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Supercoiled ring polymers under shear flow

Christoph Schneck,a,b Jan Smrek,a‡ Christos N. Likos,∗a and Andreas Zöttla‡

We apply monomer-resolved computer simulations of supercoiled ring polymers under shear, taking
full account of the hydrodynamic interactions, accompanied, in parallel, by simulations in which these
are switched off. The combination of bending and torsional rigidities inherent in these polymers, in
conjunction with hydrodynamics, has a profound impact on their flow properties. In contrast to their
flexible counterparts, which dramatcially deform and inflate under shear [Liebetreu et al., Commun.
Mater. 2020, 1, 4], supercoiled rings undergo only weak changes in their overall shape and they
display both a reduced propensity to tumbling (at fixed Weissenberg number) and a much stronger
orientational resistance with respect to their flexible counterparts. In the presence of hydrodynamic
interactions, the coupling of the polymer to solvent flow is capable of bringing about a topological
transformation of writhe to twist at strong shear upon conservation of the overall linking number.

1 Introduction
DNA molecules have been largely adopted in nanotechnology
thanks to the designability and specificity of the complementary
sequences, allowing for construction of highly complex meso-
structures from DNA nano-components.1 It is being progressively
recognized that also topology2,3 and geometry of DNA molecules
are highly versatile control parameters for future material appli-
cations.4,5 While it is well known that any particular chain topol-
ogy (linear, branched, circular...) affects the effective interactions
with other chains and the solvent,6,7 the DNA with ring topol-
ogy provides extra tuning parameters. Besides the knottedness,8

joining of the ends of a linear double-stranded DNA into the cir-
cular unknotted form allows to couple the topological and the ge-
ometrical features of the molecule by locking in any pre-existing
excess linking between the two strands. Such ring molecules can
then exhibit supercoiled conformations as a result of the competi-
tion between the bending and the torsional stiffness. While much
of the interest has been initially devoted to equilibrium struc-
tures,5,9 many of the challenges for technological applications
of DNA materials lie out of equilibrium. The material response
functions, crucial in material characterization and processing, are
strongly impacted out of the linear regime as the polymeric de-
grees of freedom have to adapt to the external stresses in the
presence of hydrodynamic interactions and other chains.

Besides the materials perspective, the properties of non-
equilibrium supercoiled DNA polymers touch upon two other
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highly active research areas. First, the circular DNA is found nat-
urally in the form of (typically supercoiled) bacterial plasmids,10

extrachromosomal DNA of eukaryotes,11 kinetoplast DNA12,13 of
trypanosoma and supercoiled segments have been suspected to
form distinct architectural and functional domains also on chro-
mosomal DNA.14 Supercoiling itself can affect gene expression15

or DNA metabolism16 by modulating access to distinct regions.
In the biological context the DNA molecules are also typically out
of equilibrium, subject to flows and stresses arising through the
action of molecular motors and inducing non-equilibrium confor-
mations17 and dynamics18 that in turn can impact the biological
function.19

Second, the properties of unknotted ring polymers under vari-
ous conditions are one of the largest unsolved problems in poly-
mer physics. The crux lies in the difficulty of capturing the re-
strictions that the fixed ring topology imposes on the phase space
in the presence of other interactions. This general principle is
present across different concentration regimes. In dense many-
chain systems the chain topology prevents mutual ring linking,
resulting in compact, fractal tree-like, conformations,20,21 power-
law stress relaxation,22 distinct shear-thinning exponents,23 ex-
tensional viscosity thickening,24,25 viscosity of ring-linear blend
exceeding that of the two components26,27 or vitrification upon
heterogeneous activation.28 Some of these effects are due to ring
interpenetration (threading) by other chains, although their gen-
eral impact on the viscoelastic properties is still an open ques-
tion.29–32 However, the impact of threadings is apparent in sim-
ulations and experiments on supercoiled plasmids. There, the
supercoiling induces tighter branched ring conformations, re-
duces mutual ring interpenetration and speeds up the dynam-
ics.5 Therefore, investigating the systems with torsional degrees
of freedom can help to understand dynamical effects also in tor-
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sionally relaxed rings, by giving a control on the degrees of the
branching and the threading. In semi-dilute and dilute condi-
tions, both, the interchain interactions and the hydrodynamics
coupled with the ring topology of the chains affect the chain re-
laxation dynamics and fluctuations of the metric properties33–35.
For dilute solutions under non-equilibrium flow conditions, the
combination of topology with hydrodynamic interactions has dra-
matic effects on the conformations and dynamics of the solutes.
Vorticity swelling in shear,36 extensional or mixed flows37,38 has
been predicted in simulations and recently confirmed experimen-
tally,39 whereas hydrodynamic inflation under steady shear40 re-
sults into a strong suppression of tumbling and of the Brownian
nature of the polymer dynamics for certain domains of shear rate
for flexible polymers. To summarize, the supercoiling reduces
penetrable area of rings which is relevant for viscoelasticity, but
hydrodynamic swelling acts in the opposite way. Therefore here
we aim to study systematically in simulation how does the hydro-
dynamic interaction couple with the supercoiled ring structure in
dilute (single chain) conditions in shear. To do so, we employ the
combination of muliparticle collision dynamics to account for the
hydrodynamic interaction in combination with molecular dynam-
ics for the time evolution of the polymer.

Under non-equilibrium conditions such as shear flow that we
focus on in here,40,41 non-local hydrodynamic effects play an es-
sential role for the transport and dynamical properties of poly-
mers. Considering the molecular dynamics of all of the fluid par-
ticles interacting with the polymers would be too time-consuming
on the typical experimental time-scales (seconds). Hence, several
coarse-grained simulation techniques had been developed which
capture hydrodynamic interactions in polymers, such as dissipa-
tive particle dynamics (DPD),42 the lattice Boltzmann method
(LBM)43 and multiparticle collision dynamics (MPCD).44 In par-
ticular MPCD had been heavily used in the last two decades to
study polymer dynamics under equilibrium and under shear flow
conditions. In MPCD the Newtonian background solvent is mod-
eled by effective point-like fluid particles which perform alter-
nating streaming and collision steps.44,45 While intramolecular
forces are advanced through molecular dynamics (MD) purely
between monomers, the hydrodynamic effects on the monomers
stem from monomer-fluid particle interactions. In the simplest
and most popular approach of such a hybrid MPCD-MD scheme
the monomers are assumed to be pointlike but heavier than
the fluid particles and exchange momentum with the local fluid
particles in the collision step.46 This allows simulations of sin-
gle/dilute47–49 and semidilute/dense50,51 polymer solutions in
the presence of an explicit solvent. Simple unidirectional shear
flow is usually realized by applying Lees-Edwards boundary con-
ditions,47,48,52,53 and the flow can be disturbed by the presence
of polymers and their coupling to the fluid motion.

MPCD had been used to quantify the shear-thinning behav-
ior of linear flexible,48,51 semiflexible54 and stiff47,50 polymer
solutions, as well as the dynamics of single crosslinked poly-
mer chains.55,56 Furthermore, the MPCD method can easily be
adapted to simulate pressure-driven Poiseuille flow bounded by
no-slip channel walls.57–59 Consequently the dynamics of single
linear flexible60 and semiflexible61 polymers, as well as the shape

transitions of a tethered linear polymer62 had been investigated.
The properties of polymers with other architectures under shear
flow had also be studied in detail, such as star polymers and den-
drimers,41,49,63–68 as well as ring polymers.36,40,69,70 Notewor-
thy, in MPCD hydrodynamic interactions can be turned off eas-
ily without modifying other physical properties of the fluid,40,41.
This allows to directly determine the influence of hydrodynamic
interactions in polymer simulations, of particular importance in
out-of-equilibrium conditions.71–73

The article is organized as follows: In sec. 2 we introduce the
model and in sec. 3 the quantities that characterize the topology
and the shapes of the supercoiled polymers in equilibrium and un-
der shear. In secs. 4 and 5 we present the extracted equilibrium
properties and the behavior under shear flow of supercoiled ring
polymers, respectively. We conclude our work in sec. 6, whereas
certain technical details of our work are delegated to the Ap-
pendix.

2 Model

2.1 Multiparticle collision dynamics

Multiparticle collision dynamics (MPCD) is a method of simu-
lating a particle-based solvent put forward by Malevanets and
Kapral74 that is used to generate hydrodynamic interactions (HI)
and mimic thermal fluctuations in molecular dynamics (MD) sim-
ulations of embedded objects such as colloids and polymers. It
models the solvent fluid as Ns individual point particles with
mass ms within a rectangular simulation box with side lengths
Lx,Ly,Lz. Positions and velocities are described by continuous
variables r⃗s,i, v⃗s,i, i ∈ {1, ...,Ns}. The algorithm consists of two al-
ternating steps. During the streaming step the particles are al-
lowed to move ballistically for a time period h according to their
current velocities:

r⃗s,i(t +h) = r⃗s,i(t)+ h⃗vs,i(t). (1)

Periodic boundary conditions are applied for particles crossing
the dimensions of the simulation box. In the subsequent collision
step the entire simulation box is coarse-grained into cubic cells
of a grid with lattice constant ac and the solvent particles are
sorted according to their current positions. The velocities of all
Nc particles in one particular cell are summed up to a center-
of-mass velocity, v⃗cm(t) = 1

Nc
∑i∈cell v⃗s,i(t), and a rotation matrix

R[α] is generated and assigned to the cell. The orientation of the
rotation axis is picked randomly at each step and varies from cell
to cell, whereas the rotation angle α is fixed. This randomness
is the ingredient endowing MPCD with thermal fluctuations. The
velocities of all particles within the cell are then rotated relative
to the center-of-mass velocity of the cell,

v⃗s,i(t +h) = v⃗cm(t)+R[α](⃗vs,i(t)− v⃗cm(t)), (2)

which represents the collision of the particles. The procedure
is conducted for all LxLyLza−3

c cells contained in the simulation
box and allows for local momentum exchange between particles
within a cell without changing v⃗cm. The internal interaction of the
simulated fluid is coarse-grained both in space (the division into
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cells) and time (collision at discrete time steps). Because of the
lack of systematic forces, MPCD solvent particles obey an ideal
gas equation of state44 and one can show that the algorithm con-
serves mass, momentum, and energy locally at cell level.74 MPCD
is an effective way of solving the Navier-Stokes equations and
reproducing hydrodynamic interactions and thermal fluctuations
down to the size of a collision cell.

