appropriate to revisit this problem.
In our approach, all components are treated on equal footing. We obtain nonlinear equa-
tions for the dispersionless limit of (logarithm of) tau-function (the F -function) which
follow from the bilinear equations of the Hirota-Miwa type.

The main result of this paper is a new form of the dispersionless equations for the F -
function which emerges after a trigonometric parametrization. In this form, the equations
considerably simplify and some of them become equivalent, so the number of independent
equations reduces (basically, only one main equation is left).

The paper is organized as follows. In section 2 we present the generating bilinear
integral equation for the tau-function and derive different equations of the Hirota-Miwa
type as corollaries of it. Section 3 is devoted to the dispersionless limit. We obtain
the dispersionless version of all the Hirota-Miwa equations from the previous section.
In section 4 we suggest the trigonometric parametrization and rewrite all the equations
obtained in the previous section in the nice trigonometric form. Section 5 contains
concluding remarks.

2 Bilinear equations for the tau-function

Let us start from the n-component KP hierarchy extended by certain additional integrable
flows [1, 2, 3, 4]. In [5] it is called the universal hierarchy. The independent variables are
n infinite sets of (in general complex) “times”

t = {t1, t2, . . . , tn}, tα = {tα,1, tα,2, tα,3, . . . }, α = 1, . . . , n

and n additional variables s1, . . . , sn such that

n
∑

α=1

sα = 0. (2.1)

By s we denote the vector s = {s1, . . . , sn} and by eα the vector whose α’s component is
1 and all other components 0. We will also use the following standard notation:

(

t± [z−1]γ
)

αj
= tα,j ± δαγ

z−j

j
, (2.2)

ξ(tα, z) =
∑

j≥1

tα,jz
j . (2.3)
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In general we treat s1, . . . , sn as complex variables, as in [5]. If they are restricted to be
integers, the hierarchy coincides with the one considered in [1]–[4].

In the bilinear formalism, the dependent variable is the tau-function τ(s, t) The uni-
versal hierarchy is the infinite set of bilinear equations for the tau-function which are
encoded in the basic bilinear relation [1, 4]

n
∑

γ=1

ǫαγ(s)ǫ
−1
βγ (s

′)
∮

C∞

dz zsγ−s′γ+δαγ+δβγ−2eξ(tγ−t
′

γ , z)

× τ
(

s + eα − eγ , t− [z−1]γ
)

τ
(

s′ + eγ − eβ , t
′ + [z−1]γ

)

= 0

(2.4)

valid for any t, t′, s, s′ such that s − s′ ∈ Z
n (and subject to the constraint (2.1)). In

(2.4)

ǫαγ(s) =































exp
(

−iπ
∑

α<µ≤γ

sµ
)

, α < γ

1, α = γ

− exp
(

iπ
∑

γ<µ≤α

sµ
)

, α > γ

(2.5)

(see [5]). The contour C∞ is a big circle around infinity. It is easy to see that for
s−s′ ∈ Z

n the factor ǫαγ(s)ǫ
−1
βγ (s

′) multiplied by ǫαβ(s) is just a sign factor ±1 depending
only on s− s′.

Different bilinear relations for the tau-function of the Hirota-Miwa type which follow
from (2.4) for special choices of s − s′ and t − t′ are given in [4]. We present some of
them below, with a sketch of the derivation.

First of all we consider (2.4) at α = β, differentiate it with respect to tα,1 and put
s′ = s, t− t′ = [a−1]α + [b−1]α, so that

eξ(tα−t
′

α,z) =
a b

(a− z)(b− z)
, eξ(tγ−t

′

γ ,z) = 1 for γ 6= α.

We get
∮

C∞

dz
abz

(a− z)(b− z)
τ(s, t− [z−1]α)τ(s, t− [a−1]α − [b−1]α + [z−1]α)

+
∮

C∞

dz
ab

(a− z)(b− z)
∂tα,1

τ(s, t− [z−1]α)τ(s, t− [a−1]α − [b−1]α + [z−1]α) = 0.

