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Abstract: In this paper, we demonstrate the classification of the gap in a holographic
setup by studying the density of states. A gap can be classified into order gap and Mott
gap depending on the presence of the order due to the symmetry breaking or not. A Mott
insulating gap appears in the fermion spectrum due to the strong Coulomb interaction
between the electrons. We then classify all Mott gaps as well as order gaps in one-flavor
and two-flavor fermions. We also identified possible non-minimal interactions that may
produce a flatband.
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1 Introduction

The understanding of strongly correlated systems still remains mysterious because of the
lack of tools to calculate strange behaviors of materials [1] although many useful methods
were developed including the dynamical mean-field theory (DMFT) [2] to get the modifi-
cation from the many-body effect. One of the celebrated features of strongly interacting
systems is the Mott gap, which can not be described by the gap induced by the order and
symmetry breaking. It is induced by the electron-electron on site interaction. Mott physics
may be essential in understanding the physics of high-temperature superconductivity since
the latter is considered as a doped Mott insulator [3]. Its physics can be best represented
by the Hubbard Hamiltonian [4] that involves the competition between hopping and on-site
repulsion. Although the Hubbard model is not solved completely in two and higher dimen-
sions, the Mott gap is known to be well explained by DMFT [2]. The gap appears when
onsite repulsion is dominating the hopping.
Gauge/gravity duality [5–7] provides an alternative tool to study a strongly coupled system
with the help of weakly interacting theory of gravity in one higher spatial dimension [8–15].
The application of this duality in condensed matter physics has been widely used in the
past decade. Since gravity models map strongly coupled boundary field theory, one obvious
inquiry is to find a holographic setup. Since DMFT is used to explain the Mott gap, another
inquiry is to find an alternative mean field theory for a strongly coupled system. Recently,
an alternative mean field theory for a strongly coupled system has been proposed using
a holographic approach in [16]. The main task is to find a gap-like feature without any
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symmetry breaking in the holographic setup. This is only possible when we consider non-
minimal coupling between the gauge and fermionic fields. Because such holographic theory
aims at the general theory for strongly interacting system, it would be interesting to exlain
the Mott physics in holographic mean field theory and compare with the DMFT. Along this
line of thinking, the Pauli interaction term has been utilized in the holographic literature
[17–21]. However, the spectral function of the holographic fermion with Pauli interaction
has higly asymmetric gap in the sense that uppper side of the Fermi sea has gap but lower
side of FS is touched by a spectral peak line, which is clear in spectral function as well as
the density of states (DoS). From the DoS in the presence of the dipole coupling, the Mott
gap in this theory is ‘soft’ as well as asymmetric. On the other hand, the typical DMFT
calculation shows that the Mott gap is symmetric. This motivates us to consider other
non-minimal interactions between the gauge field and fermion. Finding a symmetric Mott
gap in the DoS analysis of the holographic fermion is the main motivation of this paper. In
doing this we can classify Mott gaps as well as the ordered gaps.
In this paper, we first reproduced all the spectral functions for the dipole interaction. We
then analyzed the DoS corresponding to the spectral functions, which has not been done
in the literature. We then propose our holographic setup with different interactions. From
the holographic mean field theory [16], we know that only (pseudo) scalar type Yukawa
interaction can give a proper gap, while we also know that there should not be any order
parameter field involved in the description of the Mott gap. Then the only field we can use
is the gauge field describing the density effect and the only way to form a gauge invariant
scalar out of the gauge field is FµνFµν so that we should try a few version of the F 2ψ̄Γscalarψ

term. This is the idea of the paper and as a consequence of adding such interaction, we get
symmetric Mott gap from some of them. Then, the dependence on temperature, chemical
potential, coupling constant, and the effect of fermion mass have been discussed in detail.
From the boundary point of view, the possible gamma scalar are Γscalar = I4,Γz, iΓ5, iΓ5z.
This analysis is extended to the two-flavor fermion case. For completeness, we revisit all
ordered gaps in holographic setups. Finally, we classify all interactions in the holographic
set from the gap point of view.
This paper is organized as follows. In section 2, we have revisited the holographic setup
with the dipole interaction and proposed our setup with different interactions. The DoS
analysis for Mott gaps is presented in section 3. In section 4, we present the classifications
of all interactions in terms of Mott gap, ordered gap and flatband. We summarize our
findings in section 5.