There are three basic units all set to unity: the mass ms of
the fluid particles, the length of the cubic collision cells ac, and
the energy kBT specifying the average kinetic energy of a sol-
vent particle by 3kBT = ms⟨⃗v2

s,i⟩. This corresponds to expressing
length, energy, and mass in units of ac, kBT , and ms. A reference
unit for time can then be derived as τMPCD = ac

√
ms/kBT = 1.

The box dimensions are set to Lx = 80ac, Ly = 50ac, Lz = 50ac,
which has been shown to be large enough to avoid flow inter-
ference through periodic boundary conditions or polymer self-
interactions for similar simulations40. The box is rectangular
with its long side in the shear flow direction - see later below the
description of the system. The time between collisions is set to
h = 0.1τMPCD, the collision angle α = 130◦ and the solvent parti-
cle number density ρs =

Ns
LxLyLz

= 10a−3
c ≡⟨Nc⟩a−3

c , where ⟨Nc⟩= 10
is the average number of solvent particles in each collision cell.
This choice of parameters corresponds to a dynamic viscosity75

of η = 8.7τ
−1
MPCDmsa−1

c .

For short time steps h the mean free path Λ = h
√

kBT
ms

between
consecutive collisions is small compared to the cell size. The dis-
crete nature of the grid causes particles to stay in the same cell for
several collisions before particle exchange with neighbouring cells
occurs. This causes particles within one collision cell to build up
correlations and breaks the translational symmetry of the system.
Galilei invariance can be recovered by performing a random shift
of the sorting grid by the shift vector δ r⃗ with the components that
are sampled uniformly from [− ac

2 ,
ac
2 ]. Additionally, the shifting

procedure accelerates momentum transfer between particles.76

To generate shear flow with a tunable shear rate γ̇ the peri-
odic boundaries are modified to Lees-Edwards boundary condi-
tions.52 This defines three distinct space directions: the shear
motion is along the flow direction (x-axis), the magnitude of
shear flow varies along the gradient direction (y-axis), and the
remaining one is called the vorticity direction (z-axis). Thereby,
energy is constantly pumped into the system, and then is con-
verted into heat due to the MPCD-fluid viscosity, which, if left
unattended, would result into constant viscous heating of the sys-
tem. A thermostat is thus necessary in such a non-equilibrium
system to maintain the temperature at its prescribed value. We
employ here a cell-level thermostat,44,77 which further ensures
that the particle velocities follow a Maxwell-Boltzmann distribu-
tion and it restricts the fluctuations of the total energy of the sys-
tem to those leading to the desired value kBT .

To create coupling with the fluid and thereby enable HI, we
include the monomers in the MPCD collision, step46 but other
approaches also exist.78 An embedded monomer i with mass mm

and velocity v⃗i contributes to the center-of-mass velocity of the
collision cell. If Nm is the number of monomers in a particular

cell, the center-of-mass velocity is

v⃗cm =
ms ∑i∈cell v⃗s,i +mm ∑i∈cell v⃗i

Nsms +Nmmm
. (3)

A stochastic rotation as in eq. (2) is then performed on the rel-
ative velocities of both the solvent particles and the embedded
monomers. This results in an exchange of momentum and en-
ergy between all particles within a collision cell. The updated
monomer velocities are then used as initial conditions for the sub-
sequent MD time step. 100 MD time steps are performed between
consecutive MPCD collisions.

Gompper et al.44 have noted that the average number of
monomers per collision cell should be smaller than unity in or-
der to properly resolve HI between them. The bond length of
polymer chains should be of order of the cell size ac so that
monomers are close enough to display effects due to HI but far
enough apart to avoid multiple monomers within a cell. Fur-
thermore, Ripoll et al.79 have demonstrated that the mass ratio
mm/ms should equal the average number of solvent particles per
cell ⟨Nc⟩ (assuming there is only one monomer per cell). Under
this condition the monomer collides with a piece of solvent with
equal mass so that the mutual momentum exchange is balanced.
For mm ≫ ⟨Nc⟩ms the polymer is barely affected by the solvent,
whereas for mm ≪ ⟨Nc⟩ms the monomers are kicked around too
violently. Hence we chose mm = ⟨Nc⟩ms = 10ms.

In order to study the specific effects of the hydrodynamic inter-
actions on the dynamics of the system the same simulations have
to be performed with and without HI. An alternative concept of
simulating the solvent and the interaction with the monomer has
to be found, that differs as little as possible from the original con-
ditions except for the presence of HI. Ripoll et al. invented an ef-
ficient method to switch off HI in a MPCD algorithm.80 They sug-
gest that the positions of the solvent particles do not contribute
in the collision step and therefore, no explicit particles have to
be considered at all. Instead, every monomer is coupled with an
effective solvent momentum P⃗ that is chosen randomly from a
Maxwell-Boltzmann distribution of variance ms⟨Nc⟩kBT and zero
mean. A center-of-mass velocity is assigned to every monomer
velocity v⃗i given by:

v⃗cm,i =
mmv⃗i + P⃗

mm +ms⟨Nc⟩
, (4)

with which the collision step is performed. Then the same ro-
tation angle is used as in standard MPCD simulations. The al-
gorithm has similar properties to MPCD, but it does not include
HI because there are no particles carrying momentum from one
monomer to another. Shear flow with the shear rate γ̇ is added
to the random solvent by setting the mean of P⃗ from zero to(
msNP

c γ̇riy,0,0
)
, where the monomer’s position in gradient direc-

tion riy determines the local shear velocity in flow direction. The
number of collision partners NP

c is picked randomly from a Pois-
son distribution with expectation value ⟨Nc⟩ which corresponds to
the distribution of the number density in a particle-based MPCD
cell. In the following this heat bath will be referred to as ran-
dom MPCD solvent or ‘−HI’, meaning there are no hydrodynamic
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interactions, whereas the conventional particle-based procedure,
with hydrodynamic interactions, will be referenced to as ‘+HI’.

2.2 Polymer model

We use a coarse-grained polymer model used previously5 with pa-
rameters tuned to represent typical properties of double-stranded
DNA (see below). The polymer rings consist of N = 100 beads
with r⃗i, v⃗i representing their positions and velocities respectively.
Their time evolution is governed by a velocity Verlet algorithm
with time step length δ t = 10−2h. The beads are subject to a pair-
wise Weeks-Chandler-Andersen (WCA) potential5,40 with a cutoff
distance at rWCA = 6

√
2σ ,

UWCA(ri j) = 4ε

[(
σ

ri j

)12
−
(

σ

ri j

)6
+

1
4

]
Θ
(
rWCA − ri j

)
, (5)

which simulates an excluded volume and a soft repulsion between
any two beads i and j at distance ri j =

∣∣⃗ri − r⃗ j
∣∣. The parameters ε

and σ define energy and length scales of the polymer and are set
to ε = kBT = 1 and σ = ac = 1.

Neighbouring beads are attached to each other along the back-
bone by applying a pair-wise attractive FENE (finitely extensible
nonlinear elastic) potential given by

UFENE(ri j) =−1
2

kFENER2
0 ln

[
1−
(

ri j

R0

)2
]
, (6)

where kFENE = 40kBT determines the strength of attraction and
R0 = 1.6σ sets the maximal extent of the spring.5,40 The combi-
nation of potentials (5) and (6) acting on a pair of beads results
in an effective bonding potential with a minimum at rmin = 0.94σ .
The monomer point particle i interacts with its respective neigh-
bours i−1 and i+1 via FENE. In what follows when talking about
neighbors i−1 or i+1 of bead i we always mean neighbors in re-
specting the ring topology, i.e. if i = N, its neighbors are N−1 and
1, and if i = 1, its neighbors have indices N and 2. The WCA po-
tential acts on all pairs i j keeping two beads from overlapping. All
rings are constructed as the trivial knot, i.e., they are unknotted.

We further include bending and torsional stiffness as in Smrek
et al.,5 to mimic the coarse-grained properties of the DNA. We
show a sketch of the polymer in Fig. 1(a), and we describe the
model in more detail in what follows. The bending energy is in-
troduced between every consecutive triplets of chain neighbours
r⃗i−1, r⃗i, and r⃗i+1 (again respecting the ring topology):

Ubend(θb) = kbend (1− cosθb) , (7)

where θb is the angle formed by two adjacent bonds r⃗i−1,i and
r⃗i,i+1, see Fig. 1(b), so that

cosθb =
r⃗i−1,i · r⃗i,i+1

|⃗ri−1,i||⃗ri,i+1|
. (8)

The bending constant is chosen to be kbend = 20kBT leading to a
persistence length lp = 20σ . The scale of the monomer diameter
should be mapped5 to DNA’s thickness in real units of σ = 2.5nm,
i.e., 2.5/0.34 = 7.35bp per bead and lp = 150bp = 50nm.