The residue calculus followed by some simple transformations yields the equation

τ(s, t)τ(s, t+ [a−1]α + [b−1]α)

τ(s, t+ [a−1]α)τ(s, t+ [b−1]α)
= 1−

1

a− b
∂tα,1

log
τ(s, t+ [a−1]α)

τ(s, t+ [b−1]α)
. (2.6)

Now consider (2.4) with α = β and s′ = s+eα−eµ (with µ 6= α) and t−t′ = [a−1]α+[b−1]α.
The residue calculus yields:

τ(s, t)τ(s + eα − eβ, t+ [a−1]α + [b−1]α)

τ(s, t+ [a−1]α)τ(s + eα − eβ , t+ [b−1]α)

=
1

a− b

(

a
τ(s + eα − eβ , t+ [b−1]α)

τ(s, t+ [b−1]α)
− b

τ(s + eα − eβ, t+ [a−1]α)

τ(s, t+ [a−1]α)

)

,

(2.7)
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where we have changed µ → β. The next choice in (2.4) with α = β is s′ = s and
t− t′ = [a−1]α + [b−1]µ (µ 6= α). The residue calculus yields the equation

τ(s, t)τ(s, t+ [a−1]α + [b−1]β)− τ(s, t+ [a−1]α)τ(s, t+ [b−1]β)

= (ab)−1τ(s+ eα − eβ, t+ [a−1]α)τ(s+ eβ − eα, t+ [b−1]β),
(2.8)

where we again have changed µ → β.

Let us now consider the case α 6= β in (2.4). First, we apply ∂tα,1
and put s′ = s,

t− t′ = [a−1]α + [b−1]β after that. The residue calculus yields:

a
τ(s, t+ [a−1]α + [b−1]β))τ(s + eα − eβ , t)

τ(s, t+ [b−1]β))τ(s + eα − eβ, t+ [a−1]α)
= a+ ∂tα,1

log
τ(s, t+ [b−1]β)

τ(s + eα − eβ , t+ [a−1]α)
.

(2.9)
The next choice is s′ = s, t−t′ = [a−1]µ with µ 6= α, β. In this case equation (2.4) yields:

τ(s, t)τ(s + eα − eβ , t+ [a−1]µ)− τ(s, t+ [a−1]µ)τ(s+ eα − eβ, t)

+ ǫαβǫαµǫβµa
−1τ(s+ eα − eµ, t)τ(s+ eµ − eβ, t+ [a−1]µ) = 0,

(2.10)

where ǫαβ = 1 at α ≤ β and ǫαβ = −1 at α > β. Finally, we put s′ = s + eα − eβ,
t− t′ = [a−1]α + [b−1]α in (2.4). The residue calculus yields:

a

b

τ(s− eα + eβ , t+ [a−1]α)τ(s + eα − eβ, t+ [b−1]α)

τ(s, t)τ(s, t) + [a−1]α + [b−1]α)

−
b

a

τ(s− eα + eβ, t+ [b−1]α)τ(s + eα − eβ , t+ [a−1]α)

τ(s, t)τ(s, t) + [a−1]α + [b−1]α)

= (a− b)∂tβ,1
log

τ(s, t) + [a−1]α + [b−1]α)

τ(s, t)
.

(2.11)

Another equation can be obtained in the following way. Put α = β = µ in (2.4):

n
∑

γ=1

ǫµγ(s)ǫ
−1
µγ (s

′)
∮

C∞

dz zsγ−s′γ+2δµγ−2eξ(tγ−t
′

γ , z)

× τ
(

s+ eµ − eγ, t− [z−1]γ
)

τ
(

s′ + eγ − eµ, t
′ + [z−1]γ

)

= 0,

and put here s − s′ = eα + eβ − 2eµ, t − t′ = [a−1]α + [b−1]β with α 6= β and µ 6= α, β.
The residue calculus yields:

ǫµα(s)ǫ
−1
µα(s+ 2eµ − eα − eβ)∂tµ,1τ(s + eµ − eα, t+ [b−1]β)τ(s + eµ − eβ, t+ [a−1]α)

+ǫµβ(s)ǫ
−1
µβ (s + 2eµ − eα − eβ)∂tµ,1τ(s+ eµ − eβ, t+ [a−1]α)τ(s + eµ − eα, t+ [b−1]β)

+τ(s, t+ [a−1]α + [b−1]β)τ(s + 2eµ − eα − eβ, t) = 0.