2 Basic setup

2.1 Pauli interaction term for Mott gap

Before discussing our proposal for holographic Mott gap, we would like to revisit the pre-
vious model for Mott gap [17]. The holographic Mott gap model is based on the Pauli or
dipole interaction term. The Lagrangian is given by

Lf = iψ̄
(
ΓµDµ −mf − i

p

2
FµνΓ

µν
)
ψ (2.1)
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The above interaction term can not be mapped with Hubbard interaction term for Mott
gap A.8. The background geometry was considered in [17] as follows:

ds2 =
1

z2

[
−f(z)dt2 + dz2

f(z)
+ dx2 + dy2

]
with f(z) = 1−Mz3 +Q2z4 . (2.2)

The above metric represents Reissner-Nordström (RN) AdS black hole geometry. The zero
temperature limit of the boundary theory implies to the black hole extremal limit. In the
extremal limit, the mass and the charge of the black hole are fixed with values M = 4 and
Q =

√
3. For the fixed values of the other parameters (p = ±4.5,mf = 0, qf = 1, rh = 1, µ =√

3), we have reproduced all previous spectral function. In the previous investigation [17],
the energy density curve “A(ω) vs ω” for fixed k has been used to descibe the gap feature
in the fermionic spectral function. For p = −4.5, the spectral function (figure 1a) exhibits
a gap feature while Fermi level (ω = 0) appears to be touching the valence band. On the
other hand, for p = +4.5, the spectral function flips, suggesting a gap in the negative energy
region, although the Fermi level touches the conduction band [12]. Using the definition of
density of state (DoS = 1

2π

∫
A(k, ω)kdk), we have shown the DoS corresponding to their

spectral function plot. The identification of the Mott gap in the DoS is not clear, although
the spectral function for p = −4.5 shows a gap-like feature in figure 1a. This Mott gap is
soft and asymmetrical in the DoS. This motivates us to consider other possible non-minimal
interactions between the gauge field and fermion.

2.2 Our proposal

We propose the following fermionic action

Sψ =

∫
d4x

√
−g

[
iψ̄(ΓµDµ −mf − ηF 2Γscalar)ψ

]
and Sbdy = i

∫
d3x

√
−hψ̄ψ . (2.3)

Here, η represents the coupling constant and F 2 = FµνF
µν . The spinor’s covariant deriva-

tive is denoted by Dµ = ∂µ + 1
4ωµᾱβΓ

ᾱβ − iqfAµ. The possible gamma matrices are
Γscalar = I4, iΓ5,Γz, iΓ5z. Comparing with the interaction term in Hubbard Hamiltonian
(see appendix A and eq.(A.6)), we can identify Γscalar = I4, which will show a symmetric
Mott gap in the DoS. The bulk gamma matrices for this study are the following:

Γt = σ1 ⊗ iσ2, Γx = σ1 ⊗ σ1, Γy = σ1 ⊗ σ3, Γz = σ3 ⊗ σ0, (2.4)

where underline indices represent tangent space indices. We obtain the Dirac equation

(ΓµDµ −mf − ηF 2Γscalar)ψ = 0 . (2.5)

To simplify the analysis, we express the fermionic field as follows:

ψ(t, x, y, z) =
1

(−ggzz)1/4
e−iωt+ikxx+ikyyΨ(z) . (2.6)

This form allows us to eliminate the spin connection term in the spinor equation of motion.
By substituting the above expression into the Dirac equations, we derive the following
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expressions: [
Γz∂z − i