To model the torsional degrees of freedom, every bead is

equipped with three patches which remain at a fixed distance
lpat = rWCA/2 = 6

√
2σ/2. The vectors r⃗pat,i,k are defined as the vec-

tors going from the position of bead i to its k-th patch where
k = 1,2,3 so that each triplet {⃗rpat,i,k}k=1,2,3 forms an orthogo-
nal basis with the respective bead position r⃗i as the origin. In
Fig. 1(a), we show a short segment of a polymer chain with
patches where colours blue, red, and green correspond to the
numeration k = 1,2,3, respectively. The blue and red patches
are used to introduce two dihedral springs that constrain the tor-
sional angle ψb/r between consecutive beads close to a fixed equi-
librium value ψ0. Here, ψb/r is defined as the angle between the
planes with normal vectors r⃗i,i+1 × r⃗pat,i,b/r and r⃗i,i+1 × r⃗pat,i+1,b/r,
see Fig. 1(c), and it is evaluated for the blue and red patches,
respectively. The corresponding potential is given by the expres-
sion:

Ub/r
torsion(ψb/r) = ktorsion

[
1− cos

(
ψb/r −ψ0

)]
= ktorsion

(
1− cosψ0 cosψb/r − sinψ0 sinψb/r

)
,

(9)

with the torsion constant ktorsion = 50kBT . The equilibrium angle
ψ0 determines the polymer degree of supercoiling σsc = ψ0/2π of
the chain. To see the impact of the torsional constraint the simu-
lations are also performed for torsionally unconstrained rings for
which ktorsion is set to zero. These are referred to as ’relaxed’ rings
in the following and they are different to rings with σsc = 0 and
nonzero ktorsion which are torsionally constrained to a supercoil-
ing of zero. A third potential aligns the patch reference systems
so that the blue and red patches’ positions relative to their bead
is perpendicular to the segments r⃗i−1,i and r⃗i,i+1. The green patch
r⃗pat,i,g is forced onto the segment line r⃗i,i+1 by the alignment po-
tential:

Ualign(θa) = kalign (1− cosθa) , (10)

where

cos(θa) =
r⃗pat,i,g

lpat
·

r⃗i,i+1 − r⃗pat,i,g

|⃗ri,i+1 − r⃗pat,i,g|
. (11)

In this way, blue and red patches are aligned orthogonal to the
polymer backbone consisting of the beads so that dihedral angles
between consecutive beads can be formed properly, see Fig. 1(d).
The constant is chosen to be as high as kalign = 200kBT to minimize
the fluctuations of the alignment.

Forces derived from all potentials presented act on the beads i
whereas torsion, eq. (9), and alignment, eq. (10), also yield forces
upon the respective patches k denoted by F⃗pat,i,k. Forces acting on
the beads are calculated as

F⃗i(t) =−∇⃗⃗riUtotal({⃗r j(t)}, {⃗rpat, j,k(t)}), (12)

where Utotal is total potential. The forces acting on the patch are

F⃗pat,i,k(t) =−∇⃗⃗rpat,i,kUtotal({⃗r j(t)}, {⃗rpat, j,k(t)})

=−∇⃗⃗rpat,i,kUpat({⃗r j(t)}, {⃗rpat, j,k(t)})
(13)

where Utotal = UFENE +UWCA +Ubend +Ub
torsion +U r

torsion +Ualign

and Upat = Ub
torsionδk,1 +U r

torsionδk,2 +Ualignδk,3. The total force on
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Fig. 1 Illustration of monomers endowed with patches, [(a)], and of potentials concerning bending and torsional degrees of freedom, [(b)-(d)]. (a)
The grey surface indicates the extension of the monomer’s rigid body with radius lpat. The bead positions are the grey centers and the three patches
are fixed on the surface. They are used to define: (b) bending between consecutive triplets forming the angle θb, (c) torsion between neighbouring
monomers (the red torsional angle ψr is depicted as an example, the blue patches form a dihedral system as well which is omitted here), and (d)
alignment of the green patches with the connection vector r⃗i+1 − r⃗i.

monomer i is computed as

F⃗total,i(t) = F⃗i(t)+
3

∑
k=1

F⃗pat,i,k(t), (14)

which is used as the force acting on the momenta in the veloc-
ity Verlet algorithm. The details about the computation of forces
and potentials in dependence of bead and patch positions are de-
scribed in the Appendix.

Adding patches to the beads effectively transforms the previ-
ous point particles i to rigid bodies with a rotational degree of
freedom χi, angular velocity ω⃗i, and inertia tensor Iαβ

i . The set
of three angles χi defines the orientation of the monomer i with
respect to the lab frame, and hence define the positions of the
patches r⃗pat,i,k on the monomer i. Their explicit representation
with quaternions is discussed in the Appendix. The monomers
are modeled as extended spheres with radius lpat and contin-
uous mass density ρm = 3mm/(4πl3

pat), which corresponds to a

trivial inertia tensor Iαβ

i = Isphereδα,β with the moment of iner-
tia Isphere = 2

5 mml2
pat. The position of the bead r⃗i is the central

point of the rigid body and coincides with the center-of-mass of
the monomer, whereas the patches reside on the sphere’s surface.
Therefore, only the forces F⃗pat,i,k(t) contribute to the total torque
Ti(t) on monomer i, expressed as

T⃗i(t) =
3

∑
k=1

r⃗pat,i,k(t)× F⃗pat,i,k(t) =
d
dt

L⃗i(t)

=
d
dt

(
Iαβ

i ω⃗i(t)
)
= Isphere

˙⃗ωi(t),

(15)

with the angular momentum L⃗i(t) of bead i. Rotations around

the center-of-mass only affect the orientations χi but not the bead
positions. The rotational dynamics are added to the velocity Ver-
let algorithm, see Appendix for details. When the polymer is
suspended in the MPCD solvent, the collisions only rotate the
monomer velocities v⃗i but not the angular velocities ω⃗i and so
the solvent-solute interaction does not affect the rotational de-
grees directly. This is an approximation originating in our choice
of the coarse-grained model. More details on the force calcula-
tions as well as on the integration of the equations of motion for
the translations and the rotations of the beads are given in the
Appendix.

3 Polymer topology and shapes

3.1 Writhe and twist

The conformations of the supercoiled ring polymers are influ-
enced by an interplay of the applied bending and torsional con-
straints. Their geometry is analyzed by measuring the topological
parameters writhe Wr(t; γ̇) and twist Tw(t; γ̇), where we explicitly
denote the time-dependence of these quantities as well as their
parametric dependence on the applied shear rate γ̇. The former is
defined for any instantaneous configuration Ct of a closed curve
in three-dimensional space as:

Wr(t; γ̇) =
1

4π

∫
Ct

∫
Ct

(d⃗r2 × d⃗r1) · r⃗12

r3
12

, (16)

where r⃗1 and r⃗2 are points on the curve Ct and r⃗12 = r⃗2 − r⃗1 at a
given time t. The writhe gives an intuitive measure of how many
crossings an average 2D projection of the molecular backbone
forms with itself. For the actual computation we use a version
of eq. (16) detailed in Klenin and Langowski,81 where the bead
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positions serve as the reference points of the discretized curve Ct .

Fig. 2 Snapshots of the supercoiled polymers at equilibrium (γ̇ = 0). (a)
Relaxed ring with ktorsion = 0, (b) σsc = 0.00, (c) σsc = 0.01, (d) σsc = 0.02.

The twist is computed for the torsionally constrained polymer
rings by summing over the difference of all dihedral angles from
the respective equilibrium value ψ0:

Tw(t; γ̇) =
1

2π

N

∑
i=1

[
ψb,i(t; γ̇)+ψr,i(t; γ̇)

2
−ψ0

]
. (17)

The blue and red patches each form an individual set of dihedral
angles {ψb,i(t; γ̇)}, respectively {ψr,i(t; γ̇)} which is why an arith-
metic mean over the two is taken in the evaluation of Tw(t; γ̇) in
eq. (17). The alignment potential forces the green patches to be
orientated nearly perfectly with the polymer backbone so that the
blue and red patches are kept in a perpendicular orientation to
it. A high value is picked for the constant kalign = 200kBT which
limits the fluctuations from this structure. For this reason, the vec-
tors r⃗pat,i,b/r serve as (unnormalized) normal vectors to the space
curve approximated by the bead positions r⃗i. With the brackets
⟨...⟩t denoting averaging over time, we also define the quantities:

Wr(γ̇) = ⟨Wr(t; γ̇)⟩t ; Tw(γ̇) = ⟨Tw(t; γ̇)⟩t , (18)

expressing expectation values as functions of the applied shear
rate γ̇.

The patches endow the simulated ring polymer with the struc-
ture of a closed ribbon, which therefore obeys Călugăreanu’s the-
orem, stating that the sum over its writhe and twist, i.e., its link-
ing number Lk is a conserved quantity:82

Lk(t; γ̇) = Wr(t; γ̇)+Tw(t; γ̇) = Nσsc = const. (19)

The linking number is thus a topological invariant of the ribbon,
independently of time or applied shear rate, akin to the knoted-
ness of single rings or the catenation connectivities of several ones
in composite macromolecular entities, such as catenanes. Note
that the model is torsionally symmetric, i.e., it does not distin-
guish between left-handed and right-handed torsion and there-
fore we have chosen one of them and we do not specify the sign
of the supercoiling or the linking number.

Supercoiled rings must be initialized in a state with minimal
torsional energy to avoid large initial torsional forces that could
cause a simulation crash. The initial conformations of rings with
σsc > 0 are generated by starting from a flat open ribbon with a
linking number of zero and performing MD steps while gradu-
ally ramping up the offset of the torsional potential ψ0 from zero
to the desired angle 2πσsc in small steps. During this procedure
monomers are coupled to the random MPCD solvent. The offset is
increased in steps of 10−3 ·2πσsc after every 2000th collision with
the solvent until the final angle is reached. The resulting confor-
mations are supercoiled rings for which Lk(t; γ̇) = Nσsc is indeed
conserved up to fluctuations around the mean. The initialization
process is performed for the supercoiling values σsc = 0.01 and
σsc = 0.02. In Fig. 2, we show snapshots of all four types of ring
polymers investigated.