The case-by-case inspection shows that

ǫµα(s)ǫ
−1
µα(s+ 2eµ − eα − eβ) = −ǫµβ(s)ǫ

−1
µβ (s + 2eµ − eα − eβ) = −ǫαβǫαµǫβµ.

4



Therefore, the equation finally reads:

ǫαβ
τ(s + eβ − eµ, t+ [a−1]α + [b−1]β)τ(s + eµ − eα, t)

τ(s + eβ − eα, t+ [b−1]β)τ(s, t+ [a−1]α)

= ǫαµǫβµ∂tµ,1 log
τ(s + eβ − eα, t+ [b−1]β)

τ(s, t+ [a−1]α)
.

(2.12)

3 The dispersionless limit

In order to perform the dispersionless limit [6], one should introduce a small parameter h̄
and rescale the times t and variables s as tα,k → tα,k/h̄, sα → sα/h̄. Introduce a function
F (s, t; h̄) related to the tau-function by the formula

τ(s/h̄, t/h̄) = exp
( 1

h̄2 F (s, t; h̄)
)

(3.1)

and consider the limit F = lim
h̄→0

F (s, t; h̄). The function F represents the tau-function

in the dispersionless limit h̄ → 0. It satisfies an infinite number of nonlinear differential
equations which follow from the bilinear equations for the tau-function. In the disper-
sionless limit the difference equations in the variables sα become differential, and the
derivative ∂sα will be denoted simply as ∂α. Introduce also the differential operators

Dα(z) =
∑

k≥1

z−k

k
∂tα,k

, (3.2)

so that

τ(s/h̄, t/h̄+ [z−1]α) = exp
( 1

h̄2 e
h̄Dα(z)F (s, t; h̄)

)

and

τ(s/h̄ + eα − eβ , t/h̄) = exp
( 1

h̄2 e
h̄∂α−h̄∂βF (s, t; h̄)

)

.

Let us obtain dispersionless versions of equations (2.6)–(2.11). Equation (2.6) can be
rewritten as

exp
(

1

h̄2

(

1 + eh̄Dα(a)+h̄Dα(b) − eh̄Dα(a) − eh̄Dα(b)
)

F
)

= 1−
h̄−1

a− b
∂tα,1

(

eh̄Dα(a) − eh̄Dα(b)
)

F.

In this form it is ready for the dispersionless limit h̄ → 0 which yields:

eDα(a)Dα(b)F = 1−
Dα(a)∂tα,1

F −Dα(b)∂tα,1
F

a− b
. (3.3)

The limits of the other equations can be found in a similar way. They are as follows.
The limit of equation (2.7):

eDα(a)Dα(b)F =
ae−Dα(a)(∂α−∂β)F − be−Dα(b)(∂α−∂β)F

a− b
. (3.4)
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The limit of equation (2.8):

eDα(a)Dβ(b)F = 1 +
1

ab
e(Dα(a)−Dβ(b))(∂α−∂β)F+(∂α−∂β)

2F . (3.5)

The limit of equation (2.9):

aeDα(a)Dβ(b)F−Dα(a)(∂α−∂β)F = a− (∂α − ∂β +Dα(a)−Dβ(b))∂tα,1
F. (3.6)

The limit of equation (2.10):

eDµ(a)(∂α−∂β)F − 1 + ǫαβǫαµǫβµa
−1eDµ(a)(∂µ−∂β)F+(∂µ−∂α)(∂µ−∂β)F = 0. (3.7)

The limit of equation (2.11):

e−Dα(a)Dα(b)F+(∂α−∂β)
2F
(a

b
e−(Dα(a)−Dα(b))(∂α−∂β)F −

b

a
e(Dα(a)−Dα(b))(∂α−∂β)F

)

= (a− b)(Dα(a) +Dα(b))∂tβ,1
F.

(3.8)

The limit of equation (2.12):

ǫαβe
(∂α−∂µ+Dα(a))(∂β−∂µ+Dβ(b))F = ǫαµǫβµ

(

∂β +Dβ(b)− ∂α −Dα(a)
)

∂tµ,1F. (3.9)

As is proved in [3], these equations are equivalent to the universal Whithem hierarchy
for genus zero.