√
gtt

gzz
(ω + qfAt)Γ

t −
mf√
gzz

]
Ψ

+ i

(√
gxx

gzz
kxΓ

x +

√
gyy

gzz
kyΓ

y

)
Ψ− ηF 2

√
gzz

ΓscalarΨ = 0. (2.7)

3 Mott gaps in DoS

In this section, we will calculate the density of states by solving the Dirac equation. To
solve the Dirac equation, we express the four-component spinor as Ψ(z) = (Ψ+(z),Ψ−(z))

T

where Ψ± = (Ψ±1,Ψ±2). First, we focus on the gamma matrix Γscalar = I4, which can be
mapped to the interaction term in Hubbard Hamiltonian. The Dirac equation becomes[

∂z ∓
mf√
gzz

]
Ψ±(z) = ±

[
iKjγ

jΨ∓(z)
]
± ηF 2

√
gzz

Ψ± (3.1)

where Kj =
(√

gtt

gzz (ω + qfAt),−
√

gxx

gzz kx,−
√

gyy

gzz ky

)
, γj = (iσ2, σ1, σ3). In the asymptotic

limit as z → 0, we consider gµν → z2ηµν , where ηµν is the Minkowski metric. In the
asymptotic limit, the source and condensation are given for |mf | < 1

2 by [22]

Ψ+(z)
z→0
= Azmf , Ψ−(z)

z→0
= Dz−mf . (3.2)

Following the same procedure in [23], we can write down the boundary action in the fol-
lowing form

Sbdy =

∫
d3x

[
Ψ†

−(z)Γ̃Ψ+(z) + Ψ†
+(z)Γ̃Ψ−(z)

]
(3.3)

where the boundary gamma matrix Γ̃ = −σ2. Recasting the Dirac equation, the flow
equation for bulk Green’s function G(z) has been derived in Appendix B. Using the horizon
value of the G(z) and solving the flow equation, we can numerically calculate the bulk
Green’s function G(z). From this bulk Green’s function, the retarded Green’s function GR

is obtained using the following relation

GR = lim
z→0

U(z)G(z)U(z) (3.4)

where U(z) = diag(zmf , zmf ). The spectral function is defined as

A(kx, ky, ω) = Tr(Im(GR)) . (3.5)

From this, the density of state (DoS) is defined in the following way:

DoS =
1

(2π)2

∫
kcut

dkxdkyA(kx, ky, ω) =
1

2π

∫
kcut

A(kx, ky, ω)kdk (3.6)

where k =
√
k2x + k2y and kcut is the momentum cutoff region in which we are counting the

degree of freedom of the system. We have considered the gauge field ansatz A = At(z)dt to
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compute the spectral function, which behaves as At = µ(1− z/zh), where zh is the horizon
and µ is the chemical potential of the boundary theory. Using this gauge field solution, we
obtain the RN-AdS black hole as background spacetime which has form

ds2 =
1

z2

[
−f(z)dt2 + dz2

f(z)
+ dx2 + dy2

]
with f(z) = 1− z3

z3h
+
µ2

2

(
z4

z2h
− z3

zh

)
.(3.7)

The spectral function with DoS at finite temperature T = 0.025µ for qf = 0, 1 is shown
in figure 1. A clear Mott gap feature is observed in the spectral function as well as in
the density of states. We now explore all possible interactions that can generate a gap

(a) FµνΓ
µν at T = 0, qf = 1 (b) F 2 at T = 0.025µ, qf = 0 (c) F 2 at T = 0.025µ, qf = 1

Figure 1: Spectral function and density of state: (a) For dipole interaction at zero temper-
ature, Mott gap is soft and asymmetric. (b) For density interaction (ηF 2ψ̄ψ) with qf = 0,
Mott gap is hard and symmetric. (c) With minimal interaction included also, the Mott gap
is hard and asymmetric due to the shifted Fermi surface.