3.2 The gyration tensor and its rotational invariants

The conformations of polymers are investigated and quantified by
measuring the ring’s gyration tensor:83

Gαβ (t; γ̇) =
1
N

N

∑
i=1

ri,α (t; γ̇)ri,β (t; γ̇), (20)

and additional quantities derived from it, to be specified in what
follows. Here, ri,α (t; γ̇) = (⃗ri(t; γ̇)− r⃗cm(t; γ̇))α is the α-coordinate
of i-th monomer’s position relative to the center-of-mass r⃗cm(t; γ̇)

of the polymer at a given time t and shear rate γ̇. The diago-
nal element Gαα (t; γ̇) reflects the elongation of the polymer along
the α-coordinate. Of particular importance are the instantaneous
eigenvalues λ1(t; γ̇) > λ2(t; γ̇) > λ3(t; γ̇), out of which several use-
ful rotational invariants can be constructed. The instantaneous
radius of gyration squared, R2

g(t; γ̇), is defined as the trace of the
gyration tensor:

R2
g(t; γ̇) = ∑

α=x,y,z
Gαα (t; γ̇) =

3

∑
i=1

λi(t; γ̇), (21)

and it is a measure of the overall spatial extension of the polymer.
An alternative way of expressing the extent of the polymer in the
flow direction, which can be particularly useful for microfluidics
experiments, is the extent ∆x(t; γ̇) defined as:

∆x(t; γ̇) = max
i
{⃗ri,x(t; γ̇)}−min

i
{⃗ri,x(t; γ̇)}, (22)

where r⃗i,x(t; γ̇) is the x-component of the position vector r⃗i(t; γ̇) of
the i-th monomer.

The shape of the conformation can be characterized by the pro-
lateness S∗(t; γ̇) ∈ [−0.25,2], defined as:40

S∗(t; γ̇) =
∏

3
i=1 (3λi(t; γ̇)−R2

g(t; γ̇))

R6
g(t; γ̇)

, (23)

which attains negative values for oblate objects and positive val-
ues for prolate ones. Further, we consider the relative shape
anisotropy δ ∗(t; γ̇) ∈ [0,1], which is defined as:40

δ
∗(t; γ̇) = 1−3

I2(t; γ̇)

R4
g(t; γ̇)

, (24)
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where I2(t; γ̇) = λ1(t; γ̇)λ2(t; γ̇) + λ2(t; γ̇)λ3(t; γ̇) + λ3(t; γ̇)λ1(t; γ̇).
For this quantity, δ ∗(t; γ̇) = 0 occurs if all eigenvalues are identical
(e.g. spherical or polyhedral group symmetry) while δ ∗(t; γ̇) = 1
indicates that two eigenvalues are zero (e.g. all monomers on a
line). The (squared) gyration radius, the prolateness and the rel-
ative shape anisotropy are all independent of the orientation of
the polymer in space. Similar to the writhe and twist, eq. (18),
we define time-averages as

O(γ̇) = ⟨O(t; γ̇)⟩t , (25)

where O = Gαβ , R2
g, ∆x, S∗, or δ ∗, and we report on their values

in what follows.

4 Equilibrium properties

Supercoiled rings with σsc = 0.00,0.01,0.02 as well as torsionally
relaxed ones with N = 100 monomers were allowed to evolve
freely in time under equilibrium conditions (γ̇ = 0) while we mon-
itor the quantities of interest to establish when the equilibrium
was reached. In that process, the monomers were coupled to the
MPCD solvent both with and without HI in separate runs to con-
firm the independence of the equilibrium state on the HI. After
the equilibration run of 2 ·107 MD steps for +HI and 5 ·108 steps
for −HI followed a production run of 6 ·107 and 1.5 ·109 steps, re-
spectively for +/−HI. All quantities were sampled at least every
100τMPCD for +HI and 1000τMPCD for −HI, while quickly fluctuat-
ing quantities, the intrinsic viscosity and the tumbling cross cor-
relation function, were sampled every 10τMPCD. All the quantities
measured contributed to their equilibrium averages and distribu-
tions. To get more precise results, 38 independent simulation runs
were conducted for γ̇ = 0 and observed quantities were averaged
among them. The error bars were computed as the error of the
mean from the 38 independent runs. We simulate longer than the
characteristic time as estimated in the sheared case, see sec. 5.

For the supercoiled rings with nonzero Linking number, σsc > 0,
the simulation occasionally crashed, due to the relatively large
timestep and the buildup of numerical instabilities leading to un-
physically large forces. In such cases, we discarded the data.
Higher degrees of writhe constrain the rings to take on more con-
tracted conformations and the resulting contorted macrostructure
of the polymer forces some beads to be pressed together increas-
ing the risk of building up large repulsive forces. High shear rates
amplify this behaviour as the solvent flow stretches out the poly-
mer rings. More specifically, two different kinds of undesired
behaviour have been observed. The first is rupture of the poly-
mer, where a small part (usually up to 5 monomers) leaves its
place within the chain. The second type of undesired behaviour
amounts to Lk spontaneously being changed by an integer value
±1, violating the topological constraints that force the ring to
have a constant Linking number (apart from small deviations due
to the fact that the patches are not necessarily aligned in a perfect
right angle relative to the backbone). These crashes happened
mostly when using the −HI-solvent at high shear rates, since the
total number of MD steps was much higher compared to the costly
particle-based solvent with +HI and the chances of a crashing sit-
uation increased with the length of the simulation runs which

could not be decreased significantly. Both types of crashes can
presumably be avoided by using a smaller ∆tMD.

In Figs. 3(a)-3(d), we show time series of the topological quan-
tities, writhe and twist, for all systems simulated, whereby the
curves of the single runs are averaged to a single curve. Whereas
both the relaxed rings and the rings without supercoiling as-
sume conformations that are essentially writhe-free, the rings
with σsc = 0.01 and σsc = 0.02 display conformations that carry
finite writhe. Connected to this, and rather insensitively of the
degree of supercoiling, the twist fluctuates closely around zero in
case of σsc = 0.00 whereas for σsc > 0, Tw(t; γ̇) takes on small but
nonzero values. Up to this value, the writhe equals the linking
number for the entire duration of the simulation and Călugăre-
anu’s theorem (19) is indeed fulfilled for all systems. The re-
laxed chains remain in a state with only few writhe because of
the high bending stiffness-cost that a high writhe would incur,
and the twist fluctuates arbitrarily for the same chains because
of the absence of torsional springs. The overall behaviour of the
topological parameters does not depend on the presence of HI, as
it should be the case for polymers in equilibrium.

Table 1 The expectation values of the squared radii of gyration in equi-
librium, R2

g(γ̇ = 0), for the various types of ring polymers with N = 100
monomers considered in this work, along with the value of the same quan-
tity for a fully flexible polymer (last row). The error values indicated are
computed as the standard deviation of the equilibrium distribution.

Polymer type Supercoiling σsc R2
g(γ̇ = 0)/σ2

Semiflexible Relaxed 171.67±19.28
Supercoiled 0.00 179.21±14.47
Supercoiled 0.01 126.52±17.71
Supercoiled 0.02 120.53±18.56
Fully flexible – 28.95±4.00

The equilibrium distributions of the squared radius of gyration
are presented in Fig. 3(e) and the expectation values of this quan-
tity are summarized in Table 1, which also provides a compar-
ison with the gyration radius of a fully flexible ring. As a first
remark, we note that the presence of the bending stiffness, in-
dependently of the supercoiling, causes the rings to swell with
respect to their flexible counterparts, as expected. For σsc = 0.00
both the bending and the torsional stiffness force the ring to re-
main in an open circular shape which leads to a sharp peak in the
R2

g(t;0)-distributions. The absence of torsional stiffness softens
considerably the relaxed rings, leading to slightly smaller sizes as
well as a broader distribution of the gyration radius values. The
σsc = 0.00 rings are locked in a rather open and flat conforma-
tion and R2

g(t;0) fluctuates more weakly around a larger mean
compared to the relaxed counterparts. The values of the gyration
radius agree with Smrek et al.,5 which confirming the correct im-
plementation of the model. Moreover the Rg-distribution of the
relaxed case shows a long tail at low values, indicating a weakly
bimodal character of the distribution in agreement with the find-
ings of Smrek et al.5 Nonzero supercoiling forces the polymers
to take on more complex supercoiled shapes, characterized by a
smaller R2

g(t;0) for σsc > 0, as can be also confirmed by the pro-
lateness data below. The values of R2

g(t;0) coincide for the sol-
vents with and without HI, again as expected, and confirming
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Fig. 3 Time series of the topological quantities writhe (Wr(t;0)) and twist (Tw(t;0)) at equilibrium for the cases +HI [(a),(c)] and −HI [(b),(d)]. The
solid lines in the Wr(t;0)-plots, panels (a) and (b), indicate the linking number as the sum Lk(t;0) = Wr(t;0)+Tw(t;0). The equilibrium probability
distributions of the squared radius of gyration and the prolateness are shown in panels (e) and (f), respectively.

that equilibrium has indeed been achieved for both simulation
variants.

The equilibrium distributions of the prolateness parameter S∗

are depicted in Fig. 3(f). As intuitively expected, the σsc = 0.00-
ring and the relaxed one are mainly found in oblate shapes as they
tend to be open rings, a property manifested in the fact that their
S∗(t;0)-distributions peak at values below zero. Nevertheless,
even for these rings the probability distributions have sufficiently
long tails into the prolate domain, resulting into expectation val-
ues S∗(0)∼= 0 overall, see Fig. 7(d) (at τMPCDγ̇ < 10−5): to obtain
rings that are oblate on average, one would need a higher value
of kbend and/or a smaller value of N, so as to obtain a larger ratio
of persistence to contour lengths. On the other hand, supercoil-
ing increases the prolateness markedly, as it constrains the rings
in a more elongated conformation, consistent with the increas-
ingly writhed conformations they assume. Accordingly, the pro-

lateness distribution of the σsc = 0.01-supercoiled ring has a peak
at S∗(t,0) ∼= 0.5 and that of the σsc = 0.02-ring at S∗(t,0) ∼= 1.25.
Despite the increase in prolateness, the gyration radius of the
σsc = 0.02-ring remains unchanged with respect to that of its
σsc = 0.01-counterpart, as the elongation in one direction is com-
pensated by shrinking in the two orthogonal ones.