Let us rewrite these equations in a more suggestive form. For this purpose, we
introduce the notation

Rα = e∂
2
αF , Rαβ = Rβα = e∂α∂βF (3.10)

and the functions
wα(z) = ze−Dα(z)∂αF−∂2

αF ,

wαβ(z) = e−Dα(z)∂βF−∂α∂βF ,

(3.11)

pα(z) = z − (∂α +Dα(z))∂tα,1
F,

pαβ(z) = −(∂α +Dα(z))∂tβ,1
F

(3.12)

(note that Rαα = Rα but wαα(z) 6= wα(z), pαα(z) 6= pα(z)). In this notation, the
equations (3.3)–(3.8) read as follows:

eDα(a)Dα(b)F =
pα(a)− pα(b)

a− b
, (3.13)

eDα(a)Dα(b)F =
Rα

Rαβ

wα(a)w
−1
αβ (a)− wα(b)w

−1
αβ (b)

a− b
, (3.14)

eDα(a)Dβ (b)F = 1 +
wαβ(a)wβα(b)

wα(a)wβ(b)
, (3.15)
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Rα

Rαβ

wα(a)

wαβ(a)
eDα(a)Dβ (b)F = pα(a)− pβα(b), (3.16)

R−1
µαw

−1
µα(a)−R−1

µβw
−1
µβ (a) + ǫαβǫαµǫβµRαβR

−1
µαR

−1
µβw

−1
µ (a) = 0, (3.17)

RαRβ

R2
αβ

(

wα(a)wαβ(b)

wα(b)wαβ(a)
−

wα(b)wαβ(a)

wα(a)wαβ(b)

)

e−Dα(a)Dα(b)F

= −(a− b)(pαβ(a) + pαβ(b)− 2pαβ(∞)),

(3.18)

ǫαβ
Rµ

Rαβ

wαµ(a)wβµ(b)

wαβ(a)wβα(b)
eDα(a)Dβ (b)F = ǫαµǫβµ(pαµ(a)− pβµ(b)). (3.19)

In the next section we show that these seven equations can be reduced to one.

4 The dispersionless equations in trigonometric form

Dividing equations (3.13), (3.14), we get the relation

pα(a)−
Rαwα(a)

Rαβwαβ(a)
= pα(b)−

Rαwα(b)

Rαβwαβ(b)
,

from which it follows that pα(z)−
Rαwα(z)

Rαβwαβ(z)
does not depend on z. The limit z → ∞

yields:

pα(z)−
Rαwα(z)

Rαβwαβ(z)
= pβα(∞). (4.1)

Next, multiply equations (3.13) and (3.18) and express wα through pα in the left hand
side with the help of (4.1). This yields the relation

R2
αβ(pαβ(a)− pαβ(∞)) +

RαRβ

pα(a)− pβα(∞)
= −R2

αβ(pαβ(b)− pαβ(∞))−
RαRβ

pα(b)− pβα(∞)
,

from which it follows that

R2
αβpαβ(z) +

RαRβ

pα(z)− pβα(∞)
= R2

αβpαβ(∞). (4.2)

This equation, connecting pαβ and pα, defines a rational curve.

It is natural to uniformize this curve using trigonometric functions. For this purpose,
we introduce a function uα(z) normalized so that uα(∞) = 0 with expansion around ∞
of the form

uα(z) =
cα,1
z

+
∑

k≥2

cα,k
zk

, (4.3)
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with the coefficients depending on the times. In terms of this function the uniformization
reads:

pα(z) = γα
cosuα(z)

sin uα(z)
,

pαβ(z) = γβ
cos(uα(z) + ηαβ)

sin(uα(z) + ηαβ)
,

Rα = γα, Rαβ = sin ηαβ .

(4.4)

Here γα = γα(t), ηαβ = ηαβ(t) are some functions of the times. Note that it should be
Rαβ = Rβα but, as we shall see later, the assumption that ηαβ = ηβα is wrong. Instead,

ηβα = π − ηαβ . (4.5)

With this relation, substitution of (4.4) into (4.2) brings the latter to identity.

Plugging (4.4) into (4.1), one finds:

wα(z) =
1

sin uα(z)
,

wαβ(z) =
1

sin(uα(z) + ηαβ)
.