without any symmetry breaking. As we mentioned earlier, we have also examined other
three possible cases Γscalar = iΓ5,Γz, iΓ5z. From the spectral function and DoS, we have
found that F 2ψ̄iΓ5ψ generates Mott gap while the other two interactions do not show any
gap feature in the spectral function (table 1). One noticing point is that the gap size for the
F 2ψ̄ψ interaction is larger than the gap size for the F 2ψ̄iΓ5ψ interaction. The comparison
of the DoS with the same parameter values for different interactions at T = 0.025µ is shown
in figure 2. This is clear evidence that F 2ψ̄ψ interaction is more suitable for describing the
Mott gap in holography. The holographic flatband can also be realized using non-minimal
gauge coupling with fermion (FµνΓµνΓ5). The fermion’s finite charge bends and shifts the
flatband.

Gauge −iηψ̄Lintψ
Field Gapless Gap Flatband Effect of qf
At(z)dt ΓzF 2, iΓ5zF 2 F 2(η > 0), iF 2Γ5, −iFµνΓµν FµνΓ

µνΓ5 Shifting & Bending

Table 1: Mott gaps from different gauge field interactions
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Figure 2: DoS for Mott gaps with different interactions at the same paratemeters.

We would like to investigate the effect of temperature, coupling strength, fermion mass in
the spectral function as well as in the density of state. We know that the effect of the
charge is to shift the position of the Fermi surface. In the presence of the charge qf = 1, we
have also found the same feature here (figure 1c). The gap size ∆M is measured from the
DoS, where DoS≤ 0.001 region is considered as the gap region. It depends on the chemical
potential and the temperature. Since the Mott gap is generated due to non-minimal gauge
field interaction, the gap size is proportional to the chemical potential. The effect of the
coupling strength on the gap size is shown in figure 3a. The dependency of gap size on the
temperature (figure 3b) shows a phase transition from Mott insulator to metal transition.
The gap size decreases as the bulk fermion mass increases from zero to 1

2 . The nature
of the spectral function changes to pole type when mf = 1

2 which is consistent with the
previous investigation [24]. Since gap generation is due to interacting term, and mf = 1

2 in
holography leads to non-interacting theory, the gap tends to vanish as mf = 1

2 . However,
we observe that there is a finite gap size at mf = 1

2 when coupling strength is turned on.
We have shown the effect of coupling strength, fermion mass and temperature on the gap
size in figure 3.

(a) Gap vs Coupling (b) Gap vs Temperature (c) Gap vs Fermion mass

Figure 3: Mott gap size ∆M from DoS where DoS≤ 0.001 value is considered as cutoff for
gap. (a) At T = 0.025µ,mf = 0 (b) For µ = 2, η = 1,mf = 0, (c) For T = 0.025µ, η = 1.

4 Classification of gaps in two flavor fermions

In this section, we promote our flavor analysis to two flavor fermions related to sublattice
symmetry in materials. We will examine whether the dipole interaction can create a sym-
metric Mott gap. Besides this, we will also investigate F 2ψ̄1Γ

scalarψ2 interaction. In the
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two-flavor fermions setup, the Lagrangian density becomes

L =
2∑
j=1

iψ̄j (Γ
µDµ −mf )ψj − iψ̄1Lintψ2 − iψ̄2Lintψ1 . (4.1)

The corresponding coupled equation of motion of two flavor fermions read

(ΓµDµ −mf )ψ1 − Lintψ2 = 0, and (ΓµDµ −mf )ψ2 − Lintψ1 = 0 . (4.2)

The procedure of Green’s function derivation for two flavor fermion is almost the same
with one flavor case, which is given in detail in [12, 16]. In the two flavor scenario, we
mainly focus on the standard-standard (SS) and standard-alternative (SA) quantization.
One noticeable point is that GSS = Γ5GSA relates SS and SA quantizations in terms of the
output of the spectral function. The spectral function for two flavor case for Lint = iηF 2Γ5

with SS quantization is shown in figure 4. The effect of the charge and the fermion mass
on the spectral function is shown in figure 4 and 5 respectively. The role of bulk fermion
mass is to determine the singularity structure of the Green’s function [24]. It changes
branch-type singularity to pole type singularity when mf → 1