5 Properties under shear flow

The supercoiled and relaxed ring polymers discussed so far are
simulated under shear flow for a wide range of shear rates γ̇ span-
ning multiple orders of magnitude. They are coupled both to the
particle-based MPCD solvent (+HI) and to the random MPCD sol-
vent (−HI) in 10 separate runs to determine any effects of HI on
the supercoiled ring conformations. The systems without HI are
run for longer times (5 ·108 MD steps compared to 2 ·107 for +HI)
since the particle-based MPCD took up most of the numerical ef-
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fort when HI is present. On the flip side the polymers with σsc > 0
are more prone to crashes (as explained in sec. 4) for −HI so it is
not possible to measure their properties for very high shear rates.
After the “equilibration" time of 20% of the respective simulation
run time we considered the systems to be in a stationary state
since all key observed quantities had reached stationary values.

We begin our analysis by looking at the topological charac-
teristics of the supercoiled rings, and in particular at the writhe
Wr(γ̇) and the twist Tw(γ̇), reported in figs. 4(a)-4(d). The link-
ing number is also depicted as their sum, which is constant for
all γ̇, serving as a test of the validity of the simulations. In all
cases and for most shear rates considered, writhe and twist re-
main constant at their preferred values as in equilibrium accord-
ing to their degree of supercoiling σsc; hydrodynamic forces are
not capable of “unwrithing” the molecules for most of the range
of shear rates considered. However, for the highest values of γ̇

tested and in the +HI-variant, where simulations at these shear
rates could be performed without crashes, considerable transfor-
mation of Wr(γ̇) into Tw(γ̇) takes place (see Fig. 4(a) and (c) at
τMPCDγ̇ > 10−2). This is interpreted as a forced opening of the
writhed structure since the process is connected with a high tor-
sional energy penalty. The snapshots of supercoiled rings with
σsc = 0.02 and σsc = 0.01 in figs. 4(e) and 4(f), respectively (both
+HI), are representatives of the polymers’ behaviour under shear
flow in comparison to their shapes in equilibrium γ̇ = 0. At zero
shear rate the σsc = 0.02-ring rotates freely in space and takes
on more compact, prolate shapes. Although bending and torsion
constrains it to have a writhe of nearly Wr(t; γ̇) ≈ σscN it is not
elongated in any direction. In contrast, the polymer is almost
completely stretched out and aligned along flow direction at high
shear rate of τMPCDγ̇ = 10−3. Above τMPCDγ̇ > 10−2 the shear
flow is even able to counter the torsional forces so that writhe
and twist experience large fluctuations and the conformation un-
writhes, see figs. 4(e) and 4(f).

In Fig. 5 we show the diagonal elements of Gαβ (γ̇) for both
cases when hydrodynamic interactions are active (+HI) as well as
the situation when the polymer is coupled to the random MPCD
solvent (−HI). All ring polymers considered in this work are not
affected by the shear flow up to a certain threshold shear rate of
τMPCDγ̇× ≈ 10−4 for +HI and τMPCDγ̇× ≈ 10−5 for −HI. As of the
behaviour of polymers under shear flow starts deviating from its
equilibrium pattern at Weissenberg number Wi× ∼= 1, this suggests
that the longest relaxation times should be of the order τR ∼= 104

for +HI and τR ∼= 105 for −HI, in agreement with previous find-
ings for flexible ring polymers36 or star polymers,66 where the
two relaxation times were indeed found to differ by about one
order of magnitude for polymers of N ∼= 100.*

For all degrees of supercoiling as well as for the relaxed rings
the component of the gyration tensor in the flow direction grows
with increasing shear rates while the components in vorticity and
gradient directions both get smaller. As the curves do not dif-
fer between relaxed and supercoiled rings, we can attribute the

* We show in the Appendix that these estimates agree well with the characteristic
decay times of the orientational correlation functions of the rings at equilibrium.

trends as well as their deviations from those of flexible rings to the
non-vanishing bending rigidity of the polymers. Interestingly, the
growth of Gxx(γ̇) (i.e. size extension in the flow direction) with
shear rate, shown in Fig. 5(a), is moderate limited to a factor
of ≈ 2−3 with respect to its equilibrium value for all shear rates
covered, which is small compared to the growth factor of the fully
flexible rings,36,40 which reach values up to ≈ 15−20. The rings
at hand do not stretch as much in the flow direction as the flexi-
ble ones, due to the stiffness of the bonds that prevents elongated
conformations, which would necessarily result into sharp turns
and thus very high bending penalties at the tips of the rings. For
the −HI case, Fig. 5(b) there is even a saturation of Gxx(γ̇) at the
highest shear rates, corresponding to 102 ≲ Wi ≲ 103. In Fig. 6,
we show a quantity closely related to Gxx(γ̇), namely the extent
∆x(γ̇). The growth of the extent over its equilibrium value is by
about a factor 2 for the whole range of shear rates applied, much
less than values experimentally measured for fully flexible rings
under similar conditions in, e.g., extensional flow.84

In the gradient and vorticity directions (y and z directions re-
spectively), the diagonal elements of the gyration tensor decrease
with shear rate but again in ways that differ from those of the
flexible cyclic polymers. The contraction in gradient direction is
more pronounced than in vorticity direction, as is also the case
for flexible rings, but here it decreases with a stronger power-law,
Gyy(γ̇)∼ γ̇−0.52 as opposed to the power-law Gyy(γ̇)∼ γ̇−0.43, valid
for flexible rings,36 independently of the inclusion or exclusion of
HI, see figs. 5(c) and 5(d). One would naively expect that this is
due to a stronger alignment of the rigid rings with the flow direc-
tion but, as we will establish in what follows, this is not the case.
The rigid and supercoiled rings at hand align, in fact, much less
with the flow direction than flexible ones but at the same time
they also tumble much less. Accordingly, time intervals of tum-
bling, in which the (flexible) rings extend stronger into the gra-
dient direction contribute much less to the time-averages and the
contraction of the gradient-direction extent with the shear rate is
less strong for the flexible rings, resulting into new exponents of
the semiflexible ones.

The vorticity-direction dependence of the gyration tensor,
shown in figs. 5(e) and 5(f), is also quite unique for the rigid
rings. The phenomenon of vorticity swelling of the flexible
rings36,40 is absent here, because the solvent back-flow is not
strong enough to stretch the stiff bonds of these rings. One sees,
nevertheless, the solvent backflow effect in comparing the +HI-
case, Fig. 5(e), in which it is present, with the −HI-case, Fig. 5(f),
in which it is absent. Indeed, in the latter the ring contracts much
more in the vorticity direction than in the former, where solvent
backflow creates additional swelling pressure in the ring’s inte-
rior.36 In this respect, it is important to notice that the conver-
sion of writhe to twist and the reduction in vorticity swelling are
both effects that take place solely in the presence of HI. Accord-
ingly, we claim that the solvent backflow is crucial for both, i.e.,
only solvent backflow generates the necessary local stresses along
the polymer backbone to bring about the topological conversion
while at the same time keeping the ring sufficiently open in the
vorticity direction, consistently with the unwrithed conformation
seen, e.g., in Fig. 4(f).
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Fig. 4 The dependence of the time-averages of writhe, Wr(γ̇), and twist, Tw(γ̇) on shear rate, in panels [(a),(b)] and [(c),(d)] respectively. Panels
(a) and (c) are for the +HI-case and panels (b) and (d) for the −HI-case. The snapshots in panels (e) and (f) compare conformations in equilibrium
and under shear (+HI). Error bars indicate the standard error of the mean. The solid lines in the Wr(t;0)-plots, panels (a) and (b), indicate the
linking number as the sum Lk(t;0) = Wr(t;0)+Tw(t;0). (e): supercoiling σsc = 0.02-ring, at shear rate τMPCD γ̇ = 5 ·10−3, where Wr(γ̇) is not altered;
(f) supercoiling σsc = 0.01 at shear rate τMPCD γ̇ = 5 ·10−2, where writhe is converted into twist.

The dependence of the shape parameters on the shear rate
is summarized in Fig. 7. The decrease of Gyy(γ̇) and Gzz(γ̇)

is compensated by the increase in the flow direction, so that
R2

g(γ̇) = tr[Gαβ (γ̇)] is more or less constant over most of the range
of γ̇, see figs. 7(a) and 7(b). This is again in stark contrast with
flexible rings, for which Rg(γ̇) is dominated by Gxx(γ̇) and it grows
rapidly with shear rate.36,40 Here, in fact, the radius of gyration
of all ring types decreases by a small amount before experienc-
ing growth again for very high shear rates. The effect is observed
more clearly in the case of −HI because the sample size covers
longer time periods.