(4.6)

Tending z → ∞ in the first of equations (4.4), we get the relation

γα(t) = cα,1(t). (4.7)

In the trigonometric parametrization equations (3.13), (3.14) and (3.15), (3.16), (3.19)
become the same. In order to write them in a compact form, we introduce the differential
operator

∇α(z) = ∂α +Dα(z). (4.8)

The equations read:

e∇α(a)∇α(b)F =
sin(uα(a)− uα(b))

a−1 − b−1
, (4.9)

e∇α(a)∇β(b)F = sin(uα(a)− uβ(b) + ηαβ). (4.10)

(In the second equation it is assumed that α 6= β.) In the limit b → ∞ they become

ae∇α(a)∂αF = sin uα(a), (4.11)

e∇α(a)∂βF = sin(uα(a) + ηαβ). (4.12)

Finally, we consider equation (3.17). In the trigonometric parametrization the depen-
dence on a disappears and the equation becomes a constraint for ηαβ:

ǫαβ sin ηαβ = ǫαµǫβµ sin(ηµα − ηµβ), (4.13)

which should hold for all distinct α, β, µ. The solution is

ηαβ = ηα − ηβ +
π

2
(ǫαβ + 1) (4.14)
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with some ηα.

The final result can be summarized as follows. Let us redefine the functions uα(z)
including into them the constant terms in the expansion as z → ∞. So we introduce the
functions vα(z) = uα(z) + ηα. Then all equations of the hierarchy are encoded in the
single equation

ǫβαe
∇α(a)∇β (b)F =

sin(vα(a)− vβ(b))

(a−1 − b−1)δαβ
(4.15)

valid for all complex a, b.

The meaning of this equation is that general second order derivatives of the function
F in the independent variables, as is usual in the dispersionless equations, are expressed
through some special second order derivatives. Indeed, the equation for α 6= β can be
written as

ǫβαe
∇α(a)∇β(b)F = sin

(

ηα − ηβ + arcsin (a−1e∇α(a)∂αF )− arcsin (b−1e∇β(b)∂βF )
)

. (4.16)

At the same time, since

ηα − ηβ =
β−1
∑

γ=α

(ηγ − ηγ+1), α < β,

ηα − ηβ = −
α−1
∑

γ=β

(ηγ − ηγ+1), α > β,

we have:

ηα − ηβ = −
β−1
∑

γ=α

arcsin(e∂γ∂γ+1F ), α < β,

ηα − ηβ =
α−1
∑

γ=β

arcsin(e∂γ∂γ+1F ), α > β.

Therefore, as equation (4.16) shows, the general second order derivatives of the function
F are expressed through the special derivatives ∂2

αF , ∂α∂α+1F , ∂tα,k
∂αF .

Finally, by applying ∇γ(c) to the logarithm of both sides of (4.15), this equation can
be written as

∇α(a) log sin(vβ(b)− vγ(c)) = ∇β(b) log sin(vγ(c)− vα(a))

= ∇γ(c) log sin(vα(a)− vβ(b)).
(4.17)

This symmetry is a manifistation of integrability of the dispersionless multicomponent
KP hierarchy.

5 Concluding remarks

We have reconsidered the dispersionless limit of the multicomponent KP hierarchy. Non-
linear differential equations for the dispersionless limit of logarithm of the tau-function
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have been obtained. We have shown that there is a rational curve built in the struc-
ture of the hierarchy. This curve can be uniformized via trigonometric functions. In
the trigonometric parametrization, the equations of the hierarchy acquire especially nice
form, being encoded in a single equation.

This work was motivated by our study of the multicomponent DKP hierarchy (work
in progress). In the fermionic approach, the tau-function of the KP hierarchy is an
expectation value of exponent of neutral quadratic form in fermions while for the DKP
hierarchy (known also as the Pfaff lattice) the quadratic form can be arbitrary. In
this sense the latter is more general than the former. In the dispersionless limit of
the DKP hierarchy there is an elliptic curve built in its structure [7, 8], with the elliptic
modulus being a dynamical variable. Uniformizing this curve via elliptic functions, one
can represent the equations in a nice elliptic form (for the one-component case see [9]).
Basically, the sin-function in (4.15) and other equations is replaced by the elliptic sn-
function. We have found it instructive to reconsider the dispersionless KP hierarchy
within a similar approach, where elliptic functions degenerate to trigonometric ones.
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