2 . Unlike one flavor case,
the Mott gap in two flavors almost vanishes when mf = 1

2 , which is shown in the spectral
function plot (see figure 5). Although the interaction term is turned on, the system tends
to be non-interacting when mf = 1

2 . In the two-flavor fermion with SS-quantization, the
Lint = iηF 2Γ5 interaction only shows the Mott gap feature in the spectral function. The
dipole interaction term in two flavor fermion shows no gap feature. We have summarized
all non-minimal gauge field interactions in Table 2.

(a) For charge qf = 0 (b) For charge qf = 1

Figure 4: Spectral function along with DoS for Lint = iηF 2Γ5 at T = 0.025µ.

(a) For mf = 0.1 (b) For mf = 0.4 (c) For mf = 0.5

Figure 5: Effect of the fermion mass on SF at T = 0.025µ.
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Gauge −iψ̄1Lintψ2 with SS-quantization, SS = Γ5SA

A = At(z)dt Gapless Gap Flatband Effect of q
F 2-term ηF 2, iηF 2Γz iηF 2Γ5 Shifting FS

Dipole-term iηFµνΓ
µν , ηFµνΓµνΓz ηFµνΓ

µνΓ5 Shifting & Bending

Table 2: Mott gaps and flatband from non-minimal interactions for two flavor fermions.

For completeness, we now focus on the ordered gap generated by the symmetric breaking.
The superconducting gap is classified as an ordered gap. There are three ordered gap types:
s-, p- and d-wave ordered gap. In holographic models, these three ordered gaps have been
realized from charged scalar [25–31], vector [32–34], and symmetric tensor [35–41] fields.
The action for holographic superconductors (bosonic sector) are given as follows:

Sb =

∫
d4x

√
−g

2κ2

[
R+

6

L2
+ 2κ2

(
−1

4
FµνF

µν + Lmatter
)]

(4.3)

where Lmatter for scalar, vector and tensor fields are given in [42], [22] and [23] respectively.
In these references, the spectral function analysis for s, p, d-wave superconductors has also
been done in detail, which is summarized in table 3. We set κ = 1, L = 1, q = 2. Given the
value of T

µ , we can solve numerically all coupled bosonic field equations. In the presence of
these bosonic fields, we observe different ordered gaps in the fermionic spectral function for
the scalar field, vector field, and symmetric tensor field. To incorporate the particle-hole
symmetry, we have to consider Nambu-Gorkov (NG) representation [42], where conjugate
ψc = ψ∗ is considered as independent degree of freedom.

Ordered ηψ̄Lintψc with Nambu-Gorkov spinor [22]
Gap Sc. Gap Flatband
s-wave ϕiΓz

p-wave VµΓ
µ, VµiΓ

5Γµ(R), VµνΓ
µν VµΓ

µΓz (1-dim.)
d-wave BµνΓ

µDν

Table 3: The ordered gap: ϕ is scalar field, Vµ is vector field and Bµν is symmetric tensor
field. Vµν is the covariant derivative of the vector field and R presents the rotation of Fermi
arc. The spatial component of vector field and symmetric tensor field show p-wave and
d-wave superconductivity respectively.

Here, we compare the order gap and the Mott gap from the density of states. With the
same parameters at T = 0.025µ, the Mott gap size is larger than superconducting gap,
as shown in figure 6. Given the values of T and µ, the Mott gap is generated directly
through the gauge coupling, whereas the superconducting gap in fermion spectral function
is triggered by the condensation value, which is generated by the spontaneous symmetry
breaking. The dependency of parameters for Mott gaps and superconducting gaps show
the same behavior. However, the mechanisms of these two gap generations are completely
different. The superconducting gap in a fermionic spectral function is associated with U(1)-
symmetry breaking and minimal coupling between the fermion and the order parameter,
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whereas the Mott gaps are associated with non-minimal coupling of the gauge field and
fermion. In the NG representation, the one dimensional flatband is also realized from a
spatial vector field interaction with fermion (VµΓµΓz), which shown in table 3.