For the overall polymer size, as expressed by the gyration ra-
dius, neither the degree of supercoiling nor the hydrodynamics
seem to significantly affect its dependence on shear rate. This
changes if one looks at more detailed shape characteristics, such
as the prolateness, Figs. 7(c) and 7(d), and anisotropy, Figs. 7(e)
and 7(f). As they share common characteristics, we discuss S∗(γ̇)
and δ ∗(γ̇) together. First of all, for the lower shear rates, there
is now a clear splitting of the curves depending on the degree of
supercoiling. Whereas the relaxed ring as well as the σsc = 0-ring
start with S∗(γ̇)∼= 0 and low δ ∗(γ̇) values at low shear rates, which
grow as γ̇ increases, the supercoiled rings are already prolate and
very anisotropic at equilibrium, due to the writhed conformations
they assume, see Fig. 3. Accordingly, the prolateness and shape
anisotropy are affected very weakly by shear for the rings with
high supercoiling degree, especially for the +HI-case, whereas in
the −HI case prolateness and anisotropy become monotonically
increasing at high γ̇ and all rings follow the same curves there.
As mentioned above, solvent backflow for the +HI-case reduces
prolateness and anisotropy by temporarily stabilizing more open,

oblate conformations of the rings and by converting writhe into
twist for the supercoiled ones.

The average alignment of a polymer with the shear flow direc-
tion and its dependence on shear rate can be quantified by the
orientational resistance mG(γ̇), a dimensionless quantity that can
be constructed from the gyration tensor elements as:85

mG(γ̇) = τRγ̇
2Gxy(γ̇)

Gxx(γ̇)−Gyy(γ̇)
= τRγ̇ tan(2θ(γ̇)), (26)

where the angle θ(γ̇) is subtended between the flow direction and
the axis of largest extension, i.e., the eigenvector corresponding
to the largest eigenvalue, λ1(γ̇), of the gyration tensor. We show
in Fig. 8 the dependence of tan(2θ(γ̇)) on the shear rate for both
the +HI-case, Fig. 8(a) and the −HI-case, Fig. 8(b). Here, the
effect of hydrodynamics is quite pronounced, as we obtain quite
different power-law dependencies for each case. As expected, the
long axis of the rings tends to align with flow direction as γ̇ grows
but much weaker in the +HI-case than in the −HI-case. Indeed,
the orientational resistance mG ∝ γ̇ tan(2θ(γ̇)) is very strong for the
+HI-case, scaling as mG ∼ γ̇0.82, to be compared with the scaling
mG ∼ γ̇0.6 for flexible rings,40 whereas mG ∼ γ̇0.64 in the −HI-case.
Rigid and supercoiled rings are therefore orientationally stiff un-
der shear, since the solvent backflow hinders strong alignment
with the flow axis. The forces of the solvent on the rings are
‘used up’ in bringing about occasional opening of the ring as well
as the associated conversion of writhe into twist for the super-
coiled ones, and not for aligning the rings with the flow, whereas
in the −HI-case, the absence of coupling with the solvent allows
the undisturbed velocity profile of the latter to align the polymer
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Fig. 5 Time-averaged diagonal components of the gyration tensor, Gαα (γ̇), α = x,y,z, as functions of the shear rate for the cases of inclusion of HI
[panels (a),(c),(e)] and exclusion of the same [panels (b),(d),(f)]. Error bars indicate the standard error of the mean.

more strongly with the x-axis.

The strong orientational resistance of the supercoiled polymers,
in conjunction with the previous results on the dependence of
Gαα (γ̇) on the shear rate, shown in Fig. 5, creates an apparent
contradiction. Indeed, if we visualize the polymer as an object
oriented on a stable configuration that forms an angle θ(γ̇) with
the x-axis, and making the small-angle approximation tan(θ(γ̇))∼=
θ(γ̇), valid only for the −HI-case, we can write:√

Gyy(γ̇)∼=
√

Gxx(γ̇) tan(θ(γ̇))∼=
√

Gxx(γ̇)θ(γ̇). (27)

Ignoring the weak dependence of Gxx(γ̇) on the shear rate
[Fig. 5(b)] (fitted exponent 0.03, for τMPCDγ̇ > 10−4, not shown)
and writing θ(γ̇)∼ γ̇−0.36, eq. (27) yields the power-law Gyy(γ̇)∼
γ̇−0.72, stronger than the measured power-law Gyy(γ̇) ∼ γ̇−0.53 in
Fig. 5(c). Moreover, the corresponding power-laws for flexible
polymers read θ(γ̇)∼ γ̇−0.60 and Gyy(γ̇)∼ γ̇−0.43, i.e., in that case

the gradient-direction contraction is weaker than that of the rigid
rings although their alignment with the flow direction is stronger.
This can be partially explained by the fact that for the flexible ring
case, Gxx(γ̇) ∼ γ̇0.60; even so, it is evident that the picture of an
effective ellipsoid orienting itself at a stable angle θ(γ̇) with the
x-axis during shear flow is too simplistic, as the polymer dynamics
is richer in patterns developed by the combination of thermal and
hydrodynamic forces on the monomers.

Polymers have been shown to undergo tumbling motion un-
der shear flow both in experiment86,87 and simulations.36,69 The
tumbling dynamics are characterized by a rapid collapse in one
direction (x-axis) followed by the expansion in another direc-
tion (y-axis). Such events are cyclical yet not periodic, as the
molecule undergoes intermittent phases between stable orienta-
tions and vivid tumbling motions. During the latter, a tumbling
frequency ftb(γ̇) can be deducted from the cross correlation func-
tion between fluctuations of Gxx(t; γ̇) and Gyy(t; γ̇) around their
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Fig. 6 The extent ∆x(γ̇) of the polymer along the flow direction normalized over its equilibrium value, ∆x(0), as a function of the shear rate γ̇. (a)
+HI-case; (b) −HI-case.

mean values separated by a time difference τ:36,86,87

Cxy(τ; γ̇) =
⟨δGxx(t; γ̇)δGyy(t + τ; γ̇)⟩t

σxx(γ̇)σyy(γ̇)
, (28)

where δGαα (t; γ̇) = Gαα (t; γ̇) − Gαα (γ̇) and σαα (γ̇) =√
⟨G2

αα (t; γ̇)⟩t −⟨Gαα (t; γ̇)⟩2
t . If the polymer undergoes tum-

bling motions, the cross correlation function will have a damped
oscillatory behaviour with a pronounced maximum at a time
t+(γ̇) < 0 and a pronounced minimum at t−(γ̇) > 0. Similar to
their flexible counterparts, supercoiled rings feature tumbling
dynamics at high shear rates, see Fig. 9, with clear minimum and
maximum peaks. The oscillation period τtb(γ̇) of this motion can
be extracted from the correlation function Cxy(τ; γ̇) as:

τtb(γ̇) = 2(t−(γ̇)− t+(γ̇)) . (29)

The resulting tumbling frequencies ftb(γ̇) = τ
−1
tb (γ̇), normalized

with the inverse of the relaxation time, are shown in Fig. 10. As
expected, the tumbling frequency grows with the shear rate; how-
ever, the resulting growth ftb(γ̇) ∼ γ̇0.42 is much weaker than the
ftb(γ̇) ∼ γ̇0.67-dependence of the flexible rings.36 Rigidity slows
down the rotational motion of the rings under shear, so that a
rigid ring at a specific Weissenberg number tumbles and orients
to the flow in a way akin to a flexible ring at some lower Weis-
senberg number, where tumbling is less frequent. In this way,
for the same Weissenberg number, the rigid rings have fewer
phases than their flexible counterparts in which they undergo
tumbling motions that cause Gyy(t; γ̇) to grow, resulting thereby
in a stronger gradient-direction contraction than for flexible cyclic
macromolecules.

We finally discuss the effect of the polymers’ presence on the
solvent’s viscosity, by extracting their intrinsic viscosity η(γ̇), de-
fined as:

η(γ̇) =−
τxy(γ̇)

γ̇
. (30)

In eq. (30) above, the polymer stress tensor ταβ (γ̇) is calculated
in the simulation as a time average:48

ταβ (γ̇) =
1
V

N

∑
i=1

⟨ri,α (t; γ̇)Fi,β (t; γ̇)⟩t , (31)

where V = LxLyLy = 2 ·105 a3
c is the volume of the simulation box,

the quantity ri,α (t; γ̇) has been defined in eq. (20) and Fi,β (t; γ̇)

is the β -component of the total force from other beads acting on
monomer i at time t. Results are shown in Fig. 11. As with other
polymer architectures, upon a certain threshold value of γ̇, shear
thinning takes place and the shear-rate-dependent viscosity has a
power-law dependence on γ̇ with an exponent matching that of
the scaling of Gyy(γ̇). This is in agreement with predictions of the
Giesekus approximation for the stress tensor,51,88,89 according to
which η(γ̇)∼ Gyy(γ̇). As the latter is based on a free-draining ap-
proximation (no HI) but the scaling holds here also for the +HI-
case, we surmise that the intrinsic viscosity is not affected by the
presence of hydrodynamic interactions, despite the significant ef-
fects these have on the molecular orientation in the shear cell.

6 Conclusions

By means of computer simulations that take into account hydro-
dynamic interactions, we have examined in detail the behavior
of supercoiled ring polymers in steady shear, comparing the re-
sults to those obtained for flexible polymers and therefore identi-
fying the key factors that influence the conformation and dynam-
ics under steady flow. We found that the combination of bending
rigidity and supercoiling renders such rings much more robust
in their sizes, shapes and orientations than their flexible coun-
terparts and that it also reduces the frequency of their tumbling
motions. Despite the fact that they display a much higher orien-
tational resistance to flow than flexible rings, supercoiled rings
are indeed affected by shear in nontrivial ways, and mostly when
hydrodynamic interactions are taken into account. Particularly
relevant are the effects of the solvent on the vorticity extension of
the ring, where back-flow significantly reduces the vorticity con-
traction seen in simulations in the absence of hydrodynamics. The
topological properties of the rings, namely their writhe and twist,
are quite robust for a wide range of shear rates, with the polymers
maintaining mostly writhed configurations with very little twist.
However, at sufficiently strong shear rates, writhe is rapidly re-
duced in favour of the twist in the case in which hydrodynamics
is active. We have not been able to test whether the same topolog-
ical transformation of writhe to twist would also take place in the
absence of hydrodynamic interactions due to current simulation
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Fig. 7 Time-averages of the squared radius of gyration R2
g(γ̇) [panels (a), (b)], the prolateness S∗(γ̇) [panels (c), (d)] and the shape anisotropy δ ∗(γ̇)

[panels (e),(f)] as functions of the shear rate. Panels (a), (c), (e) are for the +HI-case, and panels (b), (d), (f) for the −HI-case. Error bars indicate
the standard error of the mean.

limitations outlined before.