Figure 6: Compare of DoS for Mott gap and order gap at T = 0.025µ with same η.

5 Summary

In this paper, we have addressed the analysis of the density of states for Mott gaps and
superconducting gaps in holographic setups. Without manifest symmetry breaking, the
gap generation is known as the Mott gap, whereas the superconducting gap is generated
because of symmetry breaking. Using gauge/gravity duality, these two gaps are explained
in the literature, where Mott physics is elucidated using dipole interaction [17]. It is a
non-minimal gauge coupling with fermions that generates a gap in the fermionic spectral
function without a symmetry-breaking mechanism. In the previous investigation [17], the
Mott gap in the spectral function is asymmetric, and one of the bands seems to touch the
Fermi level at ω = 0. To gain a clearer view of the Mott gap size, we have calculated
the density of states (DoS), which shows a soft and asymmetric Mott gap, whereas DMFT
results show differently. This motivates us to consider other non-minimal gauge couplings
with fermions. First, we have considered an density-density coupling (F 2ψ̄ψ) term, which
can be mapped to the interaction part of the Hubbard Hamiltonian. This mapping also
justifies our proposal. Then, we have calculated the spectral function along with the DoS,
which clearly shows a strong and symmetric Mott gap feature. Other possible non-minimal
gauge field interactions (A.7) have been examined, and the Mott gap size in the DoS (figure
2) has been compared. The DoS figure also supports our claim about the proper Mott gap
in the fermionic spectral. We have classified Mott gaps, namely, soft gap and hard gap.
For the dipole interaction case, we can treat the Mott gap as a soft and asymmetric gap,
whereas the F 2 interactions produce a hard and symmetric Mott gap.
The effects of the fermion charge, coupling strength, temperature, and fermion mass are
important for further investigation. To observe the effects of these parameters on the Mott
gaps, we measured the gap size ∆M from the DoS, where DoS≤ 0.001 region is a gapped
region. The gap size is plotted in figure 3. We observed that the Mott gap is vanishing
at T = 0.13µ. Therefore, this can be treated as the critical temperature for the Mott
insulator-metal transition. Finite fermion mass decreases the Mott gap size. In the limit
of the fermion mass mf = 1

2 , we found that the structure of singularity type changes
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from a branch-cut type to a simple pole structure, which matches with previous findings
[24]. We also have found that the dipole interaction term with Γ5 shows a flatband in the
spectral function. This is the non-minimal gauge interaction which creates a flatband in a
holographic setup.
Next, we have classified interactions in terms of Mott and superconducting gaps. To achieve
this, we first examined all non-minimal gauge field interactions in two-flavor fermions. We
found that in two-flavor fermions, only the density interaction (F 2iΓ5) creates a Mott gap,
while the dipole term doesn’t produce any gap feature in the spectral function. For the
fermion mass mf = 1

2 , the system nearly becomes non-interacting, despite the interaction
strength being high (η = 1), which is not seen in the one-flavor fermion case. We have
replicated three types of order gaps, which are summarized in table 3. When comparing
the gap size in DoS for the same parameters, we observe that the Mott gap size is larger
than the superconducting gap which is consistent with literature. Our future direction is
to study the Fermi-Dirac distribution function from the holographic fermion.

Acknowledgments

This work is supported by Mid-career Researcher Program through the National Research
Foundation of Korea grant No. NRF-2021R1A2B5B02002603, RS-2023-00218998 and NRF-
2022H1D3A3A01077468. We thank the APCTP for the hospitality during the focus pro-
gram, where part of this work was discussed.

A Mott Physics

Hubbard Hamiltonian (HH) is given by

H = −
∑

<ij>,σ

tijc
†
iσcjσ +HI . (A.1)

where interaction Hamiltonian HI = U
∑

i ni↑ni↓ with the fermionic number operator ni↑ =
c†i↑ci↑. In the Mean field approximation, we can write

ni↑ni↓ ≈ ni↑⟨ni↓⟩+ ni↓⟨ni↑⟩ − ⟨ni↑⟩⟨ni↓⟩ (A.2)

which gives the interaction term in the HH as follows:

HI = U
∑
i

[ni↑⟨ni↓⟩+ ni↓⟨ni↑⟩ − ⟨ni↑⟩⟨ni↓⟩] . (A.3)

The interpretation of this expression is that the up-spin fermions interact with the average
density of the down-spin fermions, and similarly the down-spin fermions interact with the
average density of the up-spin fermions. This HH governs Mott metal-insulator transition.
We need to find a similar kind of interaction term in the holographic setup. The number
density can be expressed in terms of charge density (ρ) which maps to the gauge field in the
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bulk theory. First, we need to assume that ⟨ni↑⟩ = ⟨ni↓⟩ ∝ ρ. Therefore, the interaction
part now becomes

HI ∝ ρU
∑
i

[
c†i↑ci↑ + c†i↓ci↓

]
− Uρ2 (A.4)

which translates in momentum space as

HI ∝ Uρ
∑
k

[
c†k↑ck↑ + c†k↓ck↓

]
− Uρ2 ≈ Uρ

[
c†+↑c+↑ + c†+↓c+↓ + c†−↑c−↑ + c†−↓c−↓

]
− Uρ2 (A.5)

The last term in the right hand side of the above equation gives the shifting of the en-
ergy. We need to find a interaction terms in the holographic setup, which can map
to

[
c†+↑c+↑ + c†+↓c+↓ + c†−↑c−↑ + c†−↓c−↓

]
. We can identify the bulk fermion field ψ =

(c+↑, c+↓, c−↑, c−↓)
T where we are embeddingHI into a higher dimension. Now the fermionic

annihilation (c±↑↓) and creation (c†±↑↓) operators are function of radial coordinate and mo-
mentum [42]. Therefore, the suitable non-minimal coupling term for gauge field is F 2ψ†ψ

which is the non-relativistic(NR) interaction. We can promot this NR interaction term to
the relativistic bulk interaction term in the following way:

Lint = −iψ̄ηF 2ψ (A.6)

where η is the coupling strength and F 2 = FµνF
µν . Note that iΓt is the dressing fac-

tor for the promoting relativistic form from the NR interaction since the kinetic term of
the Lagrangian also contains this dressing factor. Since potential term in a Lagrangian is
opposite to the Hamiltonian, we need to consider the negative sign in the interaction La-
grangian. Therefore, the most suitable In general, we can consider the following interaction
Lagrangian

Lint =

{
−iηψ̄F 2Γscalarψ Density type interaction

−iηFµνψ̄ΓµνΓscalarψ Pauli interaction
. (A.7)

where the possible gamma matrices are Γscalar = I4,Γz, iΓ5, iΓ5z although other interaction
terms with different Γscalar are not proportional to

[
c†+↑c+↑ + c†+↓c+↓ + c†−↑c−↑ + c†−↓c−↓

]
.

For the Pauli interaction (Γscalar = I4) in the non-relativistic limit, the interaction term
Fµνψ̄Γ

µνψ becomes ψ†FµνΓ
µνψ. For the gauge field ansatz A = At(z)dt, the dipole inter-

action term can be expressed as

Ldipoleint ∝ ψ†FztΓ
ztψ = z2(∂zAt)

[
c†+↑c−↓ − c†+↓c−↑ − c†−↑c+↓ + c†−↓c+↑

]
. (A.8)

The above expression can not be mapped to
[
c†+↑c+↑ + c†+↓c+↓ + c†−↑c−↑ + c†−↓c−↓

]
term.