Our results highlight the interplay between topology, hy-
drodynamics and thermal fluctuations in dilute polymer solu-
tions. Experimentally, they can in principle be tested in suit-
ably constructed microfluidic devices with single-molecule tech-
niques.39,90,91 Indeed, properties of ring polymers in flows are
being elucidated with these techniques33,84,91–93 and even vis-
coelasticity of supercoiled plasmids has been considered, how-
ever only in higher concentration blends so far.5,94 Our results
include experimentally accessible chain extent and other charac-
teristics, to be addressed experimentally, but the DNA plasmids
would have to be first sorted according to their supercoiling de-
gree. As our simulations concerned only relatively short rings, the
gyration radius depends only weakly on the supercoiling, hence
a method other than gel electrophoresis would have to be used.
Future directions include the study of the dynamical behaviour

in higher concentrations or for topologically linked rigid rings,
such as catenanes and the kinetoplast. As a further highly inter-
esting avenue of exploration, particularly in connection to exper-
iments, we see the investigation of longer and/or more flexible
rings with torsional stiffness in shear flow. Such rings with high
supercoiling degrees display branched structure in equilibrium.
The orientation of the branches as well as their restructuring and
hydrodynamic swelling connected to the conversion of writhe to
twist in shear flow is highly desired, not only due to the biological
context, but also as a future perspective tool to tune mechanical
properties of polymer solutions using topology in nonequilibrium
conditions. The present work presents the first step on the way to
achieve these goals.
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Fig. 8 The tangent of twice the alignment angle, tan(2θ(γ̇)), of the rings
for +HI [panel (a)], and −HI [panel (b)]. Data points for lower shear
rates are cut off as they are very noisy and fluctuate without a visible
trend. The power-law fits were computed according to the combined
data points of all four ring types. Error bars indicate the standard error
of the mean.
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Appendix

Software details

The code for the simulations is written in Fortran 90, visualisa-
tions of polymers are created with VMD.95

Fig. 9 Tumbling cross correlation function Cxy(τ; γ̇) at high shear rates,
as indicated in the legend of panel (a), in presence of HI. (a) Relaxed ring
without torsion (ktorsion = 0), (b) σsc = 0.00, (c) σsc = 0.01, (d) σsc = 0.02.

Fig. 10 Tumbling frequency ftb(γ̇) = τR/τtb(γ̇). The longest relaxation
time τR is approximated by τR ≈ 104τMPCD.

Velocity Verlet algorithm with rotational degrees of freedom

The rotational degrees of freedom have to be considered within
the velocity Verlet algorithm which is extended by the rotational
dynamics consisting of the following three steps:

ω⃗i

(
t +

δ t
2

)
= ω⃗i(t)+

δ t
2

˙⃗ωi(t)

χi(t +δ t) = Rχ

[
δ tω⃗i

(
t +

δ t
2

)]
χi(t)

ω⃗i(t +δ t) = ω⃗i

(
t +

δ t
2

)
+

δ t
2

˙⃗ωi(t +δ t),

(32)

where ˙⃗ωi(t + δ t) ≡ ˙⃗ωi({⃗r j(t + δ t)},{χ j(t + δ t)}), i.e. the angular
acceleration at time t + δ t is computed from the positions r⃗ j and
orientations χ j at time t + δ t. The steps are performed simulta-
neously to the translational counterparts where the monomer is
moved as a whole according to the bead velocity v⃗i. In the rota-
tional part, first, the angular velocity is boosted by a half-kick of
the current angular acceleration. A rotation Rχ

[
ω⃗i

(
t + δ t

2

)
δ t
]

of

the monomer orientation χi(t) by an angle
∣∣ω⃗i

(
t + δ t

2

)∣∣δ t around
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Fig. 11 The intrinsic viscosity of the various types of rigid polymers
considered in this work for the cases +HI [panel (a)], and −HI [panel
(b)]. Data points for lower shear rates are cut off as they are very
noisy and fluctuate without a visible trend. The power-law fit curves are
computed according to the combined data points of all four rings tested.
The values are normalized by the simulation viscosity unit, τ

−1
MPCDmsa−1

c .
Error bars indicate the standard error of the mean.

rotation axis ω⃗i/ |ω⃗i| follows. Next, ˙⃗ωi(t) is calculated as ˙⃗ωi(t) =
T⃗i(t)/Isphere. The torque and hence also the angular acceleration
depend on both, the location (all potentials) and the orientation
(torsion and alignment) of the monomers. T⃗i and ˙⃗ωi are always
related by the linear equation T⃗i = ∑

3
k=1 r⃗pat,i,k × F⃗pat,i,k = Isphere

˙⃗ωi.
The forces are calculated as a sum over the gradients of the po-
tentials (5), (6), (7), (9), and (10). Finally, in step 4 a second
half-kick updates the angular velocity with the new ˙⃗ωi(t + δ t).
r⃗cm,i(t + δ t) is computed during the calculation of the torque in
step 3 of (32) at time t and is therefore stored for the next rota-
tion at t +δ t.

Computation of forces on patches

The potentials for bending (7) and alignment (10) depend on an-
gles formed by two segments connecting three positions, respec-
tively, so that their gradients are the same function with different
arguments. In contrast, the torsion potential (9) involves angles
formed by three segments connecting four positions and has an
offset ψ0 in the argument of the cosine cos(ψb/r −ψ0). The cosine

and sine in (9) are computed as

cos(ψb/r) =
(⃗ri,i+1 × r⃗pat,i,b/r) · (⃗ri,i+1 × r⃗pat,i+1,b/r)

|⃗ri,i+1 × r⃗pat,i,b/r||⃗ri,i+1 × r⃗pat,i+1,b/r)|

=
|⃗ri,i+1|2

|⃗ri,i+1 × r⃗pat,i,b/r||⃗ri,i+1 × r⃗pat,i+1,b/r|
·

[
(⃗rpat,i,b/r · r⃗pat,i+1,b/r)− (

r⃗i,i+1

|⃗ri,i+1|
· r⃗pat,i,b/r)(

r⃗i,i+1

|⃗ri,i+1|
· r⃗pat,i+1,b/r)

]
,

(33)

sin(ψb/r) =
(⃗ri,i+1 × r⃗pat,i,b/r)× (⃗ri,i+1 × r⃗pat,i+1,b/r)

|⃗ri,i+1 × r⃗pat,i,b/r||⃗ri,i+1 × r⃗pat,i+1,b/r)|
·

r⃗i,i+1

|⃗ri,i+1|

=
|⃗ri,i+1 |⃗ri,i+1 · (⃗rpat,i,b/r × r⃗pat,i+1,b/r)

|⃗ri,i+1 × r⃗pat,i,b/r||⃗ri,i+1 × r⃗pat,i+1,b/r)|
.

(34)

The forces on beads and patches are derived from their gradients
with respect to the position r⃗a where a stands for either a bead or
a patch. The force on particle a resulting from the three potentials
amounts to:

F⃗a =−∑
c

∇⃗akbend(1− cos(θ c
b ))−∑

c
∇⃗akalign(1− cos(θ c

a ))

−∑
c

∇⃗aktorsion(1− cos(ψ0)cos(ψc
b/r)− sin(ψ0)sin(ψc

b/r))

= kbend ∑
c

∇⃗a cos(θ c
b ))+ kalign ∑

c
∇⃗a cos(θ c

align)

+ ktorsion ∑
c
(cos(ψ0)⃗∇a cos(ψc

b/r)+ sin(ψ0)⃗∇a sin(ψc
b/r)),

(35)

where the index c indicates summation over all the bonds that
particle a is a part of. The position of every bead particle ap-
pears in three bending terms, two torsion terms and two align-
ment terms, whereas the blue and red patches appear only in
one torsion bond each and the green patches only in one align-
ment bond. The computation of ∇⃗a cos(θ c

b )), ∇⃗a cos(θ c
a ), and

∇⃗a cos(ψc
b/r) is performed following the calculations of Allen and

Tildesley96 (App. C.2, p. 491-494). The authors omit the gradi-
ent terms of the sine appearing in (35). The missing derivations
are performed in an analogous way by rewriting the sine of the
torsional angle (34) formed by beads r⃗i, r⃗i+1 and patches r⃗pat,i,b/r,
r⃗pat,i+1,b/r:

sin(ψb/r) =
|⃗ri,i+1 |⃗ri,i+1 · (⃗rpat,i,b/r × r⃗pat,i+1,b/r)

|⃗ri,i+1 × r⃗pat,i,b/r||⃗ri,i+1 × r⃗pat,i+1,b/r)|
=

ri,i+1

D1D2
Vtriple,

(36)

where Vtriple = r⃗i,i+1 · (⃗rpat,i,b/r × r⃗pat,i+1,b/r) and D1 = |⃗ri,i+1 ×
r⃗pat,i,b/r| and D2 = |⃗ri,i+1× r⃗pat,i+1,b/r)| are defined for convenience.
The gradients with respect to bead position i and i+ 1 are com-
puted by the following derivatives with C1 = r⃗i,i+1 · r⃗pat,i,b/r and
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C2 = r⃗i,i+1 · r⃗pat,i+1,b/r:

∇⃗⃗ri sin(ψb/r) =
ri,i+1

D1D2
r⃗pat,i+1,b/r × (⃗rpat,i,b/r − r⃗i,i+1)