Therefore, we can argue that the reasonable interaction for Mott gap is the density type
interaction (A.6). Since some interactions in eq.(A.7) produce gap feature in the spectral
function, we will examine all possible interactios to find Mott gap feature in the DoS.
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B Derivation of Green’s function

Rearranging all components of equations, we can recast the Dirac equations in the following
structure

∂zΨ+ +M1Ψ+ +M2Ψ− = 0 , (B.1)

∂zΨ− +M3Ψ− +M4Ψ+ = 0 (B.2)

where 2× 2-matrix Mi, i = 1, 2, 3, 4 are given by

M1 = −
mf + ηF 2

z
√
f

I2,

M2 =
i√
f

 ky − (ω+qfAt)√
f

+ kx
(ω+qfAt)√

f
+ kx −ky

 ,

M3 = −M1, M4 = −M2 . (B.3)

There are two independent solutions since Ψ+ and Ψ− are two components spinor. The
general solution can be written in a linear combination of two solutions as

Ψ+ =
2∑
i=1

ciΨ
(i)
+ = S(z)c,

Ψ− =

2∑
i=1

ciΨ
(i)
− = C(z)c (B.4)

The 2× 2-matrix S(z),C(z) are constructed from the solution, where the constant column
vector c is constructed from the two coefficients of the linear combination. Substituting
above eq.(B.4) in eq.(s)(B.1, B.2), we obtain

∂zS(z) +M1S(z) +M2C(z) = 0 , (B.5)

∂zC(z) +M3C(z) +M4S(z) = 0 . (B.6)

The boundary solution tells us that we need to define U(z) = diag(zmf , zmf ) to get normal-
ized boundary Green’s function. Then we can write the boundary solution from eq.(B.4)

Ψ+(z)
z→0
≈ U(z)S0c, Ψ−

z→0
≈ U(z)−1C0c , (B.7)

where S0,C0 are the z-independent boundary 2× 2-matrix. We can define

J = S0c, C = C0c (B.8)

which translate the boundary solution (eq.(B.7)) as

Ψ+
z→0
≈ U(z)J , Ψ−

z→0
≈ U(z)−1C . (B.9)

Comparing eq.(B.9) with eq.(3.2), we find

J = A, C = D (B.10)

– 12 –



We can also get the relation between C and J from eq.(B.8)

C = C0S−1
0 J . (B.11)

From the boundary action (eq.(3.3)), we can write

Sbdy =

∫
d3xJ †Γ̃C + h.c. (B.12)

Using eq.(B.11), the boundary action now becomes

Sbdy =

∫
d3xJ †Γ̃C0S−1

0 J + h.c. =

∫
d3xJ †GRJ + h.c. (B.13)

where the retarded Green’s function GR = Γ̃C0S−1
0 . We can promote this boundary Green’s

function into bulk Green’s function by considering the z-dependent Green’s function as
follows:

G = Γ̃C(z)S−1(z) (B.14)

where C(z),S(z) is defined in eq.(B.4). Taking the derivative of the above equation, we get

∂zG(z) = Γ̃
[
∂zC(z)S−1(z)− C(z)S−1(z)(∂zS(z))S−1(z)

]
(B.15)

Using eq.(s)(B.5,B.6), we have found

∂zG(z) + Γ̃M3Γ̃G(z)−G(z)M1 −G(z)M2Γ̃G(z) + Γ̃M4 = 0 (B.16)

This is the desired flow equation to know the bulk Green’s function G(z). From eq.(B.7),
we can express

S(z)
z→0
≈ U(z)S0 and C(z)

z→0
≈ U(z)−1C0 . (B.17)

By substituting the above relations, we can now map the boundary Green’s function with
bulk Green’s function near the boundary in the following way

G(z)
z→0
≈ U(z)−1GRU(z)−1 (B.18)

where we have used the fact Γ̃U(z)−1Γ̃ = U(z)−1. To solve the flow equation, we need to
know the horizon value of the Green’s function which is G(zh) = iI2.
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