−
Vtriple

ri,i+1D1D2

[(
1−

r2
i,i+1(l

2
pat +C1)

D2
1

−
r2
i,i+1l2

pat

D2
2

)
r⃗i,i+1

−
r2

i,i+1(r
2
i,i+1 +C1)

D2
1

r⃗pat,i,b/r +
r2

i,i+1C2

D2
2

r⃗pat,i+1,b/r

]
,

(37)

∇⃗⃗ri+1 sin(ψb/r) =
ri,i+1

D1D2
r⃗pat,i,b/r × (⃗rpat,i+1,b/r + r⃗i,i+1)

+
Vtriple

ri,i+1D1D2

[(
1−

r2
i,i+1(l

2
pat +C2)

D2
2

−
r2
i,i+1l2

pat

D2
1

)
r⃗i,i+1

+
r2

i,i+1(r
2
i,i+1 +C2)

D2
2

r⃗pat,i+1,b/r −
r2

i,i+1C1

D2
1

r⃗pat,i,b/r

]
,

(38)

while the gradients with respect to the patches k = blue, red of
particles i and i+1 are given by:

∇⃗⃗rpat,i,b/r
sin(ψb/r) =

ri,i+1

D1D2

[⃗
rpat,i+1,b/r × r⃗i,i+1 −

Vtriple

D2
1

(
C1⃗ri,i+1 + r2

i,i+1⃗rpat,i,b/r

)]
,

(39)

∇⃗⃗rpat,i+1,b/r
sin(ψb/r) =

ri,i+1

D1D2

[
− r⃗pat,i,b/r × r⃗i,i+1 +

Vtriple

D2
2

(
C2⃗ri,i+1 − r2

i,i+1⃗rpat,i+1,b/r

)]
.

(40)

Quaternion formalism

Quaternions are used to quantify the monomer orientation and
the corresponding rotational dynamics for the implementation
of the χi into the simulations. This reduces the rotational dy-
namics to quaternion multiplications and offers a way of regain-
ing the patch positions relative to their beads if they are needed
for calculations. A quaternion can be written as the 4-tuple
q = (q0,q1,q2,q3) = (q0, q⃗) where q0 ∈ R is called the scalar part
and q⃗ = (q1,q2,q3)∈R3 the vector part. q = (0, q⃗) with zero scalar
part is called a vector quaternion. q = (q0 ,⃗0) is called a scalar
quaternion for q⃗ = 0⃗ in which case it is equivalent to a scalar q0.
The multiplication of two quaternions qa and qb is defined in the
following way:

qa qb = (qa0, q⃗a)(qb0, q⃗b) = (qa0qb0− q⃗a · q⃗b, qa0q⃗b+qb0q⃗a+ q⃗a× q⃗b).

(41)
The quaternions form a non-abelian group with respect to their

multiplication which is associative. The conjugate of a quater-

nion q = (q0, q⃗) is defined as q∗ = (q0,−q⃗) which brings about

the quaternion norm |q| =
√

qq∗ =
√

q2
0 +q2

1 +q2
2 +q2

3 and the in-

verse quaternion q−1 = q∗/|q|2, qq−1 = q−1q = 1. A rotation
R3 → R3, p⃗ 7→ p⃗ ′ by an angle α around axis u⃗ can be expressed
by quaternion multiplication. A 3D vector p⃗ is projected onto the
vector quaternion pq = (0, p⃗) and the rotation is performed with
a unit quaternion q(t) =

(
cos(α

2 ),sin(α

2 )⃗u
)

with |q| = |⃗u| = 1, so
that97 q∗ = q−1:

p′q = q pq q∗ = (0, p⃗ ′). (42)

The rotated vector p⃗ ′ is read off the resulting vector
quaternion p′q. The monomer orientations χi(t) are repre-
sented by unit quaternions qi(t) = (qi,0,qi,1,qi,2,qi,3) = (qi,0, q⃗i) =

(cos(αi
2 ),sin(αi

2 )⃗ui) with |⃗ui| = 1. The qi(t) carry the information
about a rotation axis u⃗i and an angle αi corresponding to the ori-
entation of monomer i at time t. The patch positions k = 1,2,3 ≡
blue, red, green are recovered by scaling the standard basis vec-
tors to lpatêk and rotating them with qi(t):

(0, lpatêk) 7→ (0,⃗rpat,i,k(t)) = qi(t)(0, lpatêk)q
∗
i (t). (43)

In this way, the patch vectors are always guaranteed to both
have the correct distance to the bead and be orthogonal to
each other so that they span an orthogonal reference system.
At the beginning of a simulation run the monomers are given
a starting orientation qi(0) that sets the initial patch positions
(0,⃗rpat,i,k(0)) = lpatqi(0)(0, êk)q∗i (0). The second step of the ro-
tational velocity Verlet algorithm (32) comprises a rotation of
the orientation qi(t) around axis ω⃗i/|ω⃗i| and by an angle ω⃗iδ t to
qi(t +δ t). In terms of quaternions it is computed in the following
way with ω⃗i = ω⃗i(t + δ t

2 ):

qi(t +δ t) = qω⃗iδ t

(
t +

δ t
2

)
qi(t)

=

(
cos
(
|ω⃗i|δ t

2

)
,sin

(
|ω⃗i|δ t

2

)
ω⃗i

|ω⃗i|

)
qi(t).

(44)

Because of associativity the updated qi(t+δ t) imparts the same
3D rotation of a vector p⃗ to p⃗ ′(t +δ t) as qi(t) followed by a rota-
tion according to ω⃗iδ t:

(0, p⃗ ′(t +δ t)) = p′q(t +δ t) = qi(t +δ t) pq q∗i (t +δ t)

=

(
qω⃗iδ t

(
t +

δ t
2

)
qi(t)

)
pq

(
qω⃗iδ t

(
t +

δ t
2

)
qi(t)

)∗

=

(
qω⃗iδ t

(
t +

δ t
2

)
qi(t)

)
pq

(
q∗i (t)q∗

ω⃗iδ t

(
t +

δ t
2

))

= qω⃗iδ t

(
t +

δ t
2

) (
qi(t) pq q∗i (t)

)
q∗

ω⃗iδ t

(
t +

δ t
2

)

= qω⃗iδ t

(
t +

δ t
2

)
p′q(t)q∗

ω⃗iδ t

(
t +

δ t
2

)

= qω⃗iδ t

(
t +

δ t
2

)
(0, p⃗ ′(t))q∗

ω⃗iδ t

(
t +

δ t
2

)
.

(45)
At time t, the orientation is given by the time-ordered product
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Fig. 12 The equilibrium end-to-end correlation function of supercoiled
rings of length N = 100 as a function of time starting from the initializa-
tion states for +HI, panel (a), and −HI, panel (b).

of all rotations to the left of qi(0):

qi(t) = qω⃗iδ t

(
t − δ t

2

)
qω⃗iδ t

(
t − 3δ t

2

)
× ...

×qω⃗iδ t

(
3δ t
2

)
qω⃗iδ t

(
δ t
2

)
qi(0),

(46)

and the step (45) can be repeated t/δ t +1 many times:

p′q(t) = qi(t) pq q∗i (t)

= qω⃗iδ t

(
t − δ t

2

)
...qω⃗iδ t

(
δ t
2

)
qi (0) pq×

× q∗i (0)q∗
ω⃗iδ t

(
δ t
2

)
...q∗

ω⃗iδ t

(
t − δ t

2

)
.

(47)

Inserting pq = (0, p⃗) = (0, lpatêk) and pq
′(t) = (0, p⃗ ′(t)) =

(0,⃗rpat,i,k(t)) into (45) and (47) makes evident that (43) and (44)
reproduce the monomer orientations at all time steps. The quater-
nions must always have unity norm, i.e., |qi(t)| = 1 so that they

represent proper rotations. It holds that
∣∣qω⃗iδ t

(
t + δ t

2

)∣∣ = 1, i.e.,

normalization to unity is guaranteed for all time steps t, if the
initial qi(0) have unity norm. The quaternions are normalized
qi(t) 7→ qi(t)/|qi(t)| every 100th MD step to counteract numerical
errors that can possibly occur along the way.

Relaxation time of supercoiled rings
The relaxation times of supercoiled rings can be extracted by
means of the “end-to-end” correlation function,40,98

Cee(t;0) =
⟨R⃗ee(t;0) · R⃗ee(0;0)⟩m

⟨R⃗2
ee(0;0)⟩m

, (48)

where R⃗ee(t; γ̇) defines a vector joining two monomers of the chain
that are separated by N/2 monomers and ⟨...⟩m represents an av-
erage over the N/2 end-to-end connections; results are shown in
Fig. 12. For the +HI-case, shown in Fig. 12(a), we extended the
simulation up to times t ∼= 4 ·104 τMPCD, whereas for the −HI-case,
shown in Fig. 12(b), which is computationally cheaper, we were
able to reach times t ∼= 106 τMPCD. The latter case clearly shows
the characteristic exponential decay of the correlation functions,
establishing a relaxation time τR ∼= 3 · 105 τMPCD, in very good
agreement with the estimate presented in the main text. On the
other hand, the curves in Fig. 12(a) demonstrate that the correla-
tion functions for the +HI-case decay much faster (by about one
order of magnitude), again confirming the estimate of τR in the
main text.

Notes and references
1 A. V. Pinheiro, D. Han, W. M. Shih and H. Yan, Nat. Nanotech-

nol., 2011, 6, 763–772.
2 N. Seeman, J. Chen, S. Du, J. Mueller, Y. Zhang, T.-J. Fu,

H. Wang, Y. Wang and S. Zhang, New J. Chem., 1993, 17,
739–755.

3 J. Chen and N. C. Seeman, Nature, 1991, 350, 631–633.
4 E. Stiakakis, N. Jung, N. Adžić, T. Balandin, E. Kentzinger,